JP4656489B2 - Microbial concentration method - Google Patents

Microbial concentration method Download PDF

Info

Publication number
JP4656489B2
JP4656489B2 JP2004339448A JP2004339448A JP4656489B2 JP 4656489 B2 JP4656489 B2 JP 4656489B2 JP 2004339448 A JP2004339448 A JP 2004339448A JP 2004339448 A JP2004339448 A JP 2004339448A JP 4656489 B2 JP4656489 B2 JP 4656489B2
Authority
JP
Japan
Prior art keywords
microorganisms
organic solvent
surfactant
phase
hydrophilic organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004339448A
Other languages
Japanese (ja)
Other versions
JP2006141351A (en
Inventor
直広 野田
麻衣子 原田
淑郎 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2004339448A priority Critical patent/JP4656489B2/en
Publication of JP2006141351A publication Critical patent/JP2006141351A/en
Application granted granted Critical
Publication of JP4656489B2 publication Critical patent/JP4656489B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

本発明は、食品、医療、製薬、環境等の分野で、細菌、酵母、かび、ウイルス等の微生物を、簡便に高倍率で濃縮可能とする微生物濃縮方法に関する。   The present invention relates to a method for concentrating microorganisms that can easily concentrate microorganisms such as bacteria, yeasts, molds, and viruses in fields such as food, medicine, pharmaceuticals, and the environment.

細菌、酵母、かび、ウイルス等の微生物を濃縮、分離することは、微生物に関する情報を得たり、微生物を回収・利用したり、又は排除(除菌)を行う上で重要である。
例えば、病原性微生物の場合には、微生物の濃縮・分離は、診断や治療に用いられる。また、有用微生物の場合には、微生物を濃縮したものを分離除去して上清液中の有用成分を取得することができる。また、濃縮した有用微生物自体を取得することもできる。
Concentrating and separating microorganisms such as bacteria, yeasts, molds, and viruses is important for obtaining information on microorganisms, collecting and using microorganisms, or eliminating (sterilizing) microorganisms.
For example, in the case of pathogenic microorganisms, concentration / separation of microorganisms is used for diagnosis and treatment. In the case of useful microorganisms, the concentrated microorganisms can be separated and removed to obtain useful components in the supernatant. In addition, concentrated useful microorganisms themselves can be obtained.

一方、従来、食品分野や環境分野等の微生物検査では、試料中の微生物の存在を確認するために、培養による分離検出、生化学的試験による検出、又は核酸の検出等が行われている。しかしながら、これらの試験では、微生物検査を行う試料について、試料の一部分中の菌を抽出して培養したり、試料の部分的特徴を増幅・検出しているに過ぎない。すなわち、試料の部分的特徴を検査しているのに過ぎず、試料全体の性状を全体として把握することは必ずしもできていない。   On the other hand, conventionally, in microbial tests in the food field, the environmental field, and the like, in order to confirm the presence of microorganisms in a sample, separation detection by culture, detection by biochemical tests, detection of nucleic acids, and the like are performed. However, in these tests, for the sample to be tested for microorganisms, bacteria in a part of the sample are extracted and cultured, or partial characteristics of the sample are only amplified and detected. That is, only the partial characteristics of the sample are inspected, and the properties of the entire sample cannot be grasped as a whole.

このため、大量の試料を検査するために、試料中の微生物の濃縮が行われてきた。微生物を濃縮する方法としては、古くから遠心分離や、セルロース、ナイロン、ポリエステル等の有機高分子繊維のフィルターを用いたろ過等が行われてきた。
しかし、これらの古典的な微生物濃縮方法では、高い濃縮倍率を得ることができない。さらに、遠心分離機や高分子繊維のフィルター等高価な器具を必要とし、コストがかかる。
For this reason, in order to test a large amount of samples, the concentration of microorganisms in the samples has been performed. As a method for concentrating microorganisms, centrifugation, filtration using a filter of organic polymer fibers such as cellulose, nylon, and polyester have been performed for a long time.
However, these classic microbial concentration methods cannot provide a high concentration factor. Furthermore, expensive equipment such as a centrifuge and a polymer fiber filter is required, which is expensive.

