JP4655711B2 - Method for producing magnetic composite particles - Google Patents

Method for producing magnetic composite particles Download PDF

Info

Publication number
JP4655711B2
JP4655711B2 JP2005081583A JP2005081583A JP4655711B2 JP 4655711 B2 JP4655711 B2 JP 4655711B2 JP 2005081583 A JP2005081583 A JP 2005081583A JP 2005081583 A JP2005081583 A JP 2005081583A JP 4655711 B2 JP4655711 B2 JP 4655711B2
Authority
JP
Japan
Prior art keywords
particles
magnetic
mother
fine particles
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005081583A
Other languages
Japanese (ja)
Other versions
JP2006265290A (en
Inventor
一郎 尾崎
勝 上野
朋広 上津原
功二 田守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2005081583A priority Critical patent/JP4655711B2/en
Publication of JP2006265290A publication Critical patent/JP2006265290A/en
Application granted granted Critical
Publication of JP4655711B2 publication Critical patent/JP4655711B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Polymerisation Methods In General (AREA)

Description

本発明は、磁性体複合粒子の製造方法に関するものである。この磁性体複合粒子は、生化学用担体、塗料、紙、電子材料、電子写真、化粧品、医薬品、農薬、食品、触媒など広い分野で利用できるものである。   The present invention relates to a method for producing a magnetic composite particle. The magnetic composite particles can be used in a wide range of fields such as biochemical carriers, paints, paper, electronic materials, electrophotography, cosmetics, pharmaceuticals, agricultural chemicals, foods, and catalysts.

粒子径分布が比較的均一でかつ磁性体を複合化させる粒子の製造法としては、乳化重合、懸濁重合などにより得られた均一粒径母粒子の表面上に、磁性体微粒子を物理的に吸着させ被覆層を形成する方法が提案されている。物理的吸着には母粒子と磁性体微粒子とを攪拌翼付き容器中で攪拌翼の周速度が15m/秒以上の条件下の気流中で高速攪拌するなど、高エネルギーで母粒子と磁性体微粒子を衝突させることが有効である。母粒子表面は、界面活性剤、オリゴマー、低分子量成分などが吸着していると、複合化の阻害因子になるケースが多く、これらが存在していないことが望ましい。ところが、母粒子を得る工程における乳化重合、懸濁重合では、安定化剤として、界面活性剤を使用する事が一般的であり、これらを低減、除去するために遠心、透析などの精製工程を実施していた。この精製工程が煩雑であることが問題となっていた。
特開2004−205481
As a method for producing particles having a relatively uniform particle size distribution and complexing a magnetic material, magnetic fine particles are physically placed on the surface of a uniform particle size mother particle obtained by emulsion polymerization or suspension polymerization. A method of forming a coating layer by adsorbing has been proposed. For physical adsorption, the mother particles and magnetic fine particles are stirred at high energy in a container with a stirring blade in a stream of air with a peripheral speed of the stirring blade of 15 m / sec or higher. It is effective to make them collide. When the surface of the mother particle is adsorbed with surfactants, oligomers, low molecular weight components, etc., there are many cases where it becomes an inhibitor of complexation, and it is desirable that these do not exist. However, in emulsion polymerization and suspension polymerization in the step of obtaining mother particles, it is common to use a surfactant as a stabilizer. In order to reduce or remove these, a purification step such as centrifugation or dialysis is performed. It was carried out. The problem is that this purification process is complicated.
JP 2004-205481 A

本発明は、磁性粒子製造において精製工程を省ける均一粒径母粒子を使用し、効率的に磁性体複合粒子を得る方法を提案するものである。   The present invention proposes a method for efficiently obtaining magnetic composite particles using uniform particle size mother particles that can eliminate the purification step in the production of magnetic particles.

本発明は、モノマー100重量部に対して界面活性剤の使用量が0.01重量部以下の割合で前記モノマーを重合して母粒子を製造し、得られた前記母粒子の表面上に、磁性体微粒子を物理的に吸着させる工程を含むことを特徴とする磁性体複合粒子の製造方法を提供するものである。   In the present invention, a monomer is produced by polymerizing the monomer in a proportion of 0.01 parts by weight or less based on 100 parts by weight of the monomer. On the surface of the obtained mother particle, The present invention provides a method for producing magnetic composite particles, comprising a step of physically adsorbing magnetic fine particles.

本発明で使用する母粒子の平均粒子径は、0.4〜200μm、好ましくは0.5〜100μm、さらに好ましくは1.5〜50μmである。母粒子のCV(Coefficient of Variation)値は、20%以下、好ましくは15%以下、より好ましくは10%以下である。母粒子の平均粒子径が0.4μm未満では、たとえば粒子の高速撹拌による衝突エネルギーが不十分で磁性体微粒子の吸着が困難になる。一方、母粒子の平均粒子径が200μmを超えると、微粒子としての特性が失われてしまう。また、CV値が上記範囲をはずれると、得られる磁性体複合粒子の粒子径の均一性が不十分となる。   The average particle diameter of the mother particles used in the present invention is 0.4 to 200 μm, preferably 0.5 to 100 μm, more preferably 1.5 to 50 μm. The CV (Coefficient of Variation) value of the mother particles is 20% or less, preferably 15% or less, more preferably 10% or less. When the average particle diameter of the mother particles is less than 0.4 μm, for example, the collision energy due to high-speed stirring of the particles is insufficient, and it becomes difficult to adsorb magnetic fine particles. On the other hand, when the average particle diameter of the mother particles exceeds 200 μm, the characteristics as fine particles are lost. On the other hand, if the CV value is out of the above range, the uniformity of the particle diameter of the obtained magnetic composite particles becomes insufficient.

本発明で使用する母粒子は、重合により得られたポリマー粒子であり、かかるポリマーとしては、特に、ビニル系ポリマーが好ましく、その製造に使用するビニル系モノマーとしては、スチレン、α−メチルスチレン、ハロゲン化スチレン、ジビニルベンゼンなどの芳香族ビニル単量体、酢酸ビニル、プロピオン酸ビニルなどのビニルエステル類、アクリロニトリルなどの不飽和ニトリル、メチルアクリレート、エチルアクリレート、エチルメタクリレート、ブチルアクリレート、ブチルメタクリレート、2−エチルヘキシルアクリレート、2−エチルヘキシルメタクリレート、ラウリルアクリレート、ラウリルメタクリレート、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、シクロヘキシルアクリレート、シクロヘキシルメタクリレートなどのエチレン性不飽和カルボン酸アルキルエステルなどを例示することができる。このビニル系ポリマーは単独重合体であっても、あるいは上記ビニル系モノマーから選ばれた2種以上のモノマーからなる共重合体であってもよい。また、上記ビニル系モノマーとブタジエン、イソプレンなどの共役ジオレフィン、アクリル酸、メタクリル酸、アクリルアミド、メタクリルアミド、グリシジルアクリレート、グリシジルメタクリレート、N−メチロールアクリルアミド、N−メチロールメタクリルアミド、2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート、ジアリルフタレート、アリルアクリレート、アリルメタクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレートなどの共重合可能なモノマーとの共重合体も使用することができる。   The mother particles used in the present invention are polymer particles obtained by polymerization, and as such polymers, vinyl polymers are particularly preferred, and vinyl monomers used for the production thereof are styrene, α-methylstyrene, Aromatic vinyl monomers such as halogenated styrene and divinylbenzene, vinyl esters such as vinyl acetate and vinyl propionate, unsaturated nitriles such as acrylonitrile, methyl acrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, 2 -Ethylhexyl acrylate, 2-ethylhexyl methacrylate, lauryl acrylate, lauryl methacrylate, ethylene glycol diacrylate, ethylene glycol dimethacrylate, cyclohexyl acrylate, Such as ethylenically unsaturated carboxylic acid alkyl esters such as Russia hexyl methacrylate can be exemplified. This vinyl polymer may be a homopolymer or a copolymer composed of two or more monomers selected from the vinyl monomers. Also, the above vinyl monomers and conjugated diolefins such as butadiene and isoprene, acrylic acid, methacrylic acid, acrylamide, methacrylamide, glycidyl acrylate, glycidyl methacrylate, N-methylol acrylamide, N-methylol methacrylamide, 2-hydroxyethyl acrylate A copolymer with a copolymerizable monomer such as 2-hydroxyethyl methacrylate, diallyl phthalate, allyl acrylate, allyl methacrylate, trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, or the like can also be used.

本発明の母粒子を、重合時に界面活性剤を使用しないソープフリー乳化重合で得ることが望ましい。ソープフリー乳化重合は、例えばJ.Polym.Sci.Cheem.Ed.,14,2193(1977)、高分子化学,22,481(1965)、高分子論集,32,229(1975)、高分子論集,32,522(1975)などに記載の方法が挙げられる。まだ、重合安定性、粒径コントロールの観点から少量の界面活性剤を使用することもできるが、その上限はモノマー100重量部に対して0.01重量部である。これを超えて使用すると、粒子表面に界面活性剤が吸着することにより磁性体複合化の阻害因子になる。   It is desirable to obtain the mother particles of the present invention by soap-free emulsion polymerization without using a surfactant during polymerization. Soap-free emulsion polymerization is described, for example, in J. Org. Polym. Sci. Chem. Ed. 14, 2193 (1977), polymer chemistry, 22, 481 (1965), polymer theory, 32, 229 (1975), polymer theory, 32, 522 (1975), and the like. Although a small amount of surfactant can be used from the viewpoint of polymerization stability and particle size control, the upper limit is 0.01 parts by weight with respect to 100 parts by weight of the monomer. If it is used in excess of this, the surfactant is adsorbed on the particle surface and becomes an inhibitor of the magnetic substance complexation.

本発明における平均粒子径および粒子径分布は、電子顕微鏡写真上にて100個の粒子の粒子径を無作意に測定して求めたものである。   The average particle size and particle size distribution in the present invention are obtained by randomly measuring the particle size of 100 particles on an electron micrograph.

本発明で使用する磁性体微粒子としては、特に制限はないが、酸化鉄系の物質が代表的であり、MnFe(Mn=Co、Ni、Mg、Cu、Li0.5Fe0.5等)で表現されるフェライト、Feで表現されるマグネタイト、あるいはγFeが挙げられる。特に、飽和磁化が強く、かつ残留磁化が少ない磁気材料としてγFe、Feが好ましい。 The magnetic fine particles used in the present invention are not particularly limited, but iron oxide-based substances are typical, and MnFe 2 O 4 (Mn = Co, Ni, Mg, Cu, Li 0.5 Fe 0. 5 ) or the like, magnetite represented by Fe 3 O 4 , or γFe 2 O 3 . In particular, γFe 2 O 3 and Fe 3 O 4 are preferable as magnetic materials having strong saturation magnetization and low residual magnetization.

本発明で使用する磁性体微粒子は、母粒子の平均粒子径の好ましくは1/5以下、より好ましくは1/10以下、さらに好ましくは1/20以下の平均粒子径を有する。磁性体微粒子の平均粒子径が母粒子の平均粒子径の1/5を超えると母粒子表面に均一かつ十分な厚みを持った被覆層を形成することができにくい。   The magnetic fine particles used in the present invention preferably have an average particle size of 1/5 or less, more preferably 1/10 or less, and even more preferably 1/20 or less of the average particle size of the mother particles. When the average particle diameter of the magnetic fine particles exceeds 1/5 of the average particle diameter of the mother particles, it is difficult to form a coating layer having a uniform and sufficient thickness on the surface of the mother particles.

本発明での母粒子と磁性体微粒子との比(母粒子:磁性体微粒子)は、重量比で95:5〜20:80が好ましい。磁性体微粒子がこの範囲の量より少ないと、複合化効果が少なくなる。磁性体微粒子がこの範囲の量より多いと、母粒子の対する量が過剰となり、複合化されない磁性体微粒子が多くなる。   In the present invention, the ratio of the mother particles to the magnetic fine particles (mother particles: magnetic fine particles) is preferably 95: 5 to 20:80 by weight. When the amount of magnetic fine particles is less than this range, the composite effect is reduced. When the amount of magnetic fine particles is larger than this range, the amount of the mother particles becomes excessive, and the number of magnetic fine particles that are not combined increases.

本発明で使用する磁性体微粒子は、母粒子と後工程で使用する単量体モノマーとの親和性、相溶性との観点から表面が疎水化されたものが望ましい。磁性体微粒子の表面の疎水化処理方法としては、磁性体微粒子と極めて親和性の高い部分と疎水性の部分とを分子内に有する化合物を磁性体微粒子に接触させて結合させる方法を挙げることができる。このような化合物としてはシランカップリング剤に代表されるシラン化合物を挙げることができる。シラン化合物による疎水化は、薬品耐性、特にアルカリ耐性に優れており、使用中に疎水化層が脱落する事による磁性体の剥離、磁気性能が低下する問題、あるいは脱離した磁性体や界面活性剤が浮遊する事による系に汚染物が混入する問題の発生を効果的に防止することができる。また、本発明においては、疎水化された磁性体微粒子が、たとえばトルエンに良好に分散することができる場合に、十分に疎水化されているということができる。   The magnetic fine particles used in the present invention are preferably those whose surfaces are hydrophobized from the viewpoints of affinity and compatibility between the mother particles and the monomer monomer used in the subsequent step. Examples of the method for hydrophobizing the surface of the magnetic fine particles include a method in which a compound having an extremely high affinity portion and a hydrophobic portion in the molecule is brought into contact with and bonded to the magnetic fine particles. it can. Examples of such compounds include silane compounds represented by silane coupling agents. Hydrophobization with silane compounds is excellent in chemical resistance, especially alkali resistance, and peeling of the magnetic material due to dropping of the hydrophobized layer during use, problems of deterioration of magnetic performance, or detached magnetic material and surface activity It is possible to effectively prevent the occurrence of a problem that contaminants enter the system due to the floating agent. Further, in the present invention, it can be said that the hydrophobized magnetic fine particles are sufficiently hydrophobized when they can be satisfactorily dispersed in, for example, toluene.

シランカップリング剤に代表されるシラン化合物としては、ビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリス(β−メトキシエトキシ)シラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドオキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルメチルジメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、ドデシルトリメトキシシラン、ヘキシルトリメトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリメトキシシラン、ドデシルトリクロロシラン、ヘキシルトリクロロシラン、メチルトリクロロシラン、フェニルトリクロロシランなどがある。   Examples of silane compounds represented by silane coupling agents include vinyltrichlorosilane, vinyltrimethoxysilane, vinyltris (β-methoxyethoxy) silane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and γ-glycid. Oxypropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, dodecyltrimethoxysilane, Hexyltrimethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, dodecyltrichlorosilane, hexyltrichlorosilane, methyltrichlorosilane, phenyltrichlorosilane, etc. The

これらのシラン化合物を磁性体微粒子に結合させる方法としては、例えば、磁性体微粒子と、シラン化合物とを水などの無機媒質またはアルコール、エーテル、ケトン、エステルなどの有機媒質中で混合し、撹拌しながら加熱した後、磁性体微粒子をデカンテーションなどにより分離して減圧乾燥により無機媒質または有機媒質を除去する手段を挙げることができる。また、磁性体微粒子とシラン化合物とを直接混合し加熱させて両者を結合させてもよい。これらの手段において、加熱温度は通常30〜100℃であり、加熱温度は0.5〜2時間程度である。また、シラン化合物の使用量は、磁性体微粒子の表面積によって適宜定められているが、通常磁性体微粒子100重量部に対して1〜50重量部、好ましくは2〜30重量部である。   As a method for bonding these silane compounds to magnetic fine particles, for example, magnetic fine particles and a silane compound are mixed in an inorganic medium such as water or an organic medium such as alcohol, ether, ketone, ester, and stirred. After heating, the magnetic fine particles are separated by decantation or the like and the inorganic medium or the organic medium is removed by drying under reduced pressure. Alternatively, the magnetic fine particles and the silane compound may be directly mixed and heated to bond them together. In these means, the heating temperature is usually 30 to 100 ° C., and the heating temperature is about 0.5 to 2 hours. The amount of the silane compound used is appropriately determined depending on the surface area of the magnetic fine particles, but is usually 1 to 50 parts by weight, preferably 2 to 30 parts by weight with respect to 100 parts by weight of the magnetic fine particles.

本発明の方法によって母粒子の表面に磁性体微粒子の被覆層を形成するには、先ず母粒子と磁性体微粒子とを混合し、母粒子の表面に磁性体微粒子を物理的に吸着させる。本発明で述べる物理的吸着法とは、化学反応を伴わない吸着法、結合法を指すものであり、原理としては、疎水/疎水吸着、溶融結合または吸着、融着結合または吸着、水素結合、ファンデルワールス結合などを指す。疎水/疎水吸着を利用する場合の例としては、母粒子表面および磁性体微粒子表面が疎水性のもの或いは疎水化処理されたものを選択し、ドライブレンドするか、或いは、母粒子、磁性体微粒子の双方を侵すことなく良分散性の溶剤、例えばトルエン、ヘキサン中で充分分散させた後、混合条件下で溶剤を揮発させる方法が挙げられる。また、母粒子表面および磁性体微粒子表面を多少溶かす材質あるいは溶剤の選択および/または混合時の温度条件を選択することにより、溶融結合または吸着、融着結合または吸着を利用した複合化も可能である。   In order to form a coating layer of magnetic fine particles on the surface of the mother particles by the method of the present invention, first, the mother particles and the magnetic fine particles are mixed, and the magnetic fine particles are physically adsorbed on the surface of the mother particles. The physical adsorption method described in the present invention refers to an adsorption method and a bonding method that do not involve a chemical reaction. In principle, hydrophobic / hydrophobic adsorption, melt bonding or adsorption, fusion bonding or adsorption, hydrogen bonding, This refers to van der Waals coupling. As an example of using hydrophobic / hydrophobic adsorption, the surface of the mother particle and the surface of the magnetic fine particles are selected to be hydrophobic or hydrophobized, and dry blended, or the mother particles and magnetic fine particles are selected. And a method of volatilizing the solvent under mixing conditions after sufficiently dispersing in a well-dispersible solvent such as toluene and hexane without attacking both. It is also possible to make a composite using fusion bonding or adsorption, fusion bonding or adsorption by selecting a material or solvent that slightly dissolves the surface of the mother particle and the surface of the magnetic fine particles and / or selecting the temperature conditions during mixing. is there.

物理的に強い力を外部から加えることにより複合化を実現させる方法も有効である。例えば乳鉢、自動乳鉢、ボールミル、ブレード加圧式粉体圧縮法、メカノフュージョン法のようなメカノケミカル効果を利用するもの、あるいはジェットミル、ハイブリダイザーなど高速気流中衝撃法を利用するものが挙げられる。効率よくかつ強固に複合化を実施するには物理的吸着力が強いことが望ましい。その方法としては攪拌翼付き容器中で攪拌翼の周速度が好ましくは15m/秒以上、より好ましくは30m/秒以上、さらに好ましくは40〜150m/秒で実施することが挙げられる。撹拌翼の周速度が15m/秒より低いと、被覆層を形成する十分なエネルギーを得ることができないことがある。なお、撹拌翼の周速度の上限については、特に制限はないが、使用する装置、エネルギー効率などの点から自ずと決定される。
また、同一種または異なる種類の磁性微粒子および/または非磁性微粒子を用いて複合化を複数回実施し、複数の被覆層を有する多層構造の被覆層からなる磁性体複合粒子を製造することもできる。例えば、母粒子と磁性体微粒子とを用いて第1の被覆層を形成した後、さらにポリマー粒子を加えてこれを第1の被覆層上に物理的に吸着させ、第2の被覆層を形成し、必要に応じてこれを繰り返すことで複数の被覆層を形成することができる。このように、多層構造の被覆層を形成する際に使用する非磁性微粒子の成分としては、ポリマー粒子、好ましくは熱可塑性ポリマー粒子を使用するのがよい。この熱可塑性ポリマー粒子としては、上記ビニル系ポリマーのなかから目的に応じて適宜選択することができる。熱可塑性ポリマー粒子としては、粒子径が母粒子の粒子径の1〜60%、重量平均分子量1万〜100万、素材はアクリル系のものが望ましい。これらのポリマー成分の添加量としては、母粒子100重量部に対し100重量部以下が望ましい。この場合、非磁性微粒子であるポリマーの種類を母粒子と変えると摩擦帯電で付着しやすくなり、被覆層の形成がより容易になる。
次に、被覆層上にさらにコーティングのために形成されるポリマー層(以下、「コーティングポリマー層」ともいう)について述べる。
It is also effective to realize compounding by applying a physically strong force from the outside. For example, a mortar, an automatic mortar, a ball mill, a blade pressurizing powder compression method, a mechanochemical effect such as a mechanofusion method, or a jet mill or a hybridizer using a high-speed airflow impact method. It is desirable that the physical adsorption force is strong in order to efficiently and firmly perform the composite. As the method, the peripheral speed of the stirring blade is preferably 15 m / second or more, more preferably 30 m / second or more, and further preferably 40 to 150 m / second in a vessel with a stirring blade. If the peripheral speed of the stirring blade is lower than 15 m / second, sufficient energy for forming the coating layer may not be obtained. In addition, although there is no restriction | limiting in particular about the upper limit of the circumferential speed of a stirring blade, It determines automatically from points, such as an apparatus to be used and energy efficiency.
Also, the composite can be performed a plurality of times using the same or different types of magnetic fine particles and / or non-magnetic fine particles, and magnetic composite particles comprising a multilayered coating layer having a plurality of coating layers can be produced. . For example, after forming a first coating layer using mother particles and magnetic fine particles, polymer particles are further added and physically adsorbed on the first coating layer to form a second coating layer. And a several coating layer can be formed by repeating this as needed. As described above, polymer particles, preferably thermoplastic polymer particles, are preferably used as components of the non-magnetic fine particles used when forming the coating layer having a multilayer structure. The thermoplastic polymer particles can be appropriately selected from the vinyl polymers according to the purpose. The thermoplastic polymer particles preferably have a particle size of 1 to 60% of the particle size of the mother particles, a weight average molecular weight of 10,000 to 1,000,000, and an acrylic material. The addition amount of these polymer components is preferably 100 parts by weight or less with respect to 100 parts by weight of the base particles. In this case, if the type of the polymer that is non-magnetic fine particles is changed to the mother particles, it becomes easy to adhere by frictional charging and the formation of the coating layer becomes easier.
Next, a polymer layer (hereinafter also referred to as “coating polymer layer”) formed on the coating layer for coating will be described.

かかるポリマー層は、母粒子の表面に被覆層が形成された粒子(以下、「磁性体被覆粒子」という)の存在下で、主原料としての共重合性モノマーと、副原料である重合開始剤、乳化剤、分散剤、界面活性剤、電解質、架橋剤、分子量調節剤などが必要に応じて添加され液体中で重合を行うことにより形成される。このようにコーティングポリマー層を重合によって形成することにより、当該ポリマー層の表面に所望の官能基を導入することができるなど、表面加工性にすぐれる。   Such a polymer layer comprises a copolymerizable monomer as a main raw material and a polymerization initiator as a secondary raw material in the presence of particles having a coating layer formed on the surface of the mother particles (hereinafter referred to as “magnetic material-coated particles”). , Emulsifiers, dispersants, surfactants, electrolytes, cross-linking agents, molecular weight regulators and the like are added as necessary, and polymerization is performed in a liquid. By forming the coating polymer layer by polymerization in this way, it is possible to introduce a desired functional group onto the surface of the polymer layer, and the surface processability is excellent.

ポリマー層の成分としては特に、ビニル系ポリマーが好ましく、その製造に使用するビニル系モノマーとしては、スチレン、α−メチルスチレン、ハロゲン化スチレン、ジビニルベンゼンなどの芳香族ビニル単量体、酢酸ビニル、プロピオン酸ビニルなどのビニルエステル類、アクリロニトリルなどの不飽和ニトリル、メチルアクリレート、エチルアクリレート、エチルメタクリレート、ブチルアクリレート、ブチルメタクリレート、2−エチルヘキシルアクリレート、2−エチルヘキシルメタクリレート、ラウリルアクリレート、ラウリルメタクリレート、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、シクロヘキシルアクリレート、シクロヘキシルメタクリレートなどのエチレン性不飽和カルボン酸アルキルエステルなどを例示することができる。このビニル系ポリマーは単独重合体であっても、あるいは上記ビニル系モノマーから選ばれた2種以上のモノマーからなる共重合体であってもよい。   As a component of the polymer layer, a vinyl polymer is particularly preferable, and vinyl monomers used for the production thereof are aromatic vinyl monomers such as styrene, α-methylstyrene, halogenated styrene, divinylbenzene, vinyl acetate, Vinyl esters such as vinyl propionate, unsaturated nitriles such as acrylonitrile, methyl acrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, lauryl acrylate, lauryl methacrylate, ethylene glycol di Ethylenically unsaturated carboxylic acid alkyls such as acrylate, ethylene glycol dimethacrylate, cyclohexyl acrylate, cyclohexyl methacrylate, etc. It can be exemplified esters and the like. This vinyl polymer may be a homopolymer or a copolymer composed of two or more monomers selected from the vinyl monomers.

また、上記ビニル系モノマーとブタジエン、イソプレンなどの共役ジオレフィン、アクリル酸、メタクリル酸、アクリルアミド、メタクリルアミド、グリシジルアクリレート、グリシジルメタクリレート、N−メチロールアクリルアミド、N−メチロールメタクリルアミド、2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート、ジアリルフタレート、アリルアクリレート、アリルメタクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレート、スチレンスルホン酸およびそのナトリウム塩、2−アクリルアミド−2−メチルプロパンスルホン酸およびそのナトリウム塩、イソプレンスルホン酸およびそのナトリウム塩などの共重合可能なモノマーとの共重合体も使用することができる。   In addition, the vinyl monomers and conjugated diolefins such as butadiene and isoprene, acrylic acid, methacrylic acid, acrylamide, methacrylamide, glycidyl acrylate, glycidyl methacrylate, N-methylol acrylamide, N-methylol methacrylamide, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, diallyl phthalate, allyl acrylate, allyl methacrylate, trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, styrenesulfonic acid and its sodium salt, 2-acrylamido-2-methylpropanesulfonic acid and its sodium salt, Copolymers with copolymerizable monomers such as isoprene sulfonic acid and its sodium salt should also be used. Can.

重合開始剤としては、水への溶解性の観点から分類すると、油溶性重合開始剤が好ましい。水溶性の重合開始剤を用いると複合粒子表面での重合でなく、磁性体被覆粒子を含まない疎水性重合モノマーのみが重合した新粒子が多量に生じる傾向がある。   The polymerization initiator is preferably an oil-soluble polymerization initiator from the viewpoint of solubility in water. When a water-soluble polymerization initiator is used, there is a tendency that not only polymerization on the surface of the composite particles but also a large amount of new particles in which only a hydrophobic polymerization monomer not containing magnetic substance-coated particles is polymerized.

油溶性重合開始剤としては、ベンゾイルペルオキシド、ラウロイルペルオキシド、ターシャリーブチルペルオキシ2−エチルヘキサネート、3,5,5−トリメチルヘキサノイルペルオキシド、アゾビスイソブチロニトリル等の過酸化化合物、アゾ化合物が挙げられる。   Examples of oil-soluble polymerization initiators include benzoyl peroxide, lauroyl peroxide, tertiary butyl peroxy 2-ethylhexanate, 3,5,5-trimethylhexanoyl peroxide, azobisisobutyronitrile and other peroxide compounds and azo compounds. Can be mentioned.

水溶性開始剤としては、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム等の過硫酸塩、過酸化水素、2−2アゾビス(2−アミノプロパン)鉱酸塩、アゾビスシアノ吉草酸およびそのアルカリ金属塩およびアンモニウム塩等があげられ、また、過硫酸塩、過酸化水素塩と重亜硫酸ナトリウム、チオ硫酸ナトリウム、塩化第一鉄等を組み合わせたレドックス開始剤もあげられ、中でも過硫酸塩が好適に用いられる。これらの重合開始剤のモノマー全体に対する割合は0.01〜8重量%の範囲が好適に用いられる。   Water-soluble initiators include potassium persulfate, ammonium persulfate, persulfates such as sodium persulfate, hydrogen peroxide, 2-2 azobis (2-aminopropane) mineral acid salt, azobiscyanovaleric acid and its alkali metal salts, and Examples thereof include ammonium salts, and redox initiators in which persulfate, hydrogen peroxide salt and sodium bisulfite, sodium thiosulfate, ferrous chloride, etc. are combined. Among them, persulfate is preferably used. . The ratio of these polymerization initiators to the whole monomer is preferably in the range of 0.01 to 8% by weight.

界面活性剤としては、通常使用されている陰イオン性界面活性剤または非イオン性界面活性剤等、を単独もしくは組み合わせて用いることができる。例えば反応性陰イオン性界面活性剤としては、高級アルコール硫酸エステルのアルカリ金属塩、アルキルベンゼンスルホン酸のアルカリ金属塩、コハク酸ジアルキルエステルスルホン酸のアルカリ金属塩、アルキルジフェニルエーテルジスルホン酸のアルカリ金属塩、ポリオキシエチレンアルキル(またはアルキルフェニル)エーテルの硫酸エステル塩、ポリオキシエチレンアルキル(またはアルキルフェニル)エーテルのリン酸エステル塩、ナフタレンスルホン酸ナトリウムのホルマリン縮合物などの陰イオン性界面活性剤の他、ラテムルS−180A(花王(株)製)、エレミノールJS−2(三洋化成(株)製)、アクアロンHS−10(第一工業製薬(株)製)、アデカリアソープSE−10N(旭電化工業(株)製)などを挙げることができる。   As the surfactant, a commonly used anionic surfactant or nonionic surfactant can be used alone or in combination. For example, reactive anionic surfactants include alkali metal salts of higher alcohol sulfates, alkali metal salts of alkylbenzene sulfonic acids, alkali metal salts of succinic acid dialkyl ester sulfonic acids, alkali metal salts of alkyl diphenyl ether disulfonic acids, In addition to anionic surfactants such as sulfuric acid ester salt of oxyethylene alkyl (or alkylphenyl) ether, phosphoric acid ester salt of polyoxyethylene alkyl (or alkylphenyl) ether, formalin condensate of sodium naphthalene sulfonate, etc. S-180A (manufactured by Kao Corporation), Eleminol JS-2 (manufactured by Sanyo Chemical Co., Ltd.), Aqualon HS-10 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), Adekaria Soap SE-10N (Asahi Denka Kogyo Co., Ltd.) Inc.) Door can be.

また、非イオン性界面活性剤としては、例えばポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテルなどのほか、アクアロンRS−20(第一工業製薬(株)製)、アデカリアソープNE−20(旭電化工業(株)製)などの反応性非イオン性界面活性剤を挙げることができる。   Examples of the nonionic surfactant include polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, Aqualon RS-20 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), Adekari Soap NE-20 ( Reactive nonionic surfactants such as Asahi Denka Kogyo Co., Ltd.).

コーティングポリマー層の形成におけるモノマーの重合系への添加方法は、とくに制限されず、一括方式、分割方式あるいは連続添加方式のいずれであっても良い。重合温度は重合開始剤によって異なるが、通常10〜90℃好ましくは30〜85℃であり、重合に要する時間は通常1〜30時間程度である。   The method for adding the monomer to the polymerization system in the formation of the coating polymer layer is not particularly limited, and may be any of a batch method, a division method, or a continuous addition method. The polymerization temperature varies depending on the polymerization initiator, but is usually 10 to 90 ° C, preferably 30 to 85 ° C, and the time required for the polymerization is usually about 1 to 30 hours.

本発明の方法により得られる磁性体複合粒子の主たる用途の一つは、診断薬用担体粒子である。当該用途では、粒子からの不純物の溶出、あるいは磁性体微粒子そのものの溶出あるいは磁性体微粒子からの不純物の溶出は望ましくないが、本発明で得られる磁性体複合粒子ではこのような不都合がないので診断薬用担体粒子に好適である。このような診断薬用担体粒子の用途においては、コーティングポリマー層の表面の特性を目的に応じて選択することができる。   One of the main uses of the magnetic composite particles obtained by the method of the present invention is diagnostic carrier particles. In this application, it is not desirable to elute impurities from the particles, or from the magnetic fine particles themselves, or from the magnetic fine particles. However, the magnetic composite particles obtained in the present invention do not have such inconvenience, and thus are diagnosed. Suitable for medicinal carrier particles. In the use of such diagnostic agent carrier particles, the surface characteristics of the coating polymer layer can be selected according to the purpose.

以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらによって制限されるものではない。
1.母粒子の作製(ソープフリー乳化重合により界面活性剤を用いずに重合して粒子を得る方法)
1Lセパラブルフラスコに蒸留水780gを投入し、イカリ型撹拌羽200rpm撹拌、Nガス気流下80℃まで温度を上げた。次いで反応開始剤として過硫酸カリウム水溶液の5%水溶液20g、モノマーとしてスチレン20g投入し、80℃を保ったまま2時間反応させた。次いでスチレンモノマー180gを80℃を保ったまま3時間で連続滴下した。その後80℃を保ったまま2時間反応させた後冷却した。
得られた粒子は平均粒子径0.80μm CV値1.5%であった。これを500メッシュステンレス金網でろ過し、遠心分離操作により粒子のみ回収し60℃オーブンで24時間乾燥させた。
2.母粒子への磁性体微粒子の被覆(被覆層の形成)
油性磁性流体「FV55」[松本油脂(株)製]にアセトンを加えて粒子を析出沈殿させた後、これを乾燥することにより、疎水化処理された表面を有するフェライト系の超常磁性体(平均粒子径:0.01μm)を得た。得られた磁性体微粒子をトルエン/水(重量比1:1)に添加し、十分に攪拌した後静置したところ、磁性体微粒子はトルエンのみに分散されており、表面が疎水性であることを確認した。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further in detail, this invention is not restrict | limited by these.
1. Preparation of mother particles (Method of obtaining particles by polymerization without using a surfactant by soap-free emulsion polymerization)
Distilled water (780 g) was charged into a 1 L separable flask, and the temperature was raised to 80 ° C. under an N 2 gas stream while stirring at 200 rpm. Next, 20 g of a 5% aqueous solution of potassium persulfate as a reaction initiator and 20 g of styrene as a monomer were added and reacted for 2 hours while maintaining 80 ° C. Subsequently, 180 g of styrene monomer was continuously dropped over 3 hours while maintaining 80 ° C. Thereafter, the mixture was reacted for 2 hours while maintaining 80 ° C. and then cooled.
The obtained particles had an average particle size of 0.80 μm and a CV value of 1.5%. This was filtered through a 500 mesh stainless steel wire mesh, and only the particles were collected by centrifugation and dried in a 60 ° C. oven for 24 hours.
2. Covering mother particles with magnetic particles (formation of coating layer)
A ferrite superparamagnetic substance (average) having a hydrophobized surface is obtained by adding acetone to the oil-based magnetic fluid “FV55” (manufactured by Matsumoto Yushi Co., Ltd.) to precipitate and precipitate particles. Particle size: 0.01 μm) was obtained. The obtained magnetic fine particles are added to toluene / water (weight ratio 1: 1), and after sufficiently stirring, the magnetic fine particles are dispersed only in toluene, and the surface is hydrophobic. It was confirmed.

ついで、母粒子10gに、磁性体微粒子を20g混合し、この混合物をこの混合物をハイブリダイゼーションシステムNHS−0型(奈良機械製作所(株)製)を使用して、羽根(撹拌翼)の周速度100m/秒(16200rpm)で5分間処理した。
3.磁性体被覆粒子の表面コーティング重合(コーティングポリマー層の形成)
母粒子への磁性体微粒子の被覆で得られた磁性体被覆粒子30gと、分散剤としてノニオン性乳化剤「エマルゲン150」(花王製)の0.5%水溶液900gを1Lセパラブルフラスコに投入し充分に分散させる。これにモノマーとしてスチレン3g、メタクリル酸0.9g、重合開始剤としてターシャリーブチルペルオキシ2−エチルヘキサネート(日本油脂社製;パーブチルO)0.6gを添加し、イカリ型撹拌羽200rpm撹拌、Nガス気流下80℃で8時間反応させた。
比較例
Next, 20 g of magnetic fine particles were mixed with 10 g of the mother particles, and this mixture was mixed with this system using a hybridization system NHS-0 type (manufactured by Nara Machinery Co., Ltd.). Treatment was performed at 100 m / sec (16200 rpm) for 5 minutes.
3. Surface coating polymerization of magnetic material coated particles (formation of coating polymer layer)
30 g of magnetic material coated particles obtained by coating the magnetic particles on the mother particles and 900 g of 0.5% aqueous solution of nonionic emulsifier “Emulgen 150” (manufactured by Kao) as a dispersing agent are charged into a 1 L separable flask. To disperse. To this was added 3 g of styrene as a monomer, 0.9 g of methacrylic acid, and 0.6 g of tertiary butyl peroxy 2-ethylhexanate (manufactured by NOF Corporation; Perbutyl O) as a polymerization initiator. The reaction was carried out at 80 ° C. for 8 hours under a two gas stream.
Comparative example

1.母粒子の作製(一般の乳化重合により界面活性剤を用いて重合して粒子を得る方法)
1Lセパラブルフラスコに蒸留水585gを投入した。別の容器(例えば500mlビーカー)に蒸留水147g、界面活性剤としてドデシルベンゼンスルホン酸ソーダの5%水溶液3g、モノマーとしてスチレン135gを入れ、直接超音波処理して乳化した。蒸留水入り1Lセパラブルフラスコをイカリ型撹拌羽200rpm撹拌、Nガス気流下80℃まで温度を上げた。次いで反応開始剤として過硫酸カリウムの5%水溶液15g、モノマーとしてスチレン15g投入し、80℃を保ったまま2時間反応させた。次いで界面活性剤により乳化したスチレンを1Lセパラブルフラスコ内に80℃を保ったまま3時間で連続滴下した。その後80℃を保ったまま2時間反応させた後冷却した。
得られた粒子は平均粒子径0.79μm CV値1.9%であった。これを500メッシュステンレス金網でろ過し、遠心分離操作により粒子のみ回収し60℃オーブンで24時間乾燥させた。
2.母粒子への磁性体微粒子の被覆(被覆層の形成)
実施例と同じ方法で行なった。
3.磁性体被覆粒子の表面コーティング重合(コーティングポリマー層の形成)
実施例と同じ方法で行なった。
1. Preparation of mother particles (method of obtaining particles by polymerization using a surfactant by general emulsion polymerization)
585 g of distilled water was put into a 1 L separable flask. In a separate container (for example, a 500 ml beaker), 147 g of distilled water, 3 g of 5% aqueous solution of sodium dodecylbenzenesulfonate as a surfactant, and 135 g of styrene as a monomer were directly emulsified by ultrasonication. A 1 L separable flask containing distilled water was stirred at 200 rpm with a squid type stirring blade, and the temperature was raised to 80 ° C. under a N 2 gas stream. Next, 15 g of a 5% aqueous solution of potassium persulfate as a reaction initiator and 15 g of styrene as a monomer were added and reacted for 2 hours while maintaining 80 ° C. Subsequently, styrene emulsified with a surfactant was continuously dropped into a 1 L separable flask at 80 ° C. for 3 hours. Thereafter, the mixture was reacted for 2 hours while maintaining 80 ° C. and then cooled.
The obtained particles had an average particle size of 0.79 μm and a CV value of 1.9%. This was filtered through a 500 mesh stainless steel wire mesh, and only the particles were collected by centrifugation and dried in a 60 ° C. oven for 24 hours.
2. Covering mother particles with magnetic particles (formation of coating layer)
It carried out by the same method as an Example.
3. Surface coating polymerization of magnetic material coated particles (formation of coating polymer layer)
It carried out by the same method as an Example.

得られた磁性体複合粒子を分散媒としての水に1重量%含む試験液を調整した。この試験液の1mlをエッペンドルフチューブに入れ、撹拌後に横方向から4000ガウスの磁気を1分間かけた場合の磁気捕捉率を測定した。また、分散媒として200mM NaOH水溶液についても同様の操作、測定を行った。   A test solution containing 1% by weight of the obtained magnetic composite particles in water as a dispersion medium was prepared. 1 ml of this test solution was placed in an Eppendorf tube, and the magnetic capture rate was measured when 4000 gauss magnetism was applied for 1 minute from the lateral direction after stirring. Moreover, the same operation and measurement were performed for 200 mM NaOH aqueous solution as a dispersion medium.

実施例の磁性体複合粒子は水、および200mMのNaOH水溶液のいずれの分散媒中でも磁気捕捉率が99重量%以上であった。これは、磁性体微粒子が母粒子に強く結合しており、磁性体被覆粒子の表面コーティング重合時にも磁性体の剥がれが起こらず、200mMのNaOH水溶液のような高pH条件下でも、磁性体微粒子の母粒子からの脱離がなく安定的であることから、磁気応答性が速いことが挙げられる。   The magnetic composite particles of the examples had a magnetic capture ratio of 99% by weight or more in any dispersion medium of water and a 200 mM NaOH aqueous solution. This is because the magnetic fine particles are strongly bonded to the mother particles, and the magnetic material does not peel off during the surface coating polymerization of the magnetic material-coated particles, and even under high pH conditions such as a 200 mM NaOH aqueous solution, the magnetic fine particles The magnetic responsiveness is fast because it is stable without desorption from the mother particles.

一方、比較例は、水、200mMのNaOH水溶液いずれの分散媒中でも実施例全てにおいて得られた磁気捕捉率99重量%以上が得られなかった。これは、母粒子表面を界面活性剤が覆っていることから、磁性体微粒子との結合が弱く、磁性体被覆粒子の表面コーティング重合時にも磁性体の剥がれており、水中での磁気応答性の遅そくなり、さらに200mMのNaOH水溶液中では磁性体の剥がれが促進されることから、磁気応答性がさらに遅くなった。なお、比較例においても母粒子作製後、透析や遠心精製を繰り返し行ない界面活性剤を取り除くことにより、実施例の性能を発現することができるが、この工程がない本発明の方法に優位性がある。   On the other hand, in the comparative example, the magnetic capture ratio of 99% by weight or more obtained in all of the examples was not obtained in any dispersion medium of water or 200 mM NaOH aqueous solution. This is because the surface of the mother particle is covered with a surfactant, so the bond with the magnetic fine particles is weak, and the magnetic material is peeled off during the surface coating polymerization of the magnetic material-coated particles, and the magnetic responsiveness in water is low. The magnetic responsiveness was further delayed because the peeling of the magnetic material was accelerated in a 200 mM NaOH aqueous solution. In the comparative example, after the preparation of the mother particles, the performance of the examples can be exhibited by repeatedly performing dialysis and centrifugal purification to remove the surfactant. However, the method of the present invention without this step has an advantage. is there.

Figure 0004655711
Figure 0004655711

Claims (6)

モノマー100重量部に対して界面活性剤の使用量が0.01重量部以下の割合で前記モノマーを重合して母粒子を製造し、得られた前記母粒子の表面上に、磁性体微粒子を物理的に吸着させる工程を含むことを特徴とする
磁性体複合粒子の製造方法。
A monomer is produced by polymerizing the monomer in a proportion of 0.01 parts by weight or less with respect to 100 parts by weight of the monomer, and magnetic fine particles are formed on the surface of the obtained mother particle. A method for producing magnetic composite particles, comprising a step of physically adsorbing.
請求項1において、前記磁性体微粒子は、γFeおよびFeの少なくとも一方である、磁性体複合粒子の製造方法。 2. The method for producing magnetic composite particles according to claim 1, wherein the magnetic fine particles are at least one of γFe 2 O 3 and Fe 3 O 4 . 請求項1ないし2のいずれかにおいて、
前記磁性体微粒子の平均粒子径は、前記母粒子の平均粒子径の1/5以下である、磁性体複合粒子の製造方法。
In any one of Claims 1 to 2,
The method for producing magnetic composite particles, wherein the magnetic fine particles have an average particle diameter that is 1/5 or less of the average particle diameter of the mother particles.
請求項1ないしのいずれかにおいて、
前記母粒子と前記磁性体微粒子との割合は、重量比(母粒子:磁性体粒子)で95:5〜20:80である、磁性体複合粒子の製造方法。
In any of claims 1 to 3 ,
The ratio of the said mother particle and the said magnetic body fine particle is a manufacturing method of a magnetic body composite particle which is 95: 5-20: 80 by weight ratio (base particle: magnetic body particle).
請求項1ないし4のいずれかにおいて、
前記母粒子と前記磁性体微粒子とを攪拌翼付き容器中で攪拌翼の周速度が15m/秒以上の条件下の気流中で高速攪拌することにより、前記母粒子上に前記磁性体粒子を吸着させる、磁性体複合粒子の製造方法。
In any of claims 1 to 4,
The magnetic particles are adsorbed on the mother particles by stirring the mother particles and the magnetic fine particles in a container with a stirring blade at a high speed in an air flow with a peripheral speed of the stirring blade of 15 m / sec or more. A method for producing magnetic composite particles.
請求項1ないし5に記載の製造方法により得られた磁性体複合粒子の存在下、モノマーを重合する工程を含む、磁性体複合粒子の製造方法。   A method for producing magnetic composite particles, comprising a step of polymerizing a monomer in the presence of the magnetic composite particles obtained by the production method according to claim 1.
JP2005081583A 2005-03-22 2005-03-22 Method for producing magnetic composite particles Active JP4655711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005081583A JP4655711B2 (en) 2005-03-22 2005-03-22 Method for producing magnetic composite particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005081583A JP4655711B2 (en) 2005-03-22 2005-03-22 Method for producing magnetic composite particles

Publications (2)

Publication Number Publication Date
JP2006265290A JP2006265290A (en) 2006-10-05
JP4655711B2 true JP4655711B2 (en) 2011-03-23

Family

ID=37201596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005081583A Active JP4655711B2 (en) 2005-03-22 2005-03-22 Method for producing magnetic composite particles

Country Status (1)

Country Link
JP (1) JP4655711B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115862A (en) * 1989-09-29 1991-05-16 Fujirebio Inc Magnetic particle and immunoassay using same
JP2002090366A (en) * 2000-09-14 2002-03-27 Rikogaku Shinkokai Biologically specific affinity carrier with immobilized ferrite and its manufacturing method
JP2004205481A (en) * 2002-03-25 2004-07-22 Jsr Corp Method for manufacturing particle for diagnostic product

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115862A (en) * 1989-09-29 1991-05-16 Fujirebio Inc Magnetic particle and immunoassay using same
JP2002090366A (en) * 2000-09-14 2002-03-27 Rikogaku Shinkokai Biologically specific affinity carrier with immobilized ferrite and its manufacturing method
JP2004205481A (en) * 2002-03-25 2004-07-22 Jsr Corp Method for manufacturing particle for diagnostic product

Also Published As

Publication number Publication date
JP2006265290A (en) 2006-10-05

Similar Documents

Publication Publication Date Title
JP4947288B2 (en) Magnetic particle, method for producing the same, and carrier for biochemistry
JP3738847B2 (en) Method for producing diagnostic particles
Xu et al. Encapsulation of nanosized magnetic iron oxide by polyacrylamide via inverse miniemulsion polymerization
Schrade et al. Pickering-type stabilized nanoparticles by heterophase polymerization
JP5517419B2 (en) Composite particle and method for producing the same
JP4628519B2 (en) Composite particle and method for producing the same
EP1348731B1 (en) Process for producing particles for diagnostic reagent
JP4548598B2 (en) Magnetic particle, method for producing the same, and carrier for biochemistry
JP5152884B2 (en) Method for producing polymer-coated ferromagnetic particles and polymer-coated ferromagnetic particles
CN111534284A (en) Phase-change microcapsule and preparation method thereof
JPS61215602A (en) Production of polymer particle
JP4967324B2 (en) Hydroxyl group-containing magnetic polymer and method for producing the same
JP4273315B2 (en) Immunoassay particles and immunoassay
JP4655711B2 (en) Method for producing magnetic composite particles
JP4639696B2 (en) Magnetic composite particles and method for producing the same
JP4614064B2 (en) Method for producing magnetic particles and biochemical carrier
US7282540B2 (en) Process for producing particles for diagnostic reagent
JP3401851B2 (en) Method for microencapsulation of solid particles
JP4404208B2 (en) Magnetic particle dispersion and diagnostic particle
CN112724336A (en) Preparation method of core-shell type polymer microsphere encapsulated with functional core material
JP2006070064A (en) Magnetic particle and method for producing the same
JP2006266719A (en) Particle for diagnostics
JP4528178B2 (en) Method for producing surface-coated crosslinked polymer particles
JPS6228178B2 (en)
JPH08325428A (en) Glycolic crosslinked polymer particle dispersion and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4655711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250