JP4651250B2 - Three-dimensional network structure, three-dimensional network structure manufacturing method, and three-dimensional network structure manufacturing apparatus - Google Patents

Three-dimensional network structure, three-dimensional network structure manufacturing method, and three-dimensional network structure manufacturing apparatus Download PDF

Info

Publication number
JP4651250B2
JP4651250B2 JP2001348871A JP2001348871A JP4651250B2 JP 4651250 B2 JP4651250 B2 JP 4651250B2 JP 2001348871 A JP2001348871 A JP 2001348871A JP 2001348871 A JP2001348871 A JP 2001348871A JP 4651250 B2 JP4651250 B2 JP 4651250B2
Authority
JP
Japan
Prior art keywords
network structure
dimensional network
raw material
die
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001348871A
Other languages
Japanese (ja)
Other versions
JP2002275751A5 (en
JP2002275751A (en
Inventor
伸行 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
C Eng Co Ltd
Original Assignee
C Eng Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by C Eng Co Ltd filed Critical C Eng Co Ltd
Priority to JP2001348871A priority Critical patent/JP4651250B2/en
Publication of JP2002275751A publication Critical patent/JP2002275751A/en
Publication of JP2002275751A5 publication Critical patent/JP2002275751A5/ja
Application granted granted Critical
Publication of JP4651250B2 publication Critical patent/JP4651250B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、クッション材等に使用する立体網状構造体、立体網状構造体製造方法及び立体網状構造体製造装置に関するものである。
【0002】
【従来の技術】
従来、空隙を有する立体網状構造体の製造方法としては特公昭50−39185号記載の方法あるいはポリエステル繊維を接着剤で接着した樹脂綿、例えば接着剤にゴム系を用いたものとして特開昭60−11352号等が公知である。また、一方、無端ベルトで樹脂糸を巻き込むことで空隙を有する立体網状構造体を製造する方法或いは製造装置があり、特開平11−241264号等に示す発明が挙げられる。
【0003】
【発明が解決しようとする課題】
しかしながら、こうした立体網状構造体製品への要求は多様化しており、製造工程の後工程で要求された形状に切断又は成形をして異形網状体にいちいち仕上げをする必要があり、仕上げが非常に煩雑化する。
また、従来の方法で製造された立体網状構造体は、密度が低くことがあり、束の両面部がベルトコンベアに接するため、実質的に表面がフラット化されるが、束の左・右端面はランダムな螺旋形状であって、側面は横方向に波打つように不整列になる。
また一方、無端ベルトで巻き込んでいるが、無端ベルトが熱等によって損傷しやすく耐久性に問題が生じるおそれがある。
そこで、本発明は、後工程での仕上げを不要とし、整列度を高め、異形形状への対応を可能とし、耐久性を向上させた立体網状構造体の製造方法及び製造装置を提供することを目的とする。
【0004】
【課題を解決するための手段】
上記諸課題に鑑み、請求項1記載の立体網状構造体は、熱可塑性樹脂を原料又は主原料とし、複数本の線条が押し出し成形によって螺旋状に無秩序に絡まり合い部分的に熱接着し水で冷却され、押し出し方向に対して疎密が交互に形成され、前記押し出し方向と直交する方向に対しても疎密が交互に形成され、密の領域が押し出し方向と直交する方向の両側端部に形成されるクッション材であることを特徴とした立体網状構造体である。
請求項2の立体網状構造体製造方法は、熱可塑性樹脂を原料又は主原料とする溶融した線条を複数の孔を有するダイスから下方へ押し出し、一部水没した引き込み装置の間に前記線条を自然降下させ、該降下速度より前記線条を遅く引き込み、前記押出された線条の集合体の幅より前記引き込み装置の間隔が狭く設定され、前記引き込み装置が水没する前後に前記線条の集合体の少なくとも一面が前記引き込み装置に接触し、前記引き込み装置の引き込み速度を変化させることにより、前記押し出し方向に立体網状構造体の粗密を形成し、前記押し出し方向と直交する方向に立体網状構造体の疎密を形成し、密の領域が押し出し方向と直交する方向の両側端部に形成されるッション材を製造することを特徴とする。
請求項3の立体網状構造体製造装置は、熱可塑性樹脂を原料又は主原料とする溶融した線条を複数の孔を有するダイスから下方へ押し出し、一部水没した引き込み装置の間に前記線条を自然降下させ、該降下速度より前記線条を遅く引き込み、前記押出された線条の集合体の幅より前記引き込み装置の間隔が狭く設定され、前記引き込み装置が水没する前後に前記線条の集合体の少なくとも一面が前記引き込み装置に接触し、前記口金に孔の密度の高い領域及び低い領域を形成し、前記引き込み装置の引き込み速度を変化させることにより、前記押し出し方向に立体網状構造体の粗密を形成し、前記ダイスの口金の押し出し方向と直交する方向の両端部に密度の高い領域を形成することにより、前記押し出し方向と直交する方向に立体網状構造体の疎密を形成したクッション材を製造することを特徴とする。
【0015】
体網状構造体製造装置は、熱可塑性樹脂を原料又は主原料とする溶融した線条を複数の孔を有するダイスから下方へ押し出し、一部水没した引き込み装置の間に自然降下させ、該降下速度より前記線条を遅く引き込み、押出された線条の集合体の幅より前記引き込み装置の間隔が狭く設定され、前記引き込み装置が水没する前後に前記線条の集合体の少なくとも三面又は四面が前記引き込み装置に接触するように前記引き込み装置が配置されたものが好ましい。これにより、後工程での仕上げを不要とし、整列度を高めることができる。
【0016】
体網状構造体製造装置は、熱可塑性樹脂を原料又は主原料とする溶融した線条を複数の孔を有するダイスから下方へ押し出し、一部水没したローラの間に自然降下させ、該降下速度より前記線条を遅く引き込み、押出された線条の集合体の幅より前記ローラの間隔が狭く設定され、前記ローラが水没する前後に前記線条の集合体の少なくとも一面が前記ローラに接触するものが好ましい。これにより、装置の簡素化、設計の容易性を実現できる。
【0017】
体網状構造体製造装置は、熱可塑性樹脂を原料又は主原料とする溶融した線条を複数の孔を有するダイスから下方へ押し出し、一部水没した、下方に向かって徐々に間隔が狭くなるように設定された表面が滑り性の板材と、該板材の間に前記線条を自然降下させ、該降下速度より前記線条を遅く引き込み、押出された線条の集合体の幅より前記板材の下方の部分の間隔が狭く設定され、前記板材が水没する前後に前記線条の集合体の少なくとも一面が前記板材に接触するものが好ましい。これにより可動部分を減少させるか無くすことで、装置の小型化を実現できる。
【0021】
体網状構造体製造装置は、熱可塑性樹脂を原料又は主原料とする溶融した線条を複数の孔を有するダイスから下方へ押し出し、一部水没した引き込み装置の間に前記線条を自然降下させ、該降下速度より前記線条を遅く引き込み、前記押出された線条の集合体の幅より前記引き込み装置の間隔が狭く設定され、前記引き込み装置が水没する前後に前記線条の集合体の少なくとも一面が前記引き込み装置に接触し、前記口金に孔の密度の高い領域及び低い領域を形成したものが好ましい。これにより設計の幅が広くなる。
体網状構造体製造装置は、無端コンベアの速度を変化させ、密度を変化させることにより、立体網状構造体の粗密を形成することが好ましい
【0023】
【発明の実施の形態】
以下第1実施形態の立体網状構造体1は、図1及び図2(a)の通り、再生熱可塑性樹脂を原料又は主原料とし、複数本の線条が螺旋状に無秩序に絡まり合い部分的に熱接着した板状の立体網状構造体であることを特徴とした立体網状構造体であり、2つの側面、左右端面、上下端面を備えている。前記立体網状構造体の側面のうち三面の表面側の密度が、前記表面側を除く部分の密度より相対的にいことが好ましい。即ち、第1実施形態の立体網状構造体1(図2(a)参照)は、三面成形であり、対向する他の1面から内部に向かって所定間隔の領域は密度が高く成形されたものであり、中央部内部の領域の密度はそれよりも低く設定され他の一面が不揃いと成っている。このため、後工程で加工することがない利点が生じる。つまり、幅の広い一対の面及び一側面は後述の無端コンベア等によって強制的に成形され、端縁が他の面よりもきれいに揃えられている。
【0024】
ここでは再生熱可塑性樹脂の原料又は主原料としてPETボトルのフレーク状又はチップ状を使用する。PETボトルをそのまま粉砕しそれを溶融させてフレーク形状にしたものである。リサイクル促進の時代にも適合している。これが再生品ではなく、純正品であると、乾燥結晶化、或いはごみ除去等、コスト的に1m2あたりの製造費が倍増する。廃棄処理コスト削減に威力を発揮できる。しかしながら、再生以外の熱可塑性樹脂等においても適用可能である。例えば、熱可塑性樹脂としてポリエチレン、ポリプロピレンなどのポリオレフィン、ポリエチレンテレフタレートなどのポリエステル、ナイロン66などのポリアミド、ポリ塩化ビニル、ポリスチレン、上記樹脂をベースとし共重合したコポリマーやエラストマー、上記樹脂をブレンドしたもの等が挙げられる。更に、立体網状構造体1の用途としては、主として、クッション材、衝撃吸収材、吸湿材、吸音材(床材の下、内部、壁内材)、断熱材(内断熱と外断熱)、壁面、屋上緑化、コンクリートモルタル割れ防止材、自動車内装材等に適用される例が挙げられるが、二重壁体の内部に適用することもできる。
また、立体網状構造体を炭素繊維等の不織布で挟んだり添えたりするなど、立体網状構造体に難燃塗料を塗装するなど、立体網状構造体に難燃材質を混入することで、難燃性を持たせると、建築断熱材、建築吸音材等として一層好適である。
この第1実施形態は概ね内部が均一な密度に成形されたものである。見掛密度は0.02〜0.9g/cm3(空隙率36〜98.4%に相当する)が好ましく、0.05〜0.15g/cm3が特に好ましい。立体網状構造体1は例えば幅0.1m〜2m、厚さは5mm〜200mmが好ましく、長さ方向においては無端状であり、適宜の長さ(例えば900mm)に切断するが、それらのサイズ例に限定されるわけではない。
【0025】
第2実施形態の立体網状構造体2(図2(b)参照)は、四面成形であり全ての面が揃えられており、第1実施形態の立体網状構造体1の左右側面から内部に向かって所定間隔の領域は密度が高く成形されたものであり、中央部内部の領域の密度はそれよりも低く設定されている。即ち、上面及び底面を除き、全ての面から内部に向かって所定間隔の領域は密度が高く成形されたものである。
【0026】
第3実施形態の立体網状構造体3は、その表面を異形又は多面形態とするものである。例えば、凸面を備えたもの3A(図4(a)参照)、凹面を備えたもの3B(図4(b)参照)、複数の連続的に形成された凹凸面を備えたもの3C(図4(c)参照)、複数の鋸歯面を備えたもの3D(図4(d)参照)、複数の波面を備えたもの3E(図4(e)参照)、隅が曲面(アール)形状のもの3F(図4(f)参照)、角が所定角度(ここでは45度)にカットされたもの3G(図4(g)参照)、或いはそれらの適宜の組合せ等が挙げられ、建築施工現場で様々な形態のものが製品として要求され、これに対応することが出来る。また、複雑な形状とすることで、多様な用途が生じると考えられる。特に、前述の第1実施形態及び第2実施形態のように立体網状構造体の三面又は四面を強制的に成形することで、多様な製品要求を満足させることができる。さらに一般的には製品の要求される異形形状に対しては、後工程で要求形状の切断又は成形をして異形網状体とするのであるが、本実施形態によれば、製品の要求する形状、寸法を後工程で仕上することなく即座に製品の提供が出来、後工程を不要にできる。
【0027】
第4実施形態の立体網状構造体4(図2(c)参照)は、単数又は複数(ここでは2個)の中空部4A,4Bを備えたものであり、コストの更なる削減等を目的とするものである。
第5実施形態の立体網状構造体5(図2(d)参照)は、第4実施形態の立体網状構造体4の中空部4A,4Bと同様の中空部5A,5Bに板状の再生ベニア、板状の再生シュレッダーダスト等の同種又は異種の材料の再生部材5C,5Dを入れたものであり、再生板材により吸音性、断熱性、クッション性等の向上を目的としたものである。
第6実施形態の立体網状構造体6(図2(e)参照)は、第1実施形態の立体網状構造体1の内部において、厚さ方向に密度を高めて、部分的に、単数又は複数(ここでは3本)の梁状の高密度領域6A,6B,6Cを所定間隔で形成することで、吸音性、断熱性、クッション性、耐衝撃性を高めたものである。
第7実施形態の立体網状構造体7(図2(f)参照)は、その内部において、幅方向に密度を高めて、部分的に、単数又は複数(ここでは1本)の高密度領域7Aを形成することで、吸音性、断熱性、クッション性、耐衝撃性を高めたものである。
第8実施形態の立体網状構造体8(図2(g)参照)は、第7実施形態において、波型の高密度領域8Aとし、吸音性、断熱性、クッション性、耐衝撃性を高めたものである。
【0028】
第9実施形態の立体網状構造体9(図3(a)参照)は、立体網状構造体1,2の内部において、幅方向の所定位置にシート9A(空隙がない領域)を形成することで、吸音性、断熱性、クッション性、耐衝撃性を高めたものである。シート9Aの周囲に線条(樹脂糸)が絡まりあっている。シート9Aは図示の通り横幅一杯に設けても良いし、例えば中央部分等に部分的に設けても良い。
上記第9実施形態の立体網状構造体9(図3(b)参照)のシート9Aは概ね波型に形成されており、吸音性、断熱性、クッション性、耐衝撃性を高めたものである。こうした波型に成形できるのは、後述の通り、ロールの引き取り速度が樹脂糸の下降速度よりも遅いからである。シート9Aの波の間隔、高さ、幅等は製造条件によって異なり、図示のものに限られるものではない。シート9Aの波の間隔が狭い場合、互いに接着されることもある。第9実施形態は、図11(e)のスリット(線状貫通溝)75aを使用することで製造できる。
その他、図示は略すが、断面形状が三角形状、Y型形状等の異形断面となるものについても実施可能である。
【0029】
(立体網状構造体製造装置)
次に、立体網状構造体製造装置10を説明する。
この立体網状構造体製造装置10は、図5の通り、押出成形機11、無端部材12,13を備えた一対の無端コンベア14,15(図7参照)、無端部材12,13を駆動する駆動モータ16、チェーン及び歯車から構成され無端部材12,13の移動速度を変速させる変速機17、一対の無端コンベア14,15を一部水没させる水槽18、制御装置19、その他計器類等から構成されている。
無端部材12,13は複数の金属製(ここではステンレス等)の板材21が所定の隙間22(図8(a)参照)を設けて複数(ここでは各2本)の無端チェーン12a,13a(図7(a),(b)参照)にねじ(図示略)で連結されたものである。これに代えて図8(b)の通り、隙間22を無くしたステンレスメッシュ(金網)等のベルト23でも良い。このメッシュベルトは、スパイラル(螺旋)とロッド(力骨)を組み合わせてできたものであり、この2つの要素の形状、線径、ピッチにより、様々なタイプができあがる。動きが滑らかでベルト表面を水平に保つことに優れ、高温使用に優れ、補修も簡単である。或いは、図7の点線で示す通り、ステンレスメッシュのベルト23を無端部材12,13の外周に張設したものも実施可能であり、隙間22による凹凸の形成を防止したい場合に好適である。また、板材21の断面は長方形であるが、凸形のもの24(図8(c)参照)、凹形のもの25(図8(d)参照)、鋸歯形のもの26(図8(e)参照)、連続的に形成された凹凸形のもの27(図8(f)参照)等様々な変更形態が考えられる。
【0030】
無端コンベア14は、図7の通り、上下に配置された、前記無端チェーン12aが巻き掛けられたスプロケット14aを有する駆動軸14bと、スプロケット14cを有する従動軸14dを備えている。また、無端コンベア15は無端コンベア14と同期して駆動され、上下に配置された、前記無端チェーン13aが巻き掛けられたスプロケット15aを備えた従動軸15bと、スプロケット15cを備えた従動軸15dとを備えている。
【0031】
図5の通り、押出成形機11は、コンテナ31、コンテナ31上部に設けた原料供給口32、ダイス33、ダイス33の下端部に脱着自在に固定可能な口金34等から構成されている。押出成形機11のダイス内部の温度範囲は100〜400℃、押出量は20〜200Kg/時間、等に設定可能である。ダイス33の圧力範囲は0.2〜25MPa、例えば75mmスクリューの吐出圧である。立体網状構造体の厚さが100mmを越えるとキヤポンプ等によりダイス圧力の均一化が必要なこともある。したがって、ダイス内全域から均等に線条を吐出させるためにギヤポンプ等によりダイス内の圧力を上げることが必要となる。このとき立体網状シートの形状を形成するため、無端コンベア14,15の各面は自由に移動出来る構造とし、ダイス33の口金34の形状(孔Hの密度又は径)と無端コンベア14,15の搬送速度により所望の密度、強度をもった製品を製造することができ、製品の多様な要求を満足させることができる。
【0032】
ここで、図9(a),(b)に示す通りの四面成形機である場合の立体網状構造体製造装置50を説明する。この立体網状構造体製造装置50は、図7に示す二面成形の場合の無端コンベア14,15に対応した、回転軸54a,55aを有する無端コンベア54,55と、これらの無端コンベア54,55の長手方向端部にそれらと回転軸が直交して配置された回転可能な回転軸56a,57aを備えた一対のロール56,57が配置されている。回転軸54aにはそれぞれ傘歯車54b,54cが設けられ、回転軸56a,57aにもそれぞれ傘歯車56b,57bが設けられ、傘歯車54b,54c及び傘歯車56b,57bが歯合され、回転軸54a,55aはチェーンCを介してモータMによって同期駆動され、従って、回転軸56a,57aも同期駆動されるようになっている。回転軸56a,57aの他端部は軸受58a,58bで支持されている。
図9(c)の通り、無端コンベア54,55と同様な構造で短尺の一対の無端コンベア59a,59bを直交して配置したものでも良い。この場合、一層、成形を精密に行うことができ、寸法精度が向上する。
図9(d)の通り、四面成形を用いて製造ができる。また、図9(e)の通り、これを用いて、三面成形を行うことも出来る。即ち、立体網状構造体の種類によってはダイスを2系列設けて、平行して線条を押出すようにすれば、生産効率が2倍と成る。
【0033】
図10(a)の通り、変更形態として、前述の同期駆動に替えて、駆動源(モータ等)をそれぞれ設けて、無端コンベア64,65と、ロール66,67(無端コンベアとしても良い)とが独立駆動するような構成も可能である。即ち、三面又は四面成形の場合、回転軸64a,65aを有する無端コンベア64,65と、これらの無端コンベア64,65の長手方向端部にそれらと回転軸が直交して配置された回転可能な回転軸66a,67aを備えた一対のロール66,67が配置されている。回転軸66a,67aにもそれぞれモータMが設けられ、独立駆動されるようになっている。回転軸66a,67aの他端部は軸受68a,68bで支持されている。
図10(b)の通り、他の変更形態として、上述例において一対のロール66,67、回転軸66a,67a、軸受68a,68b及びモータMを削除し、表面にポリテトラフルオロエチレンの加工等がなされた滑り性の曲板69a、69bをロール66,67のあった位置に設けることで、駆動機構を簡素化できる。この曲板69a、69bは側面視で、弧状であり、上部から下部にかけて徐々に間隔が狭まるように設定され、平面視で長方形状に形成されている。
【0034】
口金34の穴は直列下降であり、穴があいてここから糸が下方向に降下して出てくる。等間隔でも良いし、非等間隔でも良い。穴は千鳥状、直交状等、様々な配列を取り得る。配列密度を変えたい場合、積極的に端部領域だけ密度を高くする方法をとることもある。口金の形態を様々に変形されることで製品の多様な要求を満足させることができる。例えば、1.0m×180mmの面積に直径0.5mmの約3500個の孔Hがほぼ等間隔で形成された口金71(口金の孔Hの設けた領域の大きさの範囲は口金71の面積の90%を占める)(図11(a)参照)、周辺部72aだけ孔Hの密度を高くした口金72(図11(b)参照)、升目状領域となるように枠状部73bの密度を高めた口金73(図11(c)参照)、多数の孔Hの他に短手方向に並行にスリット(線状貫通孔)74a〜74cを形成した口金74(図11(d)参照)、多数の孔Hの他に長手方向の中央部にスリット(線状貫通孔)75aを形成した口金75(図11(e)参照)、多数の孔Hの他に長手方向にスリット(線状貫通孔)76aを長手方向の辺に近い位置に形成した口金76(図11(f)参照)等、中空部作成のため、該当する個所に孔Hが設けられていない領域77c,77dを形成し、該領域の下部に下方に延び出す角形の誘導部材(パイプ等)77a,77bを設けた口金77(図11(g),(h)参照)等、多数の仕様が実施可能である。前記口金に形成された孔Hの密度は、1〜5個/cm2が好ましい。
【0035】
(立体網状構造体の製造方法)
この立体網状構造体1は次のように製造される。まず再生PETボトルフレークを加水分解防止のため加熱し乾燥させ、これに適宜仕上がりを良好にする薬剤、又は抗菌剤等を添加することもある。口金34からフラットに線条が降下すると、無端コンベア14,15の無端部材12,13の巻き込み作用により螺旋状に巻かれる。巻いたときに無端部材12,13の面に当たったところから、巻き込んでいく。巻き込まれた部分は密度が大きく、巻き込まれない部分は密度が小さい。
【0036】
つぎに、図6の通り、溶融した熱可塑性樹脂を複数のダイス33より下方へ押出し、一部水没した1対の無端コンベア14,15の間に自然降下させ、上記の降下速度より遅く引き取ることにより立体網状構造体である立体網状構造体1を製造する際に、押出された溶融樹脂の集合体の幅より1対の無端コンベア14,15の間隔が狭く、かつ無端コンベア14,15が水没する前後に上記溶融樹脂の集合体の両面あるいは片面が無端コンベア14,15に接触するようにした。溶融した熱可塑性樹脂の集合体の両面あるいは片面の表面部分は、無端コンベア14,15上に落下し、溶融した熱可塑性樹脂の集合体の内側へ移動し密な状態となるため、水中にそのまま落下した中央部分より空隙率が小さくなるわけである。当然ながら空隙率が低くなった表面部分は、空隙率が高い中央部分より交点の数が多くなり、引張り強度が著しく強くなる。また、空隙率が低い表面部分は空隙部の面積が小さくなり、衝撃吸収層、防音層となるわけである。
【0037】
立体網状構造体1として機能するためには、全体の空隙率は、使用する現地施工状況にもよるが、50%〜98%の空隙率の範囲が良好であるとの結果が得られた。つまり、密度が大きいと音がブロックされると考えられる。リサイクル吸音建材、クッション材、断熱材等として十分な機能を発揮するには、空隙率は少なくとも70%以上にすると良いという結果が得られた。つまり、空隙率が70%より小さいと、衝撃吸収効果、防音効果、断熱効果、クッション性が期待したほど向上しないことがある。この空隙率については、立体網状構造体1の用途に応じて、70%〜98%の範囲で適宜設計すると良い。
吸音材とクッョン材は85〜98%、床下に配置する床衝撃吸収材は40〜80%、衝突防止用の衝撃吸収材は60〜90%が好適である。用途によって空隙率の好ましい範囲は変わる。
空隙率=100−{(B÷A)×100}である。Aは樹脂比重に立体網状構造体の容積を掛けたもの、Bは立体網状構造体の重さである。
ここで使用する熱可塑性樹脂としては、PETボトルを粉砕し、フレークとしたものを原料又は主原料とする。しかし、主原料にポリプロピレン等のポリマー或は複数のポリマーをブレンドしたものなど、通常の押出成形機で加工のできる樹脂であれば問題ない。
【0038】
異形立体網状体を製品形状にする工程をダイスの内部圧力を均一化し、引取面を二面、三面又は四面又は中間部で引き取る構造とした。これにより見掛密度0.02〜0.9g/cm3を可能とし、溶融した線条を無秩序な螺旋形状から平板状とし、また、厚さ方面の前面、後面、左端面、右端面の立体網状構造体表面部を平面、凸凹の異形形状とすることを特徴とする。立体網状構造体を形成するためのダイスの口金形状を丸棒、異形(パイプ、Y形)等の形状とその複合による組合せでの多様な立体網状構造体を可能とする。また、立体網状構造体を引取機のロール圧縮によって超密構造体のシート構造体とする。ダイスから再生PET樹脂が均一して吐出されるためのダイス内圧の均一化と立体網状シート製造をする際に押出された溶融樹脂の集合体の三面又は四面にコンベアで形状形成する引取コンベアに接触するようにした。つまり溶融した再生PET樹脂の集合体を三面又は四面表面部に製品形状に対応した形状にする。例えば必要により多角形等のコンベアに樹脂集合体を引取り製品を形成する。立体網状シートを得る方法の一つとしては、溶融した樹脂の複数のダイスより下方へ押し出し、水面、又は一部水没したコンベアの間に自然降下させることにより、無秩序な螺旋形状を作り出し立体網状シートとなる。
シートの幅1.0m、厚さ100mmとした場合、密度が変化することを確かめるため無端コンベアの速度を変化させることにより密度は変化することを確認した。
【0039】
さらに押出機の吐出量の変化により密度が変化することを確かめた。
スクリューの直径が75mmの単軸押出し機に、1.0m×180mmの面積のダイス33に、直径0.5mmとされた、ほぼ等間隔で約3500個の孔Hを有する口金34を取り付けた。ダイス33の下約120mmの位置に水位がある水槽18を設置し、幅1.2mの無端コンベア14,15を50mmの間隔をあけて1対、無端コンベア14,15の上部が40mm程度水面から出るようにほぼ垂直に設置した。
この装置で、再生PET樹脂を熱を加えて可塑化しながら樹脂温度が240℃になるように、ダイス33の温度をコントロールして、1時間当たり120kgの押出し量で口金34から出た溶融樹脂の集合体の両面が無端コンベア14,15に落ちるようにそれらの間に押出した。この時の無端コンベア14,15の引取速度は0.7m/分とした。無端コンベア14,15に挟まれて下方へ移動した成形物は、水槽18の下部で向きを変え、押出し機とは反対の側から水面へと移動し、水槽18から出た時点で圧縮エアー又は真空ポンプで水分を吹き飛ばした。
このようにして得られた立体網状構造体は、幅1.0m、厚さ50mmで、密度は、0.07g/cm3〜0.14g/cm3が得られた。用途は、断熱材、下地材、吸音材、排水パイプ等が挙げられる。
【0040】
以上説明した立体網状構造体1及び立体網状構造体製造装置10によれば、後工程での仕上げを不要とし、整列度を高め、異形形状への対応を可能とし、耐久性を向上させることができる。
また本実施形態により現状では用途のないPETボトルに立体網状構造体としての用途ができ、PETボトルの回収率が高まると考えられる。これにより、PETボトルのリサイクルが大いに促進される。
【0041】
図12は四面成型の立体網状構造体製造装置50の変更形態であり、図12(a)は図9(b)に対応したものであり、前述の一対のロール56,57の表面に単数又は複数の突部90a〜90cが形成されたものである(ロール57及びその突部は図示略)。これは、立体網状構造体の側面に凹みを形成するためである。突部90a〜90cは、断面角形で且つ弧状に形成されている。理論的には前記の凹みは角形になるはずであるが、樹脂糸が前述の通り上から落ちてくるので、ブラインドが出来、実際には、樹脂糸が入ってこない領域ができるので、立体網状構造体の側面の凹みは曲線状のものになる。つまりアールを取るような感じになる。また、図12(b)は図9(c)に対応したものであり、前述の一対の無端コンベア54,55等の表面に単数又は複数の突部96が形成されたものである(無端コンベア55及びその突部は図示略)。また、前述のロール56,57又は無端コンベア54,55等の回転体にカムとばねを入れておいて、前述の突部を、回転に同期させて、カムが突部を外方向に押出すように構成することもでき、これにより、前記のブラインドを減少させ、より精密な凹みを形成することができる。その他の構造は図9(b),(c)と同様であるから、図示及び説明は援用する。
【0042】
次に第2実施形態を説明する。立体網状構造体製品のリサイクルへの要求は多様化しており、現状では対応できないことがある。例えば、2種類以上の樹脂を混合してリサイクル利用する場合、リサイクルの際に、分離できる原料と、分離できない原料とがあり、リサイクルの現場では、分離できない原料が混じってしまい、せっかくリサイクルしようとしても、リサイクル利用が実際上、不可能となることがある。また、同一の原料であっても、粗密を形成したい場合、中空部を後から作りたい場合等、形状を変更したい場合、或いは、成形性を高めたい場合がある。
そこで、本実施形態は、熱可塑性樹脂のリサイクルに支障が起きないようにすること、形状の変更容易性を可能とすることを目的とする。
【0043】
第10実施形態の立体網状構造体101は、図13(a)の通り、再生熱可塑性樹脂を原料又は主原料とし、複数本の線条が螺旋状に無秩序に絡まり合い部分的に熱接着した板状の立体網状構造体であることを特徴とした立体網状構造体である。また、原料が同一又は異なる、内側領域101aと外側領域101bとから構成されている。内側領域101aと外側領域101bの境界は実線で示す。この実線は境界を示すための仮想的な線であり、以下のその他の実施形態でも同様である。前記立体網状構造体の二面、三面又は四面の表面側の密度が、前記表面側を除く部分の密度より相対的にいことが好ましい。即ち、第10実施形態の立体網状構造体101(図13(a)参照)は、二面成形であり、対向する他の一面から内部に向かって所定間隔の領域は密度が高く成形されたものであり、中央部内部の領域の密度はそれよりも低く設定され他の一面が不揃いと成っている。このため、後工程で加工することがない利点が生じる。つまり、幅の広い一対の面及び一側面は後述の無端コンベア等によって強制的に成形され、端縁が他の面よりもきれいに揃えられている。
第11実施形態の立体網状構造体102(図13(b)参照)は、三面成形であり端面と一側面を除き全ての面が揃えられており、右側面を除き、全ての面から内部に向かって所定間隔の領域は密度が高く成形されたものである。また、原料が同一又は異なる内側領域102aと外側領域102bとから構成されている。
第12実施形態の立体網状構造体103(図13(c)参照)は、四面成形であり端面を除き全ての面が揃えられており、第1実施形態の立体網状構造体1の左右側面から内部に向かって所定間隔の領域は密度が高く成形されたものであり、中央部内部の領域の密度はそれよりも低く設定されている。即ち、全ての側面から内部に向かって所定間隔の領域は密度が高く成形されたものである。また、原料が同一又は異なる内側領域103aと外側領域103bとから構成されている。
第13実施形態の立体網状構造体104(図13(d)参照)は、単数又は複数(ここでは1個)の中空部104cを備えたものであり、コストの更なる削減等を目的とするものである。また、原料が同一又は異なる内側領域104aと外側領域104bとから構成されている。
【0044】
第14実施形態の立体網状構造体105(図14(a)参照)は、原料が同一又は異なる三層の領域105a,105b、105cから構成されている。三層の領域の原料が全て異なっていても、また、領域105aと領域105cとが同一原料で、領域105bが異なる原料であっても良い。さらに、三層の領域の原料が全て同一であっても良い。三層の領域105a,105b,105cは長手方向に分割されている。
第15実施形態の立体網状構造体106(図14(b)参照)は、原料が同一又は異なる二層の領域106a,106bから構成されている。二層の領域106a,106bの原料が異なっていても、また、同一であっても良い。二層の領域106a,106bは横幅方向に分割されている。
第16実施形態の立体網状構造体107(図14(c)参照)は、原料が同一又は異なる二層の領域107a,107bから構成されている。二層の領域107a,107bの原料が異なっていても、また、同一であっても良い。第14及び第15実施形態と異なり、領域の分割方向が厚み方向となっている。
図3に図示するものにおいて、密度の高いシート9A(概ね空隙がない充填領域)とそれ以外の領域とを別の押し出し成形機からの別々の経路で形成することで部分的に横幅方向の所定位置に形成することができる。説明は前記を援用する。
その他、図示は略すが、断面形状が三角形状、Y型形状等の様々な異形断面となるものについても実施可能である。以上の通り、口金に設けた2以上の領域に別々に供給することで、原料の温度、或いは線条の押出速度等の製造条件の調整が容易である。
【0045】
次に、第2実施形態の立体網状構造体製造装置110を説明する。
この立体網状構造体製造装置110は、図15の通り、押出成形機111、無端部材112,113を備えた一対の無端コンベア114,115、無端部材112,113を駆動する駆動モータ116、チェーン及び歯車から構成され無端部材112,113の移動速度を変速させる変速機117、一対の無端コンベア114,115を一部水没させる水槽118、制御装置119、その他計器類等から構成されている。
無端部材112,113等は第1実施形態等の説明を援用する。
図15の通り、押出成形機111は、同一又は異なる熱可塑性樹脂原料が貯留されたコンテナ131a及び131b、コンテナ131a及び131bの上部にそれぞれ設けた原料供給口132a及び132b、コンテナ131a及び131bとそれぞれ接続された原料供給管133a及び133bと、原料供給管133a及び133bとパッキン134a及び134bを介装させて接続された複合ダイス135(図16参照)、複合ダイス135の下端部に脱着自在に固定可能な口金136(図16参照)等から構成されている。原料供給管133aは、途中で複数本(ここでは4本)に分岐され、原料供給管133bの上に跨設されている。また、原料供給管133aの下端部は原料供給管133bの下端部の周囲に配置されている。複合ダイス135は、図16(a),(b)の通り、外枠138の内側領域に枠状の隔壁139が形成されて複合ダイス135の内部を2つのチャンバ137a及び137bに区画し、原料供給管133a又は133bを経て供給されてくる同一種類の原料又は2種類の異なる原料が混合しないように構成している。原料が同一の場合でも、押出速度を別々に調整するためには、隔壁139を設けることが望ましい。押出成形機111のダイス内部の詳細は第1実施形態を援用する。なお、原料供給管133aを4本に分岐させたが、2本(図17(a)参照)、3本(図17(b)参照)等の適宜数の本数に分岐させても良い。
【0046】
口金136には2以上の領域が形成され、別々に原料が供給されるようになっている。このため、線条の押出速度、或いは押出量の調整が非常に容易になり、成形性が格段に向上する効果がある。口金の詳細は第1実施形態等を援用するが、ここでは、ほぼ等間隔或いは適宜の間隔で形成された口金171(口金の孔Hの設けた領域の大きさの範囲は口金171の面積の90%を占める)(図18(a)参照)が挙げられる。この口金171は内側領域171aと外側領域171bとが点線で示す隔壁171cで区画され、それぞれ、原料供給管133a及び133bに対応して、同一又は異なる原料の線条が別個独立に押出されるようになっている。
多数の孔Hを備えた内側領域172aと外側領域172bとが点線で示す隔壁172cで区画され、内側領域172aを外側領域172bに対して偏倚させ、内側領域172aに対応する線条を分離しやすくした口金172(図18(b)参照)が挙げられる。
多数の孔Hを備えた内側領域173aと外側領域173bとが点線で示す隔壁173cで区画され、内側領域173aを外側領域173bが両側から挟んだもので、且つ、中空部作成のため、該当する個所に孔Hが設けられていない領域173d,173eを形成し、該領域の下部に下方に延び出す角形の誘導部材(パイプ等)173f,173gを設けた口金173(図18(c),(d)参照)が挙げられる。
【0047】
多数の孔Hを備えた上側領域174aと中央領域174bと下側領域174cとを点線で示す隔壁174d及び174eで区画し3段(3層)とした口金174(図19(a)参照)が挙げられる。
多数の孔Hを備えた上側領域175aと下側領域175bを点線で示す隔壁175cで区画し2段(2層)とした口金175(図19(b)参照)が挙げられる。
多数の孔Hを備えた左側領域176aと右側領域176bを点線で示す隔壁176cで区画し2列(2層)とした口金176(図19(c)参照)が挙げられる。
多数の孔Hのある領域177aと、所定方向(ここでは長手方向)に並行に中央部等の適宜の位置に形成したスリット(直線状溝)177bとを、点線で示す隔壁177cで区画した口金177(図19(d)参照)が挙げられる。スリット177bは隔壁177cの領域内に存在する。スリット(直線状溝)177bの溝幅、長さ又は位置は適宜選択できる。仮に多数の孔Hのある領域177aとスリット(直線状溝)177bとに同一のダイスから原料を供給すると、図3(b)の波形が崩れて成形性が悪いことがあるが、上述の口金177によれば、2種類以上の押出成形機111から原料が別個独立して、領域177aの孔Hと、スリット177bとに供給されることから、好適な波形が得られる効果がある。なお、スリット177bに代えて孔Hを設けても良い。その場合、孔Hの密度を高くすると良い。
その他、多様な仕様が実施可能である。前記口金に形成された孔Hの密度は、1〜5個/cm2が好ましい。
立体網状構造体の製造方法は第1実施形態等を援用する。
【0048】
第10〜16実施形態の立体網状構造体101〜107によれば、分離が難しい樹脂或いは分離が不可能な樹脂を第1の領域101aとし、分離が可能な樹脂を第2の領域101bとし、これをリサイクルの際に分離することで、繰り返しリサイクルを行うことができる。
熱可塑性樹脂の特性に応じて領域を区分けした立体網状構造体を製造でき、熱可塑性樹脂のリサイクルが円滑に行われる。また、領域を分離する等簡単な作業によって形状を後から変更できる利点が生じる。また、複数の押出し機から別個独立に口金に原料を供給することから、立体網状構造体の成形性が向上する。
【0049】
第3実施形態の立体網状構造体製造装置210は、無端ベルトの変形による不都合を回避し、また、後工程での仕上げを不要とし、整列度を高め、異形形状への対応を可能とし、耐久性を向上させた立体網状構造体の製造方法及び製造装置を提供することを目的とする。
立体網状構造体製造装置210は第1実施形態等を援用し、異なる構成を説明する。押出成形機211、所定間隔を置いて水平位置に設置された一対のロール212,213、該一対のロール212,213の下方にそれらに対して整列して配置され、所定間隔を置いて水平に配置された一対のロール214,215(図20参照)、ロール212〜215を駆動する駆動モータ、チェーン及び歯車から構成されロール212〜215の移動速度を変速させる変速機、一対のロール212,213を一部水没させ一対のロール214,215を完全に水没させる水槽、制御装置、その他計器類等から構成されている。図20において、下方のロールを1個削除し、ロールを3個設けた構造としても良い。
ロール212,213は、円形断面のロール224(図22(a)参照)の他、異形断面のものも挙げられる。例えば、外周面が鋸歯断面のロール225(図22(b)参照)、連続的に形成された凹凸形のもの、例えば外周面が歯車断面のロール226(図22(c)参照)、外周面に1以上の突起物227a(例えば、三角形状、丸形突起物)が形成されたロール227(図22(d)参照)、楕円断面のロール228(図22(e)参照)、三角形ないしおにぎり断面のロール229(図22(f)参照)、多角形断面、例えば、八角形断面のロール230(図22(g)参照)等の様々な変更形態が考えられる。
図21の通り、ロール212〜215は、それぞれ駆動軸212a〜215aを備えている。駆動軸212a〜215aはそれぞれの軸受によって回転自在に支持され、変速機を介して駆動モータによって図20の矢印方向にそれぞれ駆動されるようになっている。
以上説明した立体網状構造体製造装置210によれば、後工程での仕上げを不要とし、整列度を高め、異形形状への対応を可能とし、耐久性を向上させる。
【0050】
第17実施形態の立体網状構造体401は、構造体に粗密を設けたものである。用途としては、例えば、園芸容器を吊り下げる壁材、園芸容器を載せるデッキ、目隠し、日よけ、簾、塀、花飾り等に適用される園芸用クッション材等に適用可能である。
立体網状構造体401の粗密は、モータの回転速度の制御によって、引取装置、例えば、無端コンベア又はローラの搬送速度を調整する。押出成形機の液圧調整よりは、安定した粗密を製造可能である。
図23(a)の通り、密度が疎な部分401aと密度が密な部分401bが順に繰り返し形成されている。さらに、図23(b)の通り、中空部406A,406Bが所定方向に貫設されている。変更形態として図23(d)の通り、複数の小穴407a〜407dを長さ方向に貫設した園芸用クッション材402でも良い。疎の部分401aと密な部分401bの密度範囲は適宜設定可能である。熱可塑性樹脂の原料等は第1実施形態等の説明を援用する。
【0051】
図24の通り、口金471に中空部作成のため、該当する個所に孔Hが設けられていない領域477a,477bを形成し、該領域の下部に下方に延び出す角形の誘導部材(板材、パイプ等)477c,477dを設けている(図24(b)参照)。他の例として、所定個数の孔Hがほぼ等間隔で形成された口金481(口金の孔Hの設けた領域の大きさの範囲は口金71の面積の90%を占める)(図24(c)参照)があり、中空部作成のため、該当する個所に孔Hが設けられていない領域487a〜487dを形成し、該領域の下部に下方に延び出す角形の誘導部材(板材、パイプ等)488a〜488dを設けている(図24(d)参照)。前記口金に形成された孔Hの密度は、1〜5個/cm2が好ましい。その他、多数の仕様が実施可能である。
【0052】
立体網状構造体401は、園芸容器を吊り下げる壁材、花飾り用の壁体、目隠し材、垣根の代替品として使用できる。例えば、図25の通り、杭480(柱でも良い)を地面に打ち込んで立設し、立体網状構造体401の中空部406A,406Bに差し込んで固定する。立体網状構造体401は複数に分割して、分割したものを組み合わせることで寸法の選択自由性を確保しても良い。そして、フック481の付いたハンギングバスケット482を適宜数、疎な部分401aに引っ掛ける。密な部分401bよりもフック481を掛けやすい。また一方、デッキとしても利用できる。例えば、立体網状構造体490は、中空部を備えていないが、立体網状構造体401と同様の製造工程にて製造されたものであり、その上に栽培ポット491やコンテナ492等を置くことができる。その他、日よけ、簾、塀、花飾り等に適用できる。また、図26の通り、立体網状構造体402は屋根、日よけ、道路の中央分離帯の樹木の仕切りとして利用できる。立体網状構造体402の小穴407a〜407cに、それぞれ、ヒモ、輪、パイプ等の連結具403を通すなどの適宜手段によって構造物に固定できるようになっている。道路の中央分離帯の樹木の仕切りとして利用する場合、自動車のライトに対する防眩作用がある。
以上説明した立体網状構造体401によれば、ハンギングバスケット用壁材、デッキ、目隠し等に適用でき、しかも、コストが削減され、また、風雨や太陽光に晒されても耐久性があり、腐らず反りが生じることもなく、さらに色も退色しにくい。様々な色彩を採用でき、着色も自在であって色彩の選択の幅が拡大し、さらにクッション性が大変優れており、さらに目隠し効果が高まり、質感の異なる外観を提供でき、非常に便利である。
【0053】
また、立体網状構造体は、屋上緑化用の苗床として適用できる。通気性、通水性のタイルの上に適宜箇所に孔又は凹みを形成し立体網状構造体を敷設し、孔又は凹みに栽培用土等を入れて植物を植設する。
立体網状構造体の上面に通気性、通水性のタイルを貼り付けて舗道材としても適用できる。立体網状構造体により温度を下げることができる。
脆性原因素材例えばタルク等の無機物質を含有した熱可塑性樹脂を原料又は主原料とし、複数本の線条が押し出し成形によって螺旋状に無秩序に絡まり合い部分的に熱接着し液体で冷却され、外力を加えることで脆性破壊が可能であることを特徴とした立体網状構造体も製造できる。
さらに熱可塑性樹脂を原料又は主原料とし、複数本の線条が押し出し成形によって螺旋状に無秩序に絡まり合い部分的に熱接着し液体で冷却され、難燃性材料を塗布したり、炭素繊維不織布等で包囲したり、又は、難燃性材料を熱可塑性樹脂に添加した立体網状構造体も製造可能である。炭素繊維不織布等で包囲すると、天井裏、壁内等に配置できる。
【0054】
第4実施形態の立体網状構造体製造装置510は、図27の通り、無端部材、ロールに代えて、曲板582、583で立体網状構造体501を形成するものである。曲板582、583は紙面に対して垂直に延長され、ポリテトラフルオロエチレンコーティング等によって表面に滑り性を持たせている。側面視では長方形状である。曲板582、583は上部から下部にかけて、その間隔が徐々に狭まっている構造である。曲板582、583は固定構造でも良いし、点線で示す通り、往復動駆動装置590、591(例えば、流体圧シリンダ)によって、その間隔を可変とすることで、立体網状構造体の左右前後の密度、形状等を変化させることができる。曲板582、583の下方にも曲板584が設けられ、立体網状構造体501を下流の引き取り機に適切に誘導する。
【0055】
【発明の効果】
請求項1〜3の発明によれば、後工程での仕上げを不要とし、耐久性を向上させた立体網状構造体の製造方法及び装置を提供でき、各種産業に与える工業的利用価値は極めて大である。
【図面の簡単な説明】
【図1】図1は、本発明第1実施形態の立体網状構造体の斜視図である。
【図2】図2(a)は、本発明第1実施形態の立体網状構造体の縦断面図、(b)は、第2実施形態の立体網状構造体の縦断面図、(c)は、第4実施形態の立体網状構造体の縦断面図、(d)は、第5実施形態の立体網状構造体の縦断面図、(e)は、第6実施形態の立体網状構造体の縦断面図、(f)は、第7実施形態の立体網状構造体の縦断面図、(g)は、第8実施形態の立体網状構造体の縦断面図である。
【図3】図3(a)は、第9実施形態の立体網状構造体の縦断面図、(b)は、第9実施形態の立体網状構造体の側面図である。
【図4】図4(a)〜(g)は、第3実施形態の立体網状構造体の断面図である。
【図5】図5は、第1実施形態の立体網状構造体製造装置の斜視図である。
【図6】図6は、第1実施形態の立体網状構造体製造装置の動作状況を示す説明図である。
【図7】図7(a),(b)は、同立体網状構造体製造装置の無端コンベアの側面図及び正面図である。
【図8】図8(a)〜(f)は、同立体網状構造体製造装置及び変更形態の無端コンベアの側面図である。
【図9】図9(a)は、四面成形の場合の立体網状構造体製造装置の無端コンベアの平面図、(b)は、同立体網状構造体製造装置の側面図、(c)は、他の形態の四面成形の立体網状構造体製造装置の側面図、(d)は、同立体網状構造体製造装置による四面成形の様子を示す平面図、(e)は、同立体網状構造体製造装置による三面成形の様子を示す平面図である。
【図10】図10は、(a)は四面成形の場合の独立駆動構造の立体網状構造体製造装置の無端コンベアの平面図、(b)は滑り板を端面に設けた立体網状構造体製造装置の無端コンベアである。
【図11】図11(a)〜(h)は、ダイスの口金の各種形態を示す平面図及び正面図である。
【図12】図12(a),(b)は、変更形態の四面成形用の立体網状構造体製造装置の無端コンベアの正面図である。
【図13】図13(a)は第10実施形態の立体網状構造体の縦断面図、(b)は第11実施形態の立体網状構造体の縦断面図、(c)は第12実施形態の立体網状構造体の縦断面図、(d)は第13実施形態の立体網状構造体の縦断面図である。
【図14】図14(a)は第14実施形態の立体網状構造体の縦断面図、(b)は第15実施形態の立体網状構造体の縦断面図、(c)は第16実施形態の立体網状構造体の縦断面図である。
【図15】図15は第2実施形態の立体網状構造体製造装置の斜視図である。
【図16】図16(a)は本発明実施形態の立体網状構造体製造装置の複合ダイスの口金上部付近における横断面図、(b)は複合ダイスの下部の正面図である。
【図17】図17(a),(b)は第2実施形態の立体網状構造体製造装置の変更形態の説明図である。
【図18】図18(a),(b),(d)はダイスの口金の各種形態を示す平面図、(c)は(d)の正面図である。
【図19】図19(a)〜(d)はダイスの口金の各種形態を示す平面図である。
【図20】図20は第3実施形態の立体網状構造体製造装置の動作状況を示す説明図である。
【図21】図21(a),(b)は同立体網状構造体製造装置のロールの側面図及び正面図である。
【図22】図22(a)〜(g)は同立体網状構造体製造装置及び変更形態のロールの側面図である。
【図23】図23(a)は第17実施形態の立体網状構造体(園芸用クッション材等に適用)の正面図、(b)は同立体網状構造体の平面図、(c)は同立体網状構造体の側面図、(d)は変更形態の立体網状構造体である。
【図24】図24(a)は第4実施形態の立体網状構造体製造装置のダイスの口金の平面図、(b)は同正面図、(c)は他のダイスの口金の平面図、(d)は同正面図である。
【図25】図25は第17実施形態の立体網状構造体の使用状態を示す説明図である。
【図26】図26は第17実施形態の立体網状構造体の他の使用状態を示す説明図である。
【図27】図27は第4実施形態の立体網状構造体製造装置の部分構造図である。
【符号の説明】
1〜9,101〜107,401,402,490,501…立体網状構造体
10,50,110,210,510…立体網状構造体製造装置
11,111,211…押出成形機
12,13,112,113…無端部材
14,15,54,55,59a,59b,64,65,114,115…無端コンベア
33…ダイス 135…複合ダイス
34,71〜77,136,171〜177,471,481…口金
56,57,66,67,212〜215,224〜230…ロール
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a three-dimensional network structure, a three-dimensional network structure manufacturing method, and a three-dimensional network structure manufacturing apparatus used for a cushion material or the like.
[0002]
[Prior art]
Conventionally, as a method for producing a three-dimensional network structure having voids, a method described in Japanese Patent Publication No. 50-39185, or a resin cotton obtained by bonding polyester fibers with an adhesive, for example, a rubber-based adhesive is used. -11352 etc. are known. On the other hand, there is a method or a manufacturing apparatus for manufacturing a three-dimensional network structure having voids by winding resin yarns with an endless belt.
[0003]
[Problems to be solved by the invention]
However, demand for such three-dimensional network structure products are diversified, it is necessary to make each time finished by cutting or molding requested in step after the manufacturing process shape irregular mesh body, finishing is very It gets complicated.
In addition, the three-dimensional network structure manufactured by the conventional method may have a low density, and the both surfaces of the bundle are in contact with the belt conveyor, so the surface is substantially flattened. Is a random spiral shape, and the sides are misaligned to wave in the lateral direction.
On the other hand, although it is wound with an endless belt, the endless belt is easily damaged by heat or the like, which may cause a problem in durability.
Accordingly, the present invention provides a manufacturing method and a manufacturing apparatus for a three-dimensional network structure that eliminates the need for finishing in a subsequent process, increases the degree of alignment, makes it possible to cope with irregular shapes, and improves durability. Objective.
[0004]
[Means for Solving the Problems]
  In view of the above challenges, three-dimensional net-like structure according to claim 1, wherein the thermoplastic resin as a raw material or a main raw material, a plurality of streaks randomly into entangled partially heat-bonded in a spiral shape by extrusion water Cooled with, the density is alternately formed in the extrusion directionFurther, the cushioning material is formed so that density is alternately formed in a direction orthogonal to the extrusion direction, and dense regions are formed at both end portions in the direction orthogonal to the extrusion direction.This is a three-dimensional network structure.
  The method for producing a three-dimensional network structure according to claim 2, wherein a molten filament made of a thermoplastic resin as a raw material or a main raw material is extruded downward from a die having a plurality of holes, and the filament is interposed between partially drawn-in devices. The distance between the drawing devices is set to be narrower than the width of the aggregate of the extruded wires, and before and after the drawing device is submerged, By forming at least one surface of the assembly in contact with the pull-in device and changing the pull-in speed of the pull-in device, a solid network structure is formed in the extrusion direction, and a solid network structure is formed in a direction perpendicular to the push-out direction. The present invention is characterized in that a dense material is formed, and the dense material is formed at both end portions in the direction orthogonal to the extrusion direction.
  The three-dimensional network structure manufacturing apparatus according to claim 3, wherein a molten filament made of a thermoplastic resin as a raw material or a main raw material is extruded downward from a die having a plurality of holes, and the filament is inserted between the drawing devices partially submerged. The distance between the drawing devices is set to be narrower than the width of the aggregate of the extruded wires, and before and after the drawing device is submerged, By forming at least one surface of the assembly in contact with the drawing device, forming a high density region and a low density region of holes in the base, and changing a drawing speed of the drawing device, the three-dimensional network structure is formed in the extrusion direction. A three-dimensional network structure is formed in a direction perpendicular to the extrusion direction by forming a dense and dense region at both ends in a direction perpendicular to the extrusion direction of the die die. Characterized in that to produce a cushion material formed with density of the body.
[0015]
  StandingThe body network structure manufacturing apparatus extrudes a molten filament made of a thermoplastic resin as a raw material or a main raw material downward from a die having a plurality of holes, and naturally descends between partially drawn-in drawing devices, and the descending speed pull slow more the striatum, are set interval of the retraction device from the width of the collection of the extruded filament is narrow, at least three sides or four sides the collection of the filament before and after the retraction device is submerged The retracting device is arranged to contact the retracting deviceThings are preferred. This eliminates the need for finishing in the subsequent process and increases the degree of alignment.
[0016]
  StandingThe body network structure manufacturing apparatus extrudes a melted filament made of thermoplastic resin as a raw material or a main raw material downward from a die having a plurality of holes, and naturally descends between partially submerged rollers. The wire is drawn slowly, the interval between the rollers is set narrower than the width of the extruded wire assembly, and at least one surface of the wire assembly contacts the roller before and after the roller is submerged.Things are preferred. Thereby, simplification of an apparatus and the ease of design are realizable.
[0017]
  StandingThe body network structure manufacturing apparatus extrudes a molten filament made of a thermoplastic resin as a raw material or a main raw material downward from a die having a plurality of holes, and is partially submerged, so that the interval gradually narrows downward. and the slipperiness of the plate surface that have been set in the during of the plate material striatum was naturally lowered, pull slow the striatum from 該降 under speed, of the plate than the width of the collection of the extruded filament The interval between the lower portions is set narrow, and at least one surface of the aggregate of the filaments contacts the plate before and after the plate is submerged.Is preferred. Thus, the size of the apparatus can be reduced by reducing or eliminating the movable parts.
[0021]
  StandingThe body network structure manufacturing apparatus extrudes a molten filament made of a thermoplastic resin as a raw material or a main raw material downward from a die having a plurality of holes, and naturally drops the filament between a partially submerged drawing device. draw slow the striatum from 該降 under speed, the distance of the extruded filament the retraction device than the width of the collection of is set smaller, at least in the assembly of the filament before and after the retraction device is submerged One surface is in contact with the pulling device, and the base is formed with a high density area and a low density area.Is preferred. This widens the design range.
  StandingBody network structure manufacturing equipment,NothingChange the speed of the end conveyorLetBy changing the density, StandingForm the density of the body network structureIs preferable.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
  Hereinafter, as shown in FIG. 1 and FIG. 2A, the three-dimensional network structure 1 according to the first embodiment uses a regenerated thermoplastic resin as a raw material or a main raw material, and a plurality of filaments are randomly entangled in a spiral manner. A three-dimensional network structure characterized in that it is a plate-shaped three-dimensional network structure that is thermally bonded to each other, and has two side surfaces, left and right end surfaces, and upper and lower end surfaces. Of the side surfaces of the three-dimensional network structure, the density on the surface side of three surfaces is relatively higher than the density of the portion excluding the surface side.HighIt is preferable. That is, the three-dimensional network structure 1 (see FIG. 2A) of the first embodiment is a three-sided molding, and a region at a predetermined interval is formed with a high density from the opposite one side toward the inside. The density of the region inside the central portion is set lower than that, and the other surface is uneven. For this reason, the advantage which does not process in a post process arises. That is, a pair of wide surfaces and one side surface are forcibly formed by an endless conveyor or the like, which will be described later, and the edges are aligned more cleanly than the other surfaces.
[0024]
Here, a flake shape or a chip shape of a PET bottle is used as a raw material or main raw material of the recycled thermoplastic resin. A PET bottle is crushed as it is and melted to form a flake. It is also suitable for the era of recycling promotion. If this is not a recycled product, but a genuine product, it will cost 1m for dry crystallization, dust removal, etc.2The manufacturing cost per unit is doubled. Can be used to reduce waste disposal costs. However, it can also be applied to thermoplastic resins other than recycled materials. For example, as thermoplastic resins, polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate, polyamides such as nylon 66, polyvinyl chloride, polystyrene, copolymers and elastomers based on the above resins, blends of the above resins, etc. Is mentioned. Furthermore, the application of the three-dimensional net-like structure 1 mainly cushioning material, a shock absorber, absorbent material, sound absorbing material (under the flooring, interior, wall material), insulation (internal insulation and external insulation), wall Examples are applied to rooftop greening, concrete mortar crack prevention materials, automobile interior materials, etc., but can also be applied to the inside of double walls.
Further, the three-dimensional network structure such as or served pinch a nonwoven fabric such as carbon fiber, such as painting a flame 燃塗 fee to steric network structure, by the incorporation of flame retardant quality to the three-dimensional net-like structure, flame-retardant Is more suitable as a building heat insulating material, a building sound absorbing material, or the like.
In the first embodiment, the inside is generally formed to have a uniform density. Apparent density is 0.02-0.9g / cmThree(Corresponding to a porosity of 36 to 98.4%) is preferred, 0.05 to 0.15 g / cmThreeIs particularly preferred. The three-dimensional network structure 1 preferably has a width of 0.1 m to 2 m and a thickness of 5 mm to 200 mm, is endless in the length direction, and is cut into an appropriate length (for example, 900 mm). It is not limited to.
[0025]
The three-dimensional network structure 2 (see FIG. 2 (b)) of the second embodiment is a four-sided molding, and all the surfaces are aligned. Thus, the regions of the predetermined interval are formed with a high density, and the density of the region inside the central part is set lower than that. That is, except for the upper surface and the bottom surface, the regions with predetermined intervals from all the surfaces are formed with high density.
[0026]
The surface of the three-dimensional network structure 3 according to the third embodiment has an irregular shape or a polyhedral shape. For example, 3A provided with a convex surface (see FIG. 4A), 3B provided with a concave surface (see FIG. 4B), 3C provided with a plurality of continuously formed uneven surfaces (FIG. 4). (See (c)), 3D having a plurality of sawtooth surfaces (see FIG. 4 (d)), 3E having a plurality of wavefronts (see FIG. 4 (e)), and having a curved corner (R) shape 3F (see Fig. 4 (f)), 3G (see Fig. 4 (g)) whose corners are cut to a predetermined angle (45 ° here), or an appropriate combination thereof, etc. Various types of products are required as products, and this can be accommodated. Moreover, it is thought that various uses arise by setting it as a complicated shape. In particular, various product requirements can be satisfied by forcibly forming three or four surfaces of a three-dimensional network structure as in the first and second embodiments described above. More generally, for a deformed shape required for a product, the required shape is cut or molded in a subsequent process to form a deformed network, but according to this embodiment, the shape required for the product is obtained. The product can be provided immediately without finishing the dimensions in the post-process, and the post-process can be eliminated.
[0027]
The three-dimensional network structure 4 (see FIG. 2C) of the fourth embodiment includes one or a plurality of (here, two) hollow portions 4A and 4B, and is intended to further reduce costs. It is what.
The three-dimensional network structure 5 (see FIG. 2D) of the fifth embodiment is a plate-like reproduction veneer in the hollow portions 5A and 5B similar to the hollow portions 4A and 4B of the three-dimensional network structure 4 of the fourth embodiment. , recycling member 5C the same or different material such as a plate-like playback shredder dust, which was put 5D, it is obtained by the sound absorbing property, heat insulating property, an improvement in cushioning property such as an object by the playback plate.
The three-dimensional network structure 6 (see FIG. 2 (e)) of the sixth embodiment has a density increased in the thickness direction inside the three-dimensional network structure 1 of the first embodiment, and partially or singularly. By forming the three beam-like high-density regions 6A, 6B, and 6C at predetermined intervals, the sound absorbing property, heat insulating property, cushioning property, and impact resistance are improved.
The three-dimensional network structure 7 (see FIG. 2 (f)) of the seventh embodiment has a single or a plurality of (here, one) high-density region 7A in which the density is increased in the width direction. By forming, the sound absorbing property, heat insulating property, cushioning property and impact resistance are enhanced.
The three-dimensional network structure 8 (see FIG. 2 (g)) of the eighth embodiment is a corrugated high-density region 8A in the seventh embodiment, and has improved sound absorption, heat insulation, cushioning, and impact resistance. Is.
[0028]
The three-dimensional network structure 9 (see FIG. 3A) of the ninth embodiment is formed by forming a sheet 9A (a region without a void) at a predetermined position in the width direction inside the three-dimensional network structures 1 and 2. Sound absorption, heat insulation, cushioning and impact resistance are improved. A filament (resin yarn) is entangled around the sheet 9A. The sheet 9A may be provided with a full width as shown in the figure, or may be provided partially, for example, in the central portion.
The sheet 9A of the three-dimensional network structure 9 (see FIG. 3B) of the ninth embodiment is generally wave-shaped, and has improved sound absorption, heat insulation, cushioning, and impact resistance. . The reason why it can be formed into such a corrugated shape is that, as will be described later, the roll take-up speed is slower than the resin yarn descending speed. The wave interval, height, width, and the like of the sheet 9A vary depending on manufacturing conditions, and are not limited to those illustrated. When the interval between the waves of the sheet 9A is narrow, they may be bonded to each other. The ninth embodiment can be manufactured by using the slit (linear through groove) 75a of FIG.
In addition, although not shown in the drawings, the present invention can also be implemented for a cross-sectional shape having a triangular shape such as a triangular shape or a Y-shaped shape.
[0029]
(3D network structure manufacturing equipment)
Next, the three-dimensional network-structure manufacturing apparatus 10 will be described.
As shown in FIG. 5, the three-dimensional network-structure manufacturing apparatus 10 is configured to drive an extruder 11, a pair of endless conveyors 14 and 15 (see FIG. 7) including endless members 12 and 13, and a drive that drives the endless members 12 and 13. motor 16, transmission 17 which is composed of a chain and gears to shift the moving speed of the endless members 12 and 13, a water tank for submerging part a pair of endless conveyors 14, 15 18, the control device 19 is composed of other instruments such as ing.
Endless chain 12a of the endless member 12, 13 a gap plate 21 is of a predetermined plurality of metallic (here stainless steel) 22 provided (see FIG. 8 (a) see) a plurality (two each in this case), 13a ( 7 (a) and 7 (b)) are connected with screws (not shown). Instead of this, as shown in FIG. 8B, a belt 23 such as a stainless mesh (metal mesh) without the gap 22 may be used. This mesh belt is a combination of a spiral and a rod (brute), and various types can be produced depending on the shape, wire diameter, and pitch of these two elements. Smooth movement, excellent for keeping the belt surface horizontal, excellent for high temperature use, and easy repair. Alternatively, as shown by the dotted line in FIG. 7, a stainless mesh belt 23 stretched around the outer periphery of the endless members 12 and 13 can be implemented, which is suitable when it is desired to prevent the formation of irregularities due to the gap 22. The plate 21 has a rectangular cross section, but has a convex shape 24 (see FIG. 8C), a concave shape 25 (see FIG. 8D), and a sawtooth shape 26 (see FIG. 8E). )), And various modified forms such as a continuously formed concave-convex shape 27 (see FIG. 8F) are conceivable.
[0030]
As shown in FIG. 7, the endless conveyor 14 includes a drive shaft 14b having a sprocket 14a around which the endless chain 12a is wound, and a driven shaft 14d having a sprocket 14c. The endless conveyor 15 is driven in synchronism with the endless conveyor 14, and is arranged vertically, a driven shaft 15b having a sprocket 15a around which the endless chain 13a is wound, and a driven shaft 15d having a sprocket 15c. It has.
[0031]
As shown in FIG. 5, the extrusion molding machine 11 includes a container 31, a raw material supply port 32 provided in the upper portion of the container 31, a die 33, a base 34 that can be detachably fixed to a lower end portion of the die 33, and the like. The temperature range inside the die of the extruder 11 can be set to 100 to 400 ° C., the extrusion amount can be set to 20 to 200 kg / hour, and the like. The pressure range of the die 33 is 0.2 to 25 MPa, for example, a discharge pressure of a 75 mm screw. When the thickness of the three-dimensional network structure exceeds 100 mm, it may be necessary to make the die pressure uniform by a pump or the like. Therefore, it is necessary to increase the pressure in the die by a gear pump or the like in order to discharge the filaments uniformly from the entire area inside the die. To form the shape of the three-dimensional net-like sheets this time, each side of the endless conveyor 15 is free to move can structure, the mouthpiece 34 of the die 33 shapes (density or diameter of the hole H) and of the endless conveyor 14, 15 A product having a desired density and strength can be manufactured according to the conveyance speed, and various requirements of the product can be satisfied.
[0032]
Here, the three-dimensional network-structure manufacturing apparatus 50 in the case of a four-face molding machine as shown in FIGS. 9A and 9B will be described. The three-dimensional network-structure manufacturing apparatus 50 has endless conveyors 54 and 55 having rotating shafts 54a and 55a corresponding to the endless conveyors 14 and 15 in the case of two-side molding shown in FIG. A pair of rolls 56 and 57 having rotatable rotation shafts 56a and 57a in which the rotation shafts and the rotation shafts are arranged orthogonal to each other are disposed at the longitudinal ends of the rollers. The rotating shaft 54a is provided with bevel gears 54b and 54c, respectively, and the rotating shafts 56a and 57a are also provided with bevel gears 56b and 57b, respectively, and the bevel gears 54b and 54c and the bevel gears 56b and 57b are engaged with each other. 54a and 55a are synchronously driven by the motor M via the chain C, and therefore the rotary shafts 56a and 57a are also synchronously driven. The other ends of the rotating shafts 56a and 57a are supported by bearings 58a and 58b.
As shown in FIG. 9C, a pair of short endless conveyors 59a and 59b having the same structure as the endless conveyors 54 and 55 may be arranged orthogonally. In this case, the molding can be performed more precisely and the dimensional accuracy is improved.
As shown in FIG. 9D, it can be manufactured using four-sided molding. Further, as shown in FIG. 9E, three-side molding can be performed using this. That is, depending on the type of three-dimensional network structure, if two dies are provided and the filaments are extruded in parallel, the production efficiency is doubled.
[0033]
As shown in FIG. 10A, as a modified form, instead of the above-described synchronous drive, a drive source (motor or the like) is provided, respectively, and endless conveyors 64 and 65 and rolls 66 and 67 (which may be an endless conveyor) It is also possible to adopt a configuration in which these are driven independently. That is, in the case of three-sided or tetrahedral molding, rotational shaft 64a, an endless conveyor 64, 65 with 65a, rotatable they and the rotation axis is arranged orthogonally to the longitudinal direction end portions of these endless conveyors 64, 65 A pair of rolls 66 and 67 having rotating shafts 66a and 67a are arranged. The rotating shafts 66a and 67a are each provided with a motor M and are driven independently. The other ends of the rotary shafts 66a and 67a are supported by bearings 68a and 68b.
As another modification, as shown in FIG. 10B, the pair of rolls 66 and 67, the rotating shafts 66a and 67a, the bearings 68a and 68b, and the motor M are deleted in the above-described example, and polytetrafluoroethylene is processed on the surface. By providing the slidable curved plates 69a and 69b in which the rolls 66 and 67 are located, the drive mechanism can be simplified. The curved plates 69a and 69b are arcuate in a side view, set so that the interval gradually decreases from the upper part to the lower part, and are formed in a rectangular shape in plan view.
[0034]
The hole of the cap 34 is descending in series, and there is a hole from which the thread descends downward. It may be equally spaced or non-equally spaced. The holes can have various arrangements such as a staggered shape or an orthogonal shape. When it is desired to change the arrangement density, a method of actively increasing the density only in the end region may be used. Various requirements of products can be satisfied by variously changing the shape of the base. For example, a base 71 in which about 3500 holes H having a diameter of 0.5 mm are formed at approximately equal intervals in an area of 1.0 m × 180 mm (the range of the size of the area provided with the holes H of the base is the area of the base 71) (See FIG. 11 (a)), the base 72 (see FIG. 11 (b)) in which the density of the holes H is increased only in the peripheral portion 72a, and the density of the frame-like portion 73b so as to form a grid-like region. A base 73 (see FIG. 11 (c)) with an increased height, and a base 74 (see FIG. 11 (d)) in which slits (linear through-holes) 74 a to 74 c are formed in parallel to the short direction in addition to a large number of holes H. In addition to the many holes H, a base 75 (see FIG. 11E) in which a slit (linear through hole) 75a is formed in the center in the longitudinal direction, and in addition to the numerous holes H, slits (linear) A base 76 (through-hole) 76a formed at a position close to the side in the longitudinal direction (see FIG. 11 (f)) In order to create a hollow portion, a base 77 provided with rectangular guide members (pipe, etc.) 77a, 77b which are formed with regions 77c, 77d not provided with holes H at the corresponding locations and which extend downward at the bottom of the regions. 77 (see FIGS. 11 (g) and 11 (h)) can be implemented. The density of the holes H formed in the die is 1 to 5 / cm.2Is preferred.
[0035]
(Method for producing a three-dimensional network structure)
The three-dimensional network structure 1 is manufactured as follows. First, recycled PET bottle flakes may be heated and dried to prevent hydrolysis, and an agent for improving the finish or an antibacterial agent may be added thereto. When the filament is lowered flat from the base 34, it is wound spirally by the winding action of the endless members 12, 13 of the endless conveyors 14, 15. It winds in from the place which contacted the surface of the endless members 12 and 13 when winding. The part that is caught is high in density, and the part that is not caught is low in density.
[0036]
Next, as shown in FIG. 6, the molten thermoplastic resin is extruded downward from the plurality of dies 33 and is naturally lowered between a pair of endless conveyors 14 and 15 that are partially submerged, and taken slower than the above-described descent speed. when manufacturing a three-dimensional net-like structure 1 is a three-dimensional network structure, closely spaced endless conveyors 14, 15 of the pair than the width of the collection of the extruded molten resin, and an endless conveyor 14, 15 is submerged by Before and after the process, both sides or one side of the molten resin aggregate were brought into contact with the endless conveyors 14 and 15. Since both sides or one surface portion of the molten thermoplastic resin aggregate fall on the endless conveyors 14 and 15 and move to the inside of the molten thermoplastic resin aggregate, it becomes a dense state. The porosity is smaller than the dropped central part. Naturally, the surface portion where the porosity is low has more intersections than the central portion where the porosity is high, and the tensile strength is significantly increased. Further, the surface portion having a low porosity has a small area of the void portion, and becomes a shock absorbing layer and a soundproof layer.
[0037]
  In order to function as the three-dimensional network structure 1, the overall porosity was determined to be in the range of 50% to 98% porosity although it depends on the field construction conditions used. That is, it is considered that the sound is blocked when the density is high. The results showed that the porosity should be at least 70% or more in order to exhibit sufficient functions as a recycled sound-absorbing building material, cushioning material, heat insulating material and the like. That is, if the porosity is less than 70%, the impact absorption effect, the soundproof effect, the heat insulation effect, and the cushioning property may not be improved as expected. About this porosity, it is good to design suitably in 70%-98% of range according to the use of the solid network structure 1.
  Sound absorbing material and cookingShi85 to 98% of the flooring material, 40 to 80% of the floor impact absorbing material disposed under the floor, and 60 to 90% of the impact absorbing material for preventing collision are suitable. The preferred range of porosity varies depending on the application.
  Porosity = 100 − {(B ÷ A) × 100}. A is the resin specific gravity multiplied by the volume of the three-dimensional network structure, and B is the weight of the three-dimensional network structure.
  As the thermoplastic resin used here, a PET bottle is pulverized into flakes as a raw material or a main raw material. However, there is no problem as long as the main raw material is a resin that can be processed by a normal extrusion molding machine, such as a polymer such as polypropylene or a blend of a plurality of polymers.
[0038]
The process of forming the deformed three-dimensional network into a product shape was made such that the internal pressure of the die was made uniform, and the take-up surface was taken in two, three, four, or intermediate portions. As a result, an apparent density of 0.02 to 0.9 g / cmThreeThe melted filament is changed from an irregular spiral shape to a flat plate shape, and the surface portion of the three-dimensional network structure on the front surface, rear surface, left end surface, and right end surface in the thickness direction is formed into a flat or uneven irregular shape. It is characterized by. A variety of three-dimensional network structures can be formed by combining a die base shape for forming a three-dimensional network structure with a round bar, an irregular shape (pipe, Y shape), or a combination thereof. Further, the three-dimensional network structure is made into a super dense structure sheet structure by roll compression of a take-up machine. Contact with a take-up conveyor that forms a shape on the conveyor on three or four sides of the molten resin aggregate that is extruded when the recycled PET resin is uniformly discharged from the die and the three-dimensional network sheet is produced. I tried to do it. That is, the molten recycled PET resin aggregate is formed into a shape corresponding to the product shape on the three or four surface portions. For example, if necessary, a resin aggregate is taken up on a polygonal conveyor to form a product. One method of obtaining a three-dimensional net-like sheet is to push downward from a plurality of molten resin dies and naturally descend between the water surface or a partially submerged conveyor to create a random spiral shape and create a three-dimensional net-like sheet. It becomes.
When the width of the sheet was 1.0 m and the thickness was 100 mm, it was confirmed that the density changed by changing the speed of the endless conveyor in order to confirm that the density changed.
[0039]
Furthermore, it was confirmed that the density changed due to the change of the discharge amount of the extruder.
A die 34 having an area of 1.0 m × 180 mm and a die 34 having a diameter of 0.5 mm and having approximately 3500 holes H at approximately equal intervals were attached to a single screw extruder having a screw diameter of 75 mm. A water tank 18 having a water level is installed at a position of about 120 mm below the die 33, and a pair of endless conveyors 14 and 15 having a width of 1.2 m are spaced apart by 50 mm, and the upper parts of the endless conveyors 14 and 15 are about 40 mm from the water surface. It was installed almost vertically so that it could come out.
With this apparatus, the temperature of the die 33 is controlled so that the resin temperature becomes 240 ° C. while plasticizing the recycled PET resin by applying heat, and the molten resin discharged from the die 34 at an extrusion amount of 120 kg per hour is controlled. The assembly was extruded between them so that both sides of the assembly fell on the endless conveyors 14 and 15. The take-up speed of the endless conveyors 14 and 15 at this time was 0.7 m / min. The molded product that has been sandwiched between the endless conveyors 14 and 15 and moved downward changes its direction at the lower part of the water tank 18, moves from the side opposite to the extruder to the water surface, and when it exits the water tank 18, either compressed air or Water was blown away with a vacuum pump.
The three-dimensional network structure thus obtained has a width of 1.0 m, a thickness of 50 mm, and a density of 0.07 g / cm.Three~ 0.14 g / cmThreewas gotten. Applications include heat insulating materials, base materials, sound absorbing materials, drain pipes, and the like.
[0040]
According to the described three-dimensional net-like structure 1 and the three-dimensional net-like structure manufacturing device 10 above, the finishing of a subsequent process is unnecessary, increasing the degree of alignment, to allow the response to irregular shapes, is possible to improve the durability it can.
Further, according to the present embodiment, it is considered that PET bottles that are not currently used can be used as a three-dimensional network structure, and the recovery rate of PET bottles is increased. This greatly facilitates PET bottle recycling.
[0041]
FIG. 12 shows a modified form of the four-sided three-dimensional network structure manufacturing apparatus 50. FIG. 12 (a) corresponds to FIG. 9 (b), and the surface of the pair of rolls 56, 57 is single or A plurality of protrusions 90a to 90c are formed (the roll 57 and its protrusions are not shown). This is to form a dent on the side surface of the three-dimensional network structure. The protrusions 90a to 90c have a square cross section and are formed in an arc shape. Theoretically the recess should be rectangular, the resin yarn falling from the previously described, blinds can, in fact, since it is a region that does not come contain resin yarn, stereoscopic net The dent on the side of the structure is curved. In other words, it feels like taking an Earl. FIG. 12B corresponds to FIG. 9C, in which one or a plurality of protrusions 96 are formed on the surface of the pair of endless conveyors 54 and 55 described above (endless conveyor). 55 and its protrusions are not shown). Further, a cam and a spring are put in a rotating body such as the rolls 56 and 57 or the endless conveyors 54 and 55 described above, and the cam pushes the protrusion outward in synchronization with the rotation of the protrusion. The blinds can be reduced and more precise recesses can be formed. Since other structures are the same as those in FIGS. 9B and 9C, the illustration and description are incorporated.
[0042]
Next, a second embodiment will be described. The demand for recycling of three-dimensional network products is diversified and may not be able to meet the current situation. For example, when two or more types of resins are mixed and recycled, there are raw materials that can be separated and raw materials that cannot be separated at the time of recycling. However, recycling may become impossible in practice. Moreover, even if it is the same raw material, there are cases where it is desired to change the shape, such as when it is desired to form a dense or dense structure, when a hollow portion is to be formed later, or to improve the formability.
Therefore, the present embodiment aims to prevent troubles in recycling of the thermoplastic resin and to enable easy change of the shape.
[0043]
  As shown in FIG. 13A, the three-dimensional network structure 101 of the tenth embodiment uses a recycled thermoplastic resin as a raw material or a main raw material, and a plurality of filaments are spirally and randomly entangled and partially thermally bonded. It is a three-dimensional network structure characterized by being a plate-shaped three-dimensional network structure. Moreover, it is comprised from the inner side area | region 101a and the outer side area | region 101b from which the raw material is the same or different. The boundary between the inner region 101a and the outer region 101b is indicated by a solid line. This solid line is a virtual line for indicating the boundary, and the same applies to other embodiments described below. The density of the surface side of the two-sided, three-sided, or four-sided structure of the three-dimensional network structure is relatively higher than the density of the portion excluding the surface side.HighIt is preferable. That is, the three-dimensional network structure 101 (see FIG. 13A) of the tenth embodiment is a two-sided molding, and a region at a predetermined interval is formed with a high density from the opposite one surface toward the inside. The density of the region inside the central portion is set lower than that, and the other surface is uneven. For this reason, the advantage which does not process in a post process arises. That is, a pair of wide surfaces and one side surface are forcibly formed by an endless conveyor or the like, which will be described later, and the edges are aligned more cleanly than the other surfaces.
  The three-dimensional network structure 102 (see FIG. 13 (b)) of the eleventh embodiment is a three-sided molding, and all surfaces are aligned except for the end surface and one side surface, and from all the surfaces except the right side surface to the inside. On the other hand, the regions at predetermined intervals are formed with high density. Moreover, the raw material is comprised from the inner side area | region 102a and the outer side area | region 102b which are the same or different.
  The three-dimensional network structure 103 (see FIG. 13C) of the twelfth embodiment is a four-sided molding, and all the surfaces are aligned except for the end faces. From the left and right side surfaces of the three-dimensional network structure 1 of the first embodiment. A region at a predetermined interval toward the inside is formed with a high density, and the density of the region inside the central part is set lower than that. That is, the regions at predetermined intervals from all the side surfaces toward the inside are formed with high density. Moreover, the raw material is comprised from the inner side area | region 103a and the outer side area | region 103b which are the same or different.
  The three-dimensional network structure 104 (see FIG. 13D) of the thirteenth embodiment is provided with a single or plural (here, one) hollow portion 104c, and is intended to further reduce costs. Is. Moreover, the raw material is comprised from the inner side area | region 104a and the outer side area | region 104b which are the same or different.
[0044]
The three-dimensional network structure 105 (see FIG. 14A) of the fourteenth embodiment is composed of three layers 105a, 105b, and 105c of the same or different raw materials. The raw materials of the three layers may be all different, or the region 105a and the region 105c may be the same material and the region 105b may be different materials. Further, all the raw materials in the three layers may be the same. The three layers 105a, 105b, 105c are divided in the longitudinal direction.
The three-dimensional network structure 106 (see FIG. 14B) according to the fifteenth embodiment is composed of two layers 106a and 106b of the same or different raw materials. The raw materials of the two layers 106a and 106b may be different or the same. The two-layer regions 106a and 106b are divided in the lateral width direction.
The three-dimensional network structure 107 (see FIG. 14C) of the sixteenth embodiment is composed of two layers 107a and 107b of the same or different raw materials. The raw materials of the two layers 107a and 107b may be different or the same. Unlike the fourteenth and fifteenth embodiments, the dividing direction of the region is the thickness direction.
In the case shown in FIG. 3, a sheet 9A having a high density (filled area substantially free of voids) and other areas are formed by separate paths from different extrusion machines, so that a predetermined widthwise direction is obtained. Can be formed in position. The description uses the above.
In addition, although not shown in the drawings, the present invention can be carried out with various irregular cross sections such as a triangular shape and a Y-shaped cross section. As described above, by separately supplying to two or more regions provided in the die, it is easy to adjust the production conditions such as the temperature of the raw material or the extrusion speed of the filament.
[0045]
Next, the three-dimensional network-structure manufacturing apparatus 110 of 2nd Embodiment is demonstrated.
As shown in FIG. 15, the three-dimensional network-structure manufacturing apparatus 110 includes an extruder 111, a pair of endless conveyors 114 and 115 including endless members 112 and 113, a drive motor 116 that drives the endless members 112 and 113, a chain, It is comprised from the gearbox 117 which changes the moving speed of the endless members 112 and 113, the water tank 118 which partially submerses a pair of endless conveyors 114 and 115, the control apparatus 119, and other instruments.
For the endless members 112 and 113, the description of the first embodiment is cited.
As shown in FIG. 15, the extruder 111 includes containers 131a and 131b in which the same or different thermoplastic resin raw materials are stored, raw material supply ports 132a and 132b provided in the upper portions of the containers 131a and 131b, and containers 131a and 131b, respectively. The connected raw material supply pipes 133a and 133b, the raw material supply pipes 133a and 133b and the packing die 134a and 134b are connected to each other and connected to the lower end portion of the composite die 135 (see FIG. 16). It consists of a possible base 136 (see FIG. 16) and the like. The raw material supply pipe 133a is branched into a plurality (four in this case) on the way, and straddles the raw material supply pipe 133b. Further, the lower end portion of the raw material supply pipe 133a is disposed around the lower end portion of the raw material supply pipe 133b. As shown in FIGS. 16A and 16B, the composite die 135 has a frame-shaped partition wall 139 formed in the inner region of the outer frame 138, and divides the interior of the composite die 135 into two chambers 137a and 137b. The same kind of raw material or two different kinds of raw materials supplied via the supply pipe 133a or 133b are not mixed. Even when the raw materials are the same, it is desirable to provide the partition wall 139 in order to adjust the extrusion speed separately. For details of the inside of the die of the extruder 111, the first embodiment is used. Although the raw material supply pipe 133a is branched into four, it may be branched into an appropriate number such as two (see FIG. 17 (a)) and three (see FIG. 17 (b)).
[0046]
Two or more regions are formed in the base 136 so that raw materials are supplied separately. For this reason, it becomes very easy to adjust the extrusion speed or the extrusion amount of the filament, and the moldability is remarkably improved. For details of the base, the first embodiment is used, but here, the base 171 formed at substantially equal intervals or at appropriate intervals (the range of the size of the area provided with the hole H of the base is the area of the base 171. 90%) (see FIG. 18A). In the base 171, an inner region 171 a and an outer region 171 b are partitioned by a partition wall 171 c indicated by a dotted line, and the same or different raw material filaments are extruded separately corresponding to the raw material supply pipes 133 a and 133 b, respectively. It has become.
An inner region 172a having a large number of holes H and an outer region 172b are partitioned by a partition wall 172c indicated by a dotted line, and the inner region 172a is biased with respect to the outer region 172b, so that the filaments corresponding to the inner region 172a can be easily separated. And the base 172 (see FIG. 18B).
An inner region 173a having a large number of holes H and an outer region 173b are partitioned by a partition wall 173c indicated by a dotted line, and the inner region 173a is sandwiched by the outer region 173b from both sides, and is applicable for creating a hollow portion. Regions 173d and 173e where holes H are not provided are formed, and a base 173 (FIGS. 18C and 18C) provided with rectangular guide members (such as pipes) 173f and 173g extending downward at the lower portions of the regions. d)).
[0047]
There is a base 174 (see FIG. 19A) that is divided into three layers (three layers) by dividing an upper region 174a having a large number of holes H, a central region 174b, and a lower region 174c by partition walls 174d and 174e indicated by dotted lines. Can be mentioned.
There is a base 175 (see FIG. 19B) in which an upper region 175a and a lower region 175b each having a large number of holes H are partitioned by a partition wall 175c indicated by a dotted line to form two steps (two layers).
Examples include a base 176 (see FIG. 19C) in which a left side region 176a and a right side region 176b each having a large number of holes H are partitioned by partition walls 176c indicated by dotted lines to form two rows (two layers).
A base in which a region 177a having a large number of holes H and a slit (straight groove) 177b formed at an appropriate position such as a central portion in parallel with a predetermined direction (here, the longitudinal direction) is partitioned by a partition wall 177c indicated by a dotted line 177 (see FIG. 19D). The slit 177b exists in the region of the partition 177c. The groove width, length, or position of the slit (straight groove) 177b can be selected as appropriate. If the raw material is supplied to the region 177a having a large number of holes H and the slit (straight groove) 177b from the same die, the waveform of FIG. According to 177, since the raw materials are separately and independently supplied from the two or more types of extruders 111 to the hole H of the region 177a and the slit 177b, a suitable waveform can be obtained. Note that a hole H may be provided instead of the slit 177b. In that case, the density of the holes H should be increased.
Various other specifications can be implemented. The density of the holes H formed in the die is 1 to 5 / cm.2Is preferred.
The manufacturing method of a three-dimensional network structure uses 1st Embodiment etc.
[0048]
According to the three-dimensional network structures 101 to 107 of the tenth to sixteenth embodiments, a resin that is difficult to separate or a resin that cannot be separated is the first region 101a, and a resin that can be separated is the second region 101b. By separating this during recycling, it can be repeatedly recycled.
A three-dimensional network structure divided into regions according to the properties of the thermoplastic resin can be manufactured, and the thermoplastic resin can be smoothly recycled. Further, there is an advantage that the shape can be changed later by a simple operation such as separating the regions. In addition, since the raw materials are separately supplied to the die from a plurality of extruders, the formability of the three-dimensional network structure is improved.
[0049]
The three-dimensional network structure manufacturing apparatus 210 according to the third embodiment avoids inconvenience due to the deformation of the endless belt, eliminates the need for finishing in the subsequent process, increases the degree of alignment, and can cope with irregular shapes, and is durable. An object of the present invention is to provide a manufacturing method and a manufacturing apparatus of a three-dimensional network structure with improved properties.
The three-dimensional network-structure manufacturing apparatus 210 uses the first embodiment or the like and describes different configurations. Extruder 211, a pair of rolls 212 and 213 installed in a horizontal position at a predetermined interval, arranged below the pair of rolls 212 and 213 in alignment with them, and horizontally at a predetermined interval A pair of disposed rolls 214 and 215 (see FIG. 20), a drive motor for driving the rolls 212 to 215, a chain and gears, a transmission for changing the moving speed of the rolls 212 to 215, and a pair of rolls 212 and 213 Is composed of a water tank, a control device, other instruments, and the like in which a part of the rolls 214 and 215 are completely submerged. In FIG. 20, one lower roll may be deleted, and three rolls may be provided.
Examples of the rolls 212 and 213 include a roll 224 having a circular cross section (see FIG. 22A) and a deformed cross section. For example, a roll 225 having a sawtooth cross section on the outer peripheral surface (see FIG. 22 (b)), a continuously formed uneven shape, for example, a roll 226 having an outer peripheral surface having a gear cross section (see FIG. 22 (c)), an outer peripheral surface A roll 227 (see FIG. 22 (d)) having one or more protrusions 227a (for example, triangular or round protrusions) formed thereon, an elliptical cross section roll 228 (see FIG. 22 (e)), a triangle or a rice ball Various modifications are possible, such as a roll 229 with a cross section (see FIG. 22 (f)), a polygonal cross section, for example, a roll 230 with an octagonal cross section (see FIG. 22 (g)).
As shown in FIG. 21, the rolls 212 to 215 include drive shafts 212a to 215a, respectively. The drive shafts 212a to 215a are rotatably supported by respective bearings, and are respectively driven in the direction of the arrow in FIG. 20 by a drive motor via a transmission.
According to the three-dimensional network-structure manufacturing apparatus 210 described above, finishing in a subsequent process is not necessary, the degree of alignment is increased, it is possible to cope with irregular shapes, and durability is improved.
[0050]
A three-dimensional network structure 401 according to the seventeenth embodiment is obtained by providing coarse and dense structures. Applications can be applied to, for example, wall materials for hanging garden containers, decks on which garden containers are placed, blindfolds, sunshades, awnings, buds, flower cushions, and the like.
The density of the three-dimensional network structure 401 adjusts the conveyance speed of a take-up device, for example, an endless conveyor or a roller, by controlling the rotational speed of the motor. Rather than adjusting the hydraulic pressure of the extruder, stable density can be produced.
As shown in FIG. 23A, a sparse portion 401a and a dense portion 401b are repeatedly formed in order. Further, as shown in FIG. 23B, hollow portions 406A and 406B are provided in a predetermined direction. As a modified form, as shown in FIG. 23 (d), a gardening cushion material 402 having a plurality of small holes 407a to 407d penetrating in the length direction may be used. The density range of the sparse part 401a and the dense part 401b can be set as appropriate. The description of the first embodiment and the like is used for the raw materials of the thermoplastic resin.
[0051]
As shown in FIG. 24, in order to create a hollow portion in the base 471, regions 477a and 477b in which holes H are not provided are formed at the corresponding locations, and rectangular guide members (plate material, pipes) that extend downward below the regions are formed. Etc.) 477c and 477d are provided (see FIG. 24B). As another example, a base 481 in which a predetermined number of holes H are formed at almost equal intervals (the range of the size of the region provided with the base hole H occupies 90% of the area of the base 71) (FIG. 24C )), And in order to create a hollow portion, regions 487a to 487d where holes H are not provided are formed at the corresponding locations, and rectangular guide members (plates, pipes, etc.) that extend downward below the regions are formed. 488a to 488d are provided (see FIG. 24D). The density of the holes H formed in the die is 1 to 5 / cm.2Is preferred. Many other specifications can be implemented.
[0052]
The three-dimensional network structure 401 can be used as a substitute for a wall material for hanging a gardening container, a wall for flower decoration, a blindfold, or a fence. For example, as shown in FIG. 25, a pile 480 (which may be a pillar) is driven into the ground to stand, and is inserted into and fixed to the hollow portions 406A and 406B of the three-dimensional network structure 401. The three-dimensional network structure 401 may be divided into a plurality of parts, and dimensions may be freely selected by combining the divided parts. Then, an appropriate number of hanging baskets 482 with hooks 481 are hooked on the sparse portion 401a. It is easier to hook the hook 481 than the dense portion 401b. On the other hand, it can also be used as a deck. For example, the three-dimensional network structure 490 does not have a hollow portion, but is manufactured in the same manufacturing process as the three-dimensional network structure 401, and a cultivation pot 491, a container 492, and the like can be placed thereon. it can. In addition, it can be applied to sunshades, awnings, buds, flower decorations, etc. In addition, as shown in FIG. 26, the three-dimensional network structure 402 can be used as a partition for trees on a roof, a sunshade, and a road median. Each of the small holes 407a to 407c of the three-dimensional network structure 402 can be fixed to the structure by an appropriate means such as passing a connector 403 such as a string, a ring, or a pipe. When used as a partition for trees in the median strip of the road, it has an anti-glare effect on automobile lights.
According to the three-dimensional network structure 401 described above, it can be applied to wall materials for hanging baskets, decks, blindfolds, etc., and the cost is reduced, and it is durable even when exposed to wind and rain or sunlight. There is no warping and the color is less likely to fade. Various colors can be used, coloring is free, the range of color choices is expanded, cushioning is very good, the blinding effect is enhanced, the appearance with different textures can be provided, and it is very convenient .
[0053]
The three-dimensional network structure can be applied as a nursery for rooftop greening. Holes or dents are formed at appropriate locations on the air-permeable and water-permeable tiles, a three-dimensional network structure is laid, and a plant is planted by placing cultivation soil in the holes or dents.
It can also be applied as a pavement material by attaching air permeable and water permeable tiles to the upper surface of the three-dimensional network structure. The temperature can be lowered by the three-dimensional network structure.
A brittleness-causing material such as a thermoplastic resin containing an inorganic substance such as talc is used as a raw material or main raw material, and a plurality of filaments are entangled in a spiral manner by extrusion and are partially heat-bonded and cooled with a liquid, external force It is also possible to manufacture a three-dimensional network structure characterized by being capable of brittle fracture.
In addition, a thermoplastic resin is used as a raw material or main raw material, and a plurality of filaments are spirally and randomly entangled by extrusion, partially heat-bonded and cooled with a liquid, a flame-retardant material is applied, or a carbon fiber nonwoven fabric It is also possible to manufacture a three-dimensional network structure in which a flame retardant material is added to a thermoplastic resin. If it is surrounded by a carbon fiber nonwoven fabric or the like, it can be placed behind the ceiling or in the wall.
[0054]
As shown in FIG. 27, a three-dimensional network structure manufacturing apparatus 510 according to the fourth embodiment forms a three-dimensional network structure 501 with curved plates 582 and 583 instead of endless members and rolls. The curved plates 582 and 583 are extended perpendicular to the paper surface, and the surface is made slippery by a polytetrafluoroethylene coating or the like. The side view is rectangular. The curved plates 582 and 583 have a structure in which the interval gradually decreases from the upper part to the lower part. The curved plates 582 and 583 may have a fixed structure, or, as indicated by the dotted lines, by changing the distance between them by reciprocating drive devices 590 and 591 (for example, fluid pressure cylinders), The density, shape, etc. can be changed. A curved plate 584 is also provided below the curved plates 582 and 583 to appropriately guide the three-dimensional network structure 501 to the downstream take-up machine.
[0055]
【The invention's effect】
  Claim1-3According to the invention, finishing in the subsequent process is unnecessary., ResistantThe manufacturing method and apparatus of a three-dimensional network structure with improved durability can be provided, and the industrial utility value given to various industries is extremely large.
[Brief description of the drawings]
FIG. 1 is a perspective view of a three-dimensional network structure according to a first embodiment of the present invention.
2A is a longitudinal sectional view of a three-dimensional network structure according to the first embodiment of the present invention, FIG. 2B is a vertical sectional view of a three-dimensional network structure according to the second embodiment, and FIG. The longitudinal cross-sectional view of the three-dimensional network structure of 4th Embodiment, (d) is the longitudinal cross-sectional view of the three-dimensional network structure of 5th Embodiment, (e) is the longitudinal cross-section of the three-dimensional network structure of 6th Embodiment. FIG. 5F is a longitudinal sectional view of the three-dimensional network structure according to the seventh embodiment, and FIG. 4G is a vertical sectional view of the three-dimensional network structure according to the eighth embodiment.
FIG. 3A is a longitudinal sectional view of a three-dimensional network structure according to the ninth embodiment, and FIG. 3B is a side view of the three-dimensional network structure according to the ninth embodiment.
FIGS. 4A to 4G are cross-sectional views of a three-dimensional network structure according to a third embodiment.
FIG. 5 is a perspective view of the three-dimensional network structure manufacturing apparatus according to the first embodiment.
FIG. 6 is an explanatory diagram illustrating an operation state of the three-dimensional network structure manufacturing apparatus according to the first embodiment.
FIGS. 7A and 7B are a side view and a front view of an endless conveyor of the three-dimensional network structure manufacturing apparatus, respectively.
FIGS. 8A to 8F are side views of the three-dimensional network-structure manufacturing apparatus and a modified endless conveyor.
FIG. 9A is a plan view of an endless conveyor of a three-dimensional network structure manufacturing apparatus in the case of four-side molding, FIG. 9B is a side view of the three-dimensional network structure manufacturing apparatus, and FIG. Side view of another form of four-surface molded three-dimensional network structure manufacturing apparatus, (d) is a plan view showing a four-surface molding by the three-dimensional network structure manufacturing apparatus, and (e) is a three-dimensional network structure manufacturing apparatus. It is a top view which shows the mode of the three-surface molding by an apparatus.
10A is a plan view of an endless conveyor of a three-dimensional network structure manufacturing apparatus having an independent drive structure in the case of four-side molding, and FIG. 10B is a three-dimensional network structure manufacturing with a sliding plate provided on an end surface. It is an endless conveyor of the apparatus.
FIGS. 11A to 11H are a plan view and a front view showing various forms of a die base. FIGS.
12 (a) and 12 (b) are front views of an endless conveyor of a three-dimensional network structure manufacturing apparatus for four-sided molding according to a modified embodiment.
13A is a longitudinal sectional view of a three-dimensional network structure according to a tenth embodiment, FIG. 13B is a longitudinal sectional view of a three-dimensional network structure according to an eleventh embodiment, and FIG. 13C is a twelfth embodiment. (D) is a longitudinal cross-sectional view of the three-dimensional network structure of 13th Embodiment.
14 (a) is a longitudinal sectional view of a three-dimensional network structure according to a fourteenth embodiment, FIG. 14 (b) is a longitudinal sectional view of a three-dimensional network structure according to a fifteenth embodiment, and FIG. 14 (c) is a sixteenth embodiment. It is a longitudinal cross-sectional view of this solid network structure.
FIG. 15 is a perspective view of the three-dimensional network structure manufacturing apparatus according to the second embodiment.
FIG. 16 (a) is a cross-sectional view of the vicinity of the upper part of the die of the composite die of the three-dimensional network structure manufacturing apparatus according to the embodiment of the present invention, and FIG. 16 (b) is a front view of the lower part of the composite die.
17 (a) and 17 (b) are explanatory views of a modified form of the three-dimensional network structure manufacturing apparatus according to the second embodiment.
18 (a), (b), and (d) are plan views showing various forms of a die die, and (c) is a front view of (d).
19 (a) to 19 (d) are plan views showing various forms of a die base.
FIG. 20 is an explanatory diagram showing an operation state of the three-dimensional network structure manufacturing apparatus according to the third embodiment.
21 (a) and 21 (b) are a side view and a front view of a roll of the three-dimensional network structure manufacturing apparatus.
22 (a) to 22 (g) are side views of the same three-dimensional network-structure manufacturing apparatus and modified rolls.
FIG. 23 (a) is a front view of a three-dimensional network structure (applied to a horticultural cushioning material or the like) of a seventeenth embodiment, FIG. 23 (b) is a plan view of the three-dimensional network structure, and FIG. The side view of a three-dimensional network structure, (d) is a three-dimensional network structure of a modified form.
24 (a) is a plan view of a die base of the three-dimensional network structure manufacturing apparatus according to the fourth embodiment, FIG. 24 (b) is a front view thereof, and FIG. 24 (c) is a plan view of a die base of another die; (D) is the same front view.
FIG. 25 is an explanatory view showing a usage state of the three-dimensional network structure according to the seventeenth embodiment.
FIG. 26 is an explanatory view showing another usage state of the three-dimensional network structure according to the seventeenth embodiment.
FIG. 27 is a partial structural diagram of the three-dimensional network structure manufacturing apparatus according to the fourth embodiment.
[Explanation of symbols]
1-9, 101-107, 401, 402, 490, 501 ... Three-dimensional network structure
10, 50, 110, 210, 510... Three-dimensional network structure manufacturing apparatus
11, 111, 211 ... Extruder
12, 13, 112, 113 ... endless member
14, 15, 54, 55, 59a, 59b, 64, 65, 114, 115 ... endless conveyor
33 ... Dice 135 ... Composite Dice
34,71-77,136,171-177,471,481 ... base
56,57,66,67,212-215,224-230 ... roll

Claims (3)

熱可塑性樹脂を原料又は主原料とし、複数本の線条が押し出し成形によって螺旋状に無秩序に絡まり合い部分的に熱接着し水で冷却され、
押し出し方向に対して疎密が交互に形成され
前記押し出し方向と直交する方向に対しても疎密が交互に形成され、密の領域が押し出し方向と直交する方向の両側端部に形成されるクッション材であることを特徴とした立体網状構造体。
A thermoplastic resin is used as a raw material or a main raw material, and a plurality of filaments are spirally and randomly entangled by extrusion and partially heat-bonded and cooled with water,
Density is alternately formed with respect to the extrusion direction ,
A three-dimensional network structure characterized in that the dense and dense regions are alternately formed in the direction orthogonal to the extrusion direction, and the dense region is a cushion material formed at both end portions in the direction orthogonal to the extrusion direction .
熱可塑性樹脂を原料又は主原料とする溶融した線条を複数の孔を有するダイスから下方へ押し出し、一部水没した引き込み装置の間に前記線条を自然降下させ、該降下速度より前記線条を遅く引き込み、前記押出された線条の集合体の幅より前記引き込み装置の間隔が狭く設定され、前記引き込み装置が水没する前後に前記線条の集合体の少なくとも一面が前記引き込み装置に接触し、
前記引き込み装置の引き込み速度を変化させることにより、前記押し出し方向に立体網状構造体の粗密を形成し、
前記押し出し方向と直交する方向に立体網状構造体の疎密を形成し、密の領域が押し出し方向と直交する方向の両側端部に形成されるクッション材を製造することを特徴とした立体網状構造体製造方法。
A molten filament made of a thermoplastic resin as a raw material or a main raw material is extruded downward from a die having a plurality of holes, and the filament is naturally lowered between a partially submerged drawing device. The interval between the drawing devices is set narrower than the width of the extruded wire assembly, and at least one surface of the wire assembly comes into contact with the drawing device before and after the drawing device is submerged. ,
By changing the pull-in speed of the pull-in device, forming a coarse and dense three-dimensional network structure in the extrusion direction,
A three-dimensional network structure comprising: a three-dimensional network structure formed in a direction perpendicular to the extrusion direction; and a dense material having a dense region formed on both side ends in a direction orthogonal to the extrusion direction. Production method.
熱可塑性樹脂を原料又は主原料とする溶融した線条を複数の孔を有するダイスから下方へ押し出し、一部水没した引き込み装置の間に前記線条を自然降下させ、該降下速度より前記線条を遅く引き込み、前記押出された線条の集合体の幅より前記引き込み装置の間隔が狭く設定され、前記引き込み装置が水没する前後に前記線条の集合体の少なくとも一面が前記引き込み装置に接触し、前記口金に孔の密度の高い領域及び低い領域を形成し、
前記引き込み装置の引き込み速度を変化させることにより、前記押し出し方向に立体網状構造体の粗密を形成し、
前記ダイスの口金の押し出し方向と直交する方向の両端部に密度の高い領域を形成することにより、前記押し出し方向と直交する方向に立体網状構造体の疎密を形成したクッション材を製造することを特徴とした立体網状構造体製造装置。
A molten filament made of a thermoplastic resin as a raw material or a main raw material is extruded downward from a die having a plurality of holes, and the filament is naturally lowered between a partially submerged drawing device. The interval between the drawing devices is set narrower than the width of the extruded wire assembly, and at least one surface of the wire assembly comes into contact with the drawing device before and after the drawing device is submerged. , Forming a high density area and a low density area of holes in the base;
By changing the pull-in speed of the pull-in device, forming a coarse and dense three-dimensional network structure in the extrusion direction,
Cushioning material in which the density of the three-dimensional network structure is formed in the direction orthogonal to the extrusion direction is formed by forming high density regions at both ends in the direction orthogonal to the extrusion direction of the die die. 3D network structure manufacturing apparatus.
JP2001348871A 2001-11-14 2001-11-14 Three-dimensional network structure, three-dimensional network structure manufacturing method, and three-dimensional network structure manufacturing apparatus Expired - Lifetime JP4651250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001348871A JP4651250B2 (en) 2001-11-14 2001-11-14 Three-dimensional network structure, three-dimensional network structure manufacturing method, and three-dimensional network structure manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001348871A JP4651250B2 (en) 2001-11-14 2001-11-14 Three-dimensional network structure, three-dimensional network structure manufacturing method, and three-dimensional network structure manufacturing apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001076171 Division 2001-03-16 2001-03-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010260658A Division JP5419850B2 (en) 2010-11-22 2010-11-22 Three-dimensional network structure, three-dimensional network structure manufacturing method, and three-dimensional network structure manufacturing apparatus

Publications (3)

Publication Number Publication Date
JP2002275751A JP2002275751A (en) 2002-09-25
JP2002275751A5 JP2002275751A5 (en) 2009-03-19
JP4651250B2 true JP4651250B2 (en) 2011-03-16

Family

ID=19161624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001348871A Expired - Lifetime JP4651250B2 (en) 2001-11-14 2001-11-14 Three-dimensional network structure, three-dimensional network structure manufacturing method, and three-dimensional network structure manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP4651250B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4621804B1 (en) * 2010-04-02 2011-01-26 株式会社環境経営総合研究所 Insulation
JP2015033847A (en) * 2013-07-09 2015-02-19 有限会社 トラスト21 Organized resin production device and method for producing organized resin
JP5796263B1 (en) * 2014-07-30 2015-10-21 有限会社 トラスト21 Knitting resin manufacturing apparatus and knitting resin manufacturing method
JP7158127B2 (en) * 2016-12-05 2022-10-21 住友ゴム工業株式会社 pneumatic tire
JP6578518B2 (en) * 2017-09-25 2019-09-25 リッチコミュニケーションズ株式会社 Three-dimensional network structure
JP6704566B1 (en) * 2019-07-29 2020-06-03 リッチコミュニケーションズ株式会社 Device and method for manufacturing three-dimensional net-like structure
CN113622085A (en) * 2020-05-07 2021-11-09 新丽企业股份有限公司 Apparatus and method for manufacturing fiber structure with adjustable density
CN113442403A (en) * 2021-07-12 2021-09-28 广东日美光电科技有限公司 Hot-melt optical fiber plastic plate and manufacturing method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5422931A (en) * 1977-07-20 1979-02-21 Kasei Co C I Water collect*drain material and making method thereof
JP2001003257A (en) * 1999-06-21 2001-01-09 Ain Kosan Kk Spring-structured resin-molded product and its production
JP2001328153A (en) * 2000-03-15 2001-11-27 Shiienji:Kk Method and apparatus for producing three-dimensional netted structure
JP2001329631A (en) * 2000-03-15 2001-11-30 Shiienji:Kk Recycled acoustic building material, and method and apparatus for producing recycled acoustic building material
JP2001329630A (en) * 2000-03-15 2001-11-30 Shiienji:Kk Heat-insulating material for recycled building
JP2002084894A (en) * 2000-09-14 2002-03-26 Shiienji:Kk Cushioning material for gardening, method and apparatus for producing the same
JP2002088634A (en) * 2000-09-20 2002-03-27 Shiienji:Kk Three-dimensional reticulate structure, and method and apparatus for producing three-dimensional reticulate structure
JP2002088631A (en) * 2000-09-14 2002-03-27 Shiienji:Kk Method for producing three-dimensional reticulate structure and apparatus for producing three- dimensional reticulate structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5422931A (en) * 1977-07-20 1979-02-21 Kasei Co C I Water collect*drain material and making method thereof
JP2001003257A (en) * 1999-06-21 2001-01-09 Ain Kosan Kk Spring-structured resin-molded product and its production
JP2001328153A (en) * 2000-03-15 2001-11-27 Shiienji:Kk Method and apparatus for producing three-dimensional netted structure
JP2001329631A (en) * 2000-03-15 2001-11-30 Shiienji:Kk Recycled acoustic building material, and method and apparatus for producing recycled acoustic building material
JP2001329630A (en) * 2000-03-15 2001-11-30 Shiienji:Kk Heat-insulating material for recycled building
JP2002084894A (en) * 2000-09-14 2002-03-26 Shiienji:Kk Cushioning material for gardening, method and apparatus for producing the same
JP2002088631A (en) * 2000-09-14 2002-03-27 Shiienji:Kk Method for producing three-dimensional reticulate structure and apparatus for producing three- dimensional reticulate structure
JP2002088634A (en) * 2000-09-20 2002-03-27 Shiienji:Kk Three-dimensional reticulate structure, and method and apparatus for producing three-dimensional reticulate structure

Also Published As

Publication number Publication date
JP2002275751A (en) 2002-09-25

Similar Documents

Publication Publication Date Title
EP1270787B1 (en) Three-dimensional net-like structure, and method and device for producing three-dimensional net-like structure
US8568635B2 (en) Method for manufacturing three-dimensional netted structure having four molded surfaces
US9561612B2 (en) Method for manufacturing three-dimensional netted structure
US8757996B2 (en) Apparatus and method for manufacturing three-dimensional netted structure
US10266977B2 (en) Device and method for manufacturing three-dimensional netted structure and product made
JP5931124B2 (en) Three-dimensional network structure, three-dimensional network structure manufacturing method, and three-dimensional network structure manufacturing apparatus
JP4350286B2 (en) Three-dimensional network structure manufacturing method, three-dimensional network structure manufacturing apparatus, and three-dimensional network structure
US20120328722A1 (en) Apparatus and method for manufacturing three-dimensional netted structure
US8277210B2 (en) Apparatus and method for manufacturing three-dimensional netted structure
JP4651250B2 (en) Three-dimensional network structure, three-dimensional network structure manufacturing method, and three-dimensional network structure manufacturing apparatus
US9169585B2 (en) Three dimensional netted structure
JP6067772B2 (en) Three-dimensional network structure manufacturing method and three-dimensional network structure manufacturing apparatus
JP5380559B2 (en) Three-dimensional network structure, three-dimensional network structure manufacturing method, and three-dimensional network structure manufacturing apparatus
JP5378618B2 (en) Three-dimensional network structure, three-dimensional network structure manufacturing method, and three-dimensional network structure manufacturing apparatus
JP5419850B2 (en) Three-dimensional network structure, three-dimensional network structure manufacturing method, and three-dimensional network structure manufacturing apparatus
JP5525645B2 (en) Three-dimensional network structure manufacturing method and three-dimensional network structure manufacturing apparatus
JP5378617B2 (en) Three-dimensional network structure, three-dimensional network structure manufacturing method, and three-dimensional network structure manufacturing apparatus
JP5270014B2 (en) Three-dimensional network structure manufacturing method and three-dimensional network structure manufacturing apparatus
JP5355819B2 (en) Three-dimensional network structure, three-dimensional network structure manufacturing method, and three-dimensional network structure manufacturing apparatus
JP5570643B2 (en) Three-dimensional network structure manufacturing method and three-dimensional network structure manufacturing apparatus
JP5340470B2 (en) Three-dimensional network structure, three-dimensional network structure manufacturing method, and three-dimensional network structure manufacturing apparatus
JP5165811B2 (en) Three-dimensional network structure, three-dimensional network structure manufacturing method, and three-dimensional network structure manufacturing apparatus
JP2002084894A (en) Cushioning material for gardening, method and apparatus for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100922

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4651250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250