このような問題を解決するものとして、特許文献1に示す菌体濃縮方法及び菌体濃縮試薬が提案された。この方法では、まず、微生物が含まれる水性溶媒に対して、陰イオンと陽イオンとを存在させて、水難溶性物質を生成させる。次に、この水難溶性物質に微生物を吸着させて微生物を回収する。さらに、微生物が吸着した水難溶性物質を溶解剤により溶解することで微生物を回収している。
特開2000−14380号公報
As a solution to such a problem, the bacterial cell concentration method and the bacterial cell concentration reagent shown in Patent Document 1 have been proposed. In this method, first, an anion and a cation are present in an aqueous solvent containing microorganisms to produce a poorly water-soluble substance. Next, the microorganisms are adsorbed on the poorly water-soluble substance to collect the microorganisms. Furthermore, the microorganisms are recovered by dissolving a poorly water-soluble substance adsorbed by the microorganisms with a solubilizer.
JP 2000-14380 A

しかしながら、上記従来の方法には以下の問題があった。
(1)微生物が吸着した水難溶性物質を溶解剤で溶解することにより、微生物を含む相の体積が増え、数十倍程度しか濃縮することができない。
(2)微生物の回収率が約90%であり、約10%はロスしてしまう。
(3)吸着に特異性がないため、微生物以外の夾雑物も濃縮してしまう。
本発明は、このような問題を解決し、高倍率で、回収率が高く、でんぷんやタンパク質等水溶性の夾雑物や水に親和性が高い夾雑物は濃縮しないという特異性を有する微生物濃縮方法を提供するものである。本発明は、特に、生きているが通常の方法では培養が困難な状態な細菌(VBNC、viable but nonculturable)に適している。このような状態の細菌は、培地上にコロニーを形成せず、従来の培養法では検出できなかった。したがって、これまでは、「存在しない」ものとして取り扱われ、衛生管理の対象から外されていた。
However, the conventional method has the following problems.
(1) By dissolving a poorly water-soluble substance adsorbed by microorganisms with a solubilizer, the volume of the phase containing the microorganisms increases, and it can be concentrated only about several tens of times.
(2) The recovery rate of microorganisms is about 90%, and about 10% is lost.
(3) Since there is no specificity in adsorption, impurities other than microorganisms are also concentrated.
The present invention solves such a problem, and has a high magnifying power, a high recovery rate, and has a specificity that water-soluble contaminants such as starch and proteins and contaminants having a high affinity for water are not concentrated. Is to provide. The present invention is particularly suitable for bacteria (VBNC, viable but nonculturable) that are alive but difficult to culture by conventional methods. Bacteria in such a state did not form colonies on the medium and could not be detected by conventional culture methods. Therefore, until now, it was treated as “non-existent” and excluded from hygiene management.

上記目的を達成するために、本発明は、微生物濃縮方法であって、微生物を含む溶液に、界面活性剤と親水性有機溶媒とを加え均一溶液を形成し、次いで、上記溶液のpHを低下させ、上記溶液を、微生物と界面活性剤と親水性有機溶媒と水とが混合している析出相と、上澄み相との二相に分離し、上記析出相中に微生物を濃縮する。   In order to achieve the above object, the present invention is a method for concentrating microorganisms, comprising adding a surfactant and a hydrophilic organic solvent to a solution containing microorganisms to form a uniform solution, and then lowering the pH of the solution. The solution is separated into two phases, a precipitation phase in which microorganisms, a surfactant, a hydrophilic organic solvent, and water are mixed, and a supernatant phase, and the microorganisms are concentrated in the precipitation phase.

本発明に係る微生物濃縮方法は、その一の実施の形態で、上記界面活性剤がフルオロカルボン酸であることを特徴とする。   In one embodiment of the microorganism concentration method according to the present invention, the surfactant is a fluorocarboxylic acid.

本発明に係る微生物濃縮方法は、別の実施の形態で、上記親水性有機溶媒がアルコール、エーテル、ケトン、アミド、ニトリル、スルホキシドのうち少なくとも1種を含むことを特徴とする。   In another embodiment, the method for concentrating microorganisms according to the present invention is characterized in that the hydrophilic organic solvent contains at least one of alcohol, ether, ketone, amide, nitrile and sulfoxide.

本発明によれば、高倍率で、回収率が高く、でんぷんやタンパク質等水溶性の夾雑物や水に親和性が高い夾雑物は濃縮しないという特異性を有する微生物濃縮方法が提供される。
後述するように、本発明に係る微生物濃縮方法によれば、以下のような効果を期待することができる。
1.大容量の試料を微量の体積に濃縮することができるため、微生物を数万倍濃縮することができる。
2.試料中の微生物を約100%の回収率で濃縮することができる。
3.でんぷんやタンパク質等水溶性の夾雑物や水に親和性が高い夾雑物は、濃縮されないので、これらを微生物と分離することができる。
According to the present invention, there is provided a microorganism concentration method having specificity that does not concentrate water-soluble contaminants such as starch and protein, and high-affinity contaminants such as starch and protein at a high magnification.
As will be described later, according to the microorganism concentration method of the present invention, the following effects can be expected.
1. Since a large-capacity sample can be concentrated to a very small volume, microorganisms can be concentrated tens of thousands of times.
2. Microorganisms in the sample can be concentrated with a recovery rate of about 100%.
3. Water-soluble contaminants such as starch and protein and contaminants with a high affinity for water are not concentrated and can be separated from microorganisms.

以下に、本発明に係る微生物濃縮方法について、その実施の形態を参照しながらさらに詳細に説明する。   Hereinafter, the microorganism concentration method according to the present invention will be described in more detail with reference to the embodiment thereof.

本発明に係る微生物濃縮方法は、界面活性剤と、親水性有機溶媒と、pHを低下させる試薬とを用いて実施され、少なくとも以下のステップを含んでいる。
1.微生物を含む溶液に、界面活性剤と親水性有機溶媒とを加え均一溶液を形成するステップ(ステップ1)。
2.上記溶液のpHを低下させ、上記溶液を、微生物と界面活性剤と親水性有機溶媒と水とが混合している析出相と、上澄み相との二相に分離するステップ(ステップ2)。
本発明に係る微生物濃縮方法では、細菌、酵母、かび、ウイルス等を対象としており、以上のステップを順次実行し、上記析出相中に微生物を濃縮することとしている。各ステップについて、以下にさらに説明を加える。
The microorganism concentration method according to the present invention is carried out using a surfactant, a hydrophilic organic solvent, and a reagent for lowering pH, and includes at least the following steps.
1. A step of adding a surfactant and a hydrophilic organic solvent to a solution containing microorganisms to form a uniform solution (step 1).
2. Lowering the pH of the solution and separating the solution into two phases, a precipitated phase in which microorganisms, a surfactant, a hydrophilic organic solvent, and water are mixed, and a supernatant phase (step 2);
In the microorganism concentration method according to the present invention, bacteria, yeasts, molds, viruses and the like are targeted, and the above steps are sequentially executed to concentrate microorganisms in the precipitated phase. Each step will be further described below.

ステップ1
このステップ1では、微生物を含む溶液に、界面活性剤と親水性有機溶媒とを加え、均一溶液を形成する。
このような「均一溶液」は、完全な溶液の他、ミセルが形成されたような擬均一溶液も含む概念である。界面活性剤と親水性有機溶媒とは、相溶性を有することが好ましく、ステップ1では、微生物を含む溶液、界面活性剤、親水性有機溶媒が全体として単一の液相を形成させる。
界面活性剤としては、フルオロカルボン酸が好適であり、各炭素原子に結合している水素原子の少なくとも1個がフッ素原子で置換されているカルボン酸を用いることが好適である。
Step 1
In Step 1, a surfactant and a hydrophilic organic solvent are added to a solution containing microorganisms to form a uniform solution.
Such a “homogeneous solution” is a concept that includes not only a complete solution but also a pseudo-homogeneous solution in which micelles are formed. It is preferable that the surfactant and the hydrophilic organic solvent have compatibility. In Step 1, the solution containing the microorganism, the surfactant, and the hydrophilic organic solvent form a single liquid phase as a whole.
As the surfactant, a fluorocarboxylic acid is preferable, and it is preferable to use a carboxylic acid in which at least one hydrogen atom bonded to each carbon atom is substituted with a fluorine atom.

フルオロカルボン酸は対応するカルボン酸よりもプロトンが解離しやすく、また疎水性である。したがって、フルオロカルボン酸は、著しく低いpHでない限り、対応するカルボン酸よりも容易にプロトンを解離して水に溶解し、かつ一部の低級なものを除き、これに鉱酸を添加してpHを低下させると、容易に非解離状態となって水相から分離する。このような傾向はフッ素化の程度が大きいほど著しい。したがって、本発明では、ペルフルオロデカン酸、ペルフルオロオクタン酸等完全にフッ素化されたカルボン酸を用いるのが好ましい。   Fluorocarboxylic acids are more prone to dissociate protons than the corresponding carboxylic acids and are hydrophobic. Therefore, unless the pH of the fluorocarboxylic acid is significantly lower than that of the corresponding carboxylic acid, the proton is easily dissociated and dissolved in water, and except for some lower ones, a mineral acid is added thereto to adjust the pH. When it decreases, it will be easily dissociated and separated from the aqueous phase. Such a tendency becomes more remarkable as the degree of fluorination increases. Therefore, in the present invention, it is preferable to use a completely fluorinated carboxylic acid such as perfluorodecanoic acid or perfluorooctanoic acid.

以上の界面活性剤のうち、例えば、ペルフルオロオクタン酸は、常温で固体である。したがって、ペルフルオロオクタン酸を含む水溶液のpHを低下させるとペルフルオロオクタン酸は固体として析出する。しかし、ペルフルオロオクタン酸を含む水溶液にアセトン又はテトラヒドロフラン等のこれと相溶性のある親水性有機溶媒を共存させておくと、ペルフルオロオクタン酸は、親水性有機溶媒と水と共に析出相を形成して水溶液から分離する。   Among the above surfactants, for example, perfluorooctanoic acid is solid at room temperature. Therefore, when the pH of the aqueous solution containing perfluorooctanoic acid is lowered, perfluorooctanoic acid is precipitated as a solid. However, if a hydrophilic organic solvent having compatibility with acetone or tetrahydrofuran or the like is allowed to coexist in an aqueous solution containing perfluorooctanoic acid, perfluorooctanoic acid forms a precipitated phase together with the hydrophilic organic solvent and water. Separate from.

本発明で用いる界面活性剤が、特に、下記の一般式(1)で示されるフルオロカルボン酸の場合、鉱酸や有機酸を添加してpHを6以下の酸性にすれば、微生物と界面活性剤と親水性有機溶媒と水とが混合する析出相として微生物を濃縮することができる。すなわち、フルオロカルボン酸を界面活性剤として用いれば、pHを6以下程度として、あまり下げずに済む。したがって、微生物を生きたまま濃縮したり、遺伝子を損傷せずに濃縮するのに好適である。   In the case where the surfactant used in the present invention is a fluorocarboxylic acid represented by the following general formula (1), if it is made acidic by adding a mineral acid or an organic acid to a pH of 6 or less, it will react with microorganisms. The microorganisms can be concentrated as a precipitation phase in which the agent, the hydrophilic organic solvent, and water are mixed. That is, if fluorocarboxylic acid is used as a surfactant, the pH is reduced to about 6 or less and does not need to be lowered much. Therefore, it is suitable for concentrating microorganisms alive or concentrating genes without damaging them.

Figure 0004656489
Figure 0004656489

ここでRはフルオロアルキル基であり、各炭素原子に結合している水素原子の少なくとも1個がフッ素原子で置換されているものである。また、通常Xはフッ素を含有しない二価の有機基である。具体的には炭素数1〜4個程度のアルキレン基、オキシアルキレン基あるいは炭素鎖中に酸素、窒素、硫黄などのヘテロ原子を有するアルキレン基である。例えば、−CH2CH2SCH2CH2−、−CH2−O−CH2−などが挙げられる。 Here, R is a fluoroalkyl group, and at least one hydrogen atom bonded to each carbon atom is substituted with a fluorine atom. In general, X is a divalent organic group containing no fluorine. Specifically, it is an alkylene group having about 1 to 4 carbon atoms, an oxyalkylene group, or an alkylene group having a heteroatom such as oxygen, nitrogen or sulfur in the carbon chain. For example, —CH 2 CH 2 SCH 2 CH 2 —, —CH 2 —O—CH 2 — and the like can be mentioned.

親水性有機溶媒としては、アルコール、エーテル、ケトン、アミド、ニトリル、スルホキシドの中の1種類以上が好適である。例えば、エタノール、メタノール、テトラヒドロフラン、ジオキサン、アセトン、ジメチルホルムアミド、アセトニトリル、ジメチルスルホキシド等が好適である。   As the hydrophilic organic solvent, one or more of alcohol, ether, ketone, amide, nitrile and sulfoxide are suitable. For example, ethanol, methanol, tetrahydrofuran, dioxane, acetone, dimethylformamide, acetonitrile, dimethyl sulfoxide and the like are suitable.

親水性有機溶媒がエーテル、アミド、アルコール、ケトンの中から選択される場合、微生物をその形態を保ったまま析出相に濃縮することが可能である。エーテルとしては、特にテトラヒドロフランが、アミドとしては、特にジメチルホルムアミドが、アルコールとしては、特にエタノールが、ケトンとしては、特にアセトンが好適である。   When the hydrophilic organic solvent is selected from ethers, amides, alcohols and ketones, it is possible to concentrate the microorganisms to the precipitated phase while maintaining their form. As the ether, tetrahydrofuran is particularly suitable, as the amide, particularly dimethylformamide, as the alcohol, particularly ethanol, and as the ketone, acetone is particularly suitable.

ステップ2
このステップでは、ステップ1で得られる溶液のpHを低下させ、この溶液を、微生物と界面活性剤と親水性有機溶媒と水とが混合している析出相と、上澄み相との二相に分離する。
Step 2
In this step, the pH of the solution obtained in Step 1 is lowered, and this solution is separated into two phases: a precipitation phase in which microorganisms, a surfactant, a hydrophilic organic solvent, and water are mixed, and a supernatant phase. To do.

pHを低下させる試薬としては、例えば、塩酸、硝酸、硫酸を用いることが好ましい。
本発明の微生物濃縮方法によれば、微生物と共に水溶性物質や親水性物質が共存する場合、微生物は析出相へ、水溶性物質や親水性物質は上澄み相へ分離することができる。これによって、微生物を濃縮することができる。
As a reagent for lowering the pH, for example, hydrochloric acid, nitric acid, and sulfuric acid are preferably used.
According to the microorganism concentration method of the present invention, when a water-soluble substance and a hydrophilic substance coexist with a microorganism, the microorganism can be separated into a precipitation phase, and the water-soluble substance and the hydrophilic substance can be separated into a supernatant phase. Thereby, microorganisms can be concentrated.

界面活性剤と親水性有機溶媒と微生物と水とからなる溶液に、pHを低下させるための試薬を添加する時、一般的には、添加後そのまま放置するのではなく、軽く攪拌してから放置する方が好ましい。すなわち、攪拌により混合しないと、酸が均一に拡散するまでに時間がかかり、その分反応が遅れることで、相分離が遅くなることが起こるため、攪拌プロセスを設けることが好ましい。   When adding a reagent for lowering pH to a solution composed of a surfactant, a hydrophilic organic solvent, a microorganism and water, it is generally not left as it is after the addition, but it is allowed to stand after it is gently stirred. Is preferred. That is, if mixing is not performed by stirring, it takes time until the acid is uniformly diffused, and the reaction is delayed by that amount, so that phase separation is delayed. Therefore, it is preferable to provide a stirring process.

攪拌は、手で振るか、又はスターラ、ボルテックスミキサー等を用いることが好ましい。
ステップ2で、析出相を形成させる際、反応液全体の温度を低下させると析出速度が速くなる。これは、温度が低下することで水中に溶ける親水性有機溶媒の溶解度が低下するためと考えられる。
The stirring is preferably performed by shaking or using a stirrer, vortex mixer or the like.
In step 2, when the precipitation phase is formed, if the temperature of the entire reaction solution is lowered, the precipitation rate is increased. This is presumably because the solubility of the hydrophilic organic solvent that dissolves in water decreases as the temperature decreases.

なお、界面活性剤と親水性有機溶媒と微生物と水とからなる溶液のpHを低下させた後、遠心分離を行うと、放置して析出相を形成させる時間に比べて短い時間で析出相を形成させることができる。   In addition, when the pH of a solution composed of a surfactant, a hydrophilic organic solvent, a microorganism and water is lowered and then centrifuged, the precipitated phase can be formed in a shorter time than the time for allowing it to stand to form a precipitated phase. Can be formed.

図1(a)に示すように、供試菌株としてEscherichia coli(ATCC:10798)(一般名:大腸菌)を37℃のLB培地中で18時間振蕩培養した菌液を10μL(大腸菌数は約107個)入れた純水1(769ml)に、0.1Mペルフルオロオクタン酸2を2.5mL添加した。次にテトラヒドロフラン3を38mL添加した。さらに、6.0M塩酸4を192mL添加し、容器の蓋を閉めて上下に30回振り、溶液が均一になるように攪拌した。これを3時間室温で放置し、図1(b)に示すように容器底面に析出相5を形成させた。析出相の体積を、ピペットを用いて計量した後、上澄み相6と形成した析出相5を5μLずつとり、各々をスライドグラス上に乗せ、さらにカバーガラスを被せて顕微鏡を用いて、単位面積あたりの菌数を数えることにより、菌数を測定した。 As shown in FIG. 1 (a), 10 μL of Escherichia coli (ATCC: 10798) (generic name: E. coli) as a test strain was shake-cultured in an LB medium at 37 ° C. for 18 hours (the number of E. coli was about 10). 7 ) 2.5 mL of 0.1 M perfluorooctanoic acid 2 was added to pure water 1 (769 ml). Next, 38 mL of tetrahydrofuran 3 was added. Further, 192 mL of 6.0 M hydrochloric acid 4 was added, the lid of the container was closed, and the mixture was shaken up and down 30 times, and stirred so that the solution became uniform. This was left to stand at room temperature for 3 hours to form a precipitated phase 5 on the bottom of the container as shown in FIG. After measuring the volume of the precipitated phase using a pipette, take 5 μL each of the supernatant phase 6 and the formed precipitated phase 5, place each on a slide glass, and further cover with a cover glass. The number of bacteria was measured by counting the number of bacteria.

その結果、上澄み相中の大腸菌数は0個/5μLであったのに対し、析出相中の大腸菌数は5.8×106個/5μLであった。形成した析出相の体積は約20μLであったため、析出相中の大腸菌数は以下の計算式で求めた。 As a result, number of E. coli in the supernatant phase whereas 0 / was 5 [mu] L, E. coli number of precipitated phase was 5.8 × 10 6 cells / 5 [mu] L. Since the volume of the formed precipitated phase was about 20 μL, the number of E. coli in the precipitated phase was determined by the following calculation formula.

Figure 0004656489
Figure 0004656489

析出相中の大腸菌数は、始めに添加した大腸菌数とほぼ同じであり、更に上澄み相に大腸菌は見られなかったことから、大腸菌の回収率はほぼ100%であることが分かった。   The number of E. coli in the precipitation phase was almost the same as the number of E. coli added at the beginning, and E. coli was not found in the supernatant phase, indicating that the recovery rate of E. coli was almost 100%.

また、本実施例の濃縮倍率は以下の式で求めた。

Figure 0004656489
Moreover, the concentration rate of the present Example was calculated | required with the following formula | equation.
Figure 0004656489

本発明に係る微生物濃縮方法の一実施例を説明する概念図である。It is a conceptual diagram explaining one Example of the microorganism concentration method which concerns on this invention.

符号の説明Explanation of symbols

1 大腸菌と純水の混合溶液
2 ペルフルオロオクタン酸
3 テトラヒドロフラン
4 塩酸
5 大腸菌を含む析出相
6 上澄み相
1 Mixed solution of E. coli and pure water 2 Perfluorooctanoic acid 3 Tetrahydrofuran 4 Hydrochloric acid 5 Precipitation phase containing E. coli 6 Supernatant phase

Claims (3)

微生物を含む溶液に、界面活性剤と親水性有機溶媒とを加え均一溶液を形成し、
次いで、上記溶液のpHを低下させ、
上記溶液を、微生物と界面活性剤と親水性有機溶媒と水とが混合している析出相と、上澄み相との二相に分離し、
上記析出相中に微生物を濃縮することを特徴とする微生物濃縮方法であって、
ここで、上記界面活性剤がフルオロカルボン酸であり、上記親水性有機溶媒が該フルオロカルボン酸と相溶性のあるものである、微生物濃縮方法
Add a surfactant and a hydrophilic organic solvent to a solution containing microorganisms to form a uniform solution,
Then lower the pH of the solution,
The solution is separated into two phases, a precipitate phase in which microorganisms, a surfactant, a hydrophilic organic solvent, and water are mixed, and a supernatant phase,
A method for concentrating microorganisms characterized by concentrating microorganisms in the precipitated phase ,
Here, the method for concentrating microorganisms, wherein the surfactant is a fluorocarboxylic acid and the hydrophilic organic solvent is compatible with the fluorocarboxylic acid .
上記界面活性剤がぺルフルオロオクタン酸であることを特徴とする請求項1に記載の微生物濃縮計測方法。 2. The microorganism concentration measuring method according to claim 1, wherein the surfactant is perfluorooctanoic acid . 上記親水性有機溶媒がテトラヒドロフラン、ジメチルホルムアミド、エタノール又はアセトンであることを特徴とする請求項1に記載の微生物濃縮方法。 The method for concentrating microorganisms according to claim 1, wherein the hydrophilic organic solvent is tetrahydrofuran, dimethylformamide, ethanol or acetone .
JP2004339448A 2004-11-24 2004-11-24 Microbial concentration method Expired - Fee Related JP4656489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004339448A JP4656489B2 (en) 2004-11-24 2004-11-24 Microbial concentration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004339448A JP4656489B2 (en) 2004-11-24 2004-11-24 Microbial concentration method

Publications (2)

Publication Number Publication Date
JP2006141351A JP2006141351A (en) 2006-06-08
JP4656489B2 true JP4656489B2 (en) 2011-03-23

Family

ID=36621713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004339448A Expired - Fee Related JP4656489B2 (en) 2004-11-24 2004-11-24 Microbial concentration method

Country Status (1)

Country Link
JP (1) JP4656489B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6174575A (en) * 1984-09-13 1986-04-16 バスフ アクチェン ゲゼルシャフト Decomposition of cell substance
JPH053780A (en) * 1991-06-26 1993-01-14 Mitsui Toatsu Chem Inc Method for separating microorganism
JPH06125767A (en) * 1992-10-15 1994-05-10 Japan Marine Sci & Technol Center Separation of organic solvent-resistant microorganism
JPH07194368A (en) * 1993-12-28 1995-08-01 Agency Of Ind Science & Technol Separation of microorganism
JPH099981A (en) * 1995-06-28 1997-01-14 Sekiyu Sangyo Kasseika Center Separation of oil and water in microbial reaction of oily and aqueous two-phase system
JP2000014380A (en) * 1998-07-03 2000-01-18 Nissui Pharm Co Ltd Concentration of microbial cell and microbial cell concentrating reagent
JP2006141352A (en) * 2004-11-24 2006-06-08 Fuji Electric Holdings Co Ltd Method for measuring microorganism

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6174575A (en) * 1984-09-13 1986-04-16 バスフ アクチェン ゲゼルシャフト Decomposition of cell substance
JPH053780A (en) * 1991-06-26 1993-01-14 Mitsui Toatsu Chem Inc Method for separating microorganism
JPH06125767A (en) * 1992-10-15 1994-05-10 Japan Marine Sci & Technol Center Separation of organic solvent-resistant microorganism
JPH07194368A (en) * 1993-12-28 1995-08-01 Agency Of Ind Science & Technol Separation of microorganism
JPH099981A (en) * 1995-06-28 1997-01-14 Sekiyu Sangyo Kasseika Center Separation of oil and water in microbial reaction of oily and aqueous two-phase system
JP2000014380A (en) * 1998-07-03 2000-01-18 Nissui Pharm Co Ltd Concentration of microbial cell and microbial cell concentrating reagent
JP2006141352A (en) * 2004-11-24 2006-06-08 Fuji Electric Holdings Co Ltd Method for measuring microorganism

Also Published As

Publication number Publication date
JP2006141351A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
CN104237344A (en) Electrochemical aptamer electrode for kanamycin detection and preparation method of electrochemical aptamer electrode
JPH0751065B2 (en) Solid phase extraction and purification of DNA
CN110618178B (en) Preparation method of electrochemical impedance electrode for detecting bacteria
Ehzari et al. Zn-based metal-organic frameworks and p-aminobenzoic acid for electrochemical sensing of copper ions in milk and milk powder samples
CN108148204A (en) Perfluoropolyether-polyethylene glycol blocked copolymer, preparation method and applications
CN109400563B (en) Hypochlorous acid fluorescent probe and preparation method and application thereof
JP2019527363A (en) Chemical composition for stabilizing extracellular vesicles of blood samples and methods of use thereof
JP4656489B2 (en) Microbial concentration method
JP2012021972A (en) High speed and high sensitivity molecule detection determination method using power generating enzyme in electric charge measurement, and detection part and device used for the method
CN111537584A (en) Methylene blue-nanoflower, electrochemical aptamer biosensor system, and preparation method and application thereof
CN108949659B (en) Bioengineering bacterium for detecting bivalent mercury ions and preparation method and application thereof
Fenn THE PHAGOCYTOSIS OF SOLID PARTICLES: IV. CARBON AND QUARTZ IN SOLUTIONS OF VARYING ACIDITY.
EP3963088A1 (en) Rapid methods for determining microorganism growth in samples of human origin
JP4622478B2 (en) Microorganism measurement method
JP2012513598A (en) New biological tracer and its use in controlling filtration equipment
CN112557479A (en) Method for distinguishing alpha-naphthol and beta-naphthol isomers thereof
CN112505117A (en) Ferrocene nanoflower, electrochemical aptamer biosensor system and preparation method and application thereof
CN110579523B (en) Biosensor for detecting lead and preparation method and application thereof
CN109134483A (en) A kind of hydrogen sulfide fluorescence probe and its preparation method and application
AU2021240657B2 (en) Method and device for enriching and detecting microorganisms in biological samples
CN117567370B (en) PH value detection fluorescent probe and preparation method and application thereof
CN111662195B (en) Pillared arene complex with gas response unit, film with nanochannel of gas response switch, preparation method and application
CN116124853B (en) Electrochemical biosensor for detecting oxalic acid, preparation method and application
US20220298588A1 (en) Development of a nucleic acid based lateral flow immunoassay for bk virus detection from esrd urines and contaminated sewage samples
Gamgee On the behaviour of oxy-hæmoglobin, carbonic-oxide-hæmoglobin, methæmoglobin, and certain of their derivatives, in the magnetic field, with a preliminary note on the electrolysis of the hæmoglobin compounds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees