JP4655062B2 - Irradiation device for particle beam therapy system - Google Patents

Irradiation device for particle beam therapy system Download PDF

Info

Publication number
JP4655062B2
JP4655062B2 JP2007124061A JP2007124061A JP4655062B2 JP 4655062 B2 JP4655062 B2 JP 4655062B2 JP 2007124061 A JP2007124061 A JP 2007124061A JP 2007124061 A JP2007124061 A JP 2007124061A JP 4655062 B2 JP4655062 B2 JP 4655062B2
Authority
JP
Japan
Prior art keywords
irradiation
spill
proton beam
scanning
therapy system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007124061A
Other languages
Japanese (ja)
Other versions
JP2008278979A (en
Inventor
隆司 岡崎
寿隆 藤巻
和夫 平本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007124061A priority Critical patent/JP4655062B2/en
Publication of JP2008278979A publication Critical patent/JP2008278979A/en
Application granted granted Critical
Publication of JP4655062B2 publication Critical patent/JP4655062B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、陽子,炭素,ヘリウム等の粒子ビームを用いた粒子線治療システムの照射装置に関する。   The present invention relates to an irradiation apparatus for a particle beam therapy system using a particle beam of proton, carbon, helium or the like.

現在、癌治療の手段として、陽子線治療システムが用いられている。陽子線治療では、患者の患部(標的領域)の線量分布を均一にすることが求められている。しかし、陽子線治療システムで生成する陽子ビーム強度は、時間的に一定ではない。散乱体を用いて陽子ビームを広げ、患部に照射する散乱体照射法では、患部全体を一度に照射するため、陽子ビーム強度の変化で、患部の線量分布が不均一になることは少ない。但し、陽子ビームのエネルギーや患部形状に応じた治具を準備する必要がある。   Currently, proton therapy systems are used as a means of cancer treatment. In proton therapy, it is required to make the dose distribution of the affected area (target area) of a patient uniform. However, the proton beam intensity generated by the proton therapy system is not constant in time. In the scatterer irradiation method in which the proton beam is expanded using a scatterer and irradiated to the affected area, the entire affected area is irradiated at a time. Therefore, the dose distribution in the affected area is less likely to be nonuniform due to changes in the proton beam intensity. However, it is necessary to prepare a jig corresponding to the energy of the proton beam and the shape of the affected part.

一方、患部全体を一度に照射せずに、陽子ビームを走査して患部に照射する走査照射法がある(非特許文献1)。この照射法では、患部形状に応じた治具の準備は軽減されるが、陽子ビームの時間的な非一様性の影響を受けやすく、患部の線量分布を均一にできないという課題があった。   On the other hand, there is a scanning irradiation method that scans a proton beam and irradiates the affected area without irradiating the entire affected area at once (Non-Patent Document 1). In this irradiation method, the preparation of the jig corresponding to the shape of the affected area is reduced, but there is a problem that the dose distribution of the affected area cannot be made uniform because it is easily affected by the temporal non-uniformity of the proton beam.

これを解決する方法として、陽子ビームの1スピル(1回のビーム取出し時間)で、走査経路を複数回走査(マルチペイント)する方法が知られている。この場合、1走査経路を走査する期間は、1スピルの一部分(走査回数分の1)となる。即ち、短い時間間隔で1走査経路を走査する。このような短い時間間隔では、陽子ビーム強度は一定とみなせるので、1走査経路上の線量分布は均一とみなせる。この走査を繰り返し行うので、その合計の線量分布も均一とみなせる。   As a method for solving this, there is known a method in which a scanning path is scanned a plurality of times (multi-painting) with one spill of a proton beam (one beam extraction time). In this case, the period for scanning one scanning path is a part of one spill (one for the number of scanning times). That is, one scanning path is scanned at a short time interval. In such a short time interval, the proton beam intensity can be regarded as constant, so that the dose distribution on one scanning path can be regarded as uniform. Since this scanning is repeated, the total dose distribution can be regarded as uniform.

図2に、この従来の照射法の概要を示す。図2(a)のように、患部上の走査経路(a〜b)を走査するとする。図2(b)のように、1スピルでこの走査経路をm回走査する場合、1スピルの(1/m)の時間で、この走査経路を走査することになる。この間ビーム電流は一定とみなせ、この走査経路の線量分布は一様とみなせる。   FIG. 2 shows an outline of this conventional irradiation method. Assume that the scanning path (ab) on the affected area is scanned as shown in FIG. As shown in FIG. 2B, when the scan path is scanned m times with one spill, the scan path is scanned in a time of (1 / m) of one spill. During this time, the beam current can be regarded as constant, and the dose distribution in this scanning path can be regarded as uniform.

W. T. Chu, B. A. Ludewigt and T. R. Renner, Rev. Sci. Instrum. 64, 2055-2122, 1993.W. T. Chu, B. A. Ludewigt and T. R. Renner, Rev. Sci. Instrum. 64, 2055-2122, 1993.

図2の従来の照射法では、短時間で陽子ビームを1走査経路に走査し、これを繰り返す必要がある。このため、陽子ビームを走査する走査電磁石の電源容量が大きくなるという課題がある。   In the conventional irradiation method of FIG. 2, it is necessary to scan the proton beam in one scanning path in a short time and repeat this. For this reason, there exists a subject that the power supply capacity of the scanning electromagnet which scans a proton beam becomes large.

本発明の目的は、陽子ビーム等の粒子ビームを走査する走査電磁石の電源容量を大きくすることなく、患部に線量を均一に照射できる粒子線治療システムの照射装置を提供することにある。   An object of the present invention is to provide an irradiation apparatus of a particle beam therapy system capable of uniformly irradiating an affected area with a dose without increasing the power supply capacity of a scanning electromagnet that scans a particle beam such as a proton beam.

本発明は、陽子ビームの1スピル(1回のビーム取出し時間)で標的領域(患部)に対して陽子ビームを一往復走査する際に、陽子ビームを照射するスピルの回数に応じて、一定間隔で順番に各スピルの照射開始位置をずらして照射する。   According to the present invention, when a proton beam is reciprocally scanned with respect to a target region (affected area) with one spill of a proton beam (one beam extraction time), a constant interval is set according to the number of spills irradiated with the proton beam. In this order, the irradiation start position of each spill is shifted in order.

また、本発明は、1スピルで標的領域に対して陽子ビームを一往復走査する際に、陽子ビームを照射するスピルの回数に応じて、一定間隔で定めた複数の位置からランダムに順番を選び、選ばれた順番に各スピルの照射開始位置をずらして照射する。   Further, in the present invention, when the proton beam is reciprocally scanned with respect to the target area with one spill, the order is randomly selected from a plurality of positions determined at regular intervals according to the number of spills to irradiate the proton beam. Irradiate by shifting the irradiation start position of each spill in the selected order.

また、本発明は、1スピルで標的領域に対して陽子ビームをワンパスで走査する際に、陽子ビームを照射するスピルの回数に応じて、一定間隔で定めた複数の位置からワンパス走査終了位置の次の位置を選び、選ばれた位置を各スピルの照射開始位置として照射する。   Further, according to the present invention, when a proton beam is scanned in one pass on a target area with one spill, the one-pass scanning end position is determined from a plurality of positions determined at regular intervals according to the number of spills to irradiate the proton beam. The next position is selected, and the selected position is irradiated as the irradiation start position of each spill.

また、本発明は、1スピルで標的領域に対して陽子ビームをワンパスで走査する際に、陽子ビームを照射するスピルの回数に応じて、一定間隔で定めた複数の位置からランダムに位置を選び、選ばれた位置を各スピルの照射開始位置として照射する。   Further, according to the present invention, when a proton beam is scanned with one pass on a target area with one spill, a position is randomly selected from a plurality of positions determined at regular intervals according to the number of spills to irradiate the proton beam. The selected position is irradiated as the irradiation start position of each spill.

また、本発明は、1スピルで走査経路の途中まで陽子ビームを走査し、次のスピルで走査経路の途中から陽子ビームの走査を継続する際に、照射野内の走査経路を分割した走査線の本数と、1スピルで走査する走査線の本数との最小公倍数を、分割した走査線の本数で割った回数分、各走査線に対する陽子ビームの走査を繰り返して照射する。   Further, the present invention scans the proton beam halfway along the scanning path with one spill, and continues scanning the proton beam from the middle of the scanning path with the next spill. The scanning of the proton beam for each scanning line is repeatedly performed for the number of times obtained by dividing the least common multiple of the number of scanning lines and the number of scanning lines scanned by one spill by the number of divided scanning lines.

以下、本発明のビーム照射方法と線量分布を均一にする効果を、図1を用いて説明する。ビーム電流波形は、簡略化して直線で示している。図1(b)で、陽子ビームの照射時刻t1,t2,t3,…ti,…tmが、ビーム電流I1,I2,I3,…Ii,…Imに対応する。ビーム照射は、1スピルで走査経路を一往復させる。この場合、走査経路上の照射位置y1,y2,y3,…yk、…y2が、ビーム電流I1,I2,I3,…Im に対応する。走査経路(y1〜yk)の走査長をL、走査回数をm、照射位置yiとyi+1(i=1〜(k−1))との距離をΔとすると、2L=mΔの関係が成り立つ。 Hereinafter, the beam irradiation method of the present invention and the effect of making the dose distribution uniform will be described with reference to FIG. The beam current waveform is simplified and shown as a straight line. In FIG. 1 (b), the irradiation time t 1 of the proton beam, t 2, t 3, ... t i, is ... t m, the beam current I 1, I 2, I 3 , corresponding to ... I i, ... I m To do. Beam irradiation makes one reciprocation of the scanning path with one spill. In this case, the irradiation position on the scanning path y 1, y 2, y 3 , ... y k, ... y 2 is the beam current I 1, I 2, I 3 , corresponding to ... I m. Assuming that the scanning length of the scanning path (y 1 to y k ) is L, the number of scans is m, and the distance between the irradiation position y i and y i + 1 (i = 1 to (k−1)) is Δ, 2L = The relationship of mΔ is established.

走査経路上で、走査毎の照射開始位置をΔ=2L/mずつずらした時の照射位置とビーム電流との関係を表1に示す。1回目の走査は、照射位置y1 から照射を開始する。この時、照射位置y1,y2,y3,…に、ビーム電流I1,I2,I3,…が照射され、照射位置ykで折り返されて、yk-1,yk-2,…を通って、照射位置y2にビーム電流Im が照射される。2回目の走査では、照射開始位置がy2になる。この時、照射位置y2にビーム電流I1が照射され、照射位置ykで折り返されて、照射位置y1にビーム電流Imが照射される。このように、照射開始位置をy1,y2,y3,y4,…とずらしていき、yk で折り返して、y2,y1,y2,y3,…に戻るものとする。 Table 1 shows the relationship between the irradiation position and the beam current when the irradiation start position for each scanning is shifted by Δ = 2 L / m on the scanning path. In the first scan, irradiation is started from the irradiation position y 1 . At this time, the irradiation positions y 1, y 2, y 3 , ... , the beam current I 1, I 2, I 3 , ... is irradiated, is folded back at the irradiation position y k, y k-1, y k- 2, through ..., beam current I m is irradiated to the irradiation position y 2. In the second scan, the irradiation start position is y 2. At this time, the beam current I 1 is irradiated to the irradiation position y 2, it is folded back at the irradiation position y k, the beam current I m is irradiated to the irradiation position y 1. Thus, the irradiation start position y 1, y 2, y 3 , y 4, ... and shifting gradually, I turned back at y k, y 2, y 1 , y 2, y 3, assumed to return to ... .

表1のように、各照射位置のビーム電流の合計はΣIi(i=1〜m)となる。照射は走査経路を往復するので、i=1,k以外の照射位置でのビーム電流の合計は2ΣIi となる。即ち、図1(a)の走査経路上のビーム電流の値は同じになる。各照射位置での線量はビーム電流に比例するので、任意のビーム波形に対して、患部の線量分布は均一になる。このように、ビーム照射の開始位置を一定間隔ずらして照射することにより、患部の線量分布を均一にできる。 As shown in Table 1, the total beam current at each irradiation position is ΣI i (i = 1 to m). Since the irradiation reciprocates along the scanning path, the sum of the beam currents at irradiation positions other than i = 1, k is 2ΣI i . That is, the value of the beam current on the scanning path in FIG. Since the dose at each irradiation position is proportional to the beam current, the dose distribution in the affected area is uniform for an arbitrary beam waveform. Thus, by irradiating the beam irradiation start position with a certain interval, the dose distribution in the affected area can be made uniform.

Figure 0004655062
Figure 0004655062

1スピルで走査経路を一往復する場合、照射開始位置をずらして照射する方法としては、上記のように一定間隔ずらす他に、1つの走査経路上で照射開始位置をランダムに決める方法がある。この方法でも、照射開始位置をランダムに決めた後では、走査経路上に照射開始位置が一様に並ぶので、患部の線量分布が均一になる。   In the case of one reciprocation of the scanning path by one spill, as a method of irradiating with the irradiation start position shifted, there is a method of randomly determining the irradiation start position on one scanning path in addition to shifting the irradiation start position as described above. Also in this method, after the irradiation start position is determined at random, the irradiation start positions are uniformly arranged on the scanning path, so that the dose distribution in the affected area becomes uniform.

以上の照射は、1スピルで走査経路を一往復する場合であるが、1スピルで走査経路を一方向のみ(ワンパス)で走査する場合もある。この場合、照射するスピルの回数に応じて、一定間隔で定めた複数の照射位置の中で、ワンパス終了位置の次の位置を選び、そこを各スピルの照射開始位置として照射する。また、照射開始位置をランダムに選択して照射する場合もある。   The above irradiation is a case where the scanning path is reciprocated once by one spill, but there are cases where the scanning path is scanned only in one direction (one pass) by one spill. In this case, a position next to the one-pass end position is selected from a plurality of irradiation positions determined at regular intervals according to the number of spills to be irradiated, and this is irradiated as the irradiation start position of each spill. In some cases, the irradiation start position is selected at random and the irradiation is performed.

また、上記の照射は、1スピルで走査経路を一往復またはワンパスで走査する場合であるが、1スピルで走査経路の途中までを走査し、次のスピルで、その途中から引き続き照射を続ける場合もある。この場合、照射野内の走査経路を分割した走査線の本数と、1スピルで走査する走査線の本数の最小公倍数を用いて、その最小公倍数を、照射野内の走査経路を分割した走査線の本数で割った回数だけ、各走査線を走査する(リペイントする)。即ち、走査経路を分割した走査線の本数をk、1スピルで走査できる走査線の本数をhとし、その最小公倍数をnとすると、各走査線のリペイント回数はn/k、スピル数はn/hとなる。走査線の長さは、L/kである。この時、kとhの最小公倍数を大きくすれば、線量分布の均一性はより良くなる。   In addition, the above irradiation is a case where the scanning path is scanned one reciprocation or one pass with one spill, but scanning is performed halfway along the scanning path with one spill, and irradiation is continued from the middle with the next spill. There is also. In this case, using the number of scanning lines dividing the scanning path in the irradiation field and the least common multiple of the number of scanning lines scanned by one spill, the least common multiple is calculated as the number of scanning lines dividing the scanning path in the irradiation field. Each scan line is scanned (repainted) by the number of times divided by. That is, assuming that the number of scanning lines dividing the scanning path is k, the number of scanning lines that can be scanned in one spill is h, and the least common multiple is n, the number of repaints of each scanning line is n / k, and the number of spills is n / H. The length of the scanning line is L / k. At this time, if the least common multiple of k and h is increased, the uniformity of the dose distribution becomes better.

本発明によれば、陽子ビーム等の粒子ビームを走査する走査電磁石の電源容量を大きくすることなく、患部に線量を均一に照射することができる。   ADVANTAGE OF THE INVENTION According to this invention, a dose can be uniformly irradiated to an affected part, without enlarging the power supply capacity | capacitance of the scanning electromagnet which scans particle beams, such as a proton beam.

以下、本発明の実施例を、図面を用いて説明する。図1は、本発明による陽子線治療システムの陽子ビーム照射方法の一実施例を示す概略説明図で、(a)は陽子ビームの走査経路を示す図、(b)は陽子ビーム電流の時間変化を示す図である。(a)で、1は照射野、2は走査経路、3は照射開始位置である。(b)で、陽子ビーム電流波形は、簡略化して直線で示している。   Embodiments of the present invention will be described below with reference to the drawings. 1A and 1B are schematic explanatory views showing an embodiment of a proton beam irradiation method of a proton beam treatment system according to the present invention. FIG. 1A is a diagram showing a scanning path of a proton beam, and FIG. 1B is a time change of proton beam current. FIG. In (a), 1 is an irradiation field, 2 is a scanning path, and 3 is an irradiation start position. In (b), the proton beam current waveform is simplified and shown as a straight line.

照射野1において、走査経路2に沿って陽子ビームを走査する。走査経路2を一往復する陽子ビームの走査をm回繰り返す。図1(b)で、陽子ビームの照射時刻t1,t2,t3,…tmが、ビーム電流I1,I2,I3,…Imに対応する。走査経路2上に、走査を繰り返す際の照射開始位置3を、等間隔Δで、y1,y2,y3,…ykと配置する。走査経路(y1〜yk)の走査長をL、走査回数をm、照射位置yiとyi+1(i=1〜(k−1))との距離をΔとすると、2L=mΔの関係が成り立つ。走査経路上で、走査毎の照射開始位置をΔ=2L/mずつずらす。 In the irradiation field 1, the proton beam is scanned along the scanning path 2. The scanning of the proton beam that makes one round trip along the scanning path 2 is repeated m times. In FIG. 1 (b), the irradiation time t 1 of the proton beam, t 2, t 3, is ... t m, the beam current I 1, I 2, I 3 , corresponding to ... I m. On the scanning path 2, the irradiation start position 3 when repeating the scanning, at equal intervals delta, y 1, y 2, y 3, placing the ... y k. Assuming that the scanning length of the scanning path (y 1 to y k ) is L, the number of scans is m, and the distance between the irradiation position y i and y i + 1 (i = 1 to (k−1)) is Δ, 2L = The relationship of mΔ is established. On the scanning path, the irradiation start position for each scanning is shifted by Δ = 2 L / m.

照射は1スピルで走査経路2を一往復するので、1回目の走査では、照射位置y1,y2,y3,…yk,…y2に、ビーム電流I1,I2,I3,…Im が照射される。照射開始位置をy1,y2,y3,y4,…とずらしていき、yk で折り返して、y2,y1,y2,y3,…に戻るものとする。これをm回繰り返すことにより、表1で示したように、任意のビーム波形に対して、患部の線量分布を均一にすることができる。 Since irradiation is reciprocated once the scan path 2 in 1 spill, in the first scan, the irradiation position y 1, y 2, y 3 , ... y k, ... to y 2, the beam current I 1, I 2, I 3 ,... Im is irradiated. The irradiation start position is shifted from y 1 , y 2 , y 3 , y 4 ,..., Folded at y k , and returned to y 2 , y 1 , y 2 , y 3 ,. By repeating this m times, as shown in Table 1, the dose distribution in the affected area can be made uniform with respect to an arbitrary beam waveform.

図3に、本発明による陽子線治療システムの陽子ビーム照射装置における陽子ビームの走査電磁石システムの概略構成図を示す。図3で、4は陽子ビームを走査する走査電磁石、5は走査電磁石電源、6は走査電磁石電源5の制御システム、7は線量分布モニタである。制御システム6は、陽子ビームの走査経路が図1の走査経路2になる走査電磁石4の電流波形を演算して求め、求めた電流波形を走査電磁石4に供給するための制御信号を走査電磁石電源5に送信する。走査電磁石電源5は、制御システム6から受信した制御信号に従い、走査電磁石4の電流波形を生成して、走査電磁石4に供給する。走査電磁石4は、走査電磁石電源5から供給された電流波形に従い、磁場を発生して、図1の走査経路2上に陽子ビームを移動させる。陽子ビームの照射中は、照射野に設置した線量分布モニタ7で、線量分布の均一性を確認する。   FIG. 3 shows a schematic configuration diagram of a proton beam scanning electromagnet system in the proton beam irradiation apparatus of the proton beam therapy system according to the present invention. In FIG. 3, 4 is a scanning electromagnet that scans the proton beam, 5 is a scanning electromagnet power source, 6 is a control system for the scanning electromagnet power source 5, and 7 is a dose distribution monitor. The control system 6 calculates and obtains a current waveform of the scanning electromagnet 4 in which the scanning path of the proton beam is the scanning path 2 in FIG. 1, and supplies a control signal for supplying the obtained current waveform to the scanning electromagnet 4. Send to 5. The scanning electromagnet power source 5 generates a current waveform of the scanning electromagnet 4 according to the control signal received from the control system 6 and supplies the current waveform to the scanning electromagnet 4. The scanning electromagnet 4 generates a magnetic field according to the current waveform supplied from the scanning electromagnet power source 5 and moves the proton beam onto the scanning path 2 in FIG. During the proton beam irradiation, the uniformity of the dose distribution is confirmed by the dose distribution monitor 7 installed in the irradiation field.

本実施例では、1スピルで走査経路上を一往復するだけなので、従来法(1スピルで走査経路を複数回走査)に比べて、1スピルの時間内で陽子ビームを走査する(移動させる)距離が短くなる。このため、陽子ビームを走査するための磁場の時間的変化割合が小さくなり、走査電磁石電源の電源容量を小さくできる。しかも、患部の線量分布は均一になる。   In this embodiment, since only one reciprocation is made on the scanning path with one spill, the proton beam is scanned (moved) within the time of one spill as compared with the conventional method (scanning the scanning path a plurality of times with one spill). The distance becomes shorter. For this reason, the temporal change rate of the magnetic field for scanning the proton beam is reduced, and the power supply capacity of the scanning electromagnet power supply can be reduced. Moreover, the dose distribution in the affected area becomes uniform.

このように、本実施例によれば、陽子ビームを走査する走査電磁石(偏向する偏向電磁石)の電源容量を大きくすることなく、患者の患部に線量を均一に照射することができる。   As described above, according to the present embodiment, it is possible to uniformly irradiate the affected area of the patient without increasing the power supply capacity of the scanning electromagnet (the deflecting electromagnet for deflecting) that scans the proton beam.

次に、本発明の他の実施例を説明する。本実施例では、図1(a)における照射開始位置を、y1,y2,y3,…ykと規則的にずらすのではなく、複数の照射位置y1〜ykの中から照射開始位置をランダムに選び、そこを照射開始位置として走査経路を一往復する照射を行い、これを繰り返す。このように照射開始位置をランダムに設定して陽子ビームを照射しても、m回後には、各照射位置にビーム電流Ii が一様に照射されることになる。従って、任意のビーム波形に対して、患部の線量分布を均一にすることができる。更に、本実施例によれば、陽子ビームを走査する走査電磁石電源の制御がより簡単になる。 Next, another embodiment of the present invention will be described. In this embodiment, the irradiation start position in FIG. 1A is not regularly shifted from y 1 , y 2 , y 3 ,... Y k , but irradiation is performed from among a plurality of irradiation positions y 1 to y k. A starting position is selected at random, and irradiation is performed once in and out of the scanning path using this as the irradiation start position, and this is repeated. Thus, even when the irradiation start position is set at random and the proton beam is irradiated, the beam current I i is uniformly irradiated to each irradiation position after m times. Therefore, the dose distribution of the affected part can be made uniform with respect to an arbitrary beam waveform. Furthermore, according to the present embodiment, the control of the scanning electromagnet power source that scans the proton beam becomes easier.

次に、図4を用いて、本発明の他の実施例を説明する。図4は、本発明による陽子ビーム照射方法の他の実施例を示す概略説明図で、(a)は陽子ビームの走査経路を示す図、(b)は陽子ビーム電流の時間変化を示す図である。   Next, another embodiment of the present invention will be described with reference to FIG. 4A and 4B are schematic explanatory views showing another embodiment of the proton beam irradiation method according to the present invention, wherein FIG. 4A is a view showing a scanning path of the proton beam, and FIG. 4B is a view showing a time change of the proton beam current. is there.

図4(a)のように、陽子ビームの走査を繰り返す際の照射開始位置3を、走査経路2上に、等間隔で、y1,y2,y3,…yk+1と配置する。照射野1において、走査経路2に沿って陽子ビームを走査する。走査経路を1スピルでワンパス走査し、ワンパス照射終了の次の照射位置を、次の照射開始位置とする。これをk回繰り返す。y1からyk+1までの距離をLとすると、間隔はΔ=L/kとなる。 As in FIG. 4 (a), the irradiation start position 3 when repeating the scanning of the proton beam, on the scanning path 2, at regular intervals, y 1, y 2, y 3, placing the ... y k + 1 . In the irradiation field 1, the proton beam is scanned along the scanning path 2. The scanning path is scanned by one pass with one spill, and the next irradiation position after the end of the one-pass irradiation is set as the next irradiation start position. Repeat this k times. When the distance from y 1 to y k + 1 is L, the interval is Δ = L / k.

図4(b)で、陽子ビーム電流の照射時刻t1,t2,t3,…tkが、ビーム電流I1,I2,I3,…Ik に対応する。照射は1スピルで走査経路をワンパス走査するので、1回目の走査では、照射位置y1,y2,y3,…ykが、ビーム電流I1,I2,I3,…Ikに対応する。1回目のワンパス照射の終了位置がyk+1 であるので、2回目の照射開始位置はyk となり、yk-1,yk-2と走査経路を1回目とは反対に走査し、y1で折り返してy2で終了する。3回目は、照射開始位置をy3にずらして走査する。 In FIG. 4B, the irradiation times t 1 , t 2 , t 3 ,... T k of the proton beam current correspond to the beam currents I 1 , I 2 , I 3 ,. Since the irradiation is performed with one spill and the scanning path is one-pass scanning, in the first scanning, the irradiation positions y 1 , y 2 , y 3 ,... Y k are changed to the beam currents I 1 , I 2 , I 3 ,. Correspond. Since the end position of the first one-pass irradiation is y k + 1 , the second irradiation start position is y k , and y k−1 , y k−2 and the scanning path are scanned opposite to the first time, Turn back at y 1 and end at y 2 . Third scans the irradiation start position is shifted in the y 3.

これをk回繰り返すことにより、表1と同様に、任意のビーム波形に対して、患部の線量分布を均一にすることができる。本実施例によれば、走査経路を1スピルでワンパス走査することにより、1スピルの時間内で陽子ビームを移動させる距離が更に短くなるので、陽子ビームを走査する走査電磁石電源の電源容量を更に小さくすることができる。   By repeating this k times, the dose distribution in the affected area can be made uniform with respect to an arbitrary beam waveform as in Table 1. According to the present embodiment, the one-pass scanning of the scanning path with one spill makes the distance for moving the proton beam within one spill time shorter, so that the power supply capacity of the scanning electromagnet power source for scanning the proton beam is further increased. Can be small.

次に、本発明の他の実施例を説明する。本実施例では、図4(a)において、陽子ビームの走査を繰り返す際の照射開始位置3を、走査経路2上に、等間隔で、y1,y2,y3,…yk,yk+1と配置する。照射野1において、走査経路2に沿って陽子ビームを走査する。走査経路を1スピルでワンパス走査し、これをk回繰り返す。y1からyk+1までの距離をLとすると、間隔はΔ=L/kとなる。 Next, another embodiment of the present invention will be described. In this embodiment, in FIG. 4A, the irradiation start position 3 when the scanning of the proton beam is repeated is arranged on the scanning path 2 at equal intervals y 1 , y 2 , y 3 ,... Y k , y. Arrange with k + 1 . In the irradiation field 1, the proton beam is scanned along the scanning path 2. The scanning path is scanned by one pass with one spill, and this is repeated k times. When the distance from y 1 to y k + 1 is L, the interval is Δ = L / k.

図4(b)で、陽子ビーム電流の照射時刻t1,t2,t3,…tkが、ビーム電流I1,I2,I3,…Ikに対応する。照射は1スピルで走査経路をワンパス走査し、照射開始位置をy1,y2,y3,…と規則的にずらしていくのではなく、照射位置y1〜ykの中から照射開始位置をランダムに選び、そこを照射開始位置として走査経路をワンパス走査して、これを繰り返す。 In FIG. 4B, the irradiation times t 1 , t 2 , t 3 ,... T k of the proton beam current correspond to the beam currents I 1 , I 2 , I 3 ,. Irradiation is performed by one-pass scanning of the scanning path with one spill, and the irradiation start position is not regularly shifted to y 1 , y 2 , y 3 ,..., But from the irradiation positions y 1 to y k. Is selected at random, and the scanning path is used as a one-pass scan with this as the irradiation start position, and this is repeated.

このように照射開始位置をランダムに設定して照射しても、k回後には、各照射位置にビーム電流Iiが一様に照射されることになる。従って、任意のビーム波形に対して、患部の線量分布を均一にすることができる。本実施例によれば、走査経路を1スピルでワンパス走査することにより、1スピルの時間内で陽子ビームを移動させる距離が更に短くなるので、陽子ビームを走査する走査電磁石電源の電源容量を更に小さくすることができる。 Even when irradiation is performed with the irradiation start position set at random in this way, the beam current I i is uniformly irradiated to each irradiation position after k times. Therefore, the dose distribution of the affected part can be made uniform with respect to an arbitrary beam waveform. According to the present embodiment, the one-pass scanning of the scanning path with one spill makes the distance for moving the proton beam within one spill time shorter, so that the power supply capacity of the scanning electromagnet power source for scanning the proton beam is further increased. Can be small.

次に、図5を用いて、本発明の他の実施例を説明する。図5は、本発明による陽子ビーム照射方法の他の実施例を示す概略説明図で、(a)は陽子ビームの走査経路を示す図、(b)は陽子ビーム電流の時間変化を示す図である。   Next, another embodiment of the present invention will be described with reference to FIG. 5A and 5B are schematic explanatory views showing another embodiment of the proton beam irradiation method according to the present invention, wherein FIG. 5A is a view showing a scanning path of the proton beam, and FIG. 5B is a view showing a time change of the proton beam current. is there.

図5(a)で、1は照射野、2は走査経路、3は照射開始位置、8は走査線である。上記した実施例の陽子ビーム照射は、1スピルで走査経路を往復またはワンパスで走査したが、本実施例では、1スピルで走査経路の途中まで陽子ビームを走査し、次のスピルで引き続き走査(照射)を続ける。この走査方法(照射方法)は、走査経路を複数回往復走査する際に、1スピルで走査経路の途中まで走査する場合も含まれる。   In FIG. 5A, 1 is an irradiation field, 2 is a scanning path, 3 is an irradiation start position, and 8 is a scanning line. In the proton beam irradiation of the above-described embodiment, the scanning path is reciprocated or scanned in one pass with one spill, but in this embodiment, the proton beam is scanned halfway along the scanning path with one spill, and the scanning is continued with the next spill ( Continue irradiation. This scanning method (irradiation method) includes a case where scanning is performed halfway along the scanning path with one spill when the scanning path is reciprocated a plurality of times.

図5(a)のように、走査線8を、L1,L2,L3,…Lkとラベリングする。走査経路の走査線8の本数をk、1スピルで走査できる走査線の本数をh、kとhの最小公倍数をnとすると、各走査線のリペイント回数はn/k、スピル数(走査回数)はn/hとなる。y1からyk+1までの距離をLとすると、各走査線の長さはL/kである。 As shown in FIG. 5 (a), the scanning lines 8, L 1, L 2, L 3, ... to L k and labeling. If the number of scanning lines 8 in the scanning path is k, the number of scanning lines that can be scanned in one spill is h, and the least common multiple of k and h is n, the number of repaints of each scanning line is n / k, the number of spills (the number of scans) ) Is n / h. When the distance from y 1 to y k + 1 is L, the length of each scanning line is L / k.

本実施例は、1スピルで走査経路の途中まで陽子ビームを走査し、次のスピルで引き続き走査を続ける。即ち、1つのスピルの終了位置から次のスピルの照射開始位置をずらさない。このため、各スピルの照射開始位置が走査経路上の同じ位置になることが、陽子ビームの照射中に何回か起こり得る。こうなると、線量分布の均一性が損なわれる可能性がある。これを避けるためには、kとhの最小公倍数が大きくなるようなkとhの組合せを採用すれば良い。こうすることにより、線量分布の均一性は改善できる。また、スピル数n/hが、上記した実施例の走査回数mと同じ値となるように、kとhを選べば、線量分布の均一性は、上記した実施例と同程度になる。   In this embodiment, the proton beam is scanned halfway along the scanning path with one spill, and scanning is continued with the next spill. That is, the irradiation start position of the next spill is not shifted from the end position of one spill. For this reason, it is possible that the irradiation start position of each spill becomes the same position on the scanning path several times during the irradiation of the proton beam. If this happens, the uniformity of the dose distribution may be impaired. In order to avoid this, a combination of k and h that increases the least common multiple of k and h may be employed. By doing so, the uniformity of the dose distribution can be improved. Further, if k and h are selected so that the number of spills n / h becomes the same value as the number of scans m in the above-described embodiment, the uniformity of the dose distribution becomes comparable to that in the above-described embodiment.

本実施例によれば、各スピルの照射開始位置をずらさずに、1スピルで走査経路の途中まで陽子ビームを走査し、次のスピルで引き続き走査(照射)を続けるため、陽子線ビームの走査の制御がより簡単になる。   According to the present embodiment, the proton beam is scanned halfway along the scanning path with one spill without shifting the irradiation start position of each spill, and the scanning (irradiation) is continued with the next spill. Control becomes easier.

尚、以上の実施例では、患部の1つの層に対する陽子線ビームの照射方法を説明したが、患部を深さ方向に多層に分割した場合も、1つの層の場合と同様に、上記した照射方法を繰り返して行うことにより、線量分布の均一化を達成できる。   In the above embodiment, the proton beam irradiation method for one layer of the affected part has been described. However, when the affected part is divided into multiple layers in the depth direction, the irradiation described above is performed in the same manner as in the case of one layer. By repeating the method, a uniform dose distribution can be achieved.

また、以上の実施例では、陽子ビームを用いた陽子線治療システムの照射方法を説明したが、炭素,ヘリウム等の粒子ビームを用いた粒子線治療システムの照射方法に対しても、上記した照射方法は適用できる。   In the above-described embodiments, the irradiation method of the proton beam therapy system using the proton beam has been described. However, the irradiation method described above is also applied to the irradiation method of the particle beam therapy system using the particle beam of carbon, helium, or the like. The method is applicable.

本発明は、陽子,炭素,ヘリウム等の粒子ビームを用いた粒子線治療システムの照射装置に利用できる。   The present invention can be used for an irradiation apparatus of a particle beam therapy system using a particle beam of proton, carbon, helium or the like.

本発明による陽子線治療システムの陽子ビーム照射方法の一実施例を示す概略説明図で、(a)は陽子ビームの走査経路を示す図、(b)は陽子ビーム電流の時間変化を示す図。It is a schematic explanatory drawing which shows one Example of the proton beam irradiation method of the proton beam treatment system by this invention, (a) is a figure which shows the scanning path | route of a proton beam, (b) is a figure which shows the time change of a proton beam current. 従来の照射方法の説明図で、(a)は走査経路を示す図、(b)はビーム電流の時間変化を示す図。It is explanatory drawing of the conventional irradiation method, (a) is a figure which shows a scanning path | route, (b) is a figure which shows the time change of beam current. 本発明による陽子ビームの走査電磁石システムの概略構成図。1 is a schematic configuration diagram of a proton beam scanning electromagnet system according to the present invention. FIG. 本発明による陽子ビーム照射方法の他の実施例を示す概略説明図で、(a)は陽子ビームの走査経路を示す図、(b)は陽子ビーム電流の時間変化を示す図。FIG. 5 is a schematic explanatory view showing another embodiment of the proton beam irradiation method according to the present invention, where (a) shows a scanning path of the proton beam, and (b) shows a time change of the proton beam current. 本発明による陽子ビーム照射方法の他の実施例を示す概略説明図で、(a)は陽子ビームの走査経路を示す図、(b)は陽子ビーム電流の時間変化を示す図。FIG. 5 is a schematic explanatory view showing another embodiment of the proton beam irradiation method according to the present invention, where (a) shows a scanning path of the proton beam, and (b) shows a time change of the proton beam current.

符号の説明Explanation of symbols

1 照射野
2 走査経路
3 照射開始位置
4 走査電磁石
5 走査電磁石電源
6 制御システム
7 線量分布モニタ
8 走査線
DESCRIPTION OF SYMBOLS 1 Irradiation field 2 Scanning path 3 Irradiation start position 4 Scanning electromagnet 5 Scanning electromagnet power supply 6 Control system 7 Dose distribution monitor 8 Scanning line

Claims (6)

陽子ビームを用いた粒子線治療システムで標的領域を走査する照射装置において、陽子ビームの1スピルで前記標的領域に対して前記陽子ビームを一往復走査する際に、前記陽子ビームを照射するスピルの回数に応じて、一定間隔で順番に各スピルの照射開始位置をずらして照射することを特徴とする粒子線治療システムの照射装置。   In an irradiation apparatus that scans a target region with a particle beam therapy system using a proton beam, the spill of the spill that irradiates the proton beam when scanning the proton beam once and again with respect to the target region with one spill of the proton beam An irradiation apparatus for a particle beam therapy system, wherein irradiation is performed by shifting the irradiation start position of each spill in order at regular intervals according to the number of times. 陽子ビームを用いた粒子線治療システムで標的領域を走査する照射装置において、陽子ビームの1スピルで前記標的領域に対して前記陽子ビームを一往復走査する際に、前記陽子ビームを照射するスピルの回数に応じて、一定間隔で定めた複数の位置からランダムに順番を選び、選ばれた順番に各スピルの照射開始位置をずらして照射することを特徴とする粒子線治療システムの照射装置。   In an irradiation apparatus that scans a target region with a particle beam therapy system using a proton beam, the spill of the spill that irradiates the proton beam when scanning the proton beam once and again with respect to the target region with one spill of the proton beam An irradiation apparatus for a particle beam therapy system, wherein an irradiation order is randomly selected from a plurality of positions determined at regular intervals according to the number of times, and irradiation is performed by shifting the irradiation start position of each spill in the selected order. 陽子ビームを用いた粒子線治療システムで標的領域を走査する照射装置において、陽子ビームの1スピルで前記標的領域に対して前記陽子ビームをワンパスで走査する際に、前記陽子ビームを照射するスピルの回数に応じて、一定間隔で定めた複数の位置から前記ワンパス走査終了位置の次の位置を選び、選ばれた位置を各スピルの照射開始位置として照射することを特徴とする粒子線治療システムの照射装置。   In an irradiation apparatus that scans a target area with a particle beam therapy system using a proton beam, a spill that irradiates the proton beam when the target area is scanned with one pass by one spill of the proton beam. According to the number of times, a position next to the one-pass scanning end position is selected from a plurality of positions determined at regular intervals, and the selected position is irradiated as an irradiation start position of each spill. Irradiation device. 陽子ビームを用いた粒子線治療システムで標的領域を走査する照射装置において、陽子ビームの1スピルで前記標的領域に対して前記陽子ビームをワンパスで走査する際に、前記陽子ビームを照射するスピルの回数に応じて、一定間隔で定めた複数の位置からランダムに位置を選び、選ばれた位置を各スピルの照射開始位置として照射することを特徴とする粒子線治療システムの照射装置。   In an irradiation apparatus that scans a target area with a particle beam therapy system using a proton beam, a spill that irradiates the proton beam when the target area is scanned with one pass by one spill of the proton beam. An irradiation apparatus for a particle beam therapy system, wherein a position is randomly selected from a plurality of positions determined at regular intervals according to the number of times, and the selected position is irradiated as an irradiation start position of each spill. 陽子ビームを用いた粒子線治療システムで標的領域を走査する照射装置において、陽子ビームの1スピルで走査経路の途中まで前記陽子ビームを走査し、次のスピルで前記走査経路の途中から前記陽子ビームの走査を継続する際に、照射野内の走査経路を分割した走査線の本数と、1スピルで走査する走査線の本数との最小公倍数を、前記分割した走査線の本数で割った回数分、各走査線に対する前記陽子ビームの走査を繰り返して照射することを特徴とする粒子線治療システムの照射装置。   In an irradiation apparatus that scans a target region with a particle beam therapy system using a proton beam, the proton beam is scanned to the middle of the scanning path with one spill of the proton beam, and the proton beam is scanned from the middle of the scanning path with the next spill. When the scanning is continued, the least common multiple of the number of scanning lines dividing the scanning path in the irradiation field and the number of scanning lines scanned by 1 spill is divided by the number of the divided scanning lines, An irradiation apparatus for a particle beam therapy system, wherein the irradiation of the proton beam with respect to each scanning line is repeatedly performed. 請求項1乃至5の何れかにおいて、前記陽子ビームに換えて他の粒子ビームを用いることを特徴とする粒子線治療システムの照射装置。   6. The irradiation apparatus for a particle beam therapy system according to claim 1, wherein another particle beam is used instead of the proton beam.
JP2007124061A 2007-05-09 2007-05-09 Irradiation device for particle beam therapy system Expired - Fee Related JP4655062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007124061A JP4655062B2 (en) 2007-05-09 2007-05-09 Irradiation device for particle beam therapy system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007124061A JP4655062B2 (en) 2007-05-09 2007-05-09 Irradiation device for particle beam therapy system

Publications (2)

Publication Number Publication Date
JP2008278979A JP2008278979A (en) 2008-11-20
JP4655062B2 true JP4655062B2 (en) 2011-03-23

Family

ID=40140316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007124061A Expired - Fee Related JP4655062B2 (en) 2007-05-09 2007-05-09 Irradiation device for particle beam therapy system

Country Status (1)

Country Link
JP (1) JP4655062B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009033297A1 (en) * 2009-07-15 2011-01-20 Gsi Helmholtzzentrum Für Schwerionenforschung Gmbh Irradiation or irradiation planning for a rescanning method with a particle beam

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04506566A (en) * 1989-03-31 1992-11-12 ロウマ リンダ ユニバーシティー メディカル センター Charged particle beam emitter
JP2005050823A (en) * 2003-05-13 2005-02-24 Hitachi Ltd Particle beam irradiation device and particle beam irradiation method
JP2005518069A (en) * 2002-02-12 2005-06-16 ゲゼルシャフト フュア シュベールイオーネンフォルシュンク エム ベー ハー Method and apparatus for controlling a beam extraction irradiation device for heavy ions or protons operating according to a raster scan technique

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04506566A (en) * 1989-03-31 1992-11-12 ロウマ リンダ ユニバーシティー メディカル センター Charged particle beam emitter
JP2005518069A (en) * 2002-02-12 2005-06-16 ゲゼルシャフト フュア シュベールイオーネンフォルシュンク エム ベー ハー Method and apparatus for controlling a beam extraction irradiation device for heavy ions or protons operating according to a raster scan technique
JP2005050823A (en) * 2003-05-13 2005-02-24 Hitachi Ltd Particle beam irradiation device and particle beam irradiation method

Also Published As

Publication number Publication date
JP2008278979A (en) 2008-11-20

Similar Documents

Publication Publication Date Title
JP5213881B2 (en) Determination of control parameters for irradiating a moving target volume in the body
JP5456562B2 (en) Charged particle beam generator, charged particle beam irradiation device, and operation method thereof
KR101079629B1 (en) Irradiation apparatus of charged particle ray
JP6017486B2 (en) Charged particle beam therapy apparatus and charged particle beam range adjustment method
JP2010253250A (en) Charged particle irradiation system and irradiation planning device
JPH11253563A (en) Method and device for charged particle beam radiation
JP6200368B2 (en) Charged particle irradiation system and control method of charged particle beam irradiation system
JP6634299B2 (en) Treatment planning device, treatment planning method, control device, and particle beam therapy system
CN105579099B (en) Charged particle beam irradiation device
JP6257751B2 (en) Particle beam irradiation equipment
EP2832399A1 (en) Particle beam therapy device and particle beam therapy device operation method
US9937361B2 (en) Particle beam irradiation apparatus
JP4655062B2 (en) Irradiation device for particle beam therapy system
CN108348767B (en) Particle beam therapy system
JP6316173B2 (en) Charged particle beam generator, charged particle beam irradiation apparatus, particle beam therapy system, and operation method of charged particle beam generator
JP5666628B2 (en) Irradiation apparatus and irradiation method for storing dose in target volume
CN109224317B (en) Charged particle beam therapy device
JP5350307B2 (en) Particle beam therapy system
KR100982850B1 (en) Method of implanting a substrate and an ion implanter for performing the method
JP6494808B2 (en) Particle beam therapy system
JP6286168B2 (en) Charged particle beam irradiation system and irradiation planning system
JP2019191031A (en) Particle beam irradiation device, and particle beam treatment system
JP3964769B2 (en) Medical charged particle irradiation equipment
JP2018143680A (en) Particle beam therapeutic system
JPWO2015151275A1 (en) Particle beam therapy system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees