JP4655437B2 - Martensitic stainless steel with excellent workability - Google Patents

Martensitic stainless steel with excellent workability Download PDF

Info

Publication number
JP4655437B2
JP4655437B2 JP2001263693A JP2001263693A JP4655437B2 JP 4655437 B2 JP4655437 B2 JP 4655437B2 JP 2001263693 A JP2001263693 A JP 2001263693A JP 2001263693 A JP2001263693 A JP 2001263693A JP 4655437 B2 JP4655437 B2 JP 4655437B2
Authority
JP
Japan
Prior art keywords
less
stainless steel
martensitic stainless
quenching
workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001263693A
Other languages
Japanese (ja)
Other versions
JP2002146488A (en
Inventor
敏光 長屋
利広 笠茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001263693A priority Critical patent/JP4655437B2/en
Publication of JP2002146488A publication Critical patent/JP2002146488A/en
Application granted granted Critical
Publication of JP4655437B2 publication Critical patent/JP4655437B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えば二輪車のディスクブレーキ材などの車輌部材や機械部材などの用途に好適な、焼入れたままで用いるマルテンサイト系ステンレス鋼に関し、必要な焼入れ特性のほか、とくに焼き入れ前には優れた加工性(打抜加工性、曲げ加工性など)を有するマルテンサイト系ステンレス鋼を提案するものである。なお、本発明にいう%は、特にことわらないかぎり、すべて質量%を意味するものとする。
【0002】
【従来の技術】
二輪車のディスクブレーキ材には、ブレーキとしての性能を長期間維持するために耐摩耗性が必要である。この耐摩耗性は、一般に硬度が高くなるに従い良好となるが、一方、靱性は逆に低下する。これらの点を考慮して、耐摩耗性と靱性の両方を要求される車両や機械の部材には、ロックウェル硬度HRCで30〜40の範囲に制御された鋼が用いられる場合が多い。
従来、この用途に使用されるステンレス鋼としては、C:0.2%の SUS 420J1およびC:0.3%の SUS 420J2等の高Cマルテンサイト系ステンレス鋼か、低C高Mnマルテンサイト系ステンレス鋼が用いられてきた。
【0003】
しかし、上記 SUS 420J1、SUS 420J2等の高Cマルテンサイト系ステンレス鋼では、焼入れ温度が変動したときの硬度の変化が大きいために、焼入れのみで所定の硬度を得るには、極めて精度の高い熱処理管理が必要であった。また、仮に焼戻しにより焼入れ条件の管理を緩和できたとしても、焼戻しによって析出するCr炭窒化物の周囲に、低Cr濃度の領域が生じて、耐食性が低下するという難点があった。
【0004】
一方、特公昭60−2380号公報に示されるような低C高Mnマルテンサイト系ステンレス鋼では、焼入れ温度に対する硬度の変動が少ないため、高Cマルテンサイト系ステンレス鋼におけるような過酷な熱処理条件の管理は不要となる。
しかし、この材料を用いてディスクブレーキなどの部材を製造する際には、焼入れ前の打ち抜き工程で、打ち抜き型で剪断される近傍が塑性変形域に引きずり込まれて、「ダレ(垂れ下がり・反り上がりともいう)」(図1参照)になりやすく、加工精度を低下させるという問題が残されていた。打ち抜き部の縁辺部にダレが発生すると、外形の維持、他部材と摺動したときのビビリ防止等の必要性から、その後の工程で、ダレを除去するために、切削・研摩作業を余分に行わなければならず、工数負荷の増大と歩止ロスを招くことになる。
【0005】
前述した部材を製造するのに求められるこのほかの特性としては、焼入れ前の成形性(曲げ成形性)、被削性(穴あけ性等)が、さらにまた、焼入れ加熱時の耐酸化性などが挙げられる。しかし、これら何れの特性についても、従来の成分系の鋼では限界があり、改善の余地が残されていた。
【0006】
【発明が解決しようとする課題】
このように、従来の低C高Mnマルテンサイト系ステンレス鋼は、焼入れ硬度の焼入れ温度依存性が小さいために、熱処理管理が容易であると言う利点を有していたものの、一方では、焼入れ前の加工成形段階において、特に打ち抜き加工でダレが生じるという問題があった。さらに、焼入れ前の加工成形においては、厳しい曲げ加工のときに割れが発生するという問題もあった。このほか、従来技術では、焼入れ前の被削性(穴あけ性)や焼入れ加熱時の耐酸化性も、必ずしも十分ではなかった。
そこで、本発明は、従来技術が抱えているかかる問題を解消して、所定の焼入れ硬度が安定して得られるとともに、焼入れ前における、打ち抜き加工性、曲げ加工性に優れたマルテンサイト系ステンレス鋼を提供することにある。さらに、本発明は、被削性、焼入れ時の耐酸化性をも一段と改善したマルテンサイト系ステンレス鋼を提供することにある。
【0007】
【課題を解決するための手段】
本発明の要旨構成は以下のとおりである。
(1) 質量%で、C+N:0.04超〜0.10%、
Si:0.5%以下、Mn:1.0〜2.5%、
Cr:10.0超〜14.5%、Al:0.100%以下
を含み、かつ
V:0.40%以下、Ti:0.40%以下、
Zr:0.40%以下、Ta:0.40%以下、
Hf:0.40%以下
から選ばれる1種または2種以上を合計で0.02〜0.40%含有し、残部はFeおよび不可避的不純物から成ることを特徴とする加工性に優れたマルテンサイト系ステンレス鋼。
【0008】
(2)上記(1)に記載の成分に加え、さらに、質量%で、
Ni:0.6%以下、Cu:0.5%以下
から選ばれる1種または2種を含むことを特徴とする加工性に優れたマルテンサイト系ステンレス鋼。
【0009】
(3)上記(1)または(2)に記載の成分に加え、さらに、質量%で、
Mo:0.012〜0.500%
を含むことを特徴とする加工性に優れたマルテンサイト系ステンレス鋼。
【0011】
)上記(1)〜()のいずれか1つに記載の成分に加え、さらに、質量%で、Co:0.50%以下、W:0.30%以下から選ばれる1種または2種を含むことを特徴とする加工性に優れたマルテンサイト系ステンレス鋼。
【0012】
)上記(1)〜()のいずれか1つに記載の成分に加え、さらに、質量%で、Mg:0.0050%以下を含むことを特徴とする加工性に優れたマルテンサイト系ステンレス鋼。
【0013】
【発明の実施の形態】
以下、本発明のマルテンサイト系ステンレス鋼の成分組成を、上記範囲に限定した理由について説明する。
(C+N):0.04超〜0.10%
CおよびNは、いずれも硬度を高め、耐摩耗性を向上させるのに有効な元素であり、本発明のMn量の範囲において、焼入れ時の硬度をHRC30〜40にするためには、(C+N)量は、0.04%を超え0.10%以下の範囲とする必要がある。
【0014】
Si:0.5%以下
Siは、高温においてフェライトを生成させる元素である。しかし、0.5%を超えると焼入れ硬度を低下させるのみならず、靱性に悪影響を与えるので、その上限を0.50%とする。なお、Si量は少ないほど好ましい。
【0015】
Mn:1.0〜2.5%
Mnは、高温におけるδ−フェライトの生成を抑制するのに有効な元素である。1.0%未満の含有量ではδ−フェライトを生成し、HRC30〜40の焼入れ硬度が得られなくなる。なお、HRC30〜40の焼入れ硬度を、高(C+N)の成分系で達成しようとすると、(C+N)量の適正範囲が著しく狭くなるため、製造性が低下する。また、Mn量が低すぎると、HRC30〜40の焼入れ硬度を得るための焼入れ熱処理の温度範囲が極端に狭小となるため、温度管理も難しくなるので、その下限を1.0%とする。一方、Mn量が2.5%を超えると、高温での耐酸化性が低下し、鋼板の製造工程におけるスケール生成量が多くなり、板面に肌荒を生じて、鋼板の寸法精度を著しく低下させるので、その上限を2.5%に限定する。
【0016】
Cr:10.0超〜14.5%
Crは、耐食性を保持するために10.0%超の含有量が不可欠である。しかし、14.5%を超えると、Mn,NiおよびCuのそれぞれ上限量を添加しても、850〜1050℃の焼入れ温度範囲でδ−フェライトが出現するようになり、HRC30〜40の焼入れ硬度が得られなくなる。よって、Cr含有量は10.0超〜14.5%の範囲とする。
【0017】
V:0.40%以下、Ti:0.40%以下、Zr:0.40%以下、Ta:0.40%以下、Hf:0.40%以下、かつこれらの合計量:0.02〜0.40%
V,Ti,Zr,Ta,Hfは、本発明においては極めて重要な元素である。V,Ti,Zr,Ta,Hfの量を、単独で0.40%以下、合計量で0.02〜0.40%含有することにより、鋼板の結晶粒を微細化し、かつ再結晶後の粒成長を抑制する効果を有する。
【0018】
これら元素を少なくとも1種添加することにより、結晶粒の細粒化が達成されて、焼き入れ前における打ち抜き加工の際のダレが改善され、同時に焼入れ後の靱性も維持される。このような効果が得られる機構は、必ずしも明らかではないが、以下によるものと考えている。
(1)結晶粒内の転位が結晶粒界に集積し易くなり、塑性変形に対する抵抗力が大きくなる。そのため、打ち抜き加工の際の塑性変形領域が、剪断面近傍に限定されてダレが小さくなる。
(2)粒界は、応力集中が大きく、亀裂の伝播経路になるが、細粒化により粒界面積が増大し、単位粒界面積当りの応力集中が緩和され、靱性が維持される。
なお、このような細粒化に伴う硬質化の傾向があるにもかかわらず、焼入れ後の硬度が従来材並みの値を示している理由として、V,Ti,Zr,Ta,Hfがフェライト生成を促進して、焼入れによる硬化を低減するので、細粒化の効果と相殺されることが考えられる。
こうしたV,Ti,Zr,Ta,Hfの作用は、合計量で0.02%以上の含有で得られるが、単独、合計いずれでも0.40%を超えると、高温での耐酸化性が低下し、鋼板製造工程におけるスケール起因の表面欠陥を防止する上で不利となる。よって、上記範囲に限定する。
ところで、Vは、含有量が0.18%を超えると、焼入れ前における打ち抜き加工時の剪断面の割れ、荒れが発生する場合があるため、0.18%以下とするのが好ましい。0.09%以下とするとさらに好ましい。
【0019】
Al:0.100%以下
Alは、脱酸に有効な元素であるため、必要に応じて含有してもよい。ただし、多すぎるとNと結合して、成形性、特に伸びを低下させるので、上限を0.100%とする。
【0020】
Ni:0.6%以下、Cu:0.5%以下
NiおよびCuは、いずれもMnと同様に、高温におけるδフェライトの生成を防止するのに有効である。本発明においては、Mn量1.0〜2.5%の添加によってその目的を達せられるので、必要に応じて添加することができる。その際、Niは、過度に添加すると、焼入れ後の硬度のばらつきを大きくし、またCuは、高温での熱間圧延時に表面疵を発生し、歩留を低下させるので、Ni:0.6%以下、Cu:0.5%以下の範囲で含有させる。
【0021】
Mo:0.012〜0.500%
Moは、ステンレス鋼の耐食性を付加的に高めるので、必要に応じて、添加される元素である。耐食性向上の効果を発揮させるには、0.012%以上の添加が必要であるが、過度に添加すると、焼入れ後の硬度のばらつきを大きくし、また、コスト上昇の要因ともなるので、上限を0.500%に限定する。
【0023】
Co:0.50%以下、W:0.30%以下
Co,Wは、結晶格子内の元素と置換されて、他元素の拡散・移動を抑制し、耐酸化性を高める元素である。耐酸化性が改善される詳細な機構については必ずしも明確ではないが、高温酸化において形成され、耐酸化性を担っているスピネル酸化物層(FeO・Cr23)外部へのCr元素の離脱を抑制することによるものと思われる。このような効果を発揮するためには、それぞれ0.01%以上の添加が好ましい。しかし、過度に添加すると、逆に、地金内部から酸化物層へのCrの供給を抑止する作用が大きくなりすぎ、スピネル酸化物層が減衰してしまうので、上限をCoは0.50%、Wは0.30%とする。
【0024】
g:0.0050%以下
gは、非金属介在物の形態と分布を制御して、切削加工時の鋼の被削性を改善する。このような効果を発現させるには、0.0002%以上含有させることが好ましい。かかる効果が得られる理由は、必ずしも明確ではないが、Mgの硫化物、珪酸塩、酸化物等が、工具と母材の親和力を低下させるような形態で粒界に析出し、溶着性構成刃先(工具刃先の近くで塑性変形を受けて加工硬化した被削材の一部が、工具刃先に凝着し、二次的に生成される新しい刃先)の成長を阻害することにより、溶着性構成刃先脱落時の工具刃先のマイクロチッピング(溶着性構成刃先が欠落する時に、同時に工具刃先の先端が損傷を受ける現象)を抑止するからであると思われる。しかし、Mgの量が、0.0050%を超えると、Mgの硫化物、珪酸塩、酸化物を起点とした点錆が多発するため、耐食性維持の観点から、上限を0.0050%に限定する。
【0025】
上述した以外の成分は、Feとそれに、不可避的に含有される成分とする。なお、本発明においては、不可避的に含有される成分のうち、P量は、耐食性と加工性劣化防止の観点から、0.035%以下に抑制することが望ましい。S量は、耐食性劣化防止の観点から、0.020%以下に抑制することが望ましい。またO量は、靱性および耐食性に対して有害であるので、0.010%以下に抑制することが望ましい。また、希土類元素を硫化物の形態制御による耐食性の向上の目的で添加することも可能である。
【0026】
本発明によるマルテンサイト系ステンレス鋼は、成分調整した溶鋼を、転炉または電気炉等の溶製炉にて溶製したのち、真空脱ガス法(RH法)、VOD法、AOD法等の公知の精錬方法で精錬し、ついで連続鋳造法あるいは造塊法でスラブ等に鋳造して、鋼素材とするのが好適である。
【0027】
【実施例】
表1、表2に示す成分の鋼を溶製し、連続鋳造法により、厚さ200mmのスラブとし、1150℃に加熱したのち、熱間圧延して板厚5mmの熱延鋼板に仕上げ、800℃で焼鈍した。この鋼板より、焼き入れ後のロックウェル硬度、耐食性(塩水噴霧)測定のための試験片(厚さ:5mm、幅:50mm、長さ:50mm)、JIS Z 2202に準拠したサブサイズシャルピー衝撃試験片(厚さ:10mm、幅:5mm、長さ:55mm)を採取した。また、焼き入れ前の打抜性(打ち抜き時のダレ)、曲げ加工性、被削性(穴あけ性)、加熱時の耐酸化性などを調べるための試験片も採取した。曲げ試験には、JIS Z 2204に準拠した3号曲げ試験片(厚さ:5mm、幅:20mm、長さ:150mm)、加熱時の耐酸化性試験には厚さ5mm×幅100mm×長さ100mmの試験片、耐食性試験にはJIS Z 2371に準拠した塩水噴霧試験片(厚さ:5mm、幅:60mm、長さ:80mm)を用いた。
【0028】
【表1】

Figure 0004655437
【0029】
【表2】
Figure 0004655437
【0030】
打抜性、曲げ加工性、被削性、耐酸化性、耐食性の各試験は、以下の方法で行った。
・打抜性:熱延鋼板から150mmφ、50mmφの円板を打ち抜き、側面から撮影した写真から、図1に示すダレ量を測定した。
・曲げ加工性:試験片を曲げ半径r:2.5mmにて90°および180°まで曲げ、割れがまったく発生しなかったものを○、0.5mm以下の割れに止まったものを△、0.5mmを超える割れが発生したものを×として評価した。
・被削性(穴あけ性):ハイス製ドリル(φ12mm)により、切削速度0.20m/sおよび0.35m/s、送り0.15mm/rev、穴深さ20mm/回、切削油なしの条件で、繰り返し穴あけを行い、1本のドリルで可能な積算穴あけ長さを測定した。
・耐酸化性:大気中で、850℃および1000℃の2水準で10時間加熱したときの、単位面積当たりの酸化増量を測定した。
・耐食性:JIS Z 2371に準拠し、4時間および12時間の塩水噴霧試験を実施し、発銹の有無で評価した。発銹無を○、発銹1〜4点有を△、実用上有害となる発銹5点以上有を×とした。
【0031】
試験の結果を表3〜表8に示す。発明鋼はいずれも、850℃以上の温度で焼入れすることにより、比較鋼と同等以上の安定したロックウェル硬度を示し、衝撃吸収エネルギーで表した靱性も、比較鋼と同等以上であった。そして、発明鋼は、いずれもダレが少なく、極めて良好な打抜性を有しており、また曲げ加工性も優れていることがわかる。また、発明鋼は、大気中加熱での酸化増量も少ない。さらに、発明鋼は、穴あけ性、耐食性も良好であり、とくに、Moを添加した場合に優れた耐食性を示している。
【0032】
【表3】
Figure 0004655437
【0033】
【表4】
Figure 0004655437
【0034】
【表5】
Figure 0004655437
【0035】
【表6】
Figure 0004655437
【0036】
【表7】
Figure 0004655437
【0037】
【表8】
Figure 0004655437
【0038】
【発明の効果】
以上説明したように、本発明によれば、所定の焼入れ硬度を安定して得られることに加えて、焼き入れ前における、打ち抜き加工性、曲げ加工性などの特性が改善されたマルテンサイト系ステンレス鋼を提供することが可能になる。したがって、加工における製品歩留りの向上、生産性の向上、製品コストの低減などに大きく寄与することが期待できる。
【図面の簡単な説明】
【図1】打ち抜き加工時に発生したダレ量を説明するための図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to martensitic stainless steel that is suitable for use in a vehicle member such as a disc brake material of a motorcycle or a machine member, and is used as-quenched, in addition to necessary quenching characteristics, and particularly excellent before quenching. We propose martensitic stainless steel with workability (such as punching workability and bending workability). In the present invention,% means mass% unless otherwise specified.
[0002]
[Prior art]
The disc brake material for a motorcycle needs to have wear resistance in order to maintain the performance as a brake for a long period of time. This wear resistance generally improves as the hardness increases, while toughness decreases on the contrary. Considering these points, steels controlled to have a Rockwell hardness HRC in the range of 30 to 40 are often used for vehicle and machine members that require both wear resistance and toughness.
Conventionally, high-C martensitic stainless steel such as C: 0.2% SUS 420J1 and C: 0.3% SUS 420J2 or low-C high-Mn martensitic stainless steel is used as the stainless steel used for this purpose. Has been.
[0003]
However, the high C martensitic stainless steels such as SUS 420J1 and SUS 420J2 have a large change in hardness when the quenching temperature fluctuates. Management was necessary. Even if the quenching conditions can be controlled by tempering, there is a problem in that a low Cr concentration region is generated around the Cr carbonitride precipitated by tempering and the corrosion resistance is lowered.
[0004]
On the other hand, in the low C high Mn martensitic stainless steel as shown in Japanese Patent Publication No. 60-2380, since there is little variation in hardness with respect to the quenching temperature, the severe heat treatment conditions as in the high C martensitic stainless steel No management is required.
However, when manufacturing a member such as a disc brake using this material, in the punching process before quenching, the vicinity sheared by the punching die is dragged into the plastic deformation region, (Referred to as FIG. 1), and the problem remains that the processing accuracy is lowered. If sagging occurs at the edge of the punched part, it is necessary to maintain the outer shape and prevent chatter when sliding with other members. This must be done, resulting in an increase in man-hour load and a loss in yield.
[0005]
Other characteristics required for manufacturing the above-mentioned members include formability before quenching (bending formability), machinability (drillability, etc.), and oxidation resistance during quenching heating. Can be mentioned. However, both of these characteristics have limitations in the conventional component steels, and there remains room for improvement.
[0006]
[Problems to be solved by the invention]
As described above, the conventional low C high Mn martensitic stainless steel has an advantage that the heat treatment control is easy because the quenching hardness has a small dependence on the quenching temperature. There was a problem that sagging occurred especially in the punching process in the processing and molding stage. Furthermore, in the processing before quenching, there is a problem that cracks occur during severe bending. In addition, in the prior art, machinability (quenching ability) before quenching and oxidation resistance during quenching heating are not always sufficient.
Therefore, the present invention solves such problems of the prior art, and can stably obtain a predetermined quenching hardness, and is excellent in punching workability and bending workability before quenching. Is to provide. Furthermore, this invention is providing the martensitic stainless steel which improved the machinability and the oxidation resistance at the time of quenching further.
[0007]
[Means for Solving the Problems]
The gist of the present invention is as follows.
(1) By mass%, C + N: more than 0.04 to 0.10%,
Si: 0.5% or less, Mn: 1.0-2.5%,
Cr: more than 10.0 to 14.5%, Al: 0.100% or less, and V: 0.40% or less, Ti: 0.40% or less,
Zr: 0.40% or less, Ta: 0.40% or less,
Hf: A martensitic stainless steel excellent in workability characterized by containing one or more selected from 0.40% or less in a total amount of 0.02 to 0.40% and the balance being composed of Fe and inevitable impurities.
[0008]
(2) In addition to the components described in (1) above,
A martensitic stainless steel excellent in workability characterized by containing one or two selected from Ni: 0.6% or less and Cu: 0.5% or less.
[0009]
(3) In addition to the components described in (1) or (2) above,
Mo: 0.012-0.500%
A martensitic stainless steel with excellent workability characterized by containing
[0011]
( 4 ) In addition to the component described in any one of (1) to ( 3 ) above, in addition, by mass%, one selected from Co: 0.50% or less and W: 0.30% or less Martensitic stainless steel with excellent workability characterized by containing two types.
[0012]
(5) above (1) to addition to the components described in any one of (4), further containing, by mass%, M g: to include 0.0050% or less excellent in workability characterized Martensitic stainless steel.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the reason why the component composition of the martensitic stainless steel of the present invention is limited to the above range will be described.
(C + N): Over 0.04 to 0.10%
C and N are both effective elements for increasing the hardness and improving the wear resistance. In order to make the hardness at the time of quenching HRC 30 to 40 within the range of the Mn amount of the present invention, (C + N ) The amount should be over 0.04% and 0.10%.
[0014]
Si: 0.5% or less
Si is an element that generates ferrite at high temperatures. However, if it exceeds 0.5%, not only the quenching hardness is lowered but also the toughness is adversely affected, so the upper limit is made 0.50%. The smaller the amount of Si, the better.
[0015]
Mn: 1.0-2.5%
Mn is an element effective for suppressing the formation of δ-ferrite at a high temperature. If the content is less than 1.0%, δ-ferrite is formed, and the quenching hardness of HRC 30 to 40 cannot be obtained. In addition, when it is going to achieve the quenching hardness of HRC30-40 with a high (C + N) component system, since the appropriate range of (C + N) amount becomes remarkably narrow, manufacturability falls. On the other hand, if the amount of Mn is too low, the temperature range of the quenching heat treatment for obtaining the quenching hardness of HRC 30 to 40 becomes extremely narrow, and the temperature control becomes difficult, so the lower limit is made 1.0%. On the other hand, if the amount of Mn exceeds 2.5%, the oxidation resistance at high temperatures decreases, the amount of scale generation in the steel plate manufacturing process increases, the surface of the plate becomes rough, and the dimensional accuracy of the steel plate is significantly reduced. Therefore, the upper limit is limited to 2.5%.
[0016]
Cr: Over 10.0-14.5%
A Cr content of more than 10.0% is essential to maintain corrosion resistance. However, if it exceeds 14.5%, even if the upper limit amounts of Mn, Ni and Cu are added, δ-ferrite appears in the quenching temperature range of 850 to 1050 ° C, and the quenching hardness of HRC30 to 40 is obtained. It becomes impossible. Therefore, the Cr content is in the range of more than 10.0 to 14.5%.
[0017]
V: 0.40% or less, Ti: 0.40% or less, Zr: 0.40% or less, Ta: 0.40% or less, Hf: 0.40% or less, and the total amount thereof: 0.02 to 0.40%
V, Ti, Zr, Ta, and Hf are extremely important elements in the present invention. By containing V, Ti, Zr, Ta, and Hf in an amount of 0.40% or less independently and a total amount of 0.02 to 0.40%, the effect of miniaturizing the crystal grains of the steel sheet and suppressing grain growth after recrystallization Have
[0018]
By adding at least one of these elements, grain refinement is achieved, sagging during punching before quenching is improved, and at the same time, toughness after quenching is maintained. The mechanism for obtaining such an effect is not necessarily clear, but is considered to be as follows.
(1) Dislocations in crystal grains are likely to accumulate at the grain boundaries, and resistance to plastic deformation increases. Therefore, the plastic deformation region at the time of punching is limited to the vicinity of the shearing surface, and the sagging is reduced.
(2) Although the grain boundary has a large stress concentration and becomes a propagation path of cracks, the grain boundary area increases due to fine graining, the stress concentration per unit grain boundary area is relaxed, and the toughness is maintained.
Despite the tendency to harden due to such fine graining, V, Ti, Zr, Ta, and Hf generate ferrite as the reason why the hardness after quenching shows the same value as conventional materials. Is promoted to reduce hardening by quenching, which may be offset by the effect of fine graining.
These effects of V, Ti, Zr, Ta, and Hf can be obtained with a total content of 0.02% or more. However, if the total exceeds 0.40%, the oxidation resistance at high temperatures decreases and the steel sheet is produced. This is disadvantageous in preventing surface defects due to scale in the process. Therefore, it is limited to the above range.
By the way, if the content exceeds 0.18%, cracking and roughening of the shearing surface during punching before quenching may occur. Therefore, V is preferably 0.18% or less. More preferably, it is 0.09% or less.
[0019]
Al: 0.100% or less
Since Al is an element effective for deoxidation, it may be contained if necessary. However, if it is too much, it will combine with N and lower the moldability, especially the elongation, so the upper limit is made 0.100%.
[0020]
Ni: 0.6% or less, Cu: 0.5% or less
Ni and Cu are both effective in preventing the formation of δ ferrite at high temperatures, as is the case with Mn. In the present invention, the purpose can be achieved by adding Mn in an amount of 1.0 to 2.5%, so that it can be added as necessary. At that time, if Ni is added excessively, the variation in hardness after quenching will increase, and Cu will cause surface flaws during hot rolling at high temperature and lower the yield, so Ni: 0.6% or less Cu: 0.5% or less is contained.
[0021]
Mo: 0.012-0.500%
Mo is an element that is added as necessary because it additionally increases the corrosion resistance of stainless steel. Addition of 0.012% or more is necessary to exert the effect of improving corrosion resistance. However, adding too much increases the dispersion in hardness after quenching and increases the cost, so the upper limit is 0.500%. Limited to.
[0023]
Co: 0.50% or less, W: 0.30% or less
Co and W are elements that are substituted with elements in the crystal lattice to suppress the diffusion / migration of other elements and improve the oxidation resistance. The detailed mechanism for improving the oxidation resistance is not necessarily clear, but the Cr element is released from the spinel oxide layer (FeO · Cr 2 O 3 ) formed by high-temperature oxidation and responsible for the oxidation resistance. This is probably due to the suppression of In order to exert such an effect, addition of 0.01% or more is preferable. However, if added excessively, on the contrary, the action of suppressing the supply of Cr from the inside of the metal to the oxide layer becomes too large and the spinel oxide layer is attenuated, so the upper limit is Co 0.50%, W Is 0.30%.
[0024]
M g: 0.0050% or less
M g controls the form and distribution of non-metallic inclusions to improve the machinability of the steel during cutting. In order to exhibit such an effect , 0 . It is preferable to contain 0002% or more. Why such effects are obtained is not necessarily clear, sulfides M g, silicates, oxides and the like, to precipitate at grain boundaries in a form that reduces the affinity of the tool and the base material, weldability configuration Weldability by inhibiting the growth of the cutting edge (a part of the work material that has undergone plastic deformation near the cutting edge of the tool, and a part of the work material that has been hardened adheres to the cutting edge of the tool and is generated secondarily). This is considered to be because the micro chipping of the tool blade edge when the component blade edge falls off (a phenomenon in which the tip of the tool blade edge is damaged at the same time when the weldable component blade edge is lost) is suppressed. However , the amount of Mg is 0 . Exceeds 0050%, the sulfide of M g, silicates, for rust points starting from the oxide occurs frequently, in view of the corrosion resistance maintained, the upper limit 0. Limited to 0050%.
[0025]
Components other than those described above are Fe and components inevitably contained therein. In the present invention, among the components inevitably contained, the amount of P is desirably suppressed to 0.035% or less from the viewpoint of corrosion resistance and workability deterioration prevention. The amount of S is desirably suppressed to 0.020% or less from the viewpoint of preventing corrosion resistance deterioration. Moreover, since the amount of O is harmful to toughness and corrosion resistance, it is desirable to suppress it to 0.010% or less. It is also possible to add rare earth elements for the purpose of improving corrosion resistance by controlling the form of sulfides.
[0026]
The martensitic stainless steel according to the present invention is prepared by melting a component-adjusted molten steel in a melting furnace such as a converter or an electric furnace, and then known vacuum degassing method (RH method), VOD method, AOD method, etc. It is preferable that the steel material is made by refining by the refining method, and then cast into a slab or the like by the continuous casting method or the ingot-making method.
[0027]
【Example】
Steels with the components shown in Tables 1 and 2 were melted and made into slabs with a thickness of 200 mm by continuous casting, heated to 1150 ° C, then hot rolled to finish hot rolled steel sheets with a thickness of 5 mm, 800 Annealed at ℃. Test pieces (thickness: 5 mm, width: 50 mm, length: 50 mm) for Rockwell hardness and corrosion resistance (salt water spray) measurement after quenching, sub-size Charpy impact test according to JIS Z 2202 Pieces (thickness: 10 mm, width: 5 mm, length: 55 mm) were collected. In addition, specimens were also collected for examining punchability before quenching (sag at the time of punching), bending workability, machinability (drilling property), oxidation resistance during heating, and the like. No. 3 bending test piece (thickness: 5mm, width: 20mm, length: 150mm) compliant with JIS Z 2204 for bending test, thickness 5mm x width 100mm x length for oxidation resistance test during heating A 100 mm test piece and a salt spray test piece (thickness: 5 mm, width: 60 mm, length: 80 mm) according to JIS Z 2371 were used for the corrosion resistance test.
[0028]
[Table 1]
Figure 0004655437
[0029]
[Table 2]
Figure 0004655437
[0030]
Each test of punchability, bending workability, machinability, oxidation resistance, and corrosion resistance was performed by the following methods.
Punching ability: 150 mmφ and 50 mmφ discs were punched from hot-rolled steel plates, and the amount of sag shown in FIG. 1 was measured from a photograph taken from the side.
・ Bending workability: Bending radius of the specimen up to 90 ° and 180 ° at a bending radius r: 2.5 mm, ○ when there was no crack at all, △, 0.5 mm when the crack stopped at 0.5 mm or less The thing which the exceeding crack generate | occur | produced was evaluated as x.
・ Machinability (drilling): Repeated with a high-speed drill (φ12mm) at cutting speeds of 0.20m / s and 0.35m / s, feed of 0.15mm / rev, hole depth of 20mm / time, no cutting oil Drilling was performed, and the accumulated drilling length possible with one drill was measured.
-Oxidation resistance: The increase in oxidation per unit area was measured when heated in air at two levels of 850 ° C and 1000 ° C for 10 hours.
-Corrosion resistance: In accordance with JIS Z 2371, salt water spray tests of 4 hours and 12 hours were conducted and evaluated by the presence or absence of fire.銹 indicates no occurrence, を indicates 1 to 4 points, and × indicates 5 or more points that are harmful to practical use.
[0031]
The test results are shown in Tables 3 to 8. All of the inventive steels exhibited a stable Rockwell hardness equivalent to or higher than that of the comparative steel by quenching at a temperature of 850 ° C. or higher, and the toughness expressed by the impact absorption energy was also equal to or higher than that of the comparative steel. And all of invention steel has few sagging, and has very favorable punching property, and it turns out that bending workability is also excellent . Also, the invention steels, less oxidation increase in air heating. Furthermore, the steel according to the invention has good drillability and corrosion resistance, and particularly shows excellent corrosion resistance when Mo is added.
[0032]
[Table 3]
Figure 0004655437
[0033]
[Table 4]
Figure 0004655437
[0034]
[Table 5]
Figure 0004655437
[0035]
[Table 6]
Figure 0004655437
[0036]
[Table 7]
Figure 0004655437
[0037]
[Table 8]
Figure 0004655437
[0038]
【The invention's effect】
As described above, according to the present invention, martensitic stainless steel having improved properties such as punching workability and bending workability before quenching in addition to stably obtaining a predetermined quenching hardness. It becomes possible to provide steel. Therefore, it can be expected to greatly contribute to improvement of product yield, improvement of productivity, reduction of product cost, and the like in processing.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining a sagging amount generated during punching.

Claims (5)

質量%で、C+N:0.04超〜0.10%、Si:0.5%以下、Mn:1.0〜2.5%、Cr:10.0超〜14.5%、Al:0.100%以下を含み、かつV:0.40%以下、Ti:0.40%以下、Zr:0.40%以下、Ta:0.40%以下、Hf:0.40%以下から選ばれる1種または2種以上を合計で0.02〜0.40%含有し、残部はFeおよび不可避的不純物から成ることを特徴とする加工性に優れたマルテンサイト系ステンレス鋼。% By mass, C + N: more than 0.04 to 0.10%, Si: 0.5% or less, Mn: 1.0 to 2.5%, Cr: more than 10.0 to 14.5%, Al: 0 100% or less, and V: 0.40% or less, Ti: 0.40% or less, Zr: 0.40% or less, Ta: 0.40% or less, Hf: 0.40% or less A martensitic stainless steel excellent in workability, characterized by containing one or two or more of 0.02 to 0.40% in total, the balance being composed of Fe and inevitable impurities. 請求項1に記載の成分に加えさらに、質量%で、Ni:0.6%以下、Cu:0.5%以下から選ばれる1種または2種を含むことを特徴とする加工性に優れたマルテンサイト系ステンレス鋼。In addition to the component according to claim 1, the composition further comprises one or two kinds selected from Ni: 0.6% or less and Cu: 0.5% or less in mass%, and has excellent workability Martensitic stainless steel. 請求項1または2に記載の成分に加えさらに、質量%で、Mo:0.012〜0.500%を含むことを特徴とする加工性に優れたマルテンサイト系ステンレス鋼。A martensitic stainless steel excellent in workability characterized by containing Mo: 0.012 to 0.500% by mass% in addition to the components according to claim 1 or 2. 請求項1〜のいずれか1項に記載の成分に加えさらに、質量%で、Co:0.50%以下、W:0.30%以下から選ばれる1種または2種を含むことを特徴とする加工性に優れたマルテンサイト系ステンレス鋼。In addition to the component according to any one of claims 1 to 3 , the composition further includes one or two kinds selected from Co: 0.50% or less and W: 0.30% or less in mass%. Martensitic stainless steel with excellent workability. 請求項1〜のいずれか1項に記載の成分に加えさらに、質量%で、Mg:0.0050%以下を含むことを特徴とする加工性に優れたマルテンサイト系ステンレス鋼。Claim 1 further addition to the components according to any one of 4, by mass%, Mg: 0.0050%, characterized in that the following including under excellent formability martensitic stainless steel.
JP2001263693A 2000-08-31 2001-08-31 Martensitic stainless steel with excellent workability Expired - Fee Related JP4655437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001263693A JP4655437B2 (en) 2000-08-31 2001-08-31 Martensitic stainless steel with excellent workability

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000263594 2000-08-31
JP2000-263594 2000-08-31
JP2001263693A JP4655437B2 (en) 2000-08-31 2001-08-31 Martensitic stainless steel with excellent workability

Publications (2)

Publication Number Publication Date
JP2002146488A JP2002146488A (en) 2002-05-22
JP4655437B2 true JP4655437B2 (en) 2011-03-23

Family

ID=26598969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001263693A Expired - Fee Related JP4655437B2 (en) 2000-08-31 2001-08-31 Martensitic stainless steel with excellent workability

Country Status (1)

Country Link
JP (1) JP4655437B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4496659B2 (en) * 2001-03-27 2010-07-07 Jfeスチール株式会社 Martensitic stainless steel with excellent punchability
CN100510140C (en) * 2004-12-07 2009-07-08 住友金属工业株式会社 Martensitic stainless steel pipe for oil well
BRPI0904608A2 (en) * 2009-11-17 2013-07-02 Villares Metals Sa stainless steel for molds with less delta ferrite
US9523402B2 (en) 2013-02-08 2016-12-20 Nippon Steel & Sumikin Stainless Steel Corporation Stainless steel brake disc and method for production thereof
EP2947170B1 (en) * 2013-03-19 2019-02-13 JFE Steel Corporation Stainless steel sheet
KR102197204B1 (en) * 2013-06-25 2021-01-04 테나리스 커넥션즈 비.브이. High-chromium heat-resistant steel
ES2811140T3 (en) 2015-04-21 2021-03-10 Jfe Steel Corp Martensitic stainless steel
JP6576851B2 (en) * 2016-02-17 2019-09-18 学校法人大同学園 Half blanking test method
EP3444371B1 (en) * 2016-04-12 2021-01-13 JFE Steel Corporation Martensitic stainless steel sheet
JP7300859B2 (en) 2019-03-20 2023-06-30 日鉄ステンレス株式会社 BRAKE MARTENSITE STAINLESS STEEL STEEL AND MANUFACTURING METHOD THEREOF, BRAKE DISC, AND MARTENSITE STAINLESS STEEL SLAB

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5970748A (en) * 1982-10-12 1984-04-21 Kawasaki Steel Corp Hot-rolled platelike material of low carbon martensitic stainless steel with superior toughness for disk brake for motorcycle
JPS61174361A (en) * 1985-01-30 1986-08-06 Nippon Steel Corp Low carbon martensitic stainless steel excelling in hardenability and rust resistance
JPH10259458A (en) * 1997-03-18 1998-09-29 Nisshin Steel Co Ltd Martensitic stainless steel sheet little sag at blanking and its production
JP2000026941A (en) * 1998-05-08 2000-01-25 Nippon Steel Corp Martensitic stainless steel for disk brake, excellent in corrosion resistance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5970748A (en) * 1982-10-12 1984-04-21 Kawasaki Steel Corp Hot-rolled platelike material of low carbon martensitic stainless steel with superior toughness for disk brake for motorcycle
JPS61174361A (en) * 1985-01-30 1986-08-06 Nippon Steel Corp Low carbon martensitic stainless steel excelling in hardenability and rust resistance
JPH10259458A (en) * 1997-03-18 1998-09-29 Nisshin Steel Co Ltd Martensitic stainless steel sheet little sag at blanking and its production
JP2000026941A (en) * 1998-05-08 2000-01-25 Nippon Steel Corp Martensitic stainless steel for disk brake, excellent in corrosion resistance

Also Published As

Publication number Publication date
JP2002146488A (en) 2002-05-22

Similar Documents

Publication Publication Date Title
EP2439304B1 (en) Steel sheet for brake disc, and brake disc
KR100765661B1 (en) Low carbon martensitic stainless steel and production method thereof
CN101346486B9 (en) Duplex stainless steel
TWI550101B (en) High-strength hot-rolled steel sheet with excellent tensile hardening and low-temperature toughness with maximum tensile strength of 980MPa or more
JP3886933B2 (en) Ferritic stainless steel sheet excellent in press formability and secondary workability and manufacturing method thereof
TWI513524B (en) High-strength hot-dip galvanized steel sheet, high-strength alloyed hot-dip galvanized steel sheet excellent in mechanical truncation characteristics, and the like
RU2650470C2 (en) Two-phase ferritic-martensitic stainless steel and its manufacturing method
DK2591134T3 (en) Austenitic-ferritic stainless steel with improved machinability
KR20170118926A (en) Cold-rolled steel sheet and manufacturing method therefor
KR20170133495A (en) Heat treated steel sheet member and method for manufacturing the same
KR102021687B1 (en) Hot Rolled Steel Sheets For Heat Treatment
KR20150105476A (en) High-strength cold-rolled steel sheet having excellent bendability
JP4465057B2 (en) High carbon steel sheet for precision punching
JP4655437B2 (en) Martensitic stainless steel with excellent workability
EP0727502B1 (en) Chromium steel sheet excellent in press formability
CA3021955A1 (en) Ti-containing ferritic stainless steel sheet for exhaust pipe flange member, production method, and flange member
JP2015086443A (en) Ferrite-martensite two-phase stainless steel excellent in low temperature toughness and method of producing the same
JP4272394B2 (en) Ferritic stainless steel with excellent precision punchability
JP5331700B2 (en) Ferritic stainless steel excellent in workability of welds and corrosion resistance of steel materials and method for producing the same
JP6635890B2 (en) Martensitic stainless steel sheet for cutting tools with excellent manufacturability and corrosion resistance
JP4830239B2 (en) Manufacturing method of low carbon martensitic stainless hot rolled steel sheet with excellent punchability
JP2012172211A (en) METHOD OF MANUFACTURING LOW Ni AUSTENITIC STAINLESS STEEL SHEET
KR20180000782A (en) Ferritic stainless steel having excellent low temperature toughness of welded joint
KR101289103B1 (en) Pb-Free Free-Cutting Steel Wire Rod With Excellent Machinability And Hot Workability And Manufacturing Method The Same
JP4622963B2 (en) Steel for plastic molds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4655437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees