JP3964769B2 - Medical charged particle irradiation equipment - Google Patents

Medical charged particle irradiation equipment Download PDF

Info

Publication number
JP3964769B2
JP3964769B2 JP2002292559A JP2002292559A JP3964769B2 JP 3964769 B2 JP3964769 B2 JP 3964769B2 JP 2002292559 A JP2002292559 A JP 2002292559A JP 2002292559 A JP2002292559 A JP 2002292559A JP 3964769 B2 JP3964769 B2 JP 3964769B2
Authority
JP
Japan
Prior art keywords
scanning electromagnet
scanning
charged particle
electromagnet
deflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002292559A
Other languages
Japanese (ja)
Other versions
JP2004121654A (en
Inventor
浩二 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002292559A priority Critical patent/JP3964769B2/en
Publication of JP2004121654A publication Critical patent/JP2004121654A/en
Application granted granted Critical
Publication of JP3964769B2 publication Critical patent/JP3964769B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Radiation-Therapy Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、照射対象に荷電粒子線ビームを照射する医療用荷電粒子線ビーム照射装置に係わり、特に、複数の走査電磁石を用いビームを走査することにより照射範囲を拡大する医療用荷電粒子照射装置に関する。
【0002】
【従来の技術】
陽子や炭素イオン等の荷電粒子線ビームを患者の患部に照射してガンや腫瘍等を治療する医療用荷電粒子照射装置は、イオン源で発生し、シンクロトロン等の加速器で加速した荷電粒子を、照射野形成手段で照射範囲を患部形状に合わせて成型した後、患者ベッドに横臥した患者の患部に照射する(例えば、非特許文献1参照)。
【0003】
照射野形成手段は、照射対象(患部)の立体形状に合わせて荷電粒子線ビームの照射野を形成し線量分布を調整するものであり、荷電粒子線ビームの進行方向(照射対象の深さ方向、Z軸)に垂直な平面(X軸とY軸を備えたX−Y平面)内における照射範囲を成形する横方向ビーム形成部と、荷電粒子線ビームの進行方向(Z軸)における照射範囲を形成する飛程調節部とから構成される。
【0004】
飛程調節部は、照射対象の深さに対応して荷電粒子線ビームのエネルギーを調整し、荷電粒子線ビームの進行方向(深さ方向)の照射対象の形状に合わせて荷電粒子線ビームを整形するものである。
【0005】
横方向ビーム形成部は、荷電粒子線ビームの進行方向に垂直な平面(X−Y平面)方向に荷電粒子線ビームを拡大した後、拡大された荷電粒子線ビームをコリメータで切り取ることにより、荷電粒子線ビームの進行方向に垂直な平面上の照射対象の形状に合わせて荷電粒子線ビームを整形するものである。このときのビーム拡大には、ビームを走査する手法やビーム径を拡大させる手法、あるいはそれらを組み合わせる手法等がある。
【0006】
ビームを走査する手法においては、一般に、2つのビーム偏向手段を、それぞれの偏向面が互いに垂直になるように配置することが多く、特に陽子、重粒子といった高エネルギービームの照射においては、そのビーム偏向手段として電磁石(走査電磁石)を用いることが多い。例えばY方向に垂直な磁極面を備えY方向の磁場を発生してビームをX方向に偏向するX方向走査電磁石を上流側に配置し、X方向に垂直な磁極面を備えX方向の磁場を発生してビームをY方向に偏向するY方向走査電磁石を下流側に配置する。この場合、ビームのX方向位置は上流側のX方向走査電磁石内で徐々に偏向され、電磁石通過後直線的に変化するため、X方向走査点は上流側X方向走査電磁石の中心付近となり、同様にしてビームのY方向走査点はほぼ下流側Y方向走査電磁石の中心付近となる。
【0007】
このような構成において、下流側のY方向走査電磁石では、上流側X方向走査電磁石によるビーム走査によって、上流側に比べてX方向におけるビーム通過範囲が大きくなり、結果として磁場発生方向であるX方向における磁極間隔を大きくしなければならない。ここで、走査電磁石においては、通常、磁場発生方向における磁極間隔が大きくなるほどその磁気抵抗が大きくなるため、磁極間隔のべき乗(例えば2乗)に比例して消費電力が大きくなる。このため、上記のようなX方向の磁極間隔の増大によってY方向走査電磁石における消費電力は著しく増大し、運転コスト(ランニングコスト)が増大することとなっていた。また、走査電磁石を励磁するための電源については、通常、その最大電圧と最大電流との積で表される電源容量が磁場発生方向の磁極間隔が大きくなるほど例えばそれにほぼ比例して大きくなるため、上記のような構成では、Y方向走査電磁石の励磁用電源として電源容量の極めて大きいものを用意する必要があり、設備コスト(初期コスト)が増大することとなっていた。
【0008】
そこで、これに対応して、従来、X方向走査電磁石とY方向走査電磁石とを大きく距離を離して配置するとともに、これら2つの走査電磁石の間に設けた偏向電磁石及び四極電磁石のX方向におけるビーム収束機能を利用し、下流側Y方向走査電磁石近傍でのX方向におけるビーム通過範囲を小さくするものが提唱されている(例えば、特許文献1参照)。
【0009】
この従来技術では、X方向走査電磁石でX方向にビームを曲げて位置をずらすように偏向させた後、偏向電磁石や四極電磁石のビーム収束機能を利用しそれらを通過する間にX方向にビームの位置のずれを小さくするように徐々に偏向させ、下流側Y方向走査電磁石近傍で一度焦点を結ばせる。これにより、実質的にビーム走査点をその焦点位置(言い換えればY方向走査電磁石付近)に移動させ、下流側Y方向走査電磁石でのX方向におけるビーム通過範囲を縮小している。そして、焦点以降、Y方向走査電磁石を通過し再度X方向にビーム通過範囲が大きくなった粒子線ビームを、コリメータへと導入するようになっている。
【0010】
【非特許文献1】
「Review of Scientific Instruments Vol.64 No.8(1993年8月)」(p.2055〜2122)
【特許文献1】
特開平10-282300号公報(段落番号【0011】、【0012】及び図7)
【発明が解決しようとする課題】
上記従来技術では、X方向走査電磁石とY方向走査電磁石の間に設けた偏向電磁石及び四極電磁石のX方向ビーム収束機能を利用し、下流側Y方向走査電磁石近傍で一度焦点を結ばせることでY方向走査電磁石におけるビーム通過範囲を縮小している。これにより、Y方向走査電磁石におけるX方向の磁極間隔の増大による消費電力の増大及び励磁用電源容量の増大を防止し、コスト低減を図ることができる。
【0013】
しかしながら、上記偏向電磁石や四極電磁石のビーム収束機能は本来それほど大きくないため、一旦X方向走査電磁石でビームを曲げて位置をずらすように偏向させた荷電粒子線ビームを逆にビームの位置のずれを小さくするように偏向させる間、その輸送距離の大きさとともにX方向におけるビーム通過範囲の最大値が比較的大きくなり、これに伴ってそれら偏向電磁石や四極電磁石でのX方向におけるビーム通過範囲が大きくなる。すなわち、走査電磁石の小型化を図れるものの、それ以外のビーム偏向手段(この例では四極電磁石や大型構造の偏向電磁石)のX方向における大型化を招く。このため、それらの自重の増大によって支持構造物のたわみが増大し(特にこの公知例のような回転ガントリーでその傾向が顕著となる)、この結果、ビーム照射精度の向上が困難となる。
【0014】
本発明の目的は、他のビーム偏向手段を大型化することなく、コスト低減を図れる医療用荷電粒子照射装置を提供することにある。
【0015】
【課題を解決するための手段】
(1)上記目的を達成するために、本発明は、荷電粒子を患者の患部に照射する医療用荷電粒子照射装置において、入射した荷電粒子線ビームを、そのビーム進行方向に垂直な平面内における一の方向へビームを曲げて位置をずらすように偏向する第1走査電磁石と、この第1走査電磁石より下流側に設けられ、前記第1走査電磁石で偏向された荷電粒子線ビームを、前記第1走査電磁石による偏向とは逆に前記ビームの位置のずれを小さくし下流側で焦点を結ぶように前記一の方向へ偏向する第2走査電磁石と、この第2走査電磁石より下流側に設けられ、前記第2走査電磁石で前記一の方向へ偏向され前記一の方向における通過範囲が縮小した荷電粒子線ビームを、前記ビーム進行方向に垂直な平面内における前記一の方向と直交する他の方向へ偏向する第3走査電磁石とを有する。
【0016】
本発明においては、第1走査電磁石で例えばX方向にビームを曲げて位置をずらすように偏向させた後に下流側の第2走査電磁石でX方向にビームの位置のずれを小さくするように偏向させることにより、例えばさらに下流側のY方向第3走査電磁石近傍で一度焦点を結ばせることが可能となる。これによって、実質的にビーム走査点をその焦点位置(言い換えれば第3走査電磁石付近)に移動させ、下流側第3走査電磁石におけるX方向におけるビーム通過範囲を縮小し、焦点以降、第3走査電磁石を通過し再度X方向にビーム通過範囲を拡大し所定の大きさとなった粒子線ビームを、コリメータへと導入する。
【0017】
このとき、従来構造のように本来ビーム収束機能のそれほど大きくない偏向電磁石や四極電磁石を用いず、ビーム偏向機能の高い第2走査電磁石を用いることによってX方向にビーム通過範囲を急激に縮小させることができるので、一旦第1走査電磁石でビームを曲げて位置をずらした後にビームの位置のずれを小さくする間におけるその輸送距離を小さくでき、またそのときのビーム通過範囲の最大値を小さくすることができる。したがって、それらの間に通常設けられる偏向電磁石や四極電磁石等の他のビーム偏向手段の小型化を図ることができる。
【0018】
一方このとき、本発明においては、元来の例えばX方向走査電磁石1個とY方向走査電磁石の合計2個から、第1走査電磁石(X方向)、第2走査電磁石(X方向)、第3走査電磁石(Y方向)の合計3個に1個増えるため、その分の消費電力及び電源容量は別途追加となる。
【0019】
しかしながら、例えば消費電力についてみると、X方向走査電磁石1個とY方向走査電磁石1個とを配置する上記の元来構造では、下流側のY方向走査電磁石においてX方向ビーム通過範囲の増大に応じ磁場発生方向であるX方向の磁極間隔が大きくなっている。前述したように消費電力は磁場発生方向における磁極間隔の例えば2乗に比例することから、Y方向走査電磁石の消費電力はX方向走査電磁石の例えば5倍程度にも達する。このため、X方向走査電磁石及びY方向走査電磁石2つを合計した消費電力は著しく増大する。
【0020】
本発明においては、前述したように最下流側の第3走査電磁石におけるX方向ビーム通過範囲の縮小によって磁極間隔を元来構造の例えば1/2程度に低減できることから、上記元来のY方向走査電磁石の約1/3程度にまで第3走査電磁石の消費電力を低減することができる。これに対して、新たな追加分となる第1走査電磁石は偏向量が小さく極めて小型のもので足りることから、第1及び第2走査電磁石の消費電力を合計しても元来のX方向走査電磁石の消費電力の2倍には至らない。この結果、第1〜第3走査電磁石3個の合計消費電力を、元来のX方向及びY方向走査電磁石2個の合計消費電力よりも例えば1/2程度にまで小さくでき、運転コスト(ランニングコスト)を低減することができる。
【0021】
また、電源容量についてみると、X方向走査電磁石1個とY方向走査電磁石1個とを配置する上記の元来構造では、前述したように電源容量は磁場発生方向における磁極間隔に例えば比例することから、Y方向走査電磁石の励磁電源に必要な電源容量は、X方向走査電磁石の励磁電源の例えば数倍(3〜5倍)程度にも達する。このため、Y方向走査電磁石については特に大型の電源が必要で、場合によっては通常の市場では入手できず別途製作する必要が生じ、設備コスト(初期コスト)が増大する。
【0022】
本発明においては、前述したように最下流側の第3走査電磁石におけるX方向ビーム通過範囲の縮小によって磁極間隔が低減されることから、上記元来のY方向走査電磁石の60%程度まで第3走査電磁石用励磁電源の電源容量を低減することができ、コストを著しく低減できる。これに対して、新たな追加分となる第1走査電磁石は偏向量が小さく極めて小型のもので足りることから、第1走査電磁石用に使用される電源容量は元来のX方向走査電磁石の電源容量の1/3程度で足り、また第2走査電磁石用に使用される電源容量も元来のX方向走査電磁石と大差ない程度のもので足りる。この結果、総合的に見て、第1〜第3走査電磁石3個の励磁用電源に必要な設備コスト(初期コスト)を、元来のX方向及びY方向走査電磁石2個の励磁用電源に必要な設備コストに比べて、少なくともほぼ等しいか若しくは小さくすることができる。
【0023】
以上のようにして、本発明においては、他のビーム偏向手段を大型化することなく、コスト低減を図ることができる。
【0024】
(2)上記目的を達成するために、また本発明は、荷電粒子を患者の患部に照射する医療用荷電粒子照射装置において、入射した荷電粒子線ビームを、そのビーム進行方向に垂直な平面内における一の方向へビームを曲げて位置をずらすように偏向する第1走査電磁石と、この第1走査電磁石より下流側に設けられ、前記第1走査電磁石で偏向された荷電粒子線ビームを、前記第1走査電磁石による偏向とは逆に前記ビームの位置のずれを小さくし下流側で焦点を結ぶように前記一の方向へ偏向する第2走査電磁石と、この第2走査電磁石より下流側に設けられ、前記第2走査電磁石で前記一の方向へ偏向され前記一の方向における通過範囲が縮小した荷電粒子線ビームを、前記ビーム進行方向に垂直な平面内における前記一の方向と直交する他の方向へ偏向する第3走査電磁石と、前記第1走査電磁石による偏向量と前記第2走査電磁石による偏向量と比例関係維持するように、それら第1及び第2走査電磁石を制御する第1偏向制御手段とを有する。
【0025】
第1走査電磁石による偏向量と第2走査電磁石による偏向量とが比例関係に維持されることにより、ビーム曲げて位置ずれ増大→位置ずれの低減→第3走査電磁石近傍の焦点という粒子線ビームの挙動を維持しつつ、容易かつ確実に走査を行うことができる。
【0026】
(3)上記(1)又は(2)において、好ましくは、前記第3走査電磁石より下流側に、荷電粒子線ビームを散乱させる散乱体を設ける。
【0027】
散乱体を設ける場合、ビーム走査点から散乱体までの距離が大きくなるほど、より多くの方向のより広い範囲から種々のビームが散乱体に入射する可能性が高くなり、散乱体から出射した後におけるビーム外郭が曖昧になる結果、照射ビームの角度分布広がりが大きくなり、コリメータでビームを切り出した後の照射対象内線量分布の切れ(半影)が大きくなって照射精度の向上が困難となる。
【0028】
本発明においては、上記(1)で説明したように実質的にビーム走査点を焦点位置である第3走査電磁石付近に移動させるので、第3走査電磁石より下流側に散乱体を設けることで、走査点と散乱体との距離を小さくすることができる。これにより、照射対象内線量分布の半影を小さくし照射精度を向上することができる。また、大きな範囲を走査し、広い領域を照射する照射装置を実現することができる。特に、ビーム走査点を散乱体付近に合わせた場合には、照射対象内線量分布の半影をより小さくすることができ、照射精度を一層向上させることができる。
【0029】
(4)上記(1)又は(2)において、また好ましくは、前記第2走査電磁石より下流側でかつ前記第3走査電磁石より上流側に、荷電粒子線ビームを散乱させる散乱体を設ける。
【0030】
散乱体をY方向の第3走査電磁石より上流側へ配置したことにより、散乱体と照射面との距離が長くなり、照射面で同じビーム強度分布を形成するために必要な散乱量を小さくすることができる。これにより、散乱体の厚さを薄くすることができ、散乱体におけるビームのエネルギー損失を小さくできる。この結果、照射面に到達するビームのエネルギーが高くなるため、照射対象内でのビームの到達深度が深くなり、より深い標的に対し照射を行うことができる。
【0031】
(5)上記(2)において、また好ましくは、前記第1偏向制御手段は、前記第1走査電磁石及び第2走査電磁石に共通の単一の励磁電源を備え、前記第1走査電磁石及び第2走査電磁石はそれぞれの励磁コイルが前記単一の励磁電源に対し直列に接続されている。
【0032】
これにより、第1走査電磁石及び第2走査電磁石によるビーム偏向量を、特に調節を行わなくても容易に比例関係にすることができる。したがって、運転が簡単になると共に、ずれによる誤照射の可能性を低減することができる。
【0033】
(6)上記(2)において、また好ましくは、前記第1偏向制御手段は、前記第1走査電磁石及び第2走査電磁石に対しそれぞれ電源を供給する第1励磁電源及び第2励磁電源と、これら第1及び第2励磁電源に共通の電源制御手段とを備えている。
【0034】
本発明においては、第1走査電磁石及び第2走査電磁石用の励磁電源がそれぞれ別個に設けられることにより、各励磁電流を、増幅率を変えることで調整し、これによって走査点位置を所望に調整することができる。したがって、第1走査電磁石及び第2走査電磁石の間の機器の条件変更や、磁石の設計誤差があった場合にも、走査点がずれないように調節することができ、ビームの第3走査電磁石磁極への衝突回避や照射精度の維持を実現することができる。またこのとき、第1及び第2励磁電源は第2電源制御手段という単一の信号源で制御されることになるので、第1及び第2走査電磁石の位相調節を行う必要がなく、運転が簡単になると共に、位相ずれによる誤照射の可能性を低減することができる。
【0037】
【発明の実施の形態】
以下、本発明の一実施形態を図面を参照しつつ説明する。
【0038】
本実施形態の医療用荷電粒子照射装置は、この種のものとして公知の放射線治療装置、例えば陽子線治療装置に適用されるものである。詳細な図示は省略するが、この陽子線治療装置においては、例えば特開2001−353228号公報に記載のもののように、入射器にて発生した荷電粒子(例えば陽子)ビームが、低エネルギビーム輸送装置を通過して主加速器であるシンクロトロンに入射され、このシンクロトロンで治療に必要とされるエネルギ(通常100〜200MeV)まで加速される。シンクロトロンから出射した荷電粒子ビームは、本実施形態の荷電粒子照射装置(回転照射装置)に入射される。
【0039】
図2は、本実施形態による荷電粒子照射装置の全体概略構造を表す概念的側面図である。以下、荷電粒子線ビームの進行方向(照射対象の深さ方向)をZ軸方向(Z方向)、これに垂直な平面内における一の方向をX方向(図2の出射ノズル5(後述)の部分においては紙面内左右方向)、その平面内におけるX方向と直交する方向をY方向(図2の出射ノズル5(後述)の部分においては紙面と垂直方向)としている。
【0040】
この図2において、本実施形態の荷電粒子照射装置1は、ビーム輸送用の偏向電磁石2A,2B,2C、ビーム収束用の四極電磁石3A,3B,3C、真空粒子チャンバ4、出射ノズル5、及びX方向走査電磁石(第1走査電磁石)101を取り付けた回転ガントリー6と、この回転ガントリー6を所定の回転軸kまわりに回転駆動するモータ(図示せず)とを備えており、モータを駆動して回転ガントリー6を回転軸kまわりに回転させることにより、照射方向を変えられるようになっている。
【0041】
出射ノズル5は、X方向走査電磁石(第2走査電磁石)102と、その下流側に配設したY方向走査電磁石(第3走査電磁石)103と、さらにその下流側に配設され、ビーム拡大の条件に応じて散乱物の厚さを変更できる散乱体ユニット(散乱体)104とを備えている。
【0042】
X方向走査電磁石102は、出射ノズル5外に設けたX方向走査電磁石101とともに、Y方向に磁場を発生し、上記した偏向電磁石2A,2B,2Cと同じ面内にビームを(その偏向量を可変に)偏向する。このとき、X方向走査電磁石101はビームを曲げて位置をずらすように偏向し、X方向走査電磁石102は、X方向走査電磁石101による上記のビームの位置のずれを小さくするように偏向する。これらX方向走査電磁石10,10の励磁コイル(図示せず)は共通のX方向走査電磁石電源105に電源線106a,106bを介して直列に接続されており、そのX方向走査電磁石電源105からの電力によって励磁される。
【0043】
Y方向走査電磁石103は、X方向に磁場を発生し、Y方向にビームを(その偏向量を可変に)偏向する。このY方向走査電磁石103の励磁コイル(図示せず)はY方向走査電磁石電源107に電源線108を介して接続されており、そのY方向走査電磁石電源107からの電力によって励磁される。
【0044】
次に、上記構成の本実施形態の荷電粒子照射装置1の動作を説明する。
【0045】
荷電粒子照射装置1に入力されたビームは、偏向電磁石2A〜Cにより軌道が曲げられかつ四極電磁石3A〜Cによってベータトロン振動が調節されて下流側に輸送され、X方向走査電磁石102の上流側で真空チャンバー4から真空窓を通して空気中に出て、更に空気中を出射ノズル5内各機器により成型されながら通過した後、照射対象Pに照射される。
【0046】
このようなビーム輸送過程において、ビームは、X方向走査電磁石101,102それぞれの磁極間を通過することによって偏向電磁石2Cと同じ面内においてX方向に偏向され、さらにY方向走査電磁石103の磁極間を通過することによってY方向に偏向される。
【0047】
図3は、上述したX方向走査電磁石電源105及びY方向走査電磁石電源107によりX方向走査電磁石101,102及びY方向走査電磁石103に供給する励磁電流の時間変化の一例を表す図であり、図4はそれら3台の走査電磁石101,102,103によるビーム偏向に起因する、照射面でのビーム中心軸移動量の時間変化の一例を表す図である。
【0048】
図3において、この例では、X方向走査電磁石電源105及びY方向走査電磁石電源107は、その時間変化が正弦波状となるような励磁電流をそれぞれX方向走査電磁石101,102及びY方向走査電磁石103に供給しており、X方向励磁電流とY方向励磁電流とは、位相が互いに90°ずれている。
【0049】
照射面におけるビームの中心軸は、X方向走査電磁石101,102の偏向量に比例した量だけX方向に移動し、Y方向走査電磁石に103よる偏向量に比例した量だけY方向に移動する。これにより、図4に示すように、X方向走査電磁石101によるビーム中心軸移動量とX方向走査電磁石102によるビーム中心軸移動量との和(ビーム中心軸のX方向総移動量)は、Y方向走査電磁石103によるビーム中心軸移動量(ビーム中心軸のY方向移動量)と振幅が略等しく、位相が90°ずれる。この結果、ビーム中心軸が照射対象Pの照射面において円形の軌跡を描くように制御されている。
【0050】
なおこのとき、2つのX方向走査電磁石101,102については、前述のように互いにX方向走査電源105に対し直列に接続されていることにより、下流側のX方向走査電磁石102によるビーム中心軸移動量の振幅がY方向走査電磁石103によるビーム中心軸移動量の振幅よりも若干大きくなる(例えば1.2倍)とともに、上流側のX方向走査電磁石101によるビーム中心軸移動量の振幅が常に上記X方向走査電磁石102のビーム中心軸移動量の振幅と逆方向で比例関係(例えば0.2倍)に維持されるようになっている。このようにして、前述したビーム中心軸のX方向総移動量と、ビーム中心軸移動量のY方向移動量とが略等しい関係が成立されている。
【0051】
図1は、上記のような励磁制御により実現される荷電粒子ビームの通過挙動を表す説明図であり、ビームのX方向走査面内ビーム軸通過範囲及びビーム通過範囲を模式的に示したものである。なお、各走査電磁石101,102,103の磁極の領域のみを併せて示している。X方向走査電磁石101が位置する部分において、紙面上下方向がX方向であり、紙面と垂直方向がY方向である。X方向走査電磁石102及びY方向走査電磁石103が位置する部分において、紙面左右方向がX方向であり、紙面と垂直方向がY方向である。一点鎖線mはビーム通過範囲の中心であって、全ての走査電磁石による偏向量が0の場合ビームの中心軸がこの一点鎖線mに一致するものである。また点線nはビーム中心軸のX方向走査面内通過範囲を示し、実線pはビームの通過範囲であってビーム中心軸の周りビーム径分だけ大きな範囲となっているものである。
【0052】
図1及び前述の図2において、ビームは、まず最上流側のX方向走査電磁石101によって曲げて位置をずらすように比較的小さい振幅で偏向され、この結果走査振幅(言い換えればある程度の時間単位でみたときのビーム軸通過範囲、ビーム径を加味すればビーム通過範囲、以下同様)が下流に行くにしたがって徐々に大きくなる。その後、下流側に配置されたX方向走査電磁石102によってビームは逆に上記ビームの位置のずれを小さくするように(ビーム通過範囲が小さくなる方向に)比較的大きな振幅で偏向される。これにより、X方向走査電磁石102よりも下流では走査振幅が再び小さくなってゆく。
【0053】
このとき、前述したように2つのX方向走査電磁石101,102による偏向量が比例関係に維持されることにより、ビーム中心軸の振幅が0になる焦点ができ、この焦点位置Qが事実上のX方向の走査点となる。走査振幅は焦点位置Qに向かって小さくなっていって焦点位置Qで0になった後、その下流側で再度大きくなる。なお、上記のように比例関係に維持される2つのX方向走査電磁石101,102の偏向量の比を小さくするほど、X方向走査点(焦点位置)Qはより下流側へと移動するが、この例では、例えば電磁石のビーム進行方向磁極長さ及びコイル巻数を適切に選択することによって偏向量の比を調節し、図1に示すように走査点Qが概ねY方向走査電磁石103の水平方向中心部(あるいは少なくともその近傍)に来るように予め設定されている。そして、Y方向走査電磁石103の磁極間隔は、ビーム通過範囲に干渉しない限りにおいてなるべく狭くなるように設定されている。
【0054】
以上のようにして各走査電磁石101,102,103により偏向され、Y方向走査電磁石103内の走査点Qから再び走査振幅が徐々に大きくなったビームは、Y方向走査電磁石103のさらに下流側の散乱体104に入射され、散乱体104に備えられた散乱物により散乱される。これにより、ビームを構成する粒子のXY面内分布がビーム中心軸の周りにガウス分布状に広がり、下流に進むに従ってビーム強度分布が広がる。即ち、ビーム通過範囲がさらに拡大される(図1参照)。このとき、照射面位置でのビーム強度分布はほぼXY方向の2次元ガウス分布であって、その標準偏差はビーム中心軸の描く円の半径の約3分の2に調整され、ガウス分布を円形に走査する結果、照射対象Pの照射面上でのビーム走査1周にわたる平均積算ビーム強度分布が走査中心のまわり走査円の約70%の円形領域内部で一様になるように図られている。
【0055】
散乱体104から出射されたビームは、リッジフィルタ5aを通過することによってそのエネルギを決められた割合で減衰され、ビームのエネルギに患部の厚さに応じた分布が与えられる。その後、線量モニタ5bによりビームの線量が計測され(積算通過量や強度分布を計測してもよい。これら各値を基に照射対象Pに吸収させる線量が制御される)、さらにボーラス5cに入力されて患部の下部形状に応じたエネルギ分布とされる(言い換えれば照射対象P内での深さ方向線量分布が調整され)る。そして、コリメータ5dにより患部の水平方向形状に成形され(言い換えれば照射対象Pにおける横方向線量分布が調整され)た後、照射対象(患者の患部)Pに照射される。
【0056】
なお、以上において、X方向走査電磁石101は、各請求項記載の、入射した荷電粒子線ビームをX方向においてその偏向量を可変に偏向する第1可変偏向手段を構成し、X方向走査電磁石102は、第1可変偏向手段より下流側に設けられ、第1可変偏向手段で偏向された荷電粒子線ビームをX方向においてその偏向量を可変に偏向する第2可変偏向手段を構成し、Y方向走査電磁石103は、第2可変偏向手段より下流側に設けられ、第2可変偏向手段で偏向された荷電粒子線ビームを、Y方向においてその偏向量を可変に偏向する第3可変偏向手段を構成する。
【0057】
また、X方向走査電源10が、第1走査電磁石及び第2走査電磁石に共通の単一の励磁電源を構成すると共に、第1走査電磁石による偏向量と第2走査電磁石による偏向量と比例関係維持するように、それら第1及び第2走査電磁石を制御する第1偏向制御手段をも構成し、さらに、第1可変偏向手段による偏向量と第2可変偏向手段による偏向量と比例関係維持するように、かつ、第2可変偏向手段を通過した後の荷電粒子線ビームの走査点が第3可変偏向手段の中心部か若しくは少なくとも近傍となるように、第1及び第2可変偏向手段を制御する第2偏向制御手段をも構成する。
【0058】
次に、本実施形態の作用効果を説明する。
【0059】
(1)他のビーム偏向手段(偏向電磁石、四極電磁石)の小型化
上述したように、本実施形態の荷電粒子照射装置1においては、最上流側のX方向走査電磁石101でX方向にビームを曲げて位置をずらすように(ビーム通過範囲を大きくするように)偏向させた後に下流側のX方向走査電磁石102でX方向に上記ビームの位置のずれを小さくするように(ビーム通過範囲を縮小させる)偏向することにより、さらに下流側のY方向走査電磁石103内部にビーム走査点Qを位置させる。これにより、Y方向走査電磁石103におけるX方向ビーム通過範囲を縮小し、その走査点Q以降、Y方向走査電磁石103を通過し再度X方向にビーム軸通過範囲が拡大して所定の大きさとなった粒子線ビームを、コリメータ5dへと導入する。
【0060】
このように、本来ビーム収束機能のそれほど大きくない偏向電磁石や四極電磁石を用いる従来構造(特開平10-282300号公報)と異なり、ビーム収束機能の高いX方向走査電磁石102でX方向にビーム通過範囲を急激に縮小させるので、一旦X方向走査電磁石101でビームを曲げて位置をずらした後にビームの位置のずれを小さくする間におけるその輸送距離を小さくでき、またそのときのX方向ビーム通過範囲の最大値を小さくすることができる。これにより、上記従来構造に比べ、輸送経路に設けられる他の偏向手段としての偏向電磁石2Cの小型化(X方向における寸法の低減)を図ることができる。また、この結果自重による支持構造物(この例では回転ガントリー6)のたわみを低減できるので、たわみによるビーム照射精度の低下を防止できる。
【0061】
(2)コスト低減
この作用について、比較例を参照しつつ以下詳細に説明する。
【0062】
図5は、1台のX方向走査電磁石及び1台のY方向走査電磁石を備えた元来の荷電粒子照射装置にほぼ相当する本実施形態の比較例による荷電粒子照射装置の全体概略構造を表す概念的側面図であり、図6は、そのビームのX方向走査面内ビーム軸通過範囲及びビーム通過範囲を模式的に示したものであり、それぞれ前述の図2及び図1にそれぞれ相当する図である。なお、図5及び図6において、上記実施形態による荷電粒子照射装置1と同等の部分には「′」を添字として追加した符号を付して表し、適宜説明を省略する。
【0063】
これら図5及び図6において、この比較例の荷電粒子照射装置1′では、走査電磁石として、X方向走査電磁石102′、Y方向走査電磁石103′の2つのみがこの順序で鉛直方向に近接配置され、さらにY方向走査電磁石103′の下流側に、散乱体104′が配置されている。
【0064】
ビームは、上記実施形態の荷電粒子照射装置1の照射方法と同様にして、X方向走査電磁石102′とY方向走査電磁石103′によって偏向され、ビーム中心軸が照射面で円形の軌跡を描く。すなわち、上流側のX方向走査電磁石102′の水平方向中心部(あるいは少なくともその近傍)にX方向における走査点Q′があり、この走査点Q′より下流側に行くにしたがって走査振幅が大きくなる。これによって、X方向走査電磁石102′の下流側に位置するY方向走査電磁石103’位置でのX方向ビーム通過範囲は比較的大きくならざるを得ず、Y方向走査電磁石103′のX方向における磁極間隔も大きくなる。
【0065】
このとき、一般に、走査電磁石の消費電力は磁場発生方向における磁極間隔の例えば2乗に比例することから、本比較例においては、Y方向走査電磁石103′の消費電力はX方向走査電磁石102′の例えば5倍程度にも達する。このため、X方向走査電磁石102′及びY方向走査電磁石103′2つを合計した消費電力は著しく増大する。
【0066】
また、電源容量についてみると、一般に、走査電磁石の電源容量は磁場発生方向における磁極間隔に例えば比例することから、Y方向走査電磁石103′を励磁するY方向走査電磁石電源107′に必要な電源容量は、X方向走査電磁石102′を励磁するX方向走査電磁石電源105′の例えば数倍(3〜5倍)程度にも達する。このため、Y方向走査電磁石電源107′については特に大型の電源が必要で、場合によっては通常の市場では入手できず別途製作する必要が生じ、設備コスト(初期コスト)が増大する。
【0067】
これに対して、本実施形態の荷電粒子照射装置1においては、上記比較例のX方向走査電磁石102′1個とY方向走査電磁石103′の合計2個から、X方向走査電磁石101、X方向走査電磁石102、Y方向走査電磁石103の合計3個と1個増える。しかしながら、本願発明者等の検討によれば、本実施形態の荷電粒子照射装置1においては、前述したように最下流側のY方向走査電磁石103におけるX方向ビーム通過範囲の縮小によって磁極間隔を上記比較例のY方向走査電磁石103′の例えば1/2程度にまで低減できることがわかった。この結果、比較例のY方向走査電磁石103′の約1/3程度にまでY方向走査電磁石103の消費電力を低減することができる。一方、上記比較例と比べた場合の新たな追加分となるX方向走査電磁石101は前述のように偏向量が小さく極めて小型のもので足りることから、X方向走査電磁石101,102の消費電力を合計しても上記比較例のX方向走査電磁石102′の消費電力の2倍には至らない。この結果、X方向走査電磁石101、X方向走査電磁石102、Y方向走査電磁石103の3個の合計消費電力を、上記比較例におけるX方向走査電磁石102′及びY方向走査電磁石103′の2個の合計消費電力よりも例えば1/2程度にまで小さくでき、運転コスト(ランニングコスト)を低減することができる。
【0068】
また、電源容量についてみると、本願発明者等の検討によれば、本実施形態の荷電粒子照射装置1においては、前述したように最下流側のY方向走査電磁石103におけるX方向ビーム通過範囲の縮小によって磁極間隔が低減されることから、上記比較例のY方向走査電磁石103′の励磁用の電源107′の60%程度までY方向走査電源107の電源容量を低減することができ、コストを著しく低減できる。これに対して、上記比較例と比べて新たな追加分となるX方向走査電磁石101は偏向量が小さく極めて小型のもので足りることから、X方向走査電磁石用に増加すべき電源容量は上記比較例のX方向走査電源10′の電源容量の1/3程度で足りる。またX方向走査電磁石102用に使用される電源容量については、X方向走査電磁石102位置でのビーム通過範囲が、比較例のX方向走査電磁石102′よりもX方向に大きくなっており、X方向走査電磁石磁場の有効磁場範囲を広げる必要がある。しかしながらこの場合、磁極面に平行な方向(X方向)への伸長であることから、その電源容量の増加は磁極間隔が大きくした場合ほど多くなく、上記比較例のX方向走査電源10′と大差ない程度のもので足りる。これらの結果、総合的に見て、3個の走査電磁石101,102,10の励磁用に用いる電源105,107に必要な設備コスト(初期コスト)は、上記比較例の2個の走査電磁石102′,103′の励磁用に用いる電源105,107に必要な設備コストに比べて、少なくともほぼ等しいか若しくは小さくすることができることがわかった。
【0069】
以上のように、本実施形態の荷電粒子照射装置1においては、1台のX方向走査電磁石及び1台のY方向走査電磁石を備えた比較例に比べ、運転コスト(ランニングコスト)を低減することができ、また設備コストを少なくともほぼ等しいか若しくは小さくできる。したがって、トータルで見ると、比較例よりも確実にコスト低減を図ることができる。
【0070】
(3)その他
1.X方向走査電源共通化による効果
上述したように、本発明においてはX方向走査電磁石101による偏向量とX方向走査電磁石102による偏向量と比例関係維持する必要がある。本実施形態では、2つのX方向走査電磁石101,102を互いに共通のX方向走査電源105に対して直列に接続していることにより、それぞれの走査電磁石101,102によるビーム偏向量を特に調節を行わなくても容易に比例関係にすることができる。したがって、運転が簡単になると共に、ずれによる誤照射の可能性を低減することができる。
【0071】
2.散乱体の配置位置による効果
一般に、ビーム走査とビーム径拡大を組み合わせる横方向ビーム拡大方法では、散乱体とビーム走査位置が離れるほど、照射対象へ到達する照射ビームの質が悪化する。例えば2つの走査電磁石を用いる場合、それら走査電磁石の上流又は下流に散乱物を配置すると、一方の走査電磁石が散乱物から遠くなり、照射ビームの角度分布広がりが大きくなり、横方向ビーム整形の為のコリメータでビームを切り出した際の切れ(半影)が大きくなって、照射性能が悪化する。本実施形態においては、図1に示すように、図6の上記比較例に比べてX方向走査点Qと散乱体104との間の距離を小さくできることから、散乱体104上でのビーム通過範囲を小さくできる。これにより、照射対象Pの照射面位置でのビーム角度分布広がりを小さくできるので、コリメータ5dでビームを横方向に切り出した場合の、横方向ビーム強度分布の切れ(=照射対象内線量分布の半影)を小さくでき、照射精度を向上できる効果がある。また、大きな範囲を走査し、広い領域を照射する照射装置を実現することができる。
【0072】
またこのとき、本実施形態では、X方向走査点QをY方向走査磁石103の中心でなく散乱体104の中心部又はその近傍に来るように、X方向走査電磁石101,102の偏向量の比を調節することもできる。この場合、Y方向走査電磁石103の磁極間隔は若干大きくなるものの、上記した照射対象P内線量分布の半影をより小さくできる効果がある。
【0073】
なお、上記実施形態においては、散乱体104を、最下流側であるY方向走査電磁石103よりも下流側に配置したが、これに限られず、X方向走査電磁石102とY方向走査電磁石103との間に設けても良い。以下、この変形例について、図7及び図8により説明する。
【0074】
図7は、本変形例による荷電粒子照射装置のX方向走査面内ビーム軸通過範囲及びビーム通過範囲を模式的に示した図であり、上記実施形態の図1に相当する図である。なお、この図7において、上記実施形態による荷電粒子照射装置1と同等の部分には同一の符号を付し、適宜説明を省略する。
【0075】
図7において、この変形例の荷電粒子装置では、散乱体104が、X方向走査電磁石102の下流側でY方向走査電磁石103の上流側に(言い換えればX方向走査電磁石102とY方向走査電磁石103との間に)配置されている。その他の点は、上記実施形態の荷電粒子装置1とほぼ同様である。
【0076】
ビームは、上記実施形態の荷電粒子照射装置1の照射方法と同様にしてX方向走査電磁石101,102とY方向走査電磁石103によって偏向される。またこのとき、X方向走査電磁石102とY方向走査電磁石103との間で散乱体104によって散乱され、ビームを構成する粒子のXY面内分布がビーム中心軸の周りにガウス分布状に広がり下流に進むに従ってビーム強度分布が広がる。そして、最終的にビーム中心軸は照射対象Pの照射面で円形の軌跡を描く。
【0077】
本変形例においても、上記実施形態と同様、本発明の基本的な効果である(1)他のビーム偏向手段の小型化及び(2)コスト低減の効果を得ることができる。
【0078】
すなわち、最上流側のX方向走査電磁石101でX方向にビームを曲げて位置をずらすように偏向させた後に下流側のX方向走査電磁石102でX方向にビームの位置のずれを小さくするように偏向させ、さらに散乱体4を介して下流側のY方向走査電磁石103内部にビーム走査点Qを位置させることにより、Y方向走査電磁石103におけるX方向ビーム通過範囲を縮小する。これにより、本来ビーム収束機能のそれほど大きくない偏向電磁石や四極電磁石を用いる従来構造に比べ、偏向電磁石2Cの小型化を図ることができる。またこれにより、1台のX方向走査電磁石及び1台のY方向走査電磁石を備えた元来の構造に比べ、運転コストを低減することができ、また設備コストを少なくともほぼ等しいか若しくは小さくでき、トータルで見てコスト低減を図ることができる。
【0079】
なお、散乱体ユニットがY方向走査電磁石3よりも上流にあるので、Y方向走査電磁石3を通過する際のビーム通過範囲が上記実施形態の場合に比べて若干大きくなるが、全体的には、ほぼ上記実施形態と同程度の効果を得ることができる。特に、例えば散乱体がX方向走査電磁石とY方向走査電磁石の間にあることを前提とした従来の荷電粒子線ビーム照射装置(例えば特開平10−211292号公報)と比較した場合には、上記の効果は顕著である。
【0080】
図8は、1台のX方向走査電磁石及び1台のY方向走査電磁石を備えた上記特開平10−211292号公報による荷電粒子照射装置にほぼ相当する本実施形態の比較例による荷電粒子照射装置のビームのX方向走査面内ビーム軸通過範囲及びビーム通過範囲を模式的に示したものである。なお、図8において、上記実施形態による荷電粒子照射装置1と同等の部分には「″」を添字として追加した符号を付して表し、適宜説明を省略する。
【0081】
この図8において、この比較例の荷電粒子照射装置では、走査電磁石として、X方向走査電磁石102″、Y方向走査電磁石103″の2つのみがこの順序で鉛直方向に近接配置され、さらにそれら電磁石102″と電磁石103″との間に、散乱体104″が配置されている。この場合、先に図6を用いて前述した比較例と同様、X方向走査電磁石102″の水平方向中心部に走査点Q″があり、下流側に行くにしたがって走査振幅が大きくなるが、Y方向走査電磁石103″に入射する前に散乱体104″によってさらに走査振幅が拡大される。これによって、Y方向走査電磁石103″位置でのX方向ビーム通過範囲がかなり大きくなり、Y方向走査電磁石103″のX方向における磁極間隔もかなり大きくなる。
【0082】
これに対して、図7に示した本変形例の荷電粒子照射装置においては、図8と比較して分かるように、最下流側のY方向走査電磁石103におけるX方向ビーム通過範囲の縮小によって磁極間隔を上記比較例のY方向走査電磁石103″に比べて大幅に低減できる。したがって、上記(1)(2)で述べた効果を得ることができることがわかる。すなわち、散乱体104をX方向走査電磁石102とY方向走査電磁石103との間に配置することを前提とした場合においても、Y方向走査電磁石103の磁極間隔を小さくすることができ、コストダウンや他の偏向手段小型化という効果を図ることができる。
【0083】
また本変形例においては、上記に加え、以下のような効果もある。
【0084】
すなわち、図7と図1とを比較してわかるように、本変形例では、散乱体104と照射面との距離が図1に示した実施形態に比べて大きい。これにより、照射面で同じビーム強度分布を形成するために必要な散乱量は小さくなるので、散乱体104を上記実施形態に比べて薄くすることができる。この結果、散乱体104におけるビームのエネルギー損失が小さくなり、照射面に到達するビームのエネルギーが高くなる。したがって、照射対象P内でのビームの到達深度が深くなり、上記実施形態よりも深い標的に対して照射を行うことができる。
【0085】
なお、以上は、3台の走査電磁石101,102,103と散乱体104とを備えた構成を用いた照射法を例にとって説明したが、散乱体の有無は本発明の本質的ではなく、散乱体104の有無に関係なく前述の発明本来の(1)(2)の効果が得られるのは言うまでもない。
【0086】
また、以上は、2台のX方向走査電磁石101,102を、単一のX方向走査電源105で励磁した場合を例にとって説明したが、これにも限られず、2台のX方向走査電磁石101,102の電源を別々(第1操作電磁石としてのX方向走査電磁石101を励磁する第1励磁電源と、第2操作電磁石としてのX方向走査電磁石102を励磁する第2励磁電源)にしても良い。この場合、各励磁電流を、増幅率を変えることで調整し、これによって走査点位置を所望に調整することができる。したがって、X方向走査電磁石101及びX方向走査電磁石102の間の機器の条件変更や、磁石の設計誤差があった場合にも、走査点がずれないように調節することができ、ビームのY方向走査電磁石103磁極への衝突回避や照射精度の維持を実現することができる。またこの際、それぞれの電源を共通の電源制御手段(単一の信号源)で制御するようにすれば、2つのX方向走査電磁石101,102の位相調節を行う必要がなく、運転が簡単になると共に、位相ずれによる誤照射の可能性を低減することができる。
【0087】
さらに、以上は、ビーム中心軌道が照射面で円形となるように走査する場合を例にとって説明したが、これに限られず、例えばテレビ同様にスキャンさせるなど、任意の軌跡を描かせても良い。この場合でも、2台のX方向走査電磁石101,102によるビーム偏向量を比例関係にすることにより、X方向走査点位置Qは変化せず、本実施形態と同様の効果を得ることができる。
【0088】
さらに、以上は、本発明を、照射装置を回転させて照射方向を変更する回転ガントリーに適用した場合を例にとって説明したが、これに限られるものではなく、照射方向が固定の照射装置に対しても適用できる。この場合、一般にX方向走査電磁石101と102との間にビームを偏向する機器を設けないが、本実施形態と同様の効果を得ることができる。
【0089】
【発明の効果】
本発明によれば、ビーム収束機能の高い第2走査電磁石を用いてX方向にビームの位置のずれを小さくするように急激に偏向させるので、一旦第1走査電磁石でビームを曲げて位置をずらすように偏向させた後にビームの位置のずれを小さくするように偏向させるときのビーム通過範囲の最大値を小さくすることができる。したがって、それらの間に通常設けられる偏向電磁石や四極電磁石等の他のビーム偏向手段の小型化を図ることができる。また、第1〜第3走査電磁石3個の合計消費電力を、元来のX方向及びY方向走査電磁石2個の合計消費電力よりも例えば1/2程度にまで小さくして運転コスト(ランニングコスト)を低減できるとともに、第1〜第3走査電磁石3個の励磁用電源に必要な設備コスト(初期コスト)を、元来のX方向及びY方向走査電磁石2個の励磁用電源に必要な設備コストに比べて、少なくともほぼ等しいか若しくは小さくすることができるので、コスト低減を図ることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態による荷電粒子照射装置の励磁制御により実現される荷電粒子ビームの通過挙動を表す説明図である。
【図2】本発明の一実施形態による荷電粒子照射装置の全体概略構造を表す概念的側面図である。
【図3】X方向走査電磁石電源及びY方向走査電磁石電源によりX方向走査電磁石及びY方向走査電磁石に供給する励磁電流の時間変化の一例を表す図である。
【図4】3台の走査電磁石によるビーム偏向に起因する、照射面でのビーム中心軸移動量の時間変化の一例を表す図である。
【図5】1台のX方向走査電磁石及び1台のY方向走査電磁石を備えた元来の荷電粒子照射装置にほぼ相当する本実施形態の比較例による荷電粒子照射装置の全体概略構造を表す概念的側面図である。
【図6】ビームのX方向走査面内ビーム軸通過範囲及びビーム通過範囲を模式的に示したものである。
【図7】散乱体を、X方向走査電磁石とY方向走査電磁石との間に設けた変形例による荷電粒子照射装置のX方向走査面内ビーム軸通過範囲及びビーム通過範囲を模式的に示した図である。
【図8】1台のX方向走査電磁石及び1台のY方向走査電磁石を備えた比較例による荷電粒子照射装置のビームのX方向走査面内ビーム軸通過範囲及びビーム通過範囲を模式的に示したものである。
【符号の説明】
101 X方向走査電磁石(第1走査電磁石、第1可変偏向手段)
102 X方向走査電磁石(第2走査電磁石、第2可変偏向手段)
103 Y方向走査電磁石(第3走査電磁石、第3可変偏向手段)
104 散乱体
10 X方向走査電源(単一の励磁電源、第1偏向制御手段、第2偏向制御手段)
P 照射対象(患部)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a medical charged particle beam irradiation apparatus that irradiates a charged particle beam to an irradiation target, and in particular, a medical charged particle irradiation apparatus that expands an irradiation range by scanning a beam using a plurality of scanning electromagnets. About.
[0002]
[Prior art]
Medical charged particle irradiation equipment that treats cancer, tumors, etc. by irradiating a patient's affected part with a charged particle beam such as protons or carbon ions is used to generate charged particles generated by an ion source and accelerated by an accelerator such as a synchrotron. Then, after the irradiation field is formed by the irradiation field forming means in accordance with the shape of the affected part, the affected part of the patient lying on the patient bed is irradiated (for example, see Non-Patent Document 1).
[0003]
The irradiation field forming means adjusts the dose distribution by forming the irradiation field of the charged particle beam according to the three-dimensional shape of the irradiation target (affected part), and the traveling direction of the charged particle beam (the depth direction of the irradiation target). , The Z axis), a lateral beam forming unit for shaping an irradiation range in a plane perpendicular to the Z axis (XY plane having the X axis and the Y axis), and an irradiation range in the traveling direction of the charged particle beam (Z axis) It is comprised from the range adjustment part which forms.
[0004]
The range adjustment unit adjusts the energy of the charged particle beam according to the depth of the irradiation target, and applies the charged particle beam to the shape of the irradiation target in the traveling direction (depth direction) of the charged particle beam. It is something to be shaped.
[0005]
The transverse beam forming unit expands the charged particle beam in a plane (XY plane) direction perpendicular to the traveling direction of the charged particle beam, and then cuts the expanded charged particle beam with a collimator to charge the charged particle beam. The charged particle beam is shaped according to the shape of the irradiation target on a plane perpendicular to the traveling direction of the particle beam. The beam expansion at this time includes a method of scanning the beam, a method of expanding the beam diameter, or a method of combining them.
[0006]
In the method of scanning a beam, in general, the two beam deflecting means are often arranged so that their deflecting surfaces are perpendicular to each other. Particularly, in the irradiation of a high energy beam such as a proton or heavy particle, the beam An electromagnet (scanning electromagnet) is often used as the deflecting means. For example, an X-direction scanning electromagnet that has a magnetic pole surface perpendicular to the Y direction and generates a magnetic field in the Y direction and deflects the beam in the X direction is disposed on the upstream side, and a magnetic pole surface perpendicular to the X direction is provided. A Y-direction scanning electromagnet that generates and deflects the beam in the Y-direction is disposed downstream. In this case, the X-direction position of the beam is gradually deflected in the upstream X-direction scanning electromagnet and changes linearly after passing through the electromagnet, so that the X-direction scanning point is near the center of the upstream X-direction scanning electromagnet. Thus, the Y-direction scanning point of the beam is approximately near the center of the downstream Y-direction scanning magnet.
[0007]
In such a configuration, in the downstream Y-direction scanning electromagnet, the beam scanning range by the upstream X-direction scanning magnet increases the beam passage range in the X-direction compared to the upstream side, and as a result, the X-direction that is the magnetic field generation direction. It is necessary to increase the magnetic pole spacing at. Here, in the scanning electromagnet, since the magnetic resistance increases as the magnetic pole interval in the magnetic field generation direction increases, the power consumption increases in proportion to the power of the magnetic pole interval (for example, the square). For this reason, the power consumption in the Y-direction scanning electromagnet is remarkably increased due to the increase in the magnetic pole spacing in the X direction as described above, and the operating cost (running cost) is increased. In addition, for the power source for exciting the scanning electromagnet, the power source capacity represented by the product of the maximum voltage and the maximum current is usually increased in proportion to the magnetic pole generation in the magnetic field generation direction, for example. In the configuration as described above, it is necessary to prepare a very large power source capacity as an excitation power source for the Y-direction scanning electromagnet, which increases the equipment cost (initial cost).
[0008]
Accordingly, conventionally, the X-direction scanning electromagnet and the Y-direction scanning electromagnet are arranged at a large distance, and the deflection electromagnet and the quadrupole electromagnet provided between these two scanning electromagnets in the X-direction. An apparatus that uses a convergence function to reduce the beam passage range in the X direction in the vicinity of the downstream Y-direction scanning magnet has been proposed (see, for example, Patent Document 1).
[0009]
In this prior art, the X-direction scanning electromagnet deflects the beam in the X direction and deflects it so as to shift the position, and then uses the beam converging function of the deflecting electromagnet or quadrupole electromagnet to pass the beam in the X direction while passing through it. The beam is gradually deflected so as to reduce the positional deviation, and once focused in the vicinity of the downstream Y-direction scanning electromagnet. Thereby, the beam scanning point is substantially moved to the focal position (in other words, in the vicinity of the Y-direction scanning electromagnet), and the beam passing range in the X direction by the downstream Y-direction scanning electromagnet is reduced. Then, after the focal point, the particle beam which has passed through the Y-direction scanning electromagnet and whose beam passing range is increased again in the X direction is introduced into the collimator.
[0010]
[Non-Patent Document 1]
“Review of Scientific Instruments Vol.64 No.8 (August 1993)” (p. 2055-2122)
[Patent Document 1]
Japanese Patent Laid-Open No. 10-282300 (paragraph numbers [0011], [0012] and FIG. 7)
[Problems to be solved by the invention]
In the above prior art, by using the X-direction beam converging function of the deflection electromagnet and the quadrupole electromagnet provided between the X-direction scanning electromagnet and the Y-direction scanning electromagnet, the focus is once set near the downstream Y-direction scanning electromagnet. The beam passing range in the direction scanning electromagnet is reduced. As a result, an increase in power consumption and an increase in excitation power source capacity due to an increase in the magnetic pole spacing in the X direction in the Y direction scanning electromagnet can be prevented, and the cost can be reduced.
[0013]
However, since the beam converging function of the deflecting electromagnet or the quadrupole electromagnet is not so large, the charged particle beam which has been deflected so that the beam is once deflected by the X-direction scanning electromagnet is shifted in reverse. While the beam is deflected so as to be reduced, the maximum value of the beam passing range in the X direction becomes relatively large along with the size of the transport distance, and accordingly, the beam passing range in the X direction by these deflecting magnets and quadrupole electromagnets is increased. Become. That is, although the scanning electromagnet can be reduced in size, the other beam deflection means (in this example, a quadrupole electromagnet or a large-sized deflection electromagnet) is increased in the X direction. For this reason, the deflection of the support structure increases due to an increase in their own weight (particularly, the tendency becomes remarkable in the rotating gantry as in this known example), and as a result, it is difficult to improve the beam irradiation accuracy.
[0014]
An object of the present invention is to provide a charged particle irradiation apparatus for medical use capable of reducing the cost without increasing the size of other beam deflecting means.
[0015]
[Means for Solving the Problems]
(1) In order to achieve the above object, the present invention provides a charged particle beam irradiation apparatus for medical use that irradiates an affected part of a patient with charged particles. An incident charged particle beam is irradiated in a plane perpendicular to the beam traveling direction. A first scanning electromagnet that bends the beam in one direction to deflect the beam, and a charged particle beam that is provided downstream of the first scanning electromagnet and is deflected by the first scanning electromagnet, Contrary to the deflection by the first scanning electromagnet Small deviation of the beam position And focus on the downstream side like To the one direction A second scanning electromagnet that deflects, and a second scanning electromagnet provided downstream from the second scanning electromagnet, To the one direction Deflected The passing range in the one direction is reduced And a third scanning electromagnet that deflects the charged particle beam in a direction perpendicular to the one direction in a plane perpendicular to the beam traveling direction.
[0016]
In the present invention, for example, the first scanning electromagnet deflects the beam so that the position is shifted by bending the beam in the X direction, for example, and then the second scanning electromagnet on the downstream side deflects the beam in the X direction so as to reduce the displacement. Thus, for example, it is possible to focus once in the vicinity of the third Y-direction scanning electromagnet further downstream. Thereby, the beam scanning point is substantially moved to the focal position (in other words, in the vicinity of the third scanning electromagnet), the beam passing range in the X direction in the downstream third scanning electromagnet is reduced, and the third scanning electromagnet after the focal point. Then, the beam passing range is expanded again in the X direction and the particle beam having a predetermined size is introduced into the collimator.
[0017]
At this time, the beam passing range is drastically reduced in the X direction by using a second scanning electromagnet having a high beam deflection function without using a deflection electromagnet or a quadrupole electromagnet which is not so large as in the conventional structure. Therefore, once the beam is bent by the first scanning magnet and the position is shifted, the transport distance can be reduced while the beam position deviation is reduced, and the maximum value of the beam passing range at that time can be reduced. Can do. Therefore, it is possible to reduce the size of other beam deflecting means such as a deflection electromagnet or a quadrupole electromagnet normally provided between them.
[0018]
On the other hand, at this time, in the present invention, the first scanning electromagnet (X direction), the second scanning electromagnet (X direction), the third scanning electromagnet, for example, from the original two in total, for example, one X direction scanning electromagnet and Y direction scanning electromagnet. Since the number of scanning electromagnets (in the Y direction) is increased by one, the power consumption and the power supply capacity corresponding to that increase are added separately.
[0019]
However, regarding power consumption, for example, in the above-described original structure in which one X-direction scanning electromagnet and one Y-direction scanning electromagnet are arranged, the downstream Y-direction scanning electromagnet responds to an increase in the X-direction beam passage range. The magnetic pole spacing in the X direction, which is the magnetic field generation direction, is large. As described above, since the power consumption is proportional to, for example, the square of the magnetic pole interval in the magnetic field generation direction, the power consumption of the Y-direction scanning magnet reaches, for example, about five times that of the X-direction scanning magnet. For this reason, the total power consumption of the X direction scanning electromagnet and the Y direction scanning electromagnet increases significantly.
[0020]
In the present invention, since the magnetic pole interval can be reduced to, for example, about 1/2 of the original structure by reducing the X-direction beam passing range in the third scanning electromagnet on the most downstream side as described above, the original Y-direction scanning is performed. The power consumption of the third scanning electromagnet can be reduced to about 1/3 of the electromagnet. On the other hand, since the first scanning electromagnet as a new addition has a small deflection amount and is extremely small, it is sufficient to perform the original X-direction scanning even if the power consumption of the first and second scanning electromagnets is totaled. It does not reach twice the power consumption of electromagnets. As a result, the total power consumption of the three first to third scanning electromagnets can be reduced to, for example, about ½ the total power consumption of the original two X-direction and Y-direction scanning electromagnets. Cost) can be reduced.
[0021]
Further, regarding the power source capacity, in the above-described original structure in which one X-direction scanning electromagnet and one Y-direction scanning electromagnet are arranged, the power source capacity is proportional to the magnetic pole interval in the magnetic field generation direction as described above. Therefore, the power supply capacity necessary for the excitation power source for the Y-direction scanning magnet reaches, for example, several times (3 to 5 times) the excitation power source for the X-direction scanning magnet. For this reason, a particularly large power source is required for the Y-direction scanning electromagnet, and in some cases, it is not available in the normal market and needs to be manufactured separately, which increases the equipment cost (initial cost).
[0022]
In the present invention, as described above, the magnetic pole spacing is reduced by reducing the X direction beam passing range in the third scanning electromagnet on the most downstream side, so that the third is about 60% of the original Y direction scanning electromagnet. The power supply capacity of the excitation power source for the scanning electromagnet can be reduced, and the cost can be significantly reduced. On the other hand, since the first scanning electromagnet, which is a new addition, has a small deflection amount and is extremely small, the power capacity used for the first scanning electromagnet is the power supply of the original X-direction scanning electromagnet. The capacity of about 1/3 of the capacity is sufficient, and the power capacity used for the second scanning electromagnet is sufficient so as not to be much different from the original X-direction scanning electromagnet. As a result, overall, the equipment cost (initial cost) required for the excitation power source for the three first to third scanning magnets can be reduced to the original excitation power source for the two X and Y direction scanning magnets. It can be at least approximately equal or smaller than the required equipment cost.
[0023]
As described above, in the present invention, the cost can be reduced without increasing the size of the other beam deflecting means.
[0024]
(2) In order to achieve the above object, the present invention is also directed to a medical charged particle irradiation apparatus that irradiates an affected part of a patient with charged particles, and the incident charged particle beam is irradiated in a plane perpendicular to the beam traveling direction. A first scanning electromagnet that bends the beam in one direction to deflect the beam, and a charged particle beam that is provided downstream from the first scanning electromagnet and is deflected by the first scanning electromagnet, Contrary to the deflection by the first scanning electromagnet Small deviation of the beam position And focus on the downstream side like To the one direction A second scanning electromagnet that deflects, and a second scanning electromagnet provided downstream from the second scanning electromagnet, To the one direction Deflected The passing range in the one direction is reduced A third scanning electromagnet that deflects the charged particle beam in a direction perpendicular to the one direction in a plane perpendicular to the beam traveling direction, a deflection amount by the first scanning electromagnet, and the second scanning electromagnet Deflection amount by The Proportional relationship In First deflection control means for controlling the first and second scanning electromagnets to maintain the first and second scanning electromagnets.
[0025]
By maintaining a proportional relationship between the amount of deflection by the first scanning electromagnet and the amount of deflection by the second scanning electromagnet, the beam bends to increase the misalignment → the misalignment is reduced → the focal point near the third scanning electromagnet. Scanning can be performed easily and reliably while maintaining the behavior.
[0026]
(3) In the above (1) or (2), preferably, a scatterer that scatters a charged particle beam is provided downstream of the third scanning magnet.
[0027]
When a scatterer is provided, the greater the distance from the beam scanning point to the scatterer, the higher the possibility that various beams will enter the scatterer from a wider range in more directions. As a result of the ambiguity of the beam outline, the spread of the angular distribution of the irradiation beam becomes large, and the dose distribution within the irradiation target after the beam is cut out by the collimator (penumbra) becomes large, making it difficult to improve the irradiation accuracy.
[0028]
In the present invention, as described in (1) above, the beam scanning point is substantially moved to the vicinity of the third scanning electromagnet that is the focal position, so by providing a scatterer downstream from the third scanning electromagnet, The distance between the scanning point and the scatterer can be reduced. This can reduce the penumbra of the intra-irradiation dose distribution and improve the irradiation accuracy. In addition, an irradiation apparatus that scans a large area and irradiates a wide area can be realized. In particular, when the beam scanning point is set near the scatterer, the penumbra of the intra-irradiation dose distribution can be further reduced, and the irradiation accuracy can be further improved.
[0029]
(4) In the above (1) or (2), and preferably, a scatterer that scatters a charged particle beam is provided downstream from the second scanning electromagnet and upstream from the third scanning electromagnet.
[0030]
By disposing the scatterer upstream of the third scanning electromagnet in the Y direction, the distance between the scatterer and the irradiation surface is increased, and the amount of scattering necessary to form the same beam intensity distribution on the irradiation surface is reduced. be able to. Thereby, the thickness of a scatterer can be made thin and the energy loss of the beam in a scatterer can be made small. As a result, the energy of the beam that reaches the irradiation surface increases, so that the arrival depth of the beam within the irradiation target becomes deep, and irradiation can be performed on a deeper target.
[0031]
(5) In the above (2), preferably, the first deflection control means includes a single excitation power source common to the first scanning electromagnet and the second scanning electromagnet, and the first scanning electromagnet and the second scanning electromagnet. In the scanning electromagnet, each excitation coil is connected in series to the single excitation power source.
[0032]
Thereby, the beam deflection amounts by the first scanning electromagnet and the second scanning electromagnet can be easily made proportional without any particular adjustment. Therefore, the operation is simplified and the possibility of erroneous irradiation due to deviation can be reduced.
[0033]
(6) In the above (2), preferably, the first deflection control means includes a first excitation power source and a second excitation power source that supply power to the first scanning magnet and the second scanning magnet, respectively. Power supply control means common to the first and second excitation power supplies is provided.
[0034]
In the present invention, the excitation power supplies for the first scanning electromagnet and the second scanning electromagnet are separately provided, so that each excitation current is adjusted by changing the amplification factor, thereby adjusting the scanning point position as desired. can do. Therefore, even when there is a change in the conditions of the equipment between the first scanning electromagnet and the second scanning electromagnet, or when there is a magnet design error, the scanning point can be adjusted so as not to shift, and the third scanning electromagnet of the beam It is possible to avoid collision with the magnetic pole and maintain irradiation accuracy. At this time, since the first and second excitation power sources are controlled by a single signal source called the second power source control means, it is not necessary to adjust the phase of the first and second scanning magnets, and the operation can be performed. In addition to simplification, the possibility of erroneous irradiation due to phase shift can be reduced.
[0037]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[0038]
The charged particle irradiation apparatus for medical use of this embodiment is applied to a radiation therapy apparatus known as this type, for example, a proton beam therapy apparatus. Although detailed illustration is omitted, in this proton beam treatment apparatus, a charged particle (for example, proton) beam generated by an injector is transported at a low energy beam as in, for example, the one described in Japanese Patent Laid-Open No. 2001-353228. After passing through the apparatus, it is incident on a synchrotron which is a main accelerator, and is accelerated to the energy required for treatment (usually 100 to 200 MeV) by this synchrotron. The charged particle beam emitted from the synchrotron is incident on the charged particle irradiation apparatus (rotation irradiation apparatus) of the present embodiment.
[0039]
FIG. 2 is a conceptual side view showing the overall schematic structure of the charged particle irradiation apparatus according to the present embodiment. Hereinafter, the traveling direction of the charged particle beam (the depth direction of the irradiation target) is the Z-axis direction (Z direction), and one direction in a plane perpendicular to this is the X direction (in FIG. 2). In the part of the emission nozzle 5 (described later) The direction perpendicular to the X direction in the plane is the Y direction (in FIG. 2). In the part of the emission nozzle 5 (described later) The direction perpendicular to the paper surface).
[0040]
In FIG. 2, the charged particle irradiation apparatus 1 of the present embodiment includes a deflection electromagnet 2A, 2B, 2C for beam transportation, a quadrupole electromagnet 3A, 3B, 3C for beam convergence, a vacuum particle chamber 4, an exit nozzle 5, and A rotating gantry 6 to which an X-direction scanning electromagnet (first scanning electromagnet) 101 is attached and a motor (not shown) for rotating the rotating gantry 6 around a predetermined rotation axis k are provided. By rotating the rotating gantry 6 about the rotation axis k, the irradiation direction can be changed.
[0041]
The exit nozzle 5 is disposed on the X-direction scanning electromagnet (second scanning electromagnet) 102, the Y-direction scanning electromagnet (third scanning electromagnet) 103 disposed on the downstream side thereof, and further on the downstream side thereof. And a scatterer unit (scatterer) 104 that can change the thickness of the scatterer according to conditions.
[0042]
The X-direction scanning electromagnet 102 generates a magnetic field in the Y direction together with the X-direction scanning electromagnet 101 provided outside the emission nozzle 5, and emits a beam in the same plane as the above-described deflection electromagnets 2A, 2B, 2C (with the amount of deflection). (Variably) deflect. At this time, the X-direction scanning electromagnet 101 is deflected so as to shift the position by bending the beam, and the X-direction scanning electromagnet 102 is deflected so as to reduce the deviation of the beam position caused by the X-direction scanning electromagnet 101. These X direction scanning electromagnets 10 1 , 10 2 These excitation coils (not shown) are connected in series to a common X-direction scanning electromagnet power source 105 via power supply lines 106 a and 106 b, and are excited by electric power from the X-direction scanning electromagnet power source 105.
[0043]
The Y direction scanning electromagnet 103 generates a magnetic field in the X direction and deflects the beam in the Y direction (variable amount of deflection). An excitation coil (not shown) of the Y-direction scanning electromagnet 103 is connected to a Y-direction scanning electromagnet power source 107 via a power line 108 and is excited by electric power from the Y-direction scanning electromagnet power source 107.
[0044]
Next, operation | movement of the charged particle irradiation apparatus 1 of this embodiment of the said structure is demonstrated.
[0045]
The beam input to the charged particle irradiation device 1 is transported to the downstream side after the trajectory is bent by the deflecting electromagnets 2 </ b> A to 2 </ b> C and the betatron oscillation is adjusted by the quadrupole electromagnets 3 </ b> A to 3 </ b> C. After exiting from the vacuum chamber 4 through the vacuum window into the air, and passing through the air while being molded by each device in the emission nozzle 5, the irradiation target P is irradiated.
[0046]
In such a beam transport process, the beam passes between the magnetic poles of the X-direction scanning electromagnets 101 and 102, thereby deflecting the electromagnet. 2C Is deflected in the X direction within the same plane, and further the Y direction scanning electromagnet 103 Is deflected in the Y direction by passing between the magnetic poles.
[0047]
FIG. 3 is a diagram illustrating an example of a temporal change in excitation current supplied to the X-direction scanning electromagnets 101 and 102 and the Y-direction scanning electromagnet 103 by the X-direction scanning electromagnet power source 105 and the Y-direction scanning electromagnet power source 107 described above. 4 is a diagram illustrating an example of a temporal change in the amount of movement of the beam center axis on the irradiation surface due to beam deflection by the three scanning electromagnets 101, 102, and 103. FIG.
[0048]
In FIG. 3, in this example, the X-direction scanning electromagnet power source 105 and the Y-direction scanning electromagnet power source 107 generate excitation currents such that their temporal changes are sinusoidal, respectively, in the X-direction scanning electromagnets 101 and 102 and the Y-direction scanning electromagnet 103. The X direction excitation current and the Y direction excitation current are 90 ° out of phase with each other.
[0049]
The central axis of the beam on the irradiation surface moves in the X direction by an amount proportional to the deflection amount of the X direction scanning electromagnets 101 and 102, and moves in the Y direction by an amount proportional to the deflection amount by the Y direction scanning electromagnet 103. As a result, as shown in FIG. 4, the sum of the beam center axis movement amount by the X direction scanning electromagnet 101 and the beam center axis movement amount by the X direction scanning electromagnet 102 (total X direction movement amount of the beam center axis) is Y The amplitude is substantially equal to the amount of movement of the beam center axis by the direction scanning electromagnet 103 (the amount of movement of the beam center axis in the Y direction) and the phase is shifted by 90 °. As a result, the beam center axis is controlled to draw a circular locus on the irradiation surface of the irradiation target P.
[0050]
At this time, the two X-direction scanning electromagnets 101 and 102 are connected in series to the X-direction scanning power source 105 as described above, so that the beam center axis is moved by the downstream X-direction scanning electromagnet 102. The amplitude of the amount becomes slightly larger (for example, 1.2 times) than the amplitude of the beam center axis moving amount by the Y direction scanning electromagnet 103, and the amplitude of the beam center axis moving amount by the upstream X direction scanning electromagnet 101 is always above. The proportional relationship (for example, 0.2 times) is maintained in the opposite direction to the amplitude of the beam center axis movement amount of the X-direction scanning electromagnet 102. In this way, the above-described X-direction total movement amount of the beam center axis and the Y-direction movement amount of the beam center axis movement amount are substantially equal.
[0051]
FIG. 1 is an explanatory diagram showing the passing behavior of a charged particle beam realized by the excitation control as described above, and schematically shows the beam axis passing range and the beam passing range in the X-direction scanning plane of the beam. is there. In addition, only the area | region of the magnetic pole of each scanning electromagnet 101,102,103 is shown collectively. In the portion where the X-direction scanning electromagnet 101 is located, the vertical direction of the paper is the X direction, and the direction perpendicular to the paper is the Y direction. In the portion where the X-direction scanning electromagnet 102 and the Y-direction scanning electromagnet 103 are located, the left-right direction on the paper surface is the X direction, and the direction perpendicular to the paper surface is the Y direction. An alternate long and short dash line m is the center of the beam passage range, and when the deflection amount of all the scanning electromagnets is 0, the central axis of the beam coincides with the alternate long and short dash line m. A dotted line n indicates a passing range of the beam center axis in the X-direction scanning plane, and a solid line p indicates a beam passing range that is larger by the beam diameter around the beam center axis.
[0052]
In FIG. 1 and FIG. 2 described above, the beam is first deflected with a relatively small amplitude so as to be bent and shifted by the X-direction scanning electromagnet 101 on the most upstream side, and as a result, the scanning amplitude (in other words, in some time unit). If the beam axis passing range and the beam diameter are taken into account, the beam passing range (the same applies hereinafter) gradually increases toward the downstream. Thereafter, the X-direction scanning electromagnet 102 disposed on the downstream side deflects the beam with a relatively large amplitude so as to reduce the deviation of the beam position (in a direction in which the beam passage range decreases). As a result, the scanning amplitude decreases again downstream from the X-direction scanning electromagnet 102.
[0053]
At this time, as described above, the amount of deflection by the two X-direction scanning electromagnets 101 and 102 is maintained in a proportional relationship, so that the focal point where the amplitude of the beam center axis becomes 0 can be obtained. This is a scanning point in the X direction. The scanning amplitude decreases toward the focal position Q, becomes 0 at the focal position Q, and then increases again downstream thereof. As the ratio of the deflection amounts of the two X-direction scanning electromagnets 101 and 102 maintained in the proportional relationship as described above is decreased, the X-direction scanning point (focal position) Q moves further to the downstream side. In this example, the ratio of deflection amounts is adjusted by, for example, appropriately selecting the length of the magnetic pole in the beam traveling direction of the electromagnet and the number of turns of the coil, and the scanning point Q is approximately the horizontal direction of the Y-direction scanning electromagnet 103 as shown in FIG. It is set in advance so as to come to the center (or at least the vicinity thereof). The magnetic pole spacing of the Y-direction scanning electromagnet 103 is set to be as narrow as possible as long as it does not interfere with the beam passage range.
[0054]
The beams deflected by the scanning electromagnets 101, 102, and 103 and having the scanning amplitude gradually increased again from the scanning point Q in the Y-direction scanning electromagnet 103 as described above are further downstream of the Y-direction scanning electromagnet 103. The light enters the scatterer 104 and is scattered by the scatterer provided in the scatterer 104. As a result, the XY in-plane distribution of the particles constituting the beam spreads in a Gaussian distribution around the beam center axis, and the beam intensity distribution spreads as it goes downstream. That is, the beam passing range is further expanded (see FIG. 1). At this time, the beam intensity distribution at the irradiation surface position is a two-dimensional Gaussian distribution substantially in the XY direction, and its standard deviation is adjusted to about two-thirds of the radius of the circle drawn by the beam central axis, and the Gaussian distribution is circular. As a result of scanning, the average integrated beam intensity distribution over one round of beam scanning on the irradiation surface of the irradiation target P is made uniform within a circular region of about 70% of the scanning circle around the scanning center. .
[0055]
The beam emitted from the scatterer 104 is attenuated at a predetermined rate by passing through the ridge filter 5a, and a distribution according to the thickness of the affected part is given to the energy of the beam. Thereafter, the dose of the beam is measured by the dose monitor 5b (the accumulated passage amount and intensity distribution may be measured. The dose absorbed by the irradiation target P is controlled based on these values) and further input to the bolus 5c. Thus, the energy distribution according to the lower shape of the affected area is obtained (in other words, the dose distribution in the depth direction within the irradiation target P is adjusted). Then, after being shaped into a horizontal shape of the affected area by the collimator 5d (in other words, the lateral dose distribution in the irradiation target P is adjusted), the irradiation target (patient's affected area) P is irradiated.
[0056]
In the above description, the X-direction scanning electromagnet 101 constitutes the first variable deflection means for variably deflecting the amount of incident charged particle beam in the X-direction according to the claims, and the X-direction scanning electromagnet 102. Comprises a second variable deflection means provided downstream of the first variable deflection means and variably deflects the amount of deflection of the charged particle beam deflected by the first variable deflection means in the X direction, and is configured in the Y direction. The scanning electromagnet 103 is provided on the downstream side of the second variable deflection unit, and constitutes a third variable deflection unit that variably deflects the amount of deflection of the charged particle beam deflected by the second variable deflection unit in the Y direction. To do.
[0057]
Also, the X direction scanning power supply 10 5 Constitutes a single excitation power source common to the first scanning electromagnet and the second scanning electromagnet, and the deflection amount by the first scanning electromagnet and the deflection amount by the second scanning electromagnet The Proportional relationship In The first deflection control means for controlling the first and second scanning electromagnets is also configured to maintain, and further, the deflection amount by the first variable deflection means and the deflection amount by the second variable deflection means, The Proportional relationship In The first and second variable deflection means are maintained so that the scanning point of the charged particle beam after passing through the second variable deflection means is at least near the center of the third variable deflection means. The second deflection control means for controlling is also configured.
[0058]
Next, the effect of this embodiment is demonstrated.
[0059]
(1) Miniaturization of other beam deflection means (deflection electromagnet, quadrupole electromagnet)
As described above, in the charged particle irradiation apparatus 1 of the present embodiment, the beam is deflected so as to bend the beam in the X direction by the X-direction scanning electromagnet 101 on the most upstream side (so as to increase the beam passage range). After that, the downstream X-direction scanning electromagnet 102 deflects the beam in the X direction so as to reduce the deviation of the beam position (reduces the beam passage range), thereby further entering the downstream Y-direction scanning electromagnet 103. The beam scanning point Q is positioned. As a result, the X-direction beam passing range in the Y-direction scanning electromagnet 103 is reduced, and after that scanning point Q, the beam passing area passes through the Y-direction scanning electromagnet 103 and expands again in the X direction to a predetermined size. The particle beam is introduced into the collimator 5d.
[0060]
Thus, unlike the conventional structure (Japanese Patent Laid-Open No. 10-282300) that uses a deflection electromagnet or a quadrupole electromagnet that originally does not have a very large beam focusing function, the X-direction scanning electromagnet 102 having a high beam focusing function causes a beam passing range in the X direction. , The transport distance can be reduced while the beam position deviation is reduced after the beam is bent by the X-direction scanning electromagnet 101 and the position of the X-direction beam passage range at that time is reduced. The maximum value can be reduced. Thereby, compared with the said conventional structure, size reduction (reduction of the dimension in a X direction) of the deflection electromagnet 2C as another deflection | deviation means provided in a transport path | route can be achieved. As a result, the deflection of the support structure (rotary gantry 6 in this example) due to its own weight can be reduced, so that the beam irradiation accuracy due to the deflection can be prevented from being lowered.
[0061]
(2) Cost reduction
This effect will be described in detail below with reference to a comparative example.
[0062]
FIG. 5 shows an overall schematic structure of a charged particle irradiation apparatus according to a comparative example of this embodiment, which is substantially equivalent to the original charged particle irradiation apparatus provided with one X-direction scanning electromagnet and one Y-direction scanning electromagnet. FIG. 6 is a conceptual side view, and FIG. 6 schematically shows a beam axis passing range and a beam passing range in the X-direction scanning plane of the beam, respectively corresponding to FIGS. 2 and 1 described above. It is. 5 and 6, parts equivalent to those in the charged particle irradiation apparatus 1 according to the above-described embodiment are denoted by reference numerals added with “′” as a subscript, and description thereof will be omitted as appropriate.
[0063]
5 and 6, in the charged particle irradiation apparatus 1 ′ of this comparative example, only two of the X-direction scanning electromagnet 102 ′ and the Y-direction scanning electromagnet 103 ′ are arranged in the vertical direction in this order as scanning electromagnets. Further, a scatterer 104 ′ is disposed downstream of the Y-direction scanning electromagnet 103 ′.
[0064]
The beam is deflected by the X-direction scanning electromagnet 102 ′ and the Y-direction scanning electromagnet 103 ′ in the same manner as the irradiation method of the charged particle irradiation apparatus 1 of the above embodiment, and the beam center axis draws a circular locus on the irradiation surface. That is, there is a scanning point Q ′ in the X direction at the horizontal center (or at least in the vicinity thereof) of the upstream X direction scanning electromagnet 102 ′, and the scanning amplitude increases toward the downstream side from this scanning point Q ′. . As a result, the X-direction beam passing range at the position of the Y-direction scanning electromagnet 103 ′ located downstream of the X-direction scanning electromagnet 102 ′ must be relatively large, and the magnetic pole in the X direction of the Y-direction scanning electromagnet 103 ′ must be increased. The interval also increases.
[0065]
At this time, the power consumption of the scanning electromagnet is generally proportional to, for example, the square of the magnetic pole spacing in the magnetic field generation direction. Therefore, in this comparative example, the power consumption of the Y-direction scanning electromagnet 103 ′ is that of the X-direction scanning electromagnet 102 ′. For example, it reaches about 5 times. For this reason, the total power consumption of the two X-direction scanning electromagnets 102 ′ and Y-direction scanning electromagnets 103 ′ increases remarkably.
[0066]
Further, regarding the power supply capacity, generally, the power supply capacity of the scanning magnet is proportional to, for example, the magnetic pole spacing in the magnetic field generation direction. Therefore, the power supply capacity required for the Y-direction scanning electromagnet power supply 107 ′ for exciting the Y-direction scanning electromagnet 103 ′. Of the X-direction scanning electromagnet power source 105 'for exciting the X-direction scanning electromagnet 102' reaches, for example, several times (3 to 5 times). For this reason, a particularly large power supply is required for the Y-direction scanning electromagnet power supply 107 ′. In some cases, the Y-direction scanning electromagnet power supply 107 ′ cannot be obtained in a normal market and needs to be manufactured separately, resulting in an increase in equipment cost (initial cost).
[0067]
On the other hand, in the charged particle irradiation apparatus 1 of the present embodiment, the X-direction scanning electromagnet 101, the X-direction from the total two of the X-direction scanning electromagnet 102 ′ and the Y-direction scanning electromagnet 103 ′ of the comparative example. The total number of scanning electromagnets 102 and Y-direction scanning electromagnets 103 is increased by one. However, according to the study by the inventors of the present application, in the charged particle irradiation apparatus 1 of the present embodiment, the magnetic pole interval is set to the above by reducing the X-direction beam passage range in the Y-direction scanning electromagnet 103 on the most downstream side as described above. It was found that the Y-direction scanning electromagnet 103 ′ of the comparative example can be reduced to, for example, about ½. As a result, the power consumption of the Y-direction scanning electromagnet 103 can be reduced to about 3 of the Y-direction scanning electromagnet 103 ′ of the comparative example. On the other hand, since the X-direction scanning electromagnet 101, which is a new addition compared with the comparative example, has a small deflection amount and is extremely small as described above, the power consumption of the X-direction scanning electromagnets 101 and 102 is reduced. Even if it adds up, it does not reach twice the power consumption of the X direction scanning electromagnet 102 'of the comparative example. As a result, the total power consumption of the X-direction scanning electromagnet 101, the X-direction scanning electromagnet 102, and the Y-direction scanning electromagnet 103 is reduced to the two X-direction scanning electromagnets 102 'and Y-direction scanning electromagnet 103' in the comparative example. For example, the total power consumption can be reduced to about ½, and the operating cost (running cost) can be reduced.
[0068]
Further, regarding the power source capacity, according to the study by the inventors of the present application, in the charged particle irradiation apparatus 1 of the present embodiment, as described above, the X-direction beam passing range of the Y-direction scanning electromagnet 103 on the most downstream side is as described above. Since the magnetic pole spacing is reduced by the reduction, the power capacity of the Y-direction scanning power source 107 can be reduced to about 60% of the excitation power source 107 ′ of the Y-direction scanning electromagnet 103 ′ of the comparative example, and the cost can be reduced. It can be significantly reduced. On the other hand, since the X-direction scanning electromagnet 101, which is a new addition compared with the comparative example, has a small amount of deflection and needs only a very small size, the power capacity to be increased for the X-direction scanning electromagnet is the above comparison. Example X-directional scanning power supply 10 5 About 1/3 of the power supply capacity of ′ is sufficient. Regarding the power capacity used for the X-direction scanning electromagnet 102, the beam passing range at the position of the X-direction scanning electromagnet 102 is larger in the X direction than the X-direction scanning electromagnet 102 'of the comparative example. It is necessary to expand the effective magnetic field range of the scanning magnet magnetic field. However, in this case, since the expansion is in the direction parallel to the magnetic pole surface (X direction), the increase in the power supply capacity is not as great as when the magnetic pole spacing is increased, and the X-direction scanning power supply 10 of the above comparative example is not. 5 A thing that is not much different from ′ is enough. As a result, the three scanning electromagnets 101, 102, and 10 are comprehensively viewed. 3 The equipment cost (initial cost) required for the power supplies 105 and 107 used for excitation of the power supply 105 is the power supply 105 used for excitation of the two scanning electromagnets 102 'and 103' of the comparative example. 107 It has been found that it can be at least approximately equal to or smaller than the necessary equipment cost.
[0069]
As described above, in the charged particle irradiation apparatus 1 of the present embodiment, the operating cost (running cost) is reduced as compared with the comparative example provided with one X-direction scanning electromagnet and one Y-direction scanning electromagnet. And the equipment cost can be at least approximately equal or smaller. Therefore, when viewed in total, the cost can be reduced more reliably than the comparative example.
[0070]
(3) Other
1. The effect of common X-direction scanning power supply
As described above, in the present invention, the deflection amount by the X-direction scanning electromagnet 101 and the deflection amount by the X-direction scanning electromagnet 102 are The Proportional relationship In Need to be maintained. In this embodiment, two X-direction scanning electromagnets 101 and 102 are connected in series to a common X-direction scanning power source 105, so that the amount of beam deflection by the respective scanning electromagnets 101 and 102 is particularly adjusted. Even if it is not performed, the proportional relationship can be easily achieved. Therefore, the operation is simplified and the possibility of erroneous irradiation due to deviation can be reduced.
[0071]
2. Effect of scatterer position
In general, in the lateral beam expansion method combining beam scanning and beam diameter expansion, the quality of the irradiation beam that reaches the irradiation target is deteriorated as the scatterer and the beam scanning position are separated from each other. For example, when two scanning electromagnets are used, if a scatterer is arranged upstream or downstream of the scanning electromagnets, one of the scanning electromagnets will be far from the scatterer, and the angular distribution of the irradiation beam will be widened. When the beam is cut out with this collimator, the cut (penumbra) becomes large, and the irradiation performance deteriorates. In the present embodiment, as shown in FIG. 1, the distance between the X-direction scanning point Q and the scatterer 104 can be made smaller than in the comparative example of FIG. Can be reduced. As a result, the spread of the beam angle distribution at the irradiation surface position of the irradiation target P can be reduced. Therefore, when the beam is cut out in the horizontal direction by the collimator 5d, the cut in the horizontal beam intensity distribution (= half of the dose distribution in the irradiation target). (Shadow) can be reduced, and the irradiation accuracy can be improved. In addition, an irradiation apparatus that scans a large area and irradiates a wide area can be realized.
[0072]
At this time, in this embodiment, the ratio of the deflection amounts of the X-direction scanning electromagnets 101 and 102 is set so that the X-direction scanning point Q is not the center of the Y-direction scanning magnet 103 but the center of the scatterer 104 or its vicinity. Can also be adjusted. In this case, although the magnetic pole interval of the Y-direction scanning electromagnet 103 is slightly increased, there is an effect that the penumbra of the dose distribution in the irradiation target P can be further reduced.
[0073]
In the above-described embodiment, the scatterer 104 is disposed on the downstream side of the Y-direction scanning electromagnet 103 which is the most downstream side. However, the present invention is not limited to this, and the X-direction scanning electromagnet 102 and the Y-direction scanning electromagnet 103 are not limited thereto. It may be provided between them. Hereinafter, this modification will be described with reference to FIGS.
[0074]
FIG. 7 is a diagram schematically showing a beam axis passing range and a beam passing range in the X-direction scanning plane of the charged particle irradiation apparatus according to this modification, and corresponds to FIG. 1 of the above embodiment. In FIG. 7, parts that are the same as those in the charged particle irradiation apparatus 1 according to the above embodiment are given the same reference numerals, and descriptions thereof are omitted as appropriate.
[0075]
In FIG. 7, in the charged particle device of this modification, the scatterer 104 is located downstream of the X direction scanning electromagnet 102 and upstream of the Y direction scanning electromagnet 103 (in other words, the X direction scanning electromagnet 102 and the Y direction scanning electromagnet 103. Between). Other points are substantially the same as those of the charged particle device 1 of the above embodiment.
[0076]
The beam is deflected by the X direction scanning electromagnets 101 and 102 and the Y direction scanning electromagnet 103 in the same manner as the irradiation method of the charged particle irradiation apparatus 1 of the above embodiment. At this time, the XY in-plane scanning magnet 102 and the Y-direction scanning electromagnet 103 are scattered by the scatterer 104, and the XY in-plane distribution of the particles constituting the beam spreads around the beam central axis in a Gaussian distribution and downstream. The beam intensity distribution spreads as it progresses. Finally, the beam center axis draws a circular locus on the irradiation surface of the irradiation target P.
[0077]
Also in the present modification, as in the above-described embodiment, the basic effects of the present invention (1) the effect of reducing the size of other beam deflecting means and (2) reducing the cost can be obtained.
[0078]
In other words, after the beam is bent in the X direction by the X-direction scanning electromagnet 101 on the most upstream side and deflected so as to shift the position, the displacement of the beam position in the X direction is reduced by the downstream X-direction scanning magnet 102. The beam scanning point Q is positioned inside the Y-direction scanning electromagnet 103 on the downstream side via the scatterer 4 to reduce the X-direction beam passing range in the Y-direction scanning electromagnet 103. This makes it possible to reduce the size of the deflection electromagnet 2C as compared with the conventional structure using a deflection electromagnet or a quadrupole electromagnet that originally does not have a large beam focusing function. In addition, this can reduce the operating cost compared to the original structure including one X-direction scanning magnet and one Y-direction scanning magnet, and can at least substantially equal or reduce the equipment cost, Cost reduction can be achieved in total.
[0079]
In addition, since the scatterer unit is upstream of the Y-direction scanning electromagnet 3, the beam passage range when passing through the Y-direction scanning electromagnet 3 is slightly larger than that in the above embodiment, but overall, It is possible to obtain substantially the same effect as the above embodiment. In particular, for example, when compared with a conventional charged particle beam irradiation apparatus (for example, Japanese Patent Laid-Open No. 10-211292) on the assumption that the scatterer is between the X-direction scanning electromagnet and the Y-direction scanning electromagnet, The effect of is remarkable.
[0080]
FIG. 8 shows a charged particle irradiation apparatus according to a comparative example of the present embodiment, which is substantially equivalent to the charged particle irradiation apparatus according to the above-mentioned Japanese Patent Application Laid-Open No. 10-211292, provided with one X-direction scanning electromagnet and one Y-direction scanning electromagnet. 3 schematically shows a beam axis passing range and a beam passing range in the X-direction scanning plane of the beam. In FIG. 8, parts equivalent to those in the charged particle irradiation apparatus 1 according to the above-described embodiment are denoted by reference numerals added with “″” as a subscript, and description thereof will be omitted as appropriate.
[0081]
In FIG. 8, in the charged particle irradiation apparatus of this comparative example, only two X-direction scanning electromagnets 102 ″ and Y-direction scanning electromagnets 103 ″ are arranged close to each other in this order in the vertical direction as scanning electromagnets. The scatterer 104 "is disposed between the 102" and the electromagnet 103 ". In this case, as in the comparative example described above with reference to FIG. Although the scanning point Q ″ is present and the scanning amplitude increases toward the downstream side, the scanning amplitude is further expanded by the scatterer 104 ″ before entering the Y-direction scanning electromagnet 103 ″. The X-direction beam passing range at the position of the electromagnet 103 ″ is considerably increased, and the magnetic pole spacing in the X direction of the Y-direction scanning electromagnet 103 ″ is also considerably increased.
[0082]
On the other hand, in the charged particle irradiation apparatus of this modification shown in FIG. 7, as can be seen from the comparison with FIG. 8, the magnetic pole is reduced by reducing the X-direction beam passing range in the Y-direction scanning electromagnet 103 on the most downstream side. The interval can be greatly reduced as compared with the Y-direction scanning electromagnet 103 ″ of the comparative example. Therefore, it can be seen that the effects described in the above (1) and (2) can be obtained. That is, the scatterer 104 is scanned in the X-direction. Even when it is assumed to be disposed between the electromagnet 102 and the Y-direction scanning electromagnet 103, the magnetic pole interval of the Y-direction scanning electromagnet 103 can be reduced, and the effects of cost reduction and downsizing of other deflection means can be achieved. Can be planned.
[0083]
In addition to the above, this modification also has the following effects.
[0084]
That is, as can be seen by comparing FIG. 7 and FIG. 1, in this modification, the distance between the scatterer 104 and the irradiation surface is larger than that of the embodiment shown in FIG. As a result, the amount of scattering required to form the same beam intensity distribution on the irradiation surface is reduced, and the scatterer 104 can be made thinner than in the above embodiment. As a result, the energy loss of the beam in the scatterer 104 is reduced, and the energy of the beam reaching the irradiation surface is increased. Therefore, the reaching depth of the beam in the irradiation target P becomes deep, and irradiation can be performed on a target deeper than the above embodiment.
[0085]
In the above, the irradiation method using the configuration including the three scanning electromagnets 101, 102, 103 and the scatterer 104 has been described as an example. However, the presence or absence of the scatterer is not essential to the present invention, and the scattering It goes without saying that the effects (1) and (2) inherent in the above-described invention can be obtained regardless of the presence or absence of the body 104.
[0086]
In the above, the case where the two X-direction scanning electromagnets 101 and 102 are excited by the single X-direction scanning power source 105 has been described as an example. However, the present invention is not limited to this. , 102 may be separated (a first excitation power source for exciting the X-direction scanning electromagnet 101 as the first operation electromagnet and a second excitation power source for exciting the X-direction scanning electromagnet 102 as the second operation electromagnet). . In this case, each excitation current is adjusted by changing the amplification factor, and thereby the scanning point position can be adjusted as desired. Therefore, even when there is a change in the equipment conditions between the X-direction scanning electromagnet 101 and the X-direction scanning electromagnet 102 or there is a magnet design error, the scanning point can be adjusted so as not to shift, and the beam Y-direction can be adjusted. It is possible to avoid collision with the magnetic poles of the scanning electromagnet 103 and maintain irradiation accuracy. At this time, if each power source is controlled by a common power source control means (single signal source), it is not necessary to adjust the phase of the two X-direction scanning electromagnets 101 and 102, and the operation is simple. In addition, the possibility of erroneous irradiation due to phase shift can be reduced.
[0087]
Further, the case where scanning is performed so that the beam center trajectory is circular on the irradiation surface has been described as an example. However, the present invention is not limited to this, and an arbitrary trajectory may be drawn such as scanning in the same manner as a television. Even in this case, by making the beam deflection amounts by the two X-direction scanning electromagnets 101 and 102 proportional, the X-direction scanning point position Q does not change, and the same effect as in the present embodiment can be obtained.
[0088]
Further, the above description has been given by taking as an example the case where the present invention is applied to a rotating gantry that rotates the irradiation device to change the irradiation direction. However, the present invention is not limited to this, and the irradiation direction is fixed to the irradiation device. Even applicable. In this case, generally, an apparatus for deflecting the beam is not provided between the X-direction scanning electromagnets 101 and 102, but the same effect as the present embodiment can be obtained.
[0089]
【The invention's effect】
According to the present invention, since the second scanning electromagnet having a high beam focusing function is used to rapidly deflect the beam in the X direction so as to reduce the positional deviation of the beam, the beam is once bent and displaced by the first scanning electromagnet. Thus, the maximum value of the beam passing range when the beam is deflected so as to reduce the deviation of the beam position after being deflected can be reduced. Therefore, it is possible to reduce the size of other beam deflecting means such as a deflection electromagnet or a quadrupole electromagnet normally provided between them. In addition, the total power consumption of the first to third scanning electromagnets is reduced to, for example, about ½ the total power consumption of the original two X-direction and Y-direction scanning electromagnets (running cost). ) And the equipment cost (initial cost) required for the excitation power supply for the three first to third scanning magnets is reduced to the equipment required for the original excitation power supply for the two X and Y direction scanning magnets. Since it can be at least substantially equal to or smaller than the cost, the cost can be reduced.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a passing behavior of a charged particle beam realized by excitation control of a charged particle irradiation apparatus according to an embodiment of the present invention.
FIG. 2 is a conceptual side view showing an overall schematic structure of a charged particle irradiation apparatus according to an embodiment of the present invention.
FIG. 3 is a diagram illustrating an example of a temporal change in excitation current supplied to an X-direction scanning magnet and a Y-direction scanning magnet by an X-direction scanning electromagnet power source and a Y-direction scanning electromagnet power source.
FIG. 4 is a diagram illustrating an example of a temporal change in the amount of movement of the beam center axis on the irradiation surface caused by beam deflection by three scanning electromagnets.
FIG. 5 shows an overall schematic structure of a charged particle irradiation apparatus according to a comparative example of the present embodiment, which is substantially equivalent to an original charged particle irradiation apparatus provided with one X-direction scanning electromagnet and one Y-direction scanning electromagnet. It is a conceptual side view.
FIG. 6 schematically shows a beam axis passing range and a beam passing range in the X-direction scanning plane of a beam.
FIG. 7 schematically shows a beam axis passing range and a beam passing range in an X direction scanning plane of a charged particle irradiation apparatus according to a modification in which a scatterer is provided between an X direction scanning electromagnet and a Y direction scanning electromagnet. FIG.
FIG. 8 schematically shows a beam axis passing range and a beam passing range of an X direction scanning plane beam of a charged particle irradiation apparatus according to a comparative example including one X direction scanning magnet and one Y direction scanning magnet. It is a thing.
[Explanation of symbols]
101 X-direction scanning electromagnet (first scanning electromagnet, first variable deflection means)
102 X-direction scanning electromagnet (second scanning electromagnet, second variable deflection means)
103 Y-direction scanning electromagnet (third scanning electromagnet, third variable deflection means)
104 Scatterer
10 5 X direction scanning power supply (single excitation power supply, first deflection control means, second deflection control means)
P Irradiation target (affected area)

Claims (6)

荷電粒子を患者の患部に照射する医療用荷電粒子照射装置において、
入射した荷電粒子線ビームを、そのビーム進行方向に垂直な平面内における一の方向へビームを曲げて位置をずらすように偏向する第1走査電磁石と、
この第1走査電磁石より下流側に設けられ、前記第1走査電磁石で偏向された荷電粒子線ビームを、前記第1走査電磁石による偏向とは逆に前記ビームの位置のずれを小さくし下流側で焦点を結ぶように前記一の方向へ偏向する第2走査電磁石と、
この第2走査電磁石より下流側に設けられ、前記第2走査電磁石で前記一の方向へ偏向され前記一の方向における通過範囲が縮小した荷電粒子線ビームを、前記ビーム進行方向に垂直な平面内における前記一の方向と直交する他の方向へ偏向する第3走査電磁石とを有することを特徴とする医療用荷電粒子照射装置。
In a medical charged particle irradiation apparatus that irradiates an affected area of a patient with charged particles,
A first scanning electromagnet that deflects an incident charged particle beam so as to shift the position by bending the beam in one direction in a plane perpendicular to the beam traveling direction;
The charged particle beam provided at the downstream side of the first scanning electromagnet and deflected by the first scanning electromagnet is reduced in the downstream side by reducing the deviation of the beam position, contrary to the deflection by the first scanning electromagnet. A second scanning electromagnet that deflects in the one direction to form a focus ;
A charged particle beam which is provided downstream from the second scanning electromagnet and is deflected in the one direction by the second scanning electromagnet and whose passing range in the one direction is reduced is a plane perpendicular to the beam traveling direction. A charged particle irradiation apparatus for medical use, comprising: a third scanning electromagnet that deflects in another direction orthogonal to the one direction.
荷電粒子を患者の患部に照射する医療用荷電粒子照射装置において、
入射した荷電粒子線ビームを、そのビーム進行方向に垂直な平面内における一の方向へビームを曲げて位置をずらすように偏向する第1走査電磁石と、
この第1走査電磁石より下流側に設けられ、前記第1走査電磁石で偏向された荷電粒子線ビームを、前記第1走査電磁石による偏向とは逆に前記ビームの位置のずれを小さくし下流側で焦点を結ぶように前記一の方向へ偏向する第2走査電磁石と、
この第2走査電磁石より下流側に設けられ、前記第2走査電磁石で前記一の方向へ偏向され前記一の方向における通過範囲が縮小した荷電粒子線ビームを、前記ビーム進行方向に垂直な平面内における前記一の方向と直交する他の方向へ偏向する第3走査電磁石と、
前記第1走査電磁石による偏向量と前記第2走査電磁石による偏向量と比例関係維持するように、それら第1及び第2走査電磁石を制御する第1偏向制御手段とを有することを特徴とする医療用荷電粒子照射装置。
In a medical charged particle irradiation apparatus that irradiates an affected area of a patient with charged particles,
A first scanning electromagnet that deflects an incident charged particle beam so as to shift the position by bending the beam in one direction in a plane perpendicular to the beam traveling direction;
The charged particle beam provided at the downstream side of the first scanning electromagnet and deflected by the first scanning electromagnet is reduced in the downstream side by reducing the deviation of the beam position, contrary to the deflection by the first scanning electromagnet. A second scanning electromagnet that deflects in the one direction to form a focus ;
A charged particle beam which is provided downstream from the second scanning electromagnet and is deflected in the one direction by the second scanning electromagnet and whose passing range in the one direction is reduced is a plane perpendicular to the beam traveling direction. A third scanning electromagnet that deflects in another direction orthogonal to the one direction in
To maintain the deflection amount by the second scanning magnets and the deflection amount by the first scanning magnet proportional, and characterized by having a first deflecting control means for controlling these first and second scanning magnets Medical charged particle irradiation device.
請求項1又は2記載の医療用荷電粒子照射装置において、前記第3走査電磁石より下流側に、荷電粒子線ビームを散乱させる散乱体を設けたことを特徴とする医療用荷電粒子照射装置。  3. The medical charged particle irradiation apparatus according to claim 1, wherein a scatterer that scatters a charged particle beam is provided downstream from the third scanning electromagnet. 4. 請求項1又は2記載の医療用荷電粒子照射装置において、前記第2走査電磁石より下流側でかつ前記第3走査電磁石より上流側に、荷電粒子線ビームを散乱させる散乱体を設けたことを特徴とする医療用荷電粒子照射装置。  3. The medical charged particle irradiation apparatus according to claim 1, wherein a scatterer that scatters a charged particle beam is provided downstream of the second scanning electromagnet and upstream of the third scanning electromagnet. Medical charged particle irradiation device. 請求項2記載の医療用荷電粒子照射装置において、前記第1偏向制御手段は、前記第1走査電磁石及び第2走査電磁石に共通の単一の励磁電源を備え、前記第1走査電磁石及び第2走査電磁石はそれぞれの励磁コイルが前記単一の励磁電源に対し直列に接続されていることを特徴とする医療用荷電粒子照射装置。  3. The medical charged particle irradiation apparatus according to claim 2, wherein the first deflection control unit includes a single excitation power source common to the first scanning electromagnet and the second scanning electromagnet, and the first scanning electromagnet and the second scanning electromagnet. The scanning electromagnet is a medical charged particle irradiation apparatus, wherein each excitation coil is connected in series to the single excitation power source. 請求項2記載の医療用荷電粒子照射装置において、前記第1偏向制御手段は、前記第1走査電磁石及び第2走査電磁石に対しそれぞれ電源を供給する第1励磁電源及び第2励磁電源と、これら第1及び第2励磁電源に共通の電源制御手段とを備えていることを特徴とする医療用荷電粒子照射装置。  3. The medical charged particle irradiation apparatus according to claim 2, wherein the first deflection control means includes a first excitation power source and a second excitation power source that supply power to the first scanning electromagnet and the second scanning electromagnet, respectively. A charged particle irradiation apparatus for medical use, comprising a power supply control means common to the first and second excitation power supplies.
JP2002292559A 2002-10-04 2002-10-04 Medical charged particle irradiation equipment Expired - Fee Related JP3964769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002292559A JP3964769B2 (en) 2002-10-04 2002-10-04 Medical charged particle irradiation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002292559A JP3964769B2 (en) 2002-10-04 2002-10-04 Medical charged particle irradiation equipment

Publications (2)

Publication Number Publication Date
JP2004121654A JP2004121654A (en) 2004-04-22
JP3964769B2 true JP3964769B2 (en) 2007-08-22

Family

ID=32283779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002292559A Expired - Fee Related JP3964769B2 (en) 2002-10-04 2002-10-04 Medical charged particle irradiation equipment

Country Status (1)

Country Link
JP (1) JP3964769B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5111233B2 (en) * 2008-05-20 2013-01-09 株式会社日立製作所 Particle beam therapy system
WO2012023176A1 (en) 2010-08-17 2012-02-23 三菱電機株式会社 Multilear collimator, particle beam therapy device and therapy planning device
JP5872328B2 (en) 2012-02-29 2016-03-01 株式会社日立製作所 Compact and lightweight gantry and particle beam therapy system using the same
JP7217208B2 (en) * 2019-07-26 2023-02-02 株式会社日立製作所 Scanning electromagnet and particle beam therapy system

Also Published As

Publication number Publication date
JP2004121654A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
JP4691576B2 (en) Particle beam therapy system
US8658991B2 (en) Particle beam irradiation apparatus utilized in medical field
JP4339904B2 (en) Particle beam therapy system
US8193512B2 (en) Irradiation field forming device
US20170229281A1 (en) Charged particle beam irradiation apparatus
US10300302B2 (en) Particle beam transport system, and segment thereof
JP5978125B2 (en) Particle beam therapy system
US10076675B2 (en) Beam delivery system for proton therapy for laser-accelerated protons
JP5574838B2 (en) Particle beam therapy system
KR20210122128A (en) Irradiation apparatus of charged particle ray
JPH10127792A (en) Charged particle beam device
JP3964769B2 (en) Medical charged particle irradiation equipment
CN111569274B (en) Particle beam therapy device and irradiation field forming method
JP7045920B2 (en) Particle beam irradiation device and particle beam therapy system
US20200047004A1 (en) Beam Delivery System For Proton Therapy For Laser-Accelerated Protons
JP2006208200A (en) Charged particle beam irradiation system
EP2489406B1 (en) Particle beam irradiation apparatus
WO2015015579A1 (en) Charged particle beam irradiation device
JP2003320039A (en) Device and method for irradiating charged particle beam
JP7165499B2 (en) Charged particle beam therapy system
JP6640997B2 (en) Particle therapy equipment
JP2022176617A (en) Septum magnet, accelerator, and particle beam therapy system
JP2023084781A (en) Circular accelerator and particle beam treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070524

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees