JP4656513B2 - Reflective optical device - Google Patents

Reflective optical device Download PDF

Info

Publication number
JP4656513B2
JP4656513B2 JP2005239721A JP2005239721A JP4656513B2 JP 4656513 B2 JP4656513 B2 JP 4656513B2 JP 2005239721 A JP2005239721 A JP 2005239721A JP 2005239721 A JP2005239721 A JP 2005239721A JP 4656513 B2 JP4656513 B2 JP 4656513B2
Authority
JP
Japan
Prior art keywords
polarization
light
optical path
optical
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005239721A
Other languages
Japanese (ja)
Other versions
JP2007057573A (en
Inventor
博章 小野
英則 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2005239721A priority Critical patent/JP4656513B2/en
Publication of JP2007057573A publication Critical patent/JP2007057573A/en
Application granted granted Critical
Publication of JP4656513B2 publication Critical patent/JP4656513B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本発明は、ファラデー回転子を用いて偏光方向を制御すると共に複屈折手段を用いて光路シフトを制御する反射型の光デバイスに関し、±45度可変ファラデー回転子によって光スイッチ機能を実現したり、あるいは45度固定ファラデー回転子によって光サーキュレータ機能を実現する反射型光デバイスに関するものである。   The present invention relates to a reflective optical device that controls a polarization direction using a Faraday rotator and controls an optical path shift using birefringence means, and realizes an optical switch function by a ± 45 degree variable Faraday rotator, Or it is related with the reflection type optical device which implement | achieves an optical circulator function with a 45 degree fixed Faraday rotator.

光通信システムあるいは光計測システムなどにおいては、光路の切り換えを行うための光スイッチや光路を制御するための光サーキュレータなどの光デバイスが組み込まれている。光スイッチは、入力ポートからの入力光を、出力ポートの選択された任意の一つに出力するというような光路切り換え機能を有する光デバイスであり、1×2型(1入力・2出力)が最も基本的な形態である。光サーキュレータは、第1ポートからの入力光を第2ポートへ出力し、第2ポートからの入力光を第3ポートに出力するというように光路を循環的に制御する機能を有する光デバイスであり、3ポート型が最も基本的な形態である。   In an optical communication system or an optical measurement system, an optical device such as an optical switch for switching an optical path or an optical circulator for controlling the optical path is incorporated. An optical switch is an optical device having an optical path switching function that outputs input light from an input port to an arbitrary selected one of output ports. 1 × 2 type (1 input / 2 output) It is the most basic form. The optical circulator is an optical device having a function of cyclically controlling the optical path such that the input light from the first port is output to the second port and the input light from the second port is output to the third port. The 3-port type is the most basic form.

光通信用の光デバイスとしては、特に偏波無依存であること、光ファイバとの整合性が良好なこと、信頼性が高いことなどが肝要である。そのような要求を満たしうるものとして、例えば偏波面に応じて光路を制御する複屈折結晶と偏波面の回転角を制御するファラデー回転子などの各種光素子を組み合わせ配列した光素子群によって必要な光機能部を実現する構成がある。   As an optical device for optical communication, it is important that the optical device is not dependent on polarization, has good compatibility with an optical fiber, and has high reliability. In order to satisfy such requirements, for example, it is necessary by an optical element group in which various optical elements such as a birefringent crystal that controls the optical path according to the polarization plane and a Faraday rotator that controls the rotation angle of the polarization plane are combined and arranged. There is a configuration for realizing an optical function unit.

この種の光デバイスでは、かつては光素子群の一端側から光が入力し、光素子群を一方向に進行して他端側から出力する構造(言わば透過型)が一般的であった。しかし近年、光デバイスの小型化などの観点から、配列されている光素子群とミラー(反射手段)を組み合わせ、一端側から入力する光が光素子群を進行してミラーに達し、該ミラーで反射した光が光素子群を逆行して一端側から出力するようにし、光が光素子群を往復する間、光路の切り換えや制御を行う反射型の光デバイスが開発されている。例えば、特許文献1には、複屈折結晶、45度ファラデー回転子、1/2波長板、複屈折結晶を一列に配列し、更にその列の一端に入出力部を設け、他端に偏波回転素子と反射体を配置した反射型光サーキュレータが開示されている。   In the past, this type of optical device generally has a structure (that is, a transmission type) in which light is input from one end side of the optical element group, travels in one direction in the optical element group, and is output from the other end side. However, in recent years, from the viewpoint of miniaturization of optical devices, etc., an arrayed optical element group and a mirror (reflecting means) are combined, and light input from one end side travels through the optical element group and reaches the mirror. Reflective optical devices have been developed in which the reflected light travels back through the optical element group and is output from one end side, and the light path is switched and controlled while the light travels back and forth through the optical element group. For example, in Patent Document 1, a birefringent crystal, a 45-degree Faraday rotator, a half-wave plate, and a birefringent crystal are arranged in a row, and an input / output unit is provided at one end of the row, and a polarization is provided at the other end. A reflection type optical circulator in which a rotating element and a reflector are arranged is disclosed.

このような反射型の光デバイスは、光が光素子群を往復する間に必要な機能をもたせることができるため、部品点数を削減でき、光軸方向の長さを大幅に短縮できる利点を有する。しかし、従来の反射型光デバイスは機能面で制約があり用途が限られている。   Such a reflection-type optical device has an advantage that the number of components can be reduced and the length in the optical axis direction can be greatly shortened because light can have a necessary function while reciprocating the optical element group. . However, conventional reflective optical devices have limitations in terms of functions and have limited applications.

前記特許文献1で開示されている構成の反射型光サーキュレータは、確かにサーキュレータ機能を呈するものの不完全な循環型である。例えば3ポート型の場合、第1ポートからの入力光は第2ポートに出力し、第2ポートからの入力光は第3ポートに出力するが、第3ポートからの入力光は第1ポートには出力できない。また、4ポート以上の形式の場合でも、最終ポートからの入力光は第1ポートには出力できない。   The reflection type optical circulator having the configuration disclosed in Patent Document 1 certainly exhibits a circulator function but is an incomplete circulation type. For example, in the case of a 3-port type, input light from the first port is output to the second port, input light from the second port is output to the third port, but input light from the third port is output to the first port. Cannot be output. In addition, even in the case of four or more ports, the input light from the last port cannot be output to the first port.

上記の反射型光サーキュレータの構造を利用し、ファラデー回転子を固定磁界印加方式から可変磁界印加方式に置き換えて±45度可変ファラデー回転子にすると、スイッチ機能が得られる。しかし、1×2型(1入力・2出力)又は2×1型(2入力・1出力)であり、2×2型(2入力・2出力)は得られない。   When the structure of the reflection type optical circulator is used and the Faraday rotator is replaced with a variable magnetic field application method from a fixed magnetic field application method to a ± 45 degree variable Faraday rotator, a switching function is obtained. However, it is a 1 × 2 type (1 input · 2 output) or a 2 × 1 type (2 input · 1 output), and a 2 × 2 type (2 inputs · 2 output) cannot be obtained.

このような問題を解決できるものとして、本発明者らは別の構造の反射型光デバイスを提案した(特許文献2参照)。しかし、この構造は、光路長差の補正が難しかったり、ミラーの形状が複雑化するなど、改良すべき点もあった。
特開2000−39590号公報 特開2004−264368号公報
In order to solve such a problem, the present inventors have proposed a reflection type optical device having another structure (see Patent Document 2). However, this structure has some points to be improved, such as difficulty in correcting the optical path length difference and complicated mirror shape.
JP 2000-39590 A JP 2004-264368 A

本発明が解決しようとする課題は、部品点数を少なくでき小型化できる反射型の特徴を生かしつつ、光路長差の補正が容易となり、反射部材の形状も単純化でき、それによって高品位化の光デバイスを安価に容易に製作できるようにすることである。   The problem to be solved by the present invention is that it is easy to correct the optical path length difference while taking advantage of the characteristics of the reflection type that can reduce the number of parts and reduce the size, and the shape of the reflection member can be simplified, thereby improving the quality. It is to make it possible to easily manufacture an optical device at low cost.

本発明は、偏波方向が直交関係にある同じ光路の光を分離し異なる光路の光を合成する偏波分離合成用複屈折手段と、異なる光路の光の偏波方向を直交から平行又は平行から直交の関係に変換すると共に偏波方向を制御する偏波回転制御手段と、偏波方向に応じて光路シフトを制御する光路制御用複屈折手段と、偏波面を往復で90度回転させて反射する偏波回転反射手段とが、その順序で光軸に沿って配列され、前記偏波回転反射手段は、偏波面を往復で90度回転させる偏波回転子とプリズム・ミラー一体型の反射構造体との組み合わせであって、該反射構造体は、両最側部の光路の光を2回反射により戻すプリズムと両最側部以外の光路の光を1回反射により戻す平行平面ミラーとが一体に結合されてプリズムを経る反射光路とミラーによる反射光路との光路長差を補正する構造であり、偏波回転反射手段とは反対側に位置する入出力部には4ポート以上が配列され、前記偏波回転制御手段は、±45度可変ファラデー回転子と一対の1/2波長板の組み合わせからなり、±45度可変ファラデー回転子によって偏波方向を切り換えることで光スイッチ機能を呈するようにしたことを特徴とする反射型光デバイスである。   The present invention provides a polarization separation / combination birefringence unit that separates light of the same optical path in which the polarization directions are orthogonal, and combines light of different optical paths, and the polarization direction of the light of different optical paths from orthogonal to parallel or parallel. The polarization rotation control means for converting from the orthogonal to the orthogonal relation and controlling the polarization direction, the optical path control birefringence means for controlling the optical path shift according to the polarization direction, and the polarization plane are rotated 90 degrees in a reciprocating manner. The polarization rotation reflection means for reflecting is arranged in the order along the optical axis, and the polarization rotation reflection means is a reflection of a polarization rotator and prism mirror integrated type that rotates the polarization plane back and forth by 90 degrees. A combination of a structure and a reflecting structure including a prism that returns the light in the optical paths on both outermost sides by reflection twice and a parallel plane mirror that returns the light on the optical paths other than both outermost sides by reflecting once; Reflected light path and mirror that are coupled together through a prism 4 or more ports are arranged in the input / output unit located on the opposite side to the polarization rotation reflection means, and the polarization rotation control means is ± 45 degrees. A reflection type optical device comprising a combination of a variable Faraday rotator and a pair of half-wave plates, and exhibiting an optical switch function by switching the polarization direction by a ± 45 degree variable Faraday rotator. is there.

また本発明は、偏波方向が直交関係にある同じ光路の光を分離し異なる光路の光を合成する偏波分離合成用複屈折手段と、異なる光路の光の偏波方向を直交から平行又は平行から直交の関係に変換すると共に偏波方向を制御する偏波回転制御手段と、偏波方向に応じて光路シフトを制御する光路制御用複屈折手段と、偏波面を往復で90度回転させて反射する偏波回転反射手段とが、その順序で光軸に沿って配列され、前記偏波回転反射手段は、偏波面を往復で90度回転させる偏波回転子とプリズム・ミラー一体型の反射構造体との組み合わせであって、該反射構造体は、両最側部の光路の光を2回反射により戻すプリズムと両最側部以外の光路の光を1回反射により戻す平行平面ミラーとが一体に結合されてプリズムを経る反射光路とミラーによる反射光路との光路長差を補正する構造であり、偏波回転反射手段とは反対側に位置する入出力部には4ポート以上が配列され、前記偏波回転制御手段は、45度固定ファラデー回転子と一対の1/2波長板の組み合わせからなり、45度固定ファラデー回転子によって偏波方向が変わることで光サーキュレータ機能を呈するようにしたことを特徴とする反射型光デバイスである。   Further, the present invention provides a polarization separation / combination birefringence unit that separates light of the same optical path in which the polarization directions are orthogonal, and combines light of different optical paths, and a polarization direction of light of different optical paths from orthogonal to parallel or Polarization rotation control means for converting the parallel to orthogonal relation and controlling the polarization direction, optical path control birefringence means for controlling the optical path shift according to the polarization direction, and the polarization plane are rotated 90 degrees in a reciprocating manner. The polarization rotation reflection means for reflecting the light is reflected along the optical axis in that order, and the polarization rotation reflection means includes a polarization rotator for reciprocating the polarization plane by 90 degrees and a prism mirror integrated type. A combination with a reflecting structure, the reflecting structure comprising a prism that returns the light of the optical paths on both outermost sides by reflecting twice and a parallel plane mirror that returns the light of the optical paths other than both outermost sides by reflecting once And the reflected optical path through the prism and Is a structure that corrects the optical path length difference from the reflected optical path, and four or more ports are arranged in the input / output unit located on the opposite side of the polarization rotation reflection means, and the polarization rotation control means is 45 degrees. A reflection-type optical device comprising a combination of a fixed Faraday rotator and a pair of half-wave plates, and exhibiting an optical circulator function by changing the polarization direction by a 45-degree fixed Faraday rotator. .

プリズム・ミラー一体型の反射構造体は、例えば、両最側部の光路の光を2回反射により戻す台形プリズムと、一端面に反射膜を形成して両最側部以外の光路の光を1回反射により戻す直方体(立方体も含む)ブロックとを一体に結合した構造などとする。台形プリズムに代えて2個の三角プリズムを組み合わせる構造なども可能である。   The prism / mirror integrated reflection structure includes, for example, a trapezoidal prism that returns the light in the optical paths on both outermost sides by reflection twice, and forms a reflective film on one end surface to transmit the light in the optical paths other than both outermost parts. A rectangular parallelepiped (including a cube) block that is returned by a single reflection is integrally formed. A structure in which two triangular prisms are combined instead of the trapezoidal prism is also possible.

ここで、偏波分離合成用複屈折手段は、偏波分離合成用複屈折結晶を2分割し、それらの間に1/2波長板を挿入して常光・異常光を入れ換えることにより偏波分散を補償した構造とすることができる。   Here, the polarization splitting and synthesizing birefringence means divides the polarization splitting and synthesizing birefringent crystal into two parts, and inserts a half-wave plate between them to replace ordinary light and extraordinary light, thereby polarization dispersion. It can be set as the structure which compensated.

偏波面を往復で90度回転させる偏波回転子は、例えば、一方の最側部の光路に挿入された1/2波長板と、両方の最側部を除く光路に挿入された1/4波長板からなる構造とする。従って、他方の最側部の光路には波長板は挿入されていない。   For example, a polarization rotator that rotates the polarization plane back and forth by 90 degrees includes a half-wave plate inserted in one of the optical paths on the outermost side and a quarter wavelength inserted in the optical path excluding both of the outermost parts. The structure is made of a wave plate. Therefore, no wave plate is inserted in the optical path of the other outermost part.

なお、偏波回転反射手段とは反対側に位置する入出力部は、4本以上の光ファイバを有する多芯フェルールと結合用レンズを配列した構成とする。更に必要に応じて光路補正用素子等を組み込むこともできる。   The input / output unit located on the opposite side of the polarization rotation reflection means has a configuration in which a multi-core ferrule having four or more optical fibers and a coupling lens are arranged. Furthermore, an optical path correcting element or the like can be incorporated as required.

本発明は上記のように構成した反射型光デバイスであり、光軸に沿って往復する光路を利用しているため、入出力部が両端に存在する透過型と異なり、部品点数を少なくでき安価に作製できるし小型化できる。また、組み込む反射構造体は、構造を単純化でき、光路長差の補正が容易となり、そのため高品位化の光デバイスを安価に容易に製作できる。更に、光ファイバが一方向のみに設けられるために、デバイスの取り扱いが容易となる利点もある。   The present invention is a reflection type optical device configured as described above, and uses an optical path that reciprocates along the optical axis. Therefore, unlike the transmission type in which the input / output unit is present at both ends, the number of components can be reduced and the cost can be reduced. Can be manufactured and can be downsized. Further, the reflecting structure to be incorporated can simplify the structure and can easily correct the optical path length difference, so that a high-quality optical device can be easily manufactured at low cost. Furthermore, since the optical fiber is provided in only one direction, there is an advantage that the device can be easily handled.

本発明によれば、反射型光スイッチの場合には、2×2型(2入力・2出力)が実現できる。磁気光学方式であり可動部を持たないために、動作の信頼性は極めて高い。また反射型光サーキュレータの場合には、nポート完全循環型が実現できる。   According to the present invention, in the case of a reflective optical switch, a 2 × 2 type (2 inputs / 2 outputs) can be realized. Since it is a magneto-optical system and has no movable part, the operation reliability is extremely high. In the case of a reflection type optical circulator, an n-port complete circulation type can be realized.

本発明に係る反射型光デバイスの典型的な光素子配列構造を示している。光デバイス本体は、偏波分離合成用複屈折手段10と、偏波回転制御手段12と、光路制御用複屈折手段14と、偏波回転反射手段16とを、その順序で光軸に沿って配列した構成である。光デバイス本体に対向して入出力部18を配置する。光は光軸に平行に入出射する。なお、説明を分かり易くするため、光素子の配列方向(光軸)をz軸とし、該z軸に直交する2軸をそれぞれx軸(横軸)、y軸(縦軸)とするように座標軸を設定する。ここでは、光路はy軸方向(上下方向)に配列されており、便宜的にz軸方向を見て上側から順に、第1光路、第2光路、…と呼ぶ。   1 shows a typical optical element array structure of a reflective optical device according to the present invention. The optical device body includes a polarization separation / combination birefringence means 10, a polarization rotation control means 12, an optical path control birefringence means 14, and a polarization rotation reflection means 16 in that order along the optical axis. The arrangement is arranged. The input / output unit 18 is disposed facing the optical device body. Light enters and exits parallel to the optical axis. For ease of explanation, the arrangement direction (optical axis) of the optical elements is the z axis, and the two axes orthogonal to the z axis are the x axis (horizontal axis) and the y axis (vertical axis), respectively. Set the coordinate axes. Here, the optical paths are arranged in the y-axis direction (vertical direction), and are referred to as a first optical path, a second optical path,.

入出力部18は、4本以上の光ファイバ20を有する多芯フェルール21及びレンズアレイなどの結合用レンズ22からなる。図示していないが、更に必要がある場合には光路補正用素子などを設けることもある。なお、図1では4本の光ファイバを示している。   The input / output unit 18 includes a multi-core ferrule 21 having four or more optical fibers 20 and a coupling lens 22 such as a lens array. Although not shown, an optical path correcting element or the like may be provided if further necessary. In FIG. 1, four optical fibers are shown.

偏波分離合成用複屈折手段10は、偏波方向が直交関係にある同じ光路の光を常光・異常光に分離し異なる光路の常光・異常光を合成するもので、光学軸がxz面内でz軸から傾いている第1の複屈折結晶24と光学軸がxz面内でz軸から逆方向に傾いている第2の複屈折結晶26、及びそれらの間に介装された1/2波長板28からなる。この組み合わせは、第1の複屈折結晶24で生じる偏波分散を第2の複屈折結晶26で補償するためのものであり、1/2波長板28によって常光・異常光を入れ替えることで光路長を補正している。   The polarization separation / combination birefringence means 10 separates light of the same optical path whose polarization directions are orthogonal to each other into ordinary light and extraordinary light and synthesizes ordinary light and extraordinary light of different optical paths, and the optical axis is in the xz plane. The first birefringent crystal 24 tilted from the z-axis, the second birefringent crystal 26 whose optical axis is tilted in the opposite direction from the z-axis in the xz plane, and the 1 / It consists of a two-wave plate 28. This combination is for compensating the polarization dispersion generated in the first birefringent crystal 24 by the second birefringent crystal 26, and the optical path length is obtained by exchanging ordinary light and extraordinary light by the half-wave plate 28. Is corrected.

偏波回転制御手段12は、異なる光路の光の偏波方向を直交から平行又は平行から直交の関係に変換するものであり、ファラデー回転子30と左右分割されている一対の1/2波長板32a,32bの組み合わせからなる。ここでファラデー回転子30は、磁気光学結晶(例えばBi置換希土類鉄ガーネットLPE膜)からなるファラデー素子と該ファラデー素子に外部から磁界を印加する磁界印加手段からなる。光スイッチとして機能させる場合には、ファラデー回転子は±45度可変ファラデー回転子であり、磁界印加手段には電磁石を用い、該電磁石への通電電流の向きを切り換えることでファラデー回転角を+45度又は−45度に切り換えることができる構造とする。光サーキュレータとして機能させる場合には、ファラデー回転子は45度固定ファラデー回転子であり、磁界印加手段には固定磁界を印加する永久磁石を用いる。左側の1/2波長板32aは光学軸がxz面内でz軸に対して+22.5度傾き、右側の1/2波長板32bは光学軸がxz面内でz軸に対して−22.5度傾くように組み合わせたものである。   The polarization rotation control means 12 converts the polarization direction of the light of different optical paths from orthogonal to parallel or from parallel to orthogonal, and is a pair of half-wave plates that are divided from the Faraday rotator 30 to the left and right. It consists of a combination of 32a and 32b. Here, the Faraday rotator 30 includes a Faraday element made of a magneto-optical crystal (for example, a Bi-substituted rare earth iron garnet LPE film) and a magnetic field applying means for applying a magnetic field to the Faraday element from the outside. In the case of functioning as an optical switch, the Faraday rotator is a ± 45 degree variable Faraday rotator, an electromagnet is used as the magnetic field applying means, and the direction of the energization current to the electromagnet is switched to change the Faraday rotation angle to +45 degrees. Or it is set as the structure which can be switched to -45 degree | times. When functioning as an optical circulator, the Faraday rotator is a 45-degree fixed Faraday rotator, and a permanent magnet for applying a fixed magnetic field is used as the magnetic field applying means. The left half-wave plate 32a is tilted +22.5 degrees with respect to the z-axis in the xz plane, and the right half-wave plate 32b is −22 with respect to the z-axis in the xz plane. .Combined to tilt 5 degrees.

光路制御用複屈折手段14は単一の複屈折結晶からなり、光学軸がyz面内でz軸から傾いているものである。   The optical path control birefringence means 14 is made of a single birefringent crystal, and its optical axis is inclined from the z axis in the yz plane.

偏波回転反射手段16は、偏波面を往復で90度回転させる偏波回転子34とプリズム・ミラー一体型の反射構造体36との組み合わせからなる。偏波回転子34は、第1光路(一方の最側部)に挿入される1/2波長板40と、第1光路及び第n光路(nは最後の光路であり、図1では第4光路である)を除く中間光路に挿入される1/4波長板42との組み合わせからなる。プリズム・ミラー一体型の反射構造体36は、第1光路と第n光路の光(両方の最側部を通る光)を2回反射により光路を変えて戻すプリズム44と、第1光路と第n光路以外の中間光路の光を1回反射により元の光路のまま戻す平行平面ミラー46とが一体に結合されて、プリズム44を経る反射光路と平行平面ミラー46による反射光路との光路長差を補正する構造である。プリズム44を経る反射光路が最も長い光路長であるため、この光路長に合わせた位置に平行平面ミラー46の反射面48を置くことで、光路長差を補正しているのである。このように一体型とすることで、製造し易く、取り扱い易くなる。   The polarization rotation reflection means 16 includes a combination of a polarization rotator 34 that rotates the polarization plane 90 degrees in a reciprocating manner and a prism / mirror integrated reflection structure 36. The polarization rotator 34 includes a half-wave plate 40 inserted in the first optical path (one outermost part), the first optical path, and the nth optical path (n is the last optical path, and in FIG. It consists of a combination with a quarter wave plate 42 inserted in the intermediate optical path except for the optical path. The prism / mirror integrated reflection structure 36 includes a prism 44 that returns the light of the first optical path and the n-th optical path (light passing through both outermost portions) by changing the optical path twice, and the first optical path and the first optical path. An optical path length difference between the reflected optical path passing through the prism 44 and the reflected optical path by the parallel plane mirror 46 is integrally coupled with a parallel plane mirror 46 that returns the light of the intermediate optical path other than the n optical path to the original optical path by a single reflection. It is the structure which corrects. Since the reflected optical path passing through the prism 44 is the longest optical path length, the optical path length difference is corrected by placing the reflecting surface 48 of the parallel flat mirror 46 at a position corresponding to the optical path length. Such an integrated type makes it easy to manufacture and handle.

プリズム・ミラー一体型の反射構造体の例を図2に示す。(A)に示す例は、両方の最側部の光路の光を2回反射により光路を変えて戻す台形プリズム50と、一端面に反射膜48を形成して両方の最側部以外の光路の光を1回反射により光路を変えずに戻す直方体ブロック54とを一体に結合した構造である。台形プリズム50は、45度の傾斜面を持ち、その平行平面の短辺側に透明の直方体ブロック54を接合し、接合面と反対側の面が反射面48となっている。反射面48は、例えば金属膜でもよいし誘電体多層膜などでもよい。一方の最側部の光路を通った光は、台形プリズム50の一方の傾斜面で全反射して90度曲がり、更に他方の傾斜面で再び全反射して90度曲がり、他方の最側部の光路を通って戻る。(B)に示す例は、45度の傾斜面を持つ2個の三角プリズム56a,56bを、一端面に反射膜48を形成した透明の直方体ブロック58の側面に対称的に接合した例である。両最側部の光路の光は、一方の三角プリズム56aで反射し、直方体ブロック58を透過して、他方の三角プリズム56bで反射し、合計2回の反射により異なる光路で戻される。   An example of a prism / mirror integrated reflection structure is shown in FIG. The example shown in (A) shows a trapezoidal prism 50 that returns the light of the optical paths on both outermost sides by changing the optical path twice by reflection, and an optical path other than both outermost parts by forming a reflection film 48 on one end face. This is a structure in which a rectangular parallelepiped block 54 that returns the light without changing the optical path by reflection once is integrally coupled. The trapezoidal prism 50 has an inclined surface of 45 degrees, a transparent rectangular parallelepiped block 54 is bonded to the short side of the parallel plane, and a surface opposite to the bonded surface is a reflecting surface 48. The reflection surface 48 may be, for example, a metal film or a dielectric multilayer film. The light that has passed through the optical path on one outermost side is totally reflected by one inclined surface of the trapezoidal prism 50 and bent by 90 degrees, and further totally reflected again by the other inclined surface and bent by 90 degrees, and the other outermost part is bent. Go back through the light path. The example shown in (B) is an example in which two triangular prisms 56a and 56b having an inclined surface of 45 degrees are joined symmetrically to the side surface of a transparent rectangular parallelepiped block 58 having a reflection film 48 formed on one end surface. . The light in the optical paths on both outermost sides is reflected by one triangular prism 56a, passes through the rectangular parallelepiped block 58, is reflected by the other triangular prism 56b, and is returned on different optical paths by a total of two reflections.

図3及び図4は、本発明に係る反射型光デバイスの一実施例を示す説明図であり、2×2型(2入力・2出力型)の光スイッチ機能を実現する場合の光素子配列状態(A)と偏波面の方向(B)を示している。図3は、入力1(I1 )から出力1(O1 )へ、入力2(I2 )から出力2(O2 )へ光が伝搬する場合であり、図4は、磁界方向の切り換えによって、入力1から出力2へ、入力2から出力1へ光が伝搬する場合である。ここでは、入出力のポートは、第1光路の位置が出力1、第2光路の位置が入力1、第3光路の位置が出力2、第4光路の位置が入力2となるように、それぞれ設定している。また偏波の回転方向は、z方向(往路における光の進行方向)を基準として反時計回りを+側とする。なお、光素子の配列状態は、基本的に図1と同様なので、説明を簡略化するため、ファラデー回転子を除いて、対応する部材には同一符号を付す。入出力部は図示するのを省略している。ファラデー回転子としては、±45度可変ファラデー回転子60を用いる。 FIG. 3 and FIG. 4 are explanatory views showing an embodiment of the reflection type optical device according to the present invention, and an optical element arrangement for realizing a 2 × 2 type (2 input / 2 output type) optical switch function. The state (A) and the direction (B) of the polarization plane are shown. FIG. 3 shows a case where light propagates from input 1 (I 1 ) to output 1 (O 1 ) and from input 2 (I 2 ) to output 2 (O 2 ). In this case, light propagates from input 1 to output 2 and from input 2 to output 1. Here, the input / output ports are such that the position of the first optical path is output 1, the position of the second optical path is input 1, the position of the third optical path is output 2, and the position of the fourth optical path is input 2. It is set. In addition, the polarization rotation direction is counterclockwise on the + side with respect to the z direction (light traveling direction in the forward path). Since the arrangement state of the optical elements is basically the same as that in FIG. 1, the same reference numerals are assigned to the corresponding members except for the Faraday rotator in order to simplify the description. The input / output unit is not shown. As the Faraday rotator, a ± 45 degree variable Faraday rotator 60 is used.

図3ではファラデー回転子の印加磁界方向がz方向を向くように、電磁石の通電電流が制御される。なお(B)の符号a,…,hは、(A)の素子間位置a,…,hでの偏波面の方向を表している。   In FIG. 3, the energization current of the electromagnet is controlled so that the direction of the applied magnetic field of the Faraday rotator faces the z direction. The symbols a,..., H in (B) represent the directions of the polarization planes at the inter-element positions a,.

入力1から入力した第2光路の光は、偏波分離合成用複屈折手段10で常光・異常光に分離する。即ち、第1の複屈折結晶24では常光は直進し異常光は−x方向に屈折して進み、1/2波長板28ではそれぞれの偏波面が90度回転し、第2の複屈折結晶26では常光と異常光が入れ替わることになり、常光は直進し異常光はx方向に屈折して進む。このように偏波分離合成用複屈折手段10で偏波面が互いに直交する左右2つの光路の光に分かれる。それらの光は、偏波回転制御手段12で、偏波方向が直交から平行の関係に変換される。即ち、±45度可変ファラデー回転子60では+45度偏波面が回転し、左右分割されている一対の1/2波長板32a,32bでは、左光路の光は+45度、右光路の光は−45度、それぞれ偏波面が回転するため、偏波面はx軸に平行に揃う。両光は、光路制御用複屈折手段14を透過するが、その複屈折結晶に対しては常光であるので、そのまま直進する。次の偏波回転子34では、1/4波長板42の部分を通るため直線偏波が円偏波となり、プリズム・ミラー一体型の反射構造体36の平行平面ミラー46の部分でそのまま反射され戻される。   The light in the second optical path input from the input 1 is separated into ordinary light and extraordinary light by the polarization separation / combination birefringence means 10. That is, in the first birefringent crystal 24, the ordinary light travels straight and the extraordinary light refracts and travels in the −x direction. In the half-wave plate 28, each polarization plane rotates 90 degrees, and the second birefringent crystal 26 Then, the ordinary light and the extraordinary light are switched, and the ordinary light travels straight and the extraordinary light is refracted in the x direction. In this way, the polarization splitting / combining birefringence means 10 divides the light into two right and left optical paths whose polarization planes are orthogonal to each other. These lights are converted by the polarization rotation control means 12 so that the polarization direction changes from orthogonal to parallel. That is, in the ± 45 degree variable Faraday rotator 60, the +45 degree polarization plane rotates, and in the pair of half-wave plates 32a and 32b divided into the left and right, the light in the left optical path is +45 degrees and the light in the right optical path is − Since the plane of polarization rotates 45 degrees, the plane of polarization is aligned parallel to the x-axis. Both lights pass through the optical path control birefringence means 14, but the birefringent crystal is ordinary light, and thus travels straight. In the next polarization rotator 34, the linearly polarized wave is circularly polarized because it passes through the ¼ wavelength plate 42, and is reflected as it is by the parallel plane mirror 46 of the prism / mirror integrated reflection structure 36. Returned.

反射光は、偏波回転子34の1/4波長板42の部分を通るため円偏波が直線偏波に戻る。このときの偏波面はy軸に平行であり、光路制御用複屈折手段14の複屈折結晶に対しては異常光となるので、y方向に屈折し第1光路に光路シフトする。両光は、偏波回転制御手段12で、偏波方向が平行から直交の関係に変換される。即ち、左右分割されている一対の1/2波長板32a,32bでは、左光路の光は−45度、右光路の光は+45度、それぞれ回転し、±45度可変ファラデー回転子60では+45度偏波面が回転するため、左光路の光は偏波面がy軸に平行、右光路の光は偏波面がx軸に平行になる。これらの光は、偏波分離合成用複屈折手段10で合成される。即ち、第2の複屈折結晶26では常光は直進し異常光は−x方向に屈折して進み、1/2波長板28ではそれぞれの偏波面が90度回転し、第1の複屈折結晶24では常光と異常光が入れ替わることになり、常光は直進し異常光はx方向に屈折して進む。このようにして偏波分離合成用複屈折手段10で偏波面が互いに直交する1つの光に合成され、第1光路の出力1から出力する。   Since the reflected light passes through the ¼ wavelength plate 42 of the polarization rotator 34, the circularly polarized light returns to linearly polarized light. The plane of polarization at this time is parallel to the y-axis, and becomes an extraordinary light with respect to the birefringent crystal of the optical path control birefringence means 14, so that it is refracted in the y direction and shifted to the first optical path. Both lights are converted by the polarization rotation control means 12 from a parallel polarization direction to a perpendicular relationship. That is, in the pair of half-wave plates 32a and 32b divided into left and right, the light in the left optical path rotates by −45 degrees and the light in the right optical path rotates by +45 degrees, respectively, and +45 in the ± 45 degrees variable Faraday rotator 60. Since the polarization plane rotates, the polarization plane of the light in the left optical path is parallel to the y axis, and the polarization plane of the light in the right optical path is parallel to the x axis. These lights are combined by the polarization separation / combination birefringence means 10. That is, in the second birefringent crystal 26, the ordinary light travels straight and the extraordinary light refracts and travels in the −x direction. In the half-wave plate 28, each polarization plane rotates by 90 degrees, and the first birefringent crystal 24 Then, the ordinary light and the extraordinary light are switched, and the ordinary light travels straight and the extraordinary light is refracted in the x direction. In this way, the polarization splitting and synthesizing birefringence means 10 combines the light into one light whose polarization planes are orthogonal to each other, and outputs it from the output 1 of the first optical path.

入力2から入力する第4光路の光は、入力1から入力した光と同様の挙動を示し、反射して第3光路の出力2から出力する。   The light in the fourth optical path input from the input 2 exhibits the same behavior as the light input from the input 1 and is reflected and output from the output 2 of the third optical path.

図4ではファラデー回転子の印加磁界方向が−z方向を向くように、電磁石の通電電流が切り換え制御される。なお(B)の符号a,…,hは、(A)の素子間位置a,…,hでの偏波面の方向を表している。   In FIG. 4, the energization current of the electromagnet is switched and controlled so that the applied magnetic field direction of the Faraday rotator is directed in the −z direction. The symbols a,..., H in (B) represent the directions of the polarization planes at the inter-element positions a,.

入力1から入力した光は、偏波分離合成用複屈折手段10で常光・異常光に分離し、偏波面が互いに直交する左右2つの光路の光となる。両光は、偏波回転制御手段12で、偏波方向が直交から平行の関係に変換される。今度は、±45度可変ファラデー回転子60では−45度偏波面が回転し、左右分割されている一対の1/2波長板32a,32bでは、左光路の光は+45度、右光路の光は−45度、それぞれ回転するため、偏波面はy軸に平行に揃う。両光は、光路制御用複屈折手段14を透過するが、その複屈折結晶に対しては異常光となるので、−y方向に屈折し第3光路に光路シフトする。次の偏波回転子34では、1/4波長板42の部分を通るため直線偏波が円偏波となり、プリズム・ミラー一体型の反射構造体36の平行平面ミラー46の部分でそのまま反射され戻される。   The light input from the input 1 is separated into ordinary light and extraordinary light by the polarization separation / combination birefringence means 10 and becomes light in two right and left optical paths whose polarization planes are orthogonal to each other. Both lights are converted by the polarization rotation control means 12 from a perpendicular polarization direction to a parallel relationship. This time, with the ± 45 degree variable Faraday rotator 60, the -45 degree polarization plane rotates, and with the pair of half-wave plates 32a and 32b divided into left and right, the light in the left optical path is +45 degrees and the light in the right optical path. Are rotated by −45 degrees, so that the planes of polarization are aligned parallel to the y-axis. Both lights pass through the optical path control birefringence means 14 but become extraordinary light with respect to the birefringent crystal, so that they are refracted in the −y direction and shifted to the third optical path. In the next polarization rotator 34, the linearly polarized wave is circularly polarized because it passes through the ¼ wavelength plate 42, and is reflected as it is by the parallel plane mirror 46 of the prism / mirror integrated reflection structure 36. Returned.

反射光は、偏波回転子34の1/4波長板42の部分を通るため円偏波が直線偏波に戻る。このときの偏波面はx軸に平行であり、光路制御用複屈折手段14の複屈折結晶に対しては常光となるので、そのまま直進する。両光は、偏波回転制御手段12で、偏波方向が平行から直交の関係に変換される。即ち、左右分割されている一対の1/2波長板32a,32bでは、左光路の光は−45度、右光路の光は+45度、それぞれ回転し、±45度可変ファラデー回転子60では−45度偏波面が回転するため、左光路の光は偏波面がy軸に平行、右光路の光は偏波面がx軸に平行になる。これらの光は、偏波分離合成用複屈折手段10で合成され、偏波面が互いに直交する1つの光となって出力2から出力する。   Since the reflected light passes through the ¼ wavelength plate 42 of the polarization rotator 34, the circularly polarized light returns to linearly polarized light. The plane of polarization at this time is parallel to the x-axis, and becomes ordinary light with respect to the birefringent crystal of the birefringent means 14 for controlling the optical path. Both lights are converted by the polarization rotation control means 12 from a parallel polarization direction to a perpendicular relationship. That is, in the pair of half-wave plates 32a and 32b divided into left and right, the light in the left optical path rotates by −45 degrees, the light in the right optical path rotates by +45 degrees, and in the ± 45 degrees variable Faraday rotator 60, − Since the 45-degree polarization plane rotates, the light in the left optical path has a polarization plane parallel to the y-axis, and the light in the right optical path has a polarization plane parallel to the x-axis. These lights are combined by the polarization separation / combination birefringence means 10 and output from the output 2 as one light whose polarization planes are orthogonal to each other.

入力2から入力した光は、偏波分離合成用複屈折手段10で常光・異常光に分離し、偏波面が互いに直交する左右2つの光に分かれる。両光は、偏波回転制御手段12で、偏波方向が直交から平行の関係に変換され、偏波面はy軸に平行に揃う。両光は、光路制御用複屈折手段14を透過するが、その複屈折結晶に対しては異常光となるので、−y方向に屈折し第5光路に光路シフトする。次の偏波回転子34はバイパスするため直線偏波のまま、プリズム・ミラー一体型の反射構造体36のプリズム44の部分で2回反射され、第1光路に光路を変えて戻る。   The light input from the input 2 is separated into ordinary light and extraordinary light by the polarization separation / combination birefringence means 10 and separated into two light beams, the polarization planes of which are orthogonal to each other. Both lights are converted by the polarization rotation control means 12 so that the polarization direction changes from orthogonal to parallel, and the planes of polarization are aligned parallel to the y-axis. Both lights pass through the optical path control birefringence means 14 but become extraordinary light with respect to the birefringent crystal, so that they are refracted in the −y direction and shifted to the fifth optical path. Since the next polarization rotator 34 is bypassed and remains linearly polarized, it is reflected twice by the prism 44 of the prism / mirror integrated reflection structure 36, and returns to the first optical path by changing the optical path.

反射光は、偏波回転子34の1/2波長板40の部分を通るために偏波面が90度回転し、x軸に平行となる。これらの光は、光路制御用複屈折手段14の複屈折結晶に対しては常光となるので、そのまま直進する。両光は、偏波回転制御手段12で、偏波方向が平行から直交の関係に変換され、左光路の光は偏波面がy軸に平行、右光路の光は偏波面がx軸に平行になる。これらの光は、偏波分離合成用複屈折手段10で合成され、偏波面が互いに直交する1つの光となって出力1から出力する。   Since the reflected light passes through the portion of the half-wave plate 40 of the polarization rotator 34, the plane of polarization is rotated by 90 degrees and becomes parallel to the x-axis. Since these lights become ordinary lights for the birefringent crystal of the birefringent means 14 for controlling the optical path, they go straight as they are. Both lights are converted by the polarization rotation control means 12 so that the polarization direction is changed from parallel to orthogonal. The light in the left optical path has a polarization plane parallel to the y axis, and the light in the right optical path has a polarization plane parallel to the x axis. become. These lights are combined by the polarization separation / combination birefringence means 10 and output from the output 1 as one light whose polarization planes are orthogonal to each other.

このようにして、±45度可変ファラデー回転子60を用い、そのファラデー素子に磁界を印加する電磁石の通電電流の向きを切り換えることによって、2×2型の光スイッチが得られる。   In this way, by using the ± 45 degree variable Faraday rotator 60 and switching the direction of the energizing current of the electromagnet that applies a magnetic field to the Faraday element, a 2 × 2 type optical switch can be obtained.

図5は、本発明に係る反射型光デバイスの他の実施例を示す説明図であり、4ポート型の光サーキュレータ機能を実現する場合の光素子配列状態(A)と偏波面の方向(B)を示している。ここで、第1光路の位置がポート1(P1 )、第2光路の位置がポート2(P2 )、…となるように設定する。ファラデー回転子は、45度固定ファラデー回転子62であり、ここでは永久磁石による固定磁界を−z方向に印加している。 FIG. 5 is an explanatory view showing another embodiment of the reflection type optical device according to the present invention. The optical element arrangement state (A) and the polarization plane direction (B) in the case of realizing the 4-port type optical circulator function. ). Here, the position of the first optical path is set to port 1 (P 1 ), the position of the second optical path is set to port 2 (P 2 ),... The Faraday rotator is a 45-degree fixed Faraday rotator 62, and here, a fixed magnetic field by a permanent magnet is applied in the -z direction.

第1光路のポート1から入力した光は、偏波分離合成用複屈折手段10で常光・異常光に分離し、偏波面が互いに直交する左右2つの光路の光に分かれる。両光は、偏波回転制御手段12で、偏波方向が直交から平行の関係に変換される。45度固定ファラデー回転子では−45度偏波面が回転し、左右分割されている一対の1/2波長板32a,32bでは、左光路の光は+45度、右光路の光は−45度、それぞれ回転するため、偏波面はy軸に平行に揃う。両光は、光路制御用複屈折手段14を透過するが、その複屈折結晶に対しては異常光となるので、−y方向に屈折し第2光路に光路シフトする。次の偏波回転子34では、1/4波長板42の部分を通るため直線偏波が円偏波となり、プリズム・ミラー一体型の反射構造体36の平行平面ミラー46の部分でそのまま反射され戻される。   The light input from the port 1 of the first optical path is separated into ordinary light and extraordinary light by the polarization separation / combination birefringence means 10, and is separated into light on the left and right optical paths whose polarization planes are orthogonal to each other. Both lights are converted by the polarization rotation control means 12 from a perpendicular polarization direction to a parallel relationship. In the 45-degree fixed Faraday rotator, the -45-degree polarization plane is rotated, and in the pair of half-wave plates 32a and 32b divided into left and right, the light in the left optical path is +45 degrees, the light in the right optical path is -45 degrees, Since each rotates, the plane of polarization is aligned parallel to the y-axis. Both lights pass through the optical path control birefringence means 14 but become extraordinary light with respect to the birefringent crystal, so that they are refracted in the −y direction and shifted to the second optical path. In the next polarization rotator 34, the linearly polarized wave is circularly polarized because it passes through the ¼ wavelength plate 42, and is reflected as it is by the parallel plane mirror 46 of the prism / mirror integrated reflection structure 36. Returned.

反射光は、偏波回転子34の1/4波長板42の部分を通るため円偏波が直線偏波に戻る。このときの偏波面はx軸に平行であり、光路制御用複屈折手段14の複屈折結晶に対しては常光となるので、そのまま直進する。両光は、偏波回転制御手段12で、偏波方向が平行から直交の関係に変換される。即ち、左右分割されている一対の1/2波長板32a,32bでは、左光路の光は−45度、右光路の光は+45度、それぞれ回転し、45度固定ファラデー回転子では−45度偏波面が回転するため、左光路の光は偏波面がy軸に平行、右光路の光は偏波面がx軸に平行になる。これらの光は、偏波分離合成用複屈折手段10で合成され、偏波面が互いに直交する1つの光となって第2光路のポート2から出力する。   Since the reflected light passes through the ¼ wavelength plate 42 of the polarization rotator 34, the circularly polarized light returns to linearly polarized light. The plane of polarization at this time is parallel to the x-axis, and becomes ordinary light with respect to the birefringent crystal of the birefringent means 14 for controlling the optical path. Both lights are converted by the polarization rotation control means 12 from a parallel polarization direction to a perpendicular relationship. That is, in the pair of half-wave plates 32a and 32b divided into left and right, the light in the left optical path rotates by −45 degrees and the light in the right optical path rotates by +45 degrees, respectively, and in the 45 degrees fixed Faraday rotator, −45 degrees. Since the plane of polarization rotates, the light in the left optical path has a plane of polarization parallel to the y-axis, and the light in the right optical path has a plane of polarization parallel to the x-axis. These lights are combined by the polarization separation / combination birefringence means 10 and output from the port 2 of the second optical path as one light whose polarization planes are orthogonal to each other.

以下、同様にして、ポート2からの入力光はポート3から、ポート3からの入力光はポート4から出力する。   Similarly, input light from port 2 is output from port 3, and input light from port 3 is output from port 4.

第4光路のポート4から入力した光は、偏波分離合成用複屈折手段10で常光・異常光に分離し、偏波面が互いに直交する左右2つの光に分かれる。両光は、偏波回転制御手段12で、偏波方向が直交から平行の関係に変換される。45度固定ファラデー回転子では−45度偏波面が回転し、左右分割されている一対の1/2波長板32a,32bでは、左光路の光は+45度、右光路の光は−45度、それぞれ回転するため、偏波面はy軸に平行に揃う。両光は、光路制御用複屈折手段14を透過するが、その複屈折結晶に対しては異常光となるので、−y方向に屈折し第5光路に光路シフトする。これらの光は、次の偏波回転子34をバイパスするため直線偏波のまま、プリズム・ミラー一体型の反射構造体36のプリズム44の部分で2回反射され、第1光路に光路を変えて戻る。   The light input from the port 4 of the fourth optical path is separated into ordinary light and extraordinary light by the polarization separation / combination birefringence means 10 and is divided into two light beams, the polarization planes of which are orthogonal to each other. Both lights are converted by the polarization rotation control means 12 from a perpendicular polarization direction to a parallel relationship. In the 45-degree fixed Faraday rotator, the -45-degree polarization plane is rotated, and in the pair of half-wave plates 32a and 32b divided into left and right, the light in the left optical path is +45 degrees, the light in the right optical path is -45 degrees, Since each rotates, the plane of polarization is aligned parallel to the y-axis. Both lights pass through the optical path control birefringence means 14 but become extraordinary light with respect to the birefringent crystal, so that they are refracted in the −y direction and shifted to the fifth optical path. These lights are reflected twice by the prism 44 portion of the prism / mirror integrated reflection structure 36 so as to bypass the next polarization rotator 34 and remain linearly polarized, and change the optical path to the first optical path. To return.

反射光は、偏波回転子34の1/2波長板40の部分を通るために偏波面が90度回転し、x軸に平行となる。これらの光は、光路制御用複屈折手段14の複屈折結晶に対しては常光となるので、そのまま直進する。両光は、偏波回転制御手段12で、偏波方向が平行から直交の関係に変換され、左光路の光は偏波面がy軸に平行、右光路の光は偏波面がx軸に平行になる。これらの光は、偏波分離合成用複屈折手段10で合成され、偏波面が互いに直交する1つの光となって第1光路のポート1から出力する。   Since the reflected light passes through the portion of the half-wave plate 40 of the polarization rotator 34, the plane of polarization is rotated by 90 degrees and becomes parallel to the x-axis. Since these lights become ordinary light with respect to the birefringent crystal of the birefringence means 14 for optical path control, they go straight as they are. Both lights are converted by the polarization rotation control means 12 so that the polarization direction is changed from parallel to orthogonal. The light in the left optical path has a polarization plane parallel to the y axis, and the light in the right optical path has a polarization plane parallel to the x axis. become. These lights are combined by the polarization separation / combination birefringence means 10 and output from the port 1 of the first optical path as one light whose polarization planes are orthogonal to each other.

このようにして、ポート1→ポート2、ポート2→ポート3、ポート3→ポート4、ポート4→ポート1という完全循環型の光サーキュレータが実現できる。   In this way, a complete circulation type optical circulator of port 1 → port 2, port 2 → port 3, port 3 → port 4, port 4 → port 1 can be realized.

図6は、本発明に係る反射型光デバイスの更に他の実施例を示す説明図であり、nポート型の光サーキュレータ機能を実現する場合の光素子配列状態(A)と偏波面の方向(B)を示している。ここでも、第1光路の位置がポート1、第2光路の位置がポート2、…となるように設定する。ファラデー回転子は、45度固定ファラデー回転子62であり、永久磁石による固定磁界を−z方向に印加している。偏波回転子34は、第1光路に1/2波長板40が挿入され、第2光路から第n光路に1/4波長板42が挿入されている構造であり、第n+1光路には波長板は挿入されていない。プリズム・ミラー一体型の反射構造体36は、第1光路及び第n+1光路の光がプリズム44の部分で2回反射され、第2光路から第n光路の光は平行平面ミラー48の部分で反射される構成である。   FIG. 6 is an explanatory view showing still another embodiment of the reflective optical device according to the present invention, in which the optical element arrangement state (A) and the polarization plane direction (when the n-port optical circulator function is realized) B). Also here, the first optical path is set to port 1, the second optical path is set to port 2,... The Faraday rotator is a 45-degree fixed Faraday rotator 62 and applies a fixed magnetic field by a permanent magnet in the −z direction. The polarization rotator 34 has a structure in which a half-wave plate 40 is inserted in the first optical path and a quarter-wave plate 42 is inserted from the second optical path to the n-th optical path. The board is not inserted. In the prism / mirror integrated reflection structure 36, the light in the first optical path and the (n + 1) th optical path is reflected twice by the prism 44, and the light in the nth optical path from the second optical path is reflected by the parallel plane mirror 48. It is the composition which is done.

第1光路のポート1から入力した光は、偏波分離合成用複屈折手段10で常光・異常光に分離し、偏波面が互いに直交する左右2つの光に分かれる。両光は、偏波回転制御手段12で、偏波方向が直交から平行の関係に変換される。45度固定ファラデー回転子62では−45度偏波面が回転し、左右分割されている一対の1/2波長板32a,33bでは、左光路の光は+45度、右光路の光は−45度、それぞれ回転するため、偏波面はy軸に平行に揃う。両光は、光路制御用複屈折手段14を透過するが、その複屈折結晶に対しては異常光となるので、−y方向に屈折し第2光路に光路シフトする。次の偏波回転子34では、1/4波長板42の部分を通るため直線偏波が円偏波となり、プリズム・ミラー一体型の反射構造体36の平行平面ミラー46の部分でそのまま反射される。   The light input from the port 1 of the first optical path is separated into ordinary light and extraordinary light by the polarization separation / combination birefringence means 10, and is divided into two light beams whose polarization planes are orthogonal to each other. Both lights are converted by the polarization rotation control means 12 from a perpendicular polarization direction to a parallel relationship. In the 45-degree fixed Faraday rotator 62, the polarization plane rotates by -45 degrees, and in the pair of half-wave plates 32a and 33b divided into the left and right, the light in the left optical path is +45 degrees and the light in the right optical path is -45 degrees. The planes of polarization are aligned parallel to the y-axis because they rotate. Both lights pass through the optical path control birefringence means 14 but become extraordinary light with respect to the birefringent crystal, so that they are refracted in the −y direction and shifted to the second optical path. In the next polarization rotator 34, the linearly polarized wave is circularly polarized because it passes through the ¼ wavelength plate 42, and is reflected as it is by the parallel plane mirror 46 of the prism / mirror integrated reflection structure 36. The

反射光は、偏波回転子34の1/4波長板42の部分を通るため円偏波が直線偏波に戻る。このときの偏波面はx軸に平行であり、光路制御用複屈折手段14の複屈折結晶に対しては常光となるので、そのまま直進する。両光は、偏波回転制御手段12で、偏波方向が平行から直交の関係に変換される。即ち、左右分割されている一対の1/2波長板32a,32bでは、左光路の光は−45度、右光路の光は+45度、それぞれ回転し、45度固定ファラデー回転子62では−45度偏波面が回転するため、左光路の光は偏波面がy軸に平行、右光路の光は偏波面がx軸に平行になる。これらの光は、偏波分離合成用複屈折手段10で合成され、偏波面が互いに直交する1つの光となって第2光路のポート2から出力する。   Since the reflected light passes through the ¼ wavelength plate 42 of the polarization rotator 34, the circularly polarized light returns to linearly polarized light. The plane of polarization at this time is parallel to the x-axis, and becomes ordinary light with respect to the birefringent crystal of the birefringent means 14 for controlling the optical path. Both lights are converted by the polarization rotation control means 12 from a parallel polarization direction to a perpendicular relationship. That is, in the pair of half-wave plates 32a and 32b divided into the left and right, the light in the left optical path rotates by −45 degrees, the light in the right optical path rotates by +45 degrees, and by the 45 degrees fixed Faraday rotator 62, −45 degrees. Since the polarization plane rotates, the polarization plane of the light in the left optical path is parallel to the y axis, and the polarization plane of the light in the right optical path is parallel to the x axis. These lights are combined by the polarization separation / combination birefringence means 10 and output from the port 2 of the second optical path as one light whose polarization planes are orthogonal to each other.

以下、同様にして、ポート2からの入力光はポート3から、ポート3からの入力光はポート4から、…、ポートn−1からの入力光はポートnから出力する。   Similarly, input light from port 2 is output from port 3, input light from port 3 is output from port 4,..., Input light from port n-1 is output from port n.

第n光路のポートnから入力した光は、偏波分離合成用複屈折手段10で常光・異常光に分離し、偏波面が互いに直交する左右2つの光に分かれる。両光は、偏波回転制御手段12で、偏波方向が直交から平行の関係に変換される。45度固定ファラデー回転子62では−45度偏波面が回転し、左右分割されている一対の1/2波長板32a,32bでは、左光路の光は+45度、右光路の光は−45度、それぞれ回転するため、偏波面はy軸に平行に揃う。両光は、光路制御用複屈折手段14を透過するが、その複屈折結晶に対しては異常光となるので、−y方向に屈折し第n+1光路に光路シフトする。これらの光は、次の偏波回転子34をバイパスするため直線偏波のまま、プリズム・ミラー一体型の反射構造体36のプリズム44の部分で2回反射され、第1光路に光路を変えて戻る。   The light input from the port n of the n-th optical path is separated into ordinary light and extraordinary light by the polarization separation / combination birefringence means 10, and is divided into two light beams whose polarization planes are orthogonal to each other. Both lights are converted by the polarization rotation control means 12 from the orthogonal direction to the parallel relationship. In the 45-degree fixed Faraday rotator 62, the -45-degree polarization plane rotates, and in the pair of half-wave plates 32a and 32b divided into the left and right, the light in the left optical path is +45 degrees and the light in the right optical path is -45 degrees. The planes of polarization are aligned parallel to the y-axis because they rotate. Both lights pass through the optical path control birefringence means 14 but become extraordinary light with respect to the birefringent crystal, so that they are refracted in the -y direction and shifted to the (n + 1) th optical path. These lights are reflected twice by the prism 44 portion of the prism / mirror integrated reflection structure 36 so as to bypass the next polarization rotator 34 and remain linearly polarized, and change the optical path to the first optical path. To return.

反射光は、偏波回転子34の1/2波長板40の部分を通るために偏波面が90度回転し、x軸に平行となる。これらの光は、光路制御用複屈折手段14の複屈折結晶に対しては常光となるので、そのまま直進する。両光は、偏波回転制御手段12で、偏波方向が平行から直交の関係に変換され、左光路の光は偏波面がy軸に平行、右光路の光は偏波面がx軸に平行になる。これらの光は、偏波分離合成用複屈折手段10で合成され、偏波面が互いに直交する1つの光となってポート1から出力する。   Since the reflected light passes through the portion of the half-wave plate 40 of the polarization rotator 34, the plane of polarization is rotated by 90 degrees and becomes parallel to the x-axis. Since these lights become ordinary lights for the birefringent crystal of the birefringent means 14 for controlling the optical path, they go straight as they are. Both lights are converted by the polarization rotation control means 12 so that the polarization direction is changed from parallel to orthogonal. The light in the left optical path has a polarization plane parallel to the y axis, and the light in the right optical path has a polarization plane parallel to the x axis. become. These lights are combined by the polarization separation / combination birefringence means 10 and output from the port 1 as one light whose polarization planes are orthogonal to each other.

このようにして、ポート1→ポート2、ポート2→ポート3、…、ポートn→ポート1というnポート完全循環型の光サーキュレータが実現できる。このようなnポート型の光サーキュレータでは、ポートn→ポート1の結合光路長が最も長くなる。この結合光路長を補正するには、プリズム・ミラー一体型の反射構造体36のy方向寸法及びz方向寸法の調整が必要となる。その他の光素子については、y方向寸法の調整のみで対応できる。   In this way, an n-port complete circulation type optical circulator of port 1 → port 2, port 2 → port 3,..., Port n → port 1 can be realized. In such an n-port type optical circulator, the combined optical path length of port n → port 1 is the longest. In order to correct the combined optical path length, it is necessary to adjust the y-direction dimension and the z-direction dimension of the prism / mirror integrated reflection structure 36. Other optical elements can be handled only by adjusting the y-direction dimension.

本発明に係る反射型光デバイスの典型的な構成例を示す説明図。Explanatory drawing which shows the typical structural example of the reflection type optical device which concerns on this invention. プリズム・ミラー一体型の反射構造体の例を示す説明図。Explanatory drawing which shows the example of a reflective structure of prism / mirror integrated type. 本発明に係る反射型光デバイスの一実施例であり、光スイッチ機能を呈する素子配列状態と一つの方向に電磁石磁界を印加した場合の偏波面方向の説明図。BRIEF DESCRIPTION OF THE DRAWINGS It is one Example of the reflection type optical device which concerns on this invention, and is explanatory drawing of the polarization plane direction at the time of applying the electromagnet magnetic field to one element arrangement | positioning state which exhibits an optical switch function, and one direction. 本発明に係る反射型光デバイスの一実施例であり、光スイッチ機能を呈する素子配列状態と他の方向に電磁石磁界を印加した場合の偏波面方向の説明図。BRIEF DESCRIPTION OF THE DRAWINGS It is one Example of the reflection type optical device which concerns on this invention, and is explanatory drawing of the polarization plane direction at the time of applying an electromagnet magnetic field to the element arrangement | sequence state which exhibits an optical switch function, and another direction. 本発明に係る反射型光デバイスの他の実施例であり、光サーキュレータ機能を呈する素子配列状態と偏波面方向の説明図。FIG. 4 is an explanatory diagram of an element arrangement state and a polarization plane direction that exhibit an optical circulator function, which is another embodiment of the reflective optical device according to the present invention. 本発明に係る反射型光デバイスの更に他の実施例であり、光サーキュレータ機能を呈する素子配列状態と偏波面方向の説明図。FIG. 10 is an explanatory diagram of an element arrangement state and a polarization plane direction that exhibit an optical circulator function, which is still another embodiment of the reflective optical device according to the present invention.

符号の説明Explanation of symbols

10 偏波分離合成用複屈折手段
12 偏波回転制御手段
14 光路制御用複屈折手段
16 偏波回転反射手段
18 入出力部
20 光ファイバ
21 多芯フェルール
22 結合用レンズ
24 第1の複屈折結晶
26 第2の複屈折結晶
28 1/2波長板
30 ファラデー回転子
32a,32b 1/2波長板
34 偏波回転子
36 プリズム・ミラー一体型の反射構造体
40 1/2波長板
42 1/4波長板
44 プリズム
46 平行平面ミラー
48 反射面
DESCRIPTION OF SYMBOLS 10 Polarization separation birefringence means 12 Polarization rotation control means 14 Optical path control birefringence means 16 Polarization rotation reflection means 18 Input / output unit 20 Optical fiber 21 Multi-core ferrule 22 Coupling lens 24 First birefringence crystal 26 Second birefringent crystal 28 1/2 wavelength plate 30 Faraday rotator 32a, 32b 1/2 wavelength plate 34 Polarization rotator 36 Prism-mirror integrated reflection structure 40 1/2 wavelength plate 42 1/4 Wave plate 44 Prism 46 Parallel plane mirror 48 Reflecting surface

Claims (5)

偏波方向が直交関係にある同じ光路の光を分離し異なる光路の光を合成する偏波分離合成用複屈折手段と、異なる光路の光の偏波方向を直交から平行又は平行から直交の関係に変換すると共に偏波方向を制御する偏波回転制御手段と、偏波方向に応じて光路シフトを制御する光路制御用複屈折手段と、偏波面を往復で90度回転させて反射する偏波回転反射手段とが、その順序で光軸に沿って配列され、
前記偏波回転反射手段は、偏波面を往復で90度回転させる偏波回転子とプリズム・ミラー一体型の反射構造体との組み合わせであって、該反射構造体は、両最側部の光路の光を2回反射により戻すプリズムと両最側部以外の光路の光を1回反射により戻す平行平面ミラーとが一体に結合されてプリズムを経る反射光路とミラーによる反射光路との光路長差を補正する構造であり、
偏波回転反射手段とは反対側に位置する入出力部には4ポート以上が配列され、
前記偏波回転制御手段は、±45度可変ファラデー回転子と一対の1/2波長板の組み合わせからなり、±45度可変ファラデー回転子によって偏波方向を切り換えることで光スイッチ機能を呈するようにしたことを特徴とする反射型光デバイス。
Polarization separation / combination birefringence means that separates the light of the same optical path whose polarization direction is orthogonal and combines the light of different optical paths, and the polarization direction of the light of different optical paths from orthogonal to parallel or from parallel to orthogonal A polarization rotation control means that converts the polarization direction and controls the polarization direction, an optical path control birefringence means that controls the optical path shift according to the polarization direction, and a polarization that is reflected by rotating the polarization plane back and forth by 90 degrees Rotational reflecting means are arranged along the optical axis in that order,
The polarization rotation reflection means is a combination of a polarization rotator that rotates the polarization plane 90 degrees in a reciprocating manner and a prism / mirror integrated reflection structure, and the reflection structure has optical paths on both outermost sides. The optical path length difference between the reflected light path that passes through the prism and the reflected light path by the mirror is integrally coupled with the prism that returns the light of the light by reflection twice and the parallel plane mirror that returns the light of the optical path other than the outermost part by reflection once. Is a structure for correcting
4 ports or more are arranged in the input / output unit located on the opposite side to the polarization rotation reflection means,
The polarization rotation control means comprises a combination of a ± 45 degree variable Faraday rotator and a pair of half-wave plates, and exhibits an optical switch function by switching the polarization direction with the ± 45 degree variable Faraday rotator. Reflective optical device characterized by the above.
偏波方向が直交関係にある同じ光路の光を分離し異なる光路の光を合成する偏波分離合成用複屈折手段と、異なる光路の光の偏波方向を直交から平行又は平行から直交の関係に変換すると共に偏波方向を制御する偏波回転制御手段と、偏波方向に応じて光路シフトを制御する光路制御用複屈折手段と、偏波面を往復で90度回転させて反射する偏波回転反射手段とが、その順序で光軸に沿って配列され、
前記偏波回転反射手段は、偏波面を往復で90度回転させる偏波回転子とプリズム・ミラー一体型の反射構造体との組み合わせであって、該反射構造体は、両最側部の光路の光を2回反射により戻すプリズムと両最側部以外の光路の光を1回反射により戻す平行平面ミラーとが一体に結合されてプリズムを経る反射光路とミラーによる反射光路との光路長差を補正する構造であり、
偏波回転反射手段とは反対側に位置する入出力部には4ポート以上が配列され、
前記偏波回転制御手段は、45度固定ファラデー回転子と一対の1/2波長板の組み合わせからなり、45度固定ファラデー回転子によって偏波方向が変わることで光サーキュレータ機能を呈するようにしたことを特徴とする反射型光デバイス。
Polarization separation / combination birefringence means that separates the light of the same optical path whose polarization direction is orthogonal and combines the light of different optical paths, and the polarization direction of the light of different optical paths from orthogonal to parallel or from parallel to orthogonal A polarization rotation control means that converts the polarization direction and controls the polarization direction, an optical path control birefringence means that controls the optical path shift according to the polarization direction, and a polarization that is reflected by rotating the polarization plane back and forth by 90 degrees Rotational reflecting means are arranged along the optical axis in that order,
The polarization rotation reflection means is a combination of a polarization rotator that rotates the polarization plane 90 degrees in a reciprocating manner and a prism / mirror integrated reflection structure, and the reflection structure has optical paths on both outermost sides. The optical path length difference between the reflected light path that passes through the prism and the reflected light path by the mirror is integrally coupled with the prism that returns the light of the light by reflection twice and the parallel plane mirror that returns the light of the optical path other than the outermost part by reflection once. Is a structure for correcting
4 ports or more are arranged in the input / output unit located on the opposite side to the polarization rotation reflection means,
The polarization rotation control means comprises a combination of a 45 degree fixed Faraday rotator and a pair of half-wave plates, and exhibits an optical circulator function by changing the polarization direction by the 45 degree fixed Faraday rotator. Reflective optical device characterized by
プリズム・ミラー一体型の反射構造体は、両最側部の光路の光を2回反射により戻す台形プリズムと、一端面に反射膜を形成して両最側部以外の光路の光を1回反射により戻す直方体ブロックとを一体に結合した構造である請求項1又は2記載の反射型光デバイス。   The prism / mirror integrated reflection structure has a trapezoidal prism that returns the light in the optical paths on both outermost sides by reflection twice, and forms a reflection film on one end surface to emit the light in the optical paths other than both outermost parts once. The reflective optical device according to claim 1 or 2, wherein a rectangular parallelepiped block returned by reflection is integrally joined. 偏波分離合成用複屈折手段は、偏波分離合成用複屈折結晶を2分割し、それらの間に1/2波長板を挿入して常光・異常光を入れ換えることにより偏波分散を補償した構造である請求項1乃至3のいずれかに記載の反射型光デバイス。   The polarization separation / combination birefringence means divides the polarization separation / combination birefringence crystal into two parts and inserts a half-wave plate between them to compensate for polarization dispersion by exchanging ordinary light and extraordinary light. The reflective optical device according to claim 1, wherein the reflective optical device has a structure. 偏波面を往復で90度回転させる偏波回転子は、一方の最側部の光路に挿入された1/2波長板と、両最側部を除く光路に挿入された1/4波長板からなる請求項1乃至4のいずれかに記載の反射型光デバイス。
A polarization rotator that rotates the plane of polarization 90 degrees in a reciprocating manner is composed of a half-wave plate inserted in one of the outermost optical paths and a quarter-wave plate inserted in the optical path excluding both outermost parts. The reflective optical device according to any one of claims 1 to 4.
JP2005239721A 2005-08-22 2005-08-22 Reflective optical device Active JP4656513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005239721A JP4656513B2 (en) 2005-08-22 2005-08-22 Reflective optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005239721A JP4656513B2 (en) 2005-08-22 2005-08-22 Reflective optical device

Publications (2)

Publication Number Publication Date
JP2007057573A JP2007057573A (en) 2007-03-08
JP4656513B2 true JP4656513B2 (en) 2011-03-23

Family

ID=37921176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005239721A Active JP4656513B2 (en) 2005-08-22 2005-08-22 Reflective optical device

Country Status (1)

Country Link
JP (1) JP4656513B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103176278B (en) * 2013-03-08 2014-10-29 华中科技大学 Optical mixer for reflective coherent receivers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000039590A (en) * 1998-07-23 2000-02-08 Fuji Elelctrochem Co Ltd Reflection type circulator
JP2004264368A (en) * 2003-02-20 2004-09-24 Fdk Corp Reflective optical device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000039590A (en) * 1998-07-23 2000-02-08 Fuji Elelctrochem Co Ltd Reflection type circulator
JP2004264368A (en) * 2003-02-20 2004-09-24 Fdk Corp Reflective optical device

Also Published As

Publication number Publication date
JP2007057573A (en) 2007-03-08

Similar Documents

Publication Publication Date Title
US6757101B2 (en) None-mechanical dual stage optical switches
US6577430B1 (en) Bi-directional optical switch
JPH1068908A (en) Optical device
JP2002528765A (en) Multiple ports, fiber optic circulator
CN105891956B (en) Reflective optical circulator array
US6747797B2 (en) Loop optical circulator
JP2017049486A (en) Polarization split element
JP4656513B2 (en) Reflective optical device
JP3718152B2 (en) Variable optical attenuator
JP3368209B2 (en) Reflective optical circulator
US20050111785A1 (en) Multi-port optical switches
US20020191284A1 (en) Optical circulator
JP2004264368A (en) Reflective optical device
JP2004334169A (en) Beam multiplexing element, beam multiplexing method, beam separating element, beam separating method, and exciting light output device
US7233717B2 (en) Reflective optical switch
JPH09258136A (en) Optical circulator and optical switch
JP4360599B2 (en) Polarization-dependent optical device
JP4382344B2 (en) Reflective variable magneto-optical device
JPH06324289A (en) Polarization beam splitter and optical circulator using this splitter and optical switch
US20030048529A1 (en) Optical circulator
JPH11264954A (en) Optical circulator and optical switch
JP2012008225A (en) Variable optical phase unit
JP2006317624A (en) Optical circulator
JP3375286B2 (en) Optical circulator
JP3375287B2 (en) Recirculating optical circulator and optical switch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4656513

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250