JP4654583B2 - Vibration wave motor - Google Patents

Vibration wave motor Download PDF

Info

Publication number
JP4654583B2
JP4654583B2 JP2004056169A JP2004056169A JP4654583B2 JP 4654583 B2 JP4654583 B2 JP 4654583B2 JP 2004056169 A JP2004056169 A JP 2004056169A JP 2004056169 A JP2004056169 A JP 2004056169A JP 4654583 B2 JP4654583 B2 JP 4654583B2
Authority
JP
Japan
Prior art keywords
wave
vibration wave
vibration
elastic body
progressive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004056169A
Other languages
Japanese (ja)
Other versions
JP2005253131A5 (en
JP2005253131A (en
Inventor
隆利 芦沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2004056169A priority Critical patent/JP4654583B2/en
Publication of JP2005253131A publication Critical patent/JP2005253131A/en
Publication of JP2005253131A5 publication Critical patent/JP2005253131A5/ja
Application granted granted Critical
Publication of JP4654583B2 publication Critical patent/JP4654583B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

本発明は、振動子の駆動面に進行性振動波を生じさせ、この進行性振動波により振動子に加圧接触した移動子を駆動する振動波モータに関するものである。   The present invention relates to a vibration wave motor that generates a traveling vibration wave on a driving surface of a vibrator and drives a moving element that is in pressure contact with the vibrator by the traveling vibration wave.

従来、振動波モータとしては、例えば、振動子と、この振動子に加圧接触した移動子とを備えたものが知られている。振動子は、圧電効果を示す圧電体と、この圧電体に接合された弾性体とを備えており、圧電体の伸縮を利用して、弾性体の駆動面に進行性振動波を発生させる。この進行性振動波により、弾性体の駆動面には楕円運動が生じるので、楕円運動の波頭に加圧接触した移動子は駆動される。
このような振動波モータは、低回転でも高トルクを有するという特徴があるため、振動波モータを適宜の駆動装置に搭載した場合には、この駆動装置のギアを省略することができ、例えば、ギア騒音をなくしたり、位置決め精度を向上できる等の利点がある。
2. Description of the Related Art Conventionally, as a vibration wave motor, for example, a motor including a vibrator and a mover that is in pressure contact with the vibrator is known. The vibrator includes a piezoelectric body exhibiting a piezoelectric effect and an elastic body joined to the piezoelectric body, and generates a progressive vibration wave on a driving surface of the elastic body by using expansion and contraction of the piezoelectric body. Due to this progressive vibration wave, an elliptical motion is generated on the drive surface of the elastic body, so that the movable element in pressure contact with the wavefront of the elliptical motion is driven.
Since such a vibration wave motor has a characteristic of having a high torque even at a low rotation, when the vibration wave motor is mounted on an appropriate drive device, the gear of the drive device can be omitted. There are advantages such as eliminating gear noise and improving positioning accuracy.

振動子は、上述したように、圧電体と弾性体とを備え、この圧電体と弾性体とは、接着剤等により強固に接着(接合)されている。弾性体の圧電体接合面とは反対側の駆動面側には、略等間隔に等幅の溝が設けられている。この溝により、弾性体内部に生じる曲げ振動の中立面が圧電体側にシフトし、その結果、弾性体の駆動面側に発生する進行性振動波の振幅が拡大する。   As described above, the vibrator includes a piezoelectric body and an elastic body, and the piezoelectric body and the elastic body are firmly bonded (bonded) with an adhesive or the like. On the drive surface side opposite to the piezoelectric bonding surface of the elastic body, grooves of equal width are provided at substantially equal intervals. By this groove, the neutral surface of the bending vibration generated inside the elastic body is shifted to the piezoelectric body side, and as a result, the amplitude of the progressive vibration wave generated on the driving surface side of the elastic body is expanded.

弾性体に発生する進行性振動波は、圧電体の励振より生じる二つの曲げ振動の定在波を合成することにより得られる。この曲げ振動(定在波)の振動振幅を大きくすることにより、振動波モータの性能を高めることができる。このため、振幅の大きい曲げ振動(定在波)を得るために、例えば、振動子の溝数を進行性振動波の波数の倍数になるように設計して、各波の振動が一様になるようにする方法が知られている。   The progressive vibration wave generated in the elastic body is obtained by combining two standing waves of bending vibration generated by the excitation of the piezoelectric body. The performance of the vibration wave motor can be improved by increasing the vibration amplitude of the bending vibration (standing wave). Therefore, in order to obtain bending vibration (standing wave) with large amplitude, for example, the number of grooves of the vibrator is designed to be a multiple of the wave number of the progressive vibration wave, and the vibration of each wave is uniform. There are known ways to make it.

図5は、従来の振動波モータにおける異音の発生原理を説明するための概念図である。
Aは、弾性体に略等間隔で形成された溝部12aと、この溝部12a間に形成され、振動面12cを含む突起部12bとにそれぞれ対応している。なお、この溝部12aの数は、進行性振動波の波数の倍数とする。
Bは、弾性体に発生する進行性振動波であって、この進行性振動波の波頭部が突起部12bを通過するときの波形を示している。
Cは、弾性体に発生する進行性振動波であって、この進行性振動波の波頭部が溝部12aを通過するときの波形を示している。
FIG. 5 is a conceptual diagram for explaining the principle of abnormal noise generation in a conventional vibration wave motor.
A corresponds to a groove 12a formed in the elastic body at substantially equal intervals and a protrusion 12b formed between the grooves 12a and including the vibration surface 12c. The number of the groove portions 12a is a multiple of the wave number of the progressive vibration wave.
B is a progressive vibration wave generated in the elastic body, and shows a waveform when the wave head of the progressive vibration wave passes through the protrusion 12b.
C is a progressive vibration wave generated in the elastic body, and shows a waveform when the wave head of the progressive vibration wave passes through the groove 12a.

この波形B,Cによれば、進行性振動波の波頭部が溝部12aを通過するときの振幅よりも、突起部12bを通過するときの振幅は増幅されており、かつ、この進行性振動波の全ての波頭部(ここでは、3つ)が同時に突起部12bを通過した状態(波形B)から溝部12aを通過した状態(波形C)に切り替わるために、移動子に必要以上の上下動の動きが瞬間的に生じる。
これにより、振動波モータにおいて、振動子と移動子とが接触しない瞬間が各波で同時に発生し、例えば、振動振幅が大きくなったとき(すなわち、振動波モータの回転速度が大きくなったとき)に、異音が発生することがあった。
According to the waveforms B and C, the amplitude when the head of the progressive vibration wave passes through the groove 12a is amplified more than the amplitude when the wave head passes through the groove 12a, and this progressive vibration is generated. Since all the wave heads (here, three) of the wave have switched from the state (waveform B) that has passed through the protrusion 12b at the same time to the state (waveform C) that has passed through the groove 12a, Dynamic movement occurs instantaneously.
As a result, in the vibration wave motor, moments when the vibrator and the moving element do not contact each other occur simultaneously in each wave, for example, when the vibration amplitude increases (that is, when the rotation speed of the vibration wave motor increases). In some cases, abnormal noise was generated.

この異音の発生を防止するために、振動子の溝数と、進行性振動波の波数とを互いに素の関係にすることが提案されている(例えば、特許文献1)。
しかしながら、この場合には、振動のQ値(いわゆる共振の鋭さを表す値)が小さくなり、十分な定在波の振動振幅が得られず、振動波モータの性能が低下してしまう場合があった。
特公平5−30149号公報
In order to prevent the occurrence of this abnormal noise, it has been proposed that the number of grooves of the vibrator and the wave number of the progressive vibration wave have a prime relationship (for example, Patent Document 1).
However, in this case, the vibration Q value (a value representing the sharpness of resonance) becomes small, and sufficient vibration amplitude of the standing wave cannot be obtained, which may deteriorate the performance of the vibration wave motor. It was.
Japanese Patent Publication No. 5-30149

本発明の課題は、駆動性能を維持しつつ、高回転時における異音の発生を防止できる振動波モータを提供することである。   The subject of this invention is providing the vibration wave motor which can prevent generation | occurrence | production of the unusual noise at the time of high rotation, maintaining drive performance.

前記課題を解決するために、請求項1の発明は、2つの相に分けられ、前記2つの相のそれぞれに入力される駆動信号により、前記2つの相から発生する互いにずれた2つの振動が励振される圧電体と、前記圧電体に接合され、前記位相がずれた2つの振動が合成されて駆動面に進行性振動波を生じる弾性体とを有する振動子と、前記弾性体の駆動面に加圧接触され、前記進行性振動波によって駆動される移動子と、を備えた振動波モータであって、前記弾性体は、その駆動面側に複数の溝部を有し、前記進行性振動波の波数は9であり、前記溝部の数と前記進行性振動波の波数との最大公約数は3であること、を特徴とする振動波モータである。
請求項2の発明は、2つの相に分けられ、前記2つの相のそれぞれに入力される駆動言号により、前記2つの相から発生する互いにずれた2つの振動が励振される圧電体と、前記圧電体に接合され、前記位相がずれた2つの振動が合成されて駆動面に進行性振動波を生じる弾性体とを有する振動子と、前記弾性体の駆動面に加圧接触され、前記進行性振動波によって駆動される移動子と、を備えた振動波モータであって、前記弾性体は、その駆動面側に複数の溝部を有し、前記進行性振動波の波数は8であり、前記溝部の数と前記進行性振動波の波数との最大公約数は4であること、を特徴とする振動波モータである。
請求項3の発明は、2つの相に分けられ、前記2つの相のそれぞれに入力される駆動信号により、前記2つの相から発生する互いにずれた2つの振動が励振される圧電体と、前記圧電体に接合され、前記位相がずれた2つの振動が合成されて駆動面に進行性振動波を生じる弾性体とを有する振動子と、前記弾性体の駆動面に加圧接触され、前記進行性振動波によって駆動される移動子と、を備えた振動波モータであって、前記弾性体はその駆動面側に複数の溝部を有し、前記進行性振動波の波数は10であり、前記溝部の数と前記進行性振動波の波数との最大公約数は5であること、を特徴とする振動波モータである。
In order to solve the above-mentioned problem, the invention of claim 1 is divided into two phases, and two mutually shifted vibrations generated from the two phases are generated by a drive signal input to each of the two phases. A vibrator having a piezoelectric body to be excited, an elastic body that is joined to the piezoelectric body and generates two progressive vibration waves on a driving surface by combining two vibrations out of phase; and a driving surface of the elastic body And a movable body driven by the progressive vibration wave, wherein the elastic body has a plurality of grooves on its drive surface side, and the progressive vibration The vibration wave motor is characterized in that the wave number is 9, and the greatest common divisor between the number of the groove portions and the wave number of the progressive vibration wave is 3 .
According to a second aspect of the present invention, there is provided a piezoelectric body that is divided into two phases and that is driven by two driving signals that are input to each of the two phases and that are deviated from each other and generated from the two phases. A vibrator having an elastic body that is joined to the piezoelectric body and generates a traveling vibration wave on a driving surface by combining two vibrations that are out of phase, and in pressure contact with the driving surface of the elastic body; And a movable body driven by a traveling vibration wave, wherein the elastic body has a plurality of grooves on the drive surface side, and the wave number of the traveling vibration wave is 8. The vibration wave motor is characterized in that the greatest common divisor of the number of the groove portions and the wave number of the progressive vibration wave is four .
According to a third aspect of the present invention, there is provided a piezoelectric body that is divided into two phases, and two vibrations generated from the two phases are excited by driving signals input to the two phases, A vibrator having an elastic body that is bonded to a piezoelectric body and generates two progressive vibration waves on a driving surface by combining two vibrations that are out of phase with each other, and is in pressure contact with the driving surface of the elastic body, and A movable body driven by a natural vibration wave, wherein the elastic body has a plurality of grooves on its drive surface side, and the wave number of the progressive vibration wave is 10, The vibration wave motor is characterized in that the greatest common divisor between the number of grooves and the wave number of the progressive vibration wave is five .

請求項の発明は、請求項1から3のいずれか1項に記載の振動波モータにおいて、前記圧電体前記2つの相から発生する前記振動は、互いに位相が1/4波長ずれること、特徴とする振動波モータである。
請求項の発明は、請求項4に記載の振動波モータにおいて、前記2つの相の間には、前記振動の1/4波長分間隔があること、を特徴とする振動波モータである。
請求項の発明は、請求項1からのいずれか1項に記載の振動波モータにおいて、前記圧電体は、前記振動の1/2波長毎に分極が交互となっていること、を特徴とする振動波モータである。
請求項の発明は、請求項1からのいずれか1項に記載の振動波モータにおいて、前記進行性振動波の複数の波頭部のうち、前記溝部にある波頭部と前記溝部にない波頭部とが同時に存在すること、を特徴とする振動波モータである。
A fourth aspect of the present invention, in the vibration wave motor according to any one of claims 1 to 3, wherein the vibration generated from the two phases to the piezoelectric body, the phase is shifted 1/4 wavelength from each other, This is a characteristic vibration wave motor.
A fifth aspect of the present invention, in the vibration wave motor according to claim 4, between the two phases, that the there is a quarter-wave length intervals of a vibration, a vibration wave motor according to claim.
A sixth aspect of the present invention is the vibration wave motor according to any one of the first to fifth aspects, wherein the piezoelectric body is alternately polarized at every half wavelength of the vibration. This is a vibration wave motor.
A seventh aspect of the present invention is the vibration wave motor according to any one of the first to sixth aspects, wherein the wave head in the groove portion and the groove portion among the plurality of wave heads of the progressive vibration wave are provided. It is a vibration wave motor characterized by the fact that there is no wave head at the same time.

本発明の振動波モータは、(1)駆動信号により励振される圧電体に接合され、励振により駆動面に進行性振動波を生じ、その駆動面側に複数の溝部が形成された弾性体を有する振動子と、この弾性体の駆動面に加圧接触され、進行性振動波によって駆動される移動子とを備え、溝部の数と進行性振動波の波数との最大公約数は、進行性振動波の波数よりも小さく1よりも大きい整数であるので、溝部の数は、進行性振動波の波数の倍数ではなく、かつ、溝部の数と進行性振動波の波数とは、互いに素(2つの整数が1以外の公約数を持たないこと)の関係ではない。
このため、弾性体の駆動面に発生する進行性振動波の波頭部の全てが同時に、溝部を通過することがなく、かつ、進行性振動波の波頭部の少なくとも1つが溝部を通過するので、駆動性能を維持しつつ、高回転時における異音の発生を防止できる。
The vibration wave motor of the present invention includes (1) an elastic body which is bonded to a piezoelectric body excited by a drive signal, generates a progressive vibration wave on the drive surface by excitation, and has a plurality of grooves formed on the drive surface side. A vibrator having a pressure contact with the driving surface of the elastic body and driven by a progressive vibration wave. The greatest common divisor between the number of grooves and the wave number of the progressive vibration wave is Since it is an integer smaller than the wave number of the vibration wave and larger than 1, the number of groove portions is not a multiple of the wave number of the progressive vibration wave, and the number of groove portions and the wave number of the progressive vibration wave are relatively prime ( It is not the relationship that two integers have no common divisor other than 1.
For this reason, all of the wave heads of the progressive vibration waves generated on the drive surface of the elastic body do not simultaneously pass through the groove part, and at least one of the wave heads of the progressive vibration wave passes through the groove part. Therefore, it is possible to prevent the generation of abnormal noise during high rotation while maintaining drive performance.

(2)進行性振動波の波数が8である場合には、最大公約数を4、2のいずれかとし、同じく、波数が9である場合には、最大公約数を3とし、さらに、波数が10である場合には、最大公約数を5、2のいずれかとしたので、異音が発生しない最大駆動回転数を高めることができる。 (2) When the wave number of the progressive vibration wave is 8, the greatest common divisor is either 4 or 2. Similarly, when the wave number is 9, the greatest common divisor is 3, and the wave number Is 10, the greatest common divisor is set to either 5 or 2, so that the maximum driving rotational speed at which no abnormal noise is generated can be increased.

本発明は、駆動性能を維持しつつ、高回転時における異音の発生を防止するという目的を、弾性体の駆動面側に形成された複数の溝部の数と、弾性体の駆動面側に発生する進行性振動波の波数との最大公約数を、進行性振動波の波数よりも小さくすることによって実現する。   The purpose of the present invention is to prevent the generation of abnormal noise during high rotation while maintaining the driving performance, and to the number of the plurality of grooves formed on the driving surface side of the elastic body and the driving surface side of the elastic body. This is realized by making the greatest common divisor with the wave number of the progressive vibration wave to be generated smaller than the wave number of the progressive vibration wave.

以下、図面等を参照して、本発明の実施例をあげて、さらに詳しく説明する。なお、以下の実施例では、振動波モータとして、超音波の振動域を利用した超音波モータを一例として説明する。
図1は、本発明による超音波モータを示す概略図である。
図2は、本実施例の超音波モータの振動子及び移動子の外観図である。
超音波モータ10は、例えば、振動子11と移動子17とを備え、振動子11側を固定とし、移動子(相対運動部材)17側を回転駆動する形態となっており、振動子11の下側には、緩衝部材14と、加圧板15と、加圧部材16と、支持部材19A等とが配置され、移動子17の上側には、振動吸収部材18と、回転部材19B等とが配置されている。
Hereinafter, the present invention will be described in more detail with reference to the drawings and the like. In the following embodiments, an ultrasonic motor using an ultrasonic vibration region will be described as an example of the vibration wave motor.
FIG. 1 is a schematic view showing an ultrasonic motor according to the present invention.
FIG. 2 is an external view of the transducer and the moving element of the ultrasonic motor according to the present embodiment.
The ultrasonic motor 10 includes, for example, a vibrator 11 and a moving element 17, and the vibrator 11 side is fixed, and the moving element (relative motion member) 17 side is rotationally driven. A buffer member 14, a pressure plate 15, a pressure member 16, a support member 19A, and the like are disposed on the lower side, and a vibration absorbing member 18, a rotation member 19B, and the like are disposed on the upper side of the mover 17. Has been placed.

振動子11は、弾性体12と、弾性体12に接合され、後述する電気エネルギーを機械エネルギーに変換する圧電素子や電歪素子等を例とした電気機械変換素子(以下、圧電体という)13とを備えている。この振動子11には、進行性振動波(以下、進行波という)が発生するが、本実施例では、一例として、9波の進行波として説明する。   The vibrator 11 is joined to an elastic body 12 and an electromechanical conversion element (hereinafter referred to as a piezoelectric body) 13 such as a piezoelectric element or an electrostrictive element that is joined to the elastic body 12 and converts electric energy described later into mechanical energy. And. In this vibrator 11, a traveling vibration wave (hereinafter referred to as a traveling wave) is generated. In this embodiment, as an example, a description is given of nine traveling waves.

弾性体12は、共振先鋭度が大きな金属材料からなり、その形状は、円環形状となっている。この弾性体12は、圧電体13が接合される面とは反対側の面(すなわち、移動子17と対向する面)に、溝部12aが切ってあり、突起部(溝部12aがない箇所)12bの先端面が、駆動面12cとなり、移動子17に加圧接触される。なお、この溝部12aの数と突起部12bの数とは同じ数となる。
また、弾性体12に溝部12aを形成する理由は、進行波の中立面をできる限り圧電体13側に近づけ、これにより、駆動面12cの進行波の振幅を増幅させるためである。
The elastic body 12 is made of a metal material having a high resonance sharpness, and has a ring shape. The elastic body 12 has a groove 12a cut on a surface opposite to a surface to which the piezoelectric body 13 is bonded (that is, a surface facing the moving element 17), and a protruding portion (a portion without the groove 12a) 12b. The front end surface of this becomes the drive surface 12 c and is brought into pressure contact with the moving element 17. Note that the number of the grooves 12a and the number of the protrusions 12b are the same.
The reason why the groove 12a is formed in the elastic body 12 is to make the traveling wave neutral surface as close as possible to the piezoelectric body 13 side, thereby amplifying the amplitude of the traveling wave on the drive surface 12c.

圧電体13は、円周方向に沿って2つの相(A相、B相)に分かれており、各相においては、1/2波長毎に分極が交互となった要素が並べられていて、A相とB相との間には1/4波長分間隔が空くようにしてある。   The piezoelectric body 13 is divided into two phases (A phase and B phase) along the circumferential direction, and in each phase, the elements in which polarization is alternated every 1/2 wavelength are arranged, A quarter wavelength interval is provided between the A phase and the B phase.

圧電体13の下側には、上述したように、緩衝部材14と、加圧板15と、加圧部材16と、支持部材19A等とが配置されている。緩衝部材14は、圧電体13の下側に配置され、振動子11の振動を加圧板15や加圧部材16に伝えないようするための部材であって、例えば、不織布、フェルト等が使用されている。
加圧板15は、加圧部材16の加圧を受けるための板である。加圧部材16は、加圧板15の下側に配置され、加圧力を発生させる部材である。なお、本実施例では、加圧部材16を皿バネとしたが、これに限られず、コイルバネ、ウェーブバネ等を用いてもよい。支持部材19Aは、この超音波モータ10を、固定側に支持する部材である。
As described above, the buffer member 14, the pressure plate 15, the pressure member 16, the support member 19 </ b> A, and the like are disposed below the piezoelectric body 13. The buffer member 14 is disposed below the piezoelectric body 13 and is a member for preventing the vibration of the vibrator 11 from being transmitted to the pressure plate 15 and the pressure member 16. For example, a nonwoven fabric or felt is used. ing.
The pressure plate 15 is a plate for receiving pressure from the pressure member 16. The pressure member 16 is a member that is disposed below the pressure plate 15 and generates a pressurizing force. In this embodiment, the pressure member 16 is a disc spring. However, the present invention is not limited to this, and a coil spring, a wave spring, or the like may be used. The support member 19A is a member that supports the ultrasonic motor 10 on the fixed side.

移動子17は、アルミニウム等の軽金属からなり、摺動面17aの表面には、耐摩耗性向上のための表面処理が施されている。この移動子17の上側には、上述したように、移動子17の加圧方向の振動を吸収するために、ゴム等の振動吸収部材18が配置されている。この振動吸収部材18の上側には、ベアリング等の回転部材19Bが配置されている。   The mover 17 is made of a light metal such as aluminum, and the surface of the sliding surface 17a is subjected to surface treatment for improving wear resistance. As described above, the vibration absorbing member 18 such as rubber is disposed on the upper side of the moving element 17 in order to absorb the vibration in the pressurizing direction of the moving element 17. Above the vibration absorbing member 18, a rotating member 19B such as a bearing is disposed.

図3は、本実施例による超音波モータ10の駆動制御装置を示すブロック図である。
駆動制御装置20は、例えば、発振部21と、制御部22と、移相部23と、増幅部24,25と、検出部26等とを備えている。
発振部21は、制御部22の指令により、所望の周波数の駆動信号を発生する。移相部23は、発振器21で発生した駆動信号を90゜位相の異なる2つの駆動信号に分ける。増幅部24,25は、移相部23によって分けられた2つの駆動信号を、それぞれ所望の電圧に昇圧する。増幅部24,25からの駆動信号は、超音波モータ10に伝達され、この駆動信号の印加により、振動子11に進行波が発生し、移動子17が駆動される。
検出部26は、光学式リニアエンコーダ等を含み、移動子17の駆動によって駆動される被駆動体(不図示)の位置や速度を検出すると共に、この検出信号を制御部22に出力する。
FIG. 3 is a block diagram showing a drive control apparatus for the ultrasonic motor 10 according to the present embodiment.
The drive control device 20 includes, for example, an oscillation unit 21, a control unit 22, a phase shift unit 23, amplification units 24 and 25, a detection unit 26, and the like.
The oscillating unit 21 generates a drive signal having a desired frequency according to a command from the control unit 22. The phase shifter 23 divides the drive signal generated by the oscillator 21 into two drive signals having a 90 ° phase difference. The amplifiers 24 and 25 boost the two drive signals divided by the phase shifter 23 to desired voltages, respectively. Drive signals from the amplifying units 24 and 25 are transmitted to the ultrasonic motor 10, and a traveling wave is generated in the vibrator 11 by the application of the drive signal, and the moving element 17 is driven.
The detection unit 26 includes an optical linear encoder and the like, detects the position and speed of a driven body (not shown) driven by driving the moving element 17, and outputs a detection signal to the control unit 22.

制御部22は、CPUからの駆動指令に基づいて、超音波モータ10の駆動を制御するものであって、例えば、検出部26からの検出信号を受け、その値に基づいて位置情報と速度情報とを得て、被駆動体が目標位置に位置決めされるように、発振器21の周波数を制御する。   The control unit 22 controls the drive of the ultrasonic motor 10 based on a drive command from the CPU. For example, the control unit 22 receives a detection signal from the detection unit 26 and based on the value, position information and speed information. The frequency of the oscillator 21 is controlled so that the driven body is positioned at the target position.

つぎに、駆動制御装置20の動作を説明する。
まず、制御部22に目標位置が伝達される。発振部21は、駆動信号を発生し、この駆動信号は、移相部23により90゜位相の異なる2つの駆動信号に分割され、増幅部24,25により、所望の電圧に増幅される。増幅部24,25により増幅された駆動信号は、超音波モータ10の圧電体13に印加され、圧電体13は、励振される。この励振によって、圧電体13に接合された弾性体12には、9次の曲げ振動が発生する。
Next, the operation of the drive control device 20 will be described.
First, the target position is transmitted to the control unit 22. The oscillating unit 21 generates a drive signal. The drive signal is divided into two drive signals having a phase difference of 90 ° by the phase shift unit 23 and amplified to a desired voltage by the amplifiers 24 and 25. The drive signals amplified by the amplifying units 24 and 25 are applied to the piezoelectric body 13 of the ultrasonic motor 10, and the piezoelectric body 13 is excited. By this excitation, the ninth-order bending vibration is generated in the elastic body 12 joined to the piezoelectric body 13.

圧電体13は、A相とB相とに分けられており、駆動信号は、それぞれA相とB相に印加される。A相から発生する9次曲げ振動とB相から発生する9次曲げ振動とは、位置的な位相が1/4波長ずれるようになっており、また、A相の駆動信号とB相の駆動信号とは、90゜位相がずれているために、2つの曲げ振動が合成されて、9波の進行波となる。   The piezoelectric body 13 is divided into an A phase and a B phase, and drive signals are applied to the A phase and the B phase, respectively. The 9th-order bending vibration generated from the A-phase and the 9th-order bending vibration generated from the B-phase are such that the positional phase is shifted by ¼ wavelength, and the A-phase drive signal and the B-phase drive Since the signal is 90 ° out of phase, the two bending vibrations are combined into nine traveling waves.

進行波の波頭部には楕円運動が生じている。ここで、移動子17は、駆動面12cに加圧接触されているので、この楕円運動によって摩擦的に駆動される。なお、移動子17は、進行波の進行方向とは逆方向の駆動力を弾性体12から得ており、この駆動力は、例えば、進行波の波頭部が弾性体12に形成された突起部12bを通過したときに得られる。
検出部26は、移動子17の駆動により駆動される被駆動体に配置されており、検出部26から発生した電気パルスの信号が制御部22に伝達される。制御部22は、この信号に基づいて、現在の位置と現在の速度を得ることができ、これらの位置情報、速度情報及び目標位置情報に基づいて、発振部21の駆動周波数を制御する。
An elliptical motion is generated at the wave head of the traveling wave. Here, since the moving element 17 is in pressure contact with the drive surface 12c, it is frictionally driven by this elliptical motion. The moving element 17 obtains a driving force in the direction opposite to the traveling direction of the traveling wave from the elastic body 12, and this driving force is, for example, a protrusion in which the wave head of the traveling wave is formed on the elastic body 12. Obtained when passing through the section 12b.
The detection unit 26 is disposed on a driven body that is driven by driving the moving element 17, and an electric pulse signal generated from the detection unit 26 is transmitted to the control unit 22. The control unit 22 can obtain the current position and the current speed based on this signal, and controls the drive frequency of the oscillation unit 21 based on the position information, the speed information, and the target position information.

図4は、本実施例による超音波モータ10の性能を、溝部12aの数と進行波の波数とに基づいて比較した図である。
本実施例の弾性体12の駆動面12c側には、周方向に沿って、等間隔で等幅の溝部12aを48個形成して、突起部12bも48個形成した(以下、溝数48といい、溝数で説明する)。ここで、溝数48とは、進行波の波数9に対して、最大公約数が3(すなわち、波数9よりも小さい)となる関係であり、さらに詳しくは、溝数48は、進行波の波数9の倍数ではなく、かつ、溝数48と進行波の波数9とは、互いに素(2つの整数が1以外の公約数を持たないこと)の関係ではない(後述する「NO.2」に対応)。
FIG. 4 is a diagram comparing the performance of the ultrasonic motor 10 according to the present embodiment based on the number of grooves 12a and the wave number of traveling waves.
On the drive surface 12c side of the elastic body 12 of the present embodiment, 48 equal-width groove portions 12a are formed at equal intervals along the circumferential direction, and 48 protrusion portions 12b are also formed (hereinafter, the number of grooves is 48). It will be explained by the number of grooves). Here, the number of grooves 48 is a relationship in which the greatest common divisor is 3 (that is, smaller than the wave number 9) with respect to the wave number 9 of the traveling wave. It is not a multiple of wave number 9, and the groove number 48 and the wave number 9 of the traveling wave are not relatively prime (no two integers have a common divisor other than 1) ("NO. 2" described later). Corresponding).

さらに、本件発明者は、進行波の波数9が生じる振動子11において、溝数を変更した試作品を作製して、各試作品を用いた超音波モータの性能と高回転時の異音について調査した。
超音波モータの性能を示すものとして、定格周波数を入力した時の(≒最大駆動回転数NHが得られる周波数)の最大効率(%)や、最低駆動回転数NL(rpm)と最大駆動回転数NH(rpm)との比(NH/NL比)等がある。
なお、最大駆動回転数NHとは、異音が発生しない最大駆動回転数であって、その値は、大きい方が好ましい。また、NH/NL比については、その値が大きいと制御性がよいことを示し、例えば、アプリケーション組み込み時に停止時間が短く、停止精度がよくなる。
Further, the present inventor made a prototype with a different number of grooves in the vibrator 11 in which the wave number 9 of the traveling wave is generated, and the performance of the ultrasonic motor using each prototype and the abnormal noise at the time of high rotation investigated.
In order to show the performance of the ultrasonic motor, the maximum efficiency (%) when the rated frequency is input (≈the frequency at which the maximum drive speed NH is obtained), the minimum drive speed NL (rpm) and the maximum drive speed There is a ratio (NH / NL ratio) to NH (rpm).
The maximum drive speed NH is the maximum drive speed at which no abnormal noise is generated, and it is preferable that the value be large. Further, as for the NH / NL ratio, a large value indicates that the controllability is good. For example, the stop time is short when incorporating an application, and the stop accuracy is improved.

「NO.1」では、図示のように、溝数54(進行波の波数9の倍数)であって、サンプル「1−1,1−2,1−3」を用いて超音波モータの性能を比較した。
「NO.2」では、上述したように、溝数48(進行波の波数9との最大公約数が3であって、進行波の波数9の倍数ではなく、かつ、進行波の波数9とは互いに素の関係ではない)であって、サンプル「2−1,2−2,2−3」を用いて超音波モータの性能を比較した。
「NO.3」では、溝数47(進行波の波数9と互いに素の関係である)であって、サンプル「3−1,3−2,3−3」を用いて超音波モータの性能を比較した。
「NO.4」では、溝数45(進行波の波数9の倍数)であって、サンプル「4−1,4−2,4−3」を用いて超音波モータの性能を比較した。
In “NO. 1”, as shown in the figure, the number of grooves is 54 (a multiple of the wave number 9 of the traveling wave), and the performance of the ultrasonic motor using the samples “1-1, 1-2, 1-3”. Compared.
In “NO. 2”, as described above, the number of grooves 48 (the greatest common divisor with the wave number 9 of the traveling wave is 3, which is not a multiple of the wave number 9 of the traveling wave, and the wave number 9 of the traveling wave is Are not prime relations), and the performance of the ultrasonic motor was compared using samples “2-1, 2-2, 2-3”.
In “NO.3”, the number of grooves is 47 (which is relatively prime with the wave number 9 of the traveling wave), and the performance of the ultrasonic motor using the samples “3-1, 3-2, 3-3”. Compared.
In “NO.4”, the number of grooves was 45 (multiple of wave number 9 of traveling wave), and the performance of the ultrasonic motor was compared using samples “4-1, 4-2, 4-3”.

以下、上述した「NO.1〜4」を比較すると共に、超音波モータの性能を溝数と進行波の波数とに基づいて説明する。
「NO.1,4」は、「NO.2,3」に比べて、最大効率は大きいが、異音が発生しない最大駆動回転数が小さい。
「NO.3」は、「NO.1,4」に比べて、異音が発生しない最大駆動回転数は大きいが、最大効率が小さい。
これに対して、「NO.2」は、「NO.1,4」と最大効率が略同じで、さらに、異音が発生しない最大駆動回転数は「NO.1,3,4」よりも大きい。
Hereinafter, while comparing the above “NO. 1 to 4”, the performance of the ultrasonic motor will be described based on the number of grooves and the number of traveling waves.
“NO.1, 4” has a higher maximum efficiency than “NO.2,3”, but has a lower maximum drive speed at which no abnormal noise occurs.
“NO.3” has a higher maximum drive speed at which no abnormal noise is generated, but has a lower maximum efficiency than “NO.1 and 4”.
In contrast, “NO. 2” has substantially the same maximum efficiency as “NO. 1, 4”, and the maximum drive speed at which no abnormal noise occurs is higher than “NO. 1, 3, 4”. large.

溝数が波数の倍数の関係である「NO.1,4」について説明する。
「NO.1,4」の最大効率が大きい理由としては、溝数が波数の倍数の関係であるために、曲げ振動の定在波の各波の振動が一様になっており、その結果、高いQ値が得られると共に、大きな振動振幅が得られる点が挙げられる。
一方、振動振幅が大きくなった場合(すなわち、回転速度が速くなった場合)に、異音が発生しやすくなるのは、進行性振動波の波頭部が溝部12aを通過するときの振幅と、突起部12bを通過するときの振幅とが異なり、かつ、各波が同時に溝部12a(突起部12b)を通過した状態から突起部12b(溝部12a)を通過した状態に切り替わるために、移動子17に上下動の動きが生じるからである。これにより、振動子11と移動体17とが接触しない瞬間が発生して、異音が発生することが想定される。
“NO. 1, 4” in which the number of grooves is a multiple of the wave number will be described.
The reason why the maximum efficiency of “NO. 1, 4” is large is that the number of grooves is a multiple of the wave number, so that the vibration of each standing wave of bending vibration is uniform, and as a result A high Q value can be obtained and a large vibration amplitude can be obtained.
On the other hand, when the vibration amplitude becomes large (that is, when the rotational speed becomes high), abnormal noise is likely to be generated when the wave head of the progressive vibration wave passes through the groove 12a. In order to switch from a state in which the amplitude differs when passing through the protrusion 12b and each wave passes through the groove 12a (protrusion 12b) at the same time to a state of passing through the protrusion 12b (groove 12a), the mover This is because a vertical movement occurs in FIG. Thereby, it is assumed that the moment when the vibrator 11 and the moving body 17 do not come into contact with each other and abnormal noise is generated.

溝数と波数とが互いに素の関係である「NO.3」について説明する。
「NO.3」の異音が発生しない最大駆動回転数が、「NO.1,4」に比べて大きい理由としては、溝数と波数とが素の関係であり、進行性振動波の各波の波頭部がばらばらに溝部12a(突起部12b)を通過した状態から突起部12b(溝部12a)を通過した状態に切り替わるために、移動子17に上下動の動きが生じ難いからである。
一方、「NO.3」では、溝数と波数とが互いに素の関係であるので、定在波発生時の各波の振動が一様でなく、Q値が小さくなり、その結果、大きな振動振幅が得られないために、最大効率が小さくなる。
“NO. 3” in which the number of grooves and the wave number are relatively prime will be described.
The reason why the maximum drive rotational speed at which no abnormal noise of “NO. 3” occurs is larger than that of “NO. 1, 4” is because the number of grooves and the wave number are a prime relationship. This is because the crest of the wave is switched from a state where it has passed through the groove 12a (protrusion 12b) to a state where it has passed through the protrusion 12b (groove 12a). .
On the other hand, in “NO. 3”, since the number of grooves and the wave number are relatively prime, the vibration of each wave when the standing wave is generated is not uniform, and the Q value becomes small. Since the amplitude cannot be obtained, the maximum efficiency is reduced.

つぎに、上述したように、溝数と波数との最大公約数が波数よりも小さく、さらに詳しくは、溝数は波数の倍数ではなく、かつ、溝数と波数とは互いに素の関係ではない「NO.2」について説明する。
「NO.2」は、溝数と波数との最大公約数が3になるような関係であり、この場合には、曲げ振動の定在波の発生時に、9波のうち3つの波の振動が一様になる(同じ振動が3グループに分けられる)。このため、「NO.2」では、ある程度のQ値が確保され、振動振幅が低下することはなく、その結果、「NO.1,4」と略同様の最大効率を得ることができる。
また、「NO.2」では、進行性振動波の各波の波頭部が、3グループ毎に溝部12a(突起部12b)を通過した状態から突起部12b(溝部12a)を通過した状態に切り替わるために、移動子17の上下動が「NO.1,4」に比べて小さなり、その結果、異音の発生しない最大駆動回転数が大きくなる。
Next, as described above, the greatest common divisor of the number of grooves and the wave number is smaller than the wave number. More specifically, the number of grooves is not a multiple of the wave number, and the number of grooves and the wave number are not prime. “NO.2” will be described.
“NO.2” is a relationship in which the greatest common divisor between the number of grooves and the wave number is 3, and in this case, when a standing wave of bending vibration is generated, vibration of three of the nine waves Becomes uniform (the same vibration is divided into three groups). For this reason, in “NO. 2”, a certain Q value is ensured and the vibration amplitude does not decrease, and as a result, the maximum efficiency substantially the same as “NO. 1, 4” can be obtained.
Further, in “NO. 2”, the wave head of each wave of the progressive vibration wave changes from a state where it passes through the groove 12a (protrusion 12b) every three groups to a state where it passes through the protrusion 12b (groove 12a). Since the switching is performed, the vertical movement of the moving element 17 is smaller than that of “NO. 1, 4”, and as a result, the maximum driving rotational speed at which no abnormal noise occurs is increased.

したがって、本実施例によれば、「NO.2」のように、溝数と波数との最大公約数が波数よりも小さくなるように、溝数と波数との関係を設定することにより、定在波の振動振幅が確保され、かつ、高回転時の移動子17の瞬間的な上下動を抑えることができ、その結果、定格周波数を入力したときの最大効率を高めると共に、異音の発生しない最大駆動回転数を大きくすることができ、さらに、NH/NL比を大きくでき、例えば、停止時間が短く、停止精度のよい超音波モータ10を得ることができる。   Therefore, according to this embodiment, as in “NO. 2”, the relationship between the number of grooves and the wave number is set so that the greatest common divisor between the number of grooves and the wave number is smaller than the wave number. The vibration amplitude of the standing wave is ensured, and the momentary vertical movement of the moving element 17 at the time of high rotation can be suppressed. As a result, the maximum efficiency when the rated frequency is input is increased and the generation of abnormal noise is achieved. It is possible to increase the maximum number of rotations that are not performed, and to increase the NH / NL ratio. For example, the ultrasonic motor 10 having a short stop time and good stop accuracy can be obtained.

(変形例)
以上説明した実施例に限定されることなく、種々の変形や変更が可能であって、それらも本発明の均等の範囲である。
上述した超音波モータ10では、9波の進行波で、弾性体12の駆動面側に48個の溝部12aが形成された場合について説明したが、これに限られず、進行波の波数が8、10である場合についても溝数と進行波の波数との関係を考慮することにより、同様な効果を得られる。
(1)進行波の波数が8である場合に、溝数を44(すなわち、溝数が波数の倍数ではなく、かつ、互いに素の関係ではない数)にすると、この場合には、溝数と波数との最大公約数は4であり、波数よりも小さいので、例えば、効率等の性能がよく、高回転時においても異音が発生しない超音波モータを得ることができる。
(2)進行波の波数が10である場合に、溝数を55(すなわち、溝数が波数の倍数ではなく、かつ、互いに素の関係ではない数)にすると、この場合には、溝数と波数との最大公約数は5であり、波数よりも小さいので、例えば、効率等の性能がよく、高回転時においても異音が発生しない超音波モータを得ることができる。
(Modification)
The present invention is not limited to the embodiments described above, and various modifications and changes are possible, and these are also within the equivalent scope of the present invention.
In the ultrasonic motor 10 described above, the case where 48 grooves 12a are formed on the driving surface side of the elastic body 12 with 9 traveling waves has been described. However, the present invention is not limited thereto, and the wave number of the traveling wave is 8, Even in the case of 10, the same effect can be obtained by considering the relationship between the number of grooves and the number of traveling waves.
(1) If the wave number of the traveling wave is 8, and the number of grooves is 44 (that is, the number of grooves is not a multiple of the wave number and is not a prime relationship), in this case, the number of grooves Since the greatest common divisor between the wave number and the wave number is 4, which is smaller than the wave number, for example, it is possible to obtain an ultrasonic motor that has good performance such as efficiency and does not generate abnormal noise even at high rotation.
(2) If the wave number of the traveling wave is 10, and the number of grooves is 55 (that is, the number of grooves is not a multiple of the wave number and is not a prime relationship), in this case, the number of grooves Since the greatest common divisor of 5 and the wave number is 5 and smaller than the wave number, for example, it is possible to obtain an ultrasonic motor that has good performance such as efficiency and does not generate abnormal noise even at high rotation.

本発明による超音波モータを示す概略図である。It is the schematic which shows the ultrasonic motor by this invention. 本実施例の超音波モータの振動子及び移動子の外観図である。It is an external view of the vibrator | oscillator and moving element of the ultrasonic motor of a present Example. 本実施例による超音波モータ10の駆動制御装置を示すブロック図である。It is a block diagram which shows the drive control apparatus of the ultrasonic motor 10 by a present Example. 本実施例による超音波モータ10の性能を、溝部12aの数と進行波の波数とに基づいて比較した図である。It is the figure which compared the performance of the ultrasonic motor 10 by a present Example based on the number of the groove parts 12a, and the wave number of a traveling wave. 従来の振動波モータにおける異音の発生原理を説明するための概念図である。It is a conceptual diagram for demonstrating the generation principle of the unusual noise in the conventional vibration wave motor.

符号の説明Explanation of symbols

10 超音波モータ
11 振動子
12 弾性体
12a 溝部
12b 突起部
12c 駆動面
13 圧電体
14 緩衝部材
15 加圧板
16 加圧部材
17 移動子
18 振動吸収部材
19A 支持部材
19B 回転部材
20 駆動制御装置
21 発振部
22 制御部
23 移相部
24,25 増幅部
26 検出部
DESCRIPTION OF SYMBOLS 10 Ultrasonic motor 11 Vibrator 12 Elastic body 12a Groove part 12b Protrusion part 12c Drive surface 13 Piezoelectric body 14 Buffer member 15 Pressure plate 16 Pressure member 17 Movable element 18 Vibration absorption member 19A Support member 19B Rotating member 20 Drive control device 21 Oscillation Unit 22 Control unit 23 Phase shift unit 24, 25 Amplification unit 26 Detection unit

Claims (7)

2つの相に分けられ、前記2つの相のそれぞれに入力される駆動信号により、前記2つの相から発生する互いにずれた2つの振動が励振される圧電体と、前記圧電体に接合され、前記位相がずれた2つの振動が合成されて駆動面に進行性振動波を生じる弾性体とを有する振動子と、
前記弾性体の駆動面に加圧接触され、前記進行性振動波によって駆動される移動子と、
を備えた振動波モータであって、
前記弾性体は、その駆動面側に複数の溝部を有し、
前記進行性振動波の波数は9であり、前記溝部の数と前記進行性振動波の波数との最大公約数は3であること、
を特徴とする振動波モータ。
The piezoelectric material is divided into two phases, and is joined to the piezoelectric material, and the piezoelectric material is excited by two mutually shifted vibrations generated from the two phases by a driving signal input to each of the two phases. A vibrator having an elastic body that combines two vibrations out of phase to generate a progressive vibration wave on a drive surface;
A mover that is in pressure contact with the drive surface of the elastic body and is driven by the progressive vibration wave;
A vibration wave motor comprising:
The elastic body has a plurality of grooves on its drive surface side,
The wave number of the progressive vibration wave is 9, and the greatest common divisor between the number of the groove portions and the wave number of the progressive vibration wave is 3 .
Vibration wave motor characterized by
2つの相に分けられ、前記2つの相のそれぞれに入力される駆動言号により、前記2つの相から発生する互いにずれた2つの振動が励振される圧電体と、前記圧電体に接合され、前記位相がずれた2つの振動が合成されて駆動面に進行性振動波を生じる弾性体とを有する振動子と、
前記弾性体の駆動面に加圧接触され、前記進行性振動波によって駆動される移動子と、
を備えた振動波モータであって、
前記弾性体は、その駆動面側に複数の溝部を有し、
前記進行性振動波の波数は8であり、前記溝部の数と前記進行性振動波の波数との最大公約数は4であること、
を特徴とする振動波モータ。
The piezoelectric body is divided into two phases, and is joined to the piezoelectric body by driving vibrations that are shifted from each other and generated from the two phases according to the driving symbols inputted to the two phases, A vibrator having an elastic body that combines two vibrations out of phase to generate a progressive vibration wave on a driving surface;
A mover that is in pressure contact with the drive surface of the elastic body and is driven by the progressive vibration wave;
A vibration wave motor comprising:
The elastic body has a plurality of grooves on its drive surface side,
The wave number of the progressive vibration wave is 8, and the greatest common divisor between the number of the groove portions and the wave number of the progressive vibration wave is 4.
Vibration wave motor characterized by
2つの相に分けられ、前記2つの相のそれぞれに入力される駆動信号により、前記2つの相から発生する互いにずれた2つの振動が励振される圧電体と、前記圧電体に接合され、前記位相がずれた2つの振動が合成されて駆動面に進行性振動波を生じる弾性体とを有する振動子と、
前記弾性体の駆動面に加圧接触され、前記進行性振動波によって駆動される移動子と、
を備えた振動波モータであって、
前記弾性体はその駆動面側に複数の溝部を有し、
前記進行性振動波の波数は10であり、前記溝部の数と前記進行性振動波の波数との最大公約数は5であること、
を特徴とする振動波モータ。
The piezoelectric material is divided into two phases, and is joined to the piezoelectric material, and the piezoelectric material is excited by two mutually shifted vibrations generated from the two phases by a driving signal input to each of the two phases. A vibrator having an elastic body that combines two vibrations out of phase to generate a progressive vibration wave on a drive surface;
A mover that is in pressure contact with the drive surface of the elastic body and is driven by the progressive vibration wave;
A vibration wave motor comprising:
The elastic body has a plurality of grooves on its drive surface side,
The wave number of the progressive vibration wave is 10, and the greatest common divisor between the number of the groove portions and the wave number of the progressive vibration wave is 5.
Vibration wave motor characterized by
請求項1から3のいずれか1項に記載の振動波モータにおいて、
前記圧電体前記2つの相から発生する前記振動は、互いに位相が1/4波長ずれること、
を特徴とする振動波モータ。
In the vibration wave motor according to any one of claims 1 to 3 ,
Wherein the vibration generated from the two phases to the piezoelectric body, the phase is shifted 1/4 wavelength from each other,
Vibration wave motor characterized by
請求項4に記載の振動波モータにおいて、
前記2つの相の間には、前記振動の1/4波長分間隔があること、
を特徴とする振動波モータ。
The vibration wave motor according to claim 4 ,
There is an interval of ¼ wavelength of the vibration between the two phases,
Vibration wave motor characterized by
請求項1からのいずれか1項に記載の振動波モータにおいて、
前記圧電体は、前記振動の1/2波長毎に分極が交互となっていること、
を特徴とする振動波モータ。
In the vibration wave motor according to any one of claims 1 to 5 ,
The piezoelectric body has alternating polarization for every half wavelength of the vibration,
Vibration wave motor characterized by
請求項1からのいずれか1項に記載の振動波モータにおいて、
前記進行性振動波の複数の波頭部のうち、前記溝部にある波頭部と前記溝部にない波頭部とが同時に存在すること、
を特徴とする振動波モータ。
The vibration wave motor according to any one of claims 1 to 6 ,
Among the plurality of wave heads of the progressive vibration wave, a wave head in the groove and a wave head not in the groove are present simultaneously.
Vibration wave motor characterized by
JP2004056169A 2004-03-01 2004-03-01 Vibration wave motor Expired - Fee Related JP4654583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004056169A JP4654583B2 (en) 2004-03-01 2004-03-01 Vibration wave motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004056169A JP4654583B2 (en) 2004-03-01 2004-03-01 Vibration wave motor

Publications (3)

Publication Number Publication Date
JP2005253131A JP2005253131A (en) 2005-09-15
JP2005253131A5 JP2005253131A5 (en) 2007-04-19
JP4654583B2 true JP4654583B2 (en) 2011-03-23

Family

ID=35033095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004056169A Expired - Fee Related JP4654583B2 (en) 2004-03-01 2004-03-01 Vibration wave motor

Country Status (1)

Country Link
JP (1) JP4654583B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101636909B1 (en) * 2009-02-03 2016-07-06 삼성전자주식회사 Piezoelectric ultrasonic motor and method for fabricating the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0438180A (en) * 1990-03-13 1992-02-07 Seiko Epson Corp Ultrasonic motor and its driving method
JPH0530149B2 (en) * 1984-11-08 1993-05-07 Matsushita Electric Ind Co Ltd
JPH07115782A (en) * 1993-10-13 1995-05-02 Canon Inc Vibration wave driver

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0530149B2 (en) * 1984-11-08 1993-05-07 Matsushita Electric Ind Co Ltd
JPH0438180A (en) * 1990-03-13 1992-02-07 Seiko Epson Corp Ultrasonic motor and its driving method
JPH07115782A (en) * 1993-10-13 1995-05-02 Canon Inc Vibration wave driver

Also Published As

Publication number Publication date
JP2005253131A (en) 2005-09-15

Similar Documents

Publication Publication Date Title
EP0308970B1 (en) Piezoelectric motor
JPH0117354B2 (en)
JP4882279B2 (en) Vibration wave motor
JP4941469B2 (en) Vibration actuator, lens barrel, camera system, vibrator
WO2018003985A1 (en) Vibration wave motor and optical device
JP4654583B2 (en) Vibration wave motor
JP5704892B2 (en) Vibration type driving device
JP2001298968A (en) Vibration motor
JP4208753B2 (en) Control device for vibration type drive device, control method for vibration type drive device, control program for vibration type drive device
JP4182666B2 (en) Method for changing manufacturing process of vibration wave motor
JP4208627B2 (en) Control device, operation device, and control method for vibration type drive device
JP4269739B2 (en) Vibration wave motor
JP5736646B2 (en) Vibration wave motor, lens barrel and camera
JP6221521B2 (en) Vibration wave motor and optical equipment
JPH0681523B2 (en) Vibration wave motor
JPS6135177A (en) Piezoelectric linear motor
JP2018018095A (en) Vibration wave motor and optical apparatus
JP4924726B2 (en) Vibration wave motor, lens barrel and camera
JP2012100482A (en) Vibration type drive device
JP2000245173A (en) Vibrating actuator
JP2018007398A (en) Vibration wave motor and optical instrument
JP2625653B2 (en) Vibration wave motor
JP2013247800A (en) Drive device for vibration wave motor, lens barrel, and camera
JP2005333778A (en) Truss type actuator and its driving method
JPH1056788A (en) Linear ultrasonic motor and recording and reproducing apparatus using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4654583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees