JP4650991B2 - Oxide film mainly composed of SiO2 - Google Patents

Oxide film mainly composed of SiO2 Download PDF

Info

Publication number
JP4650991B2
JP4650991B2 JP2002219386A JP2002219386A JP4650991B2 JP 4650991 B2 JP4650991 B2 JP 4650991B2 JP 2002219386 A JP2002219386 A JP 2002219386A JP 2002219386 A JP2002219386 A JP 2002219386A JP 4650991 B2 JP4650991 B2 JP 4650991B2
Authority
JP
Japan
Prior art keywords
oxide film
alkyl group
convex portion
film
nearest
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002219386A
Other languages
Japanese (ja)
Other versions
JP2003154597A (en
Inventor
秀樹 西森
和久 宗宮
明 橋本
清志 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2002219386A priority Critical patent/JP4650991B2/en
Publication of JP2003154597A publication Critical patent/JP2003154597A/en
Application granted granted Critical
Publication of JP4650991B2 publication Critical patent/JP4650991B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)
  • Silicon Compounds (AREA)
  • Chemically Coating (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、金属、ガラス等の種々の材質の基材の表面に形成されるSiOを主成分とする酸化物皮膜に関する。
【0002】
【従来の技術と発明が解決しようとする課題】
金属アルコキシドの加水分解およびその後の縮合重合により得られるゾルを基材に塗布し、ついで乾燥させることにより得られたゲル膜を焼成して酸化物皮膜を形成するゾル−ゲル法によって、表面が平滑で内部が緻密な皮膜や表面に凹凸を持った薄膜が作製できることが知られている。
【0003】
表面が平滑で内部が緻密な皮膜の場合、基材の腐食や、基材への液体の浸透という問題が生じることは少ないが、皮膜表面にさらにフッ化炭素鎖を持つシランカップリング剤等をコーティングしても超はっ水性を得ることはできず、しかも平滑な皮膜表面に樹脂などの塗装を施す場合、良好な塗膜の密着性が得られないという問題がある。一方、既存のゾル−ゲル法により作製した凹凸を持った薄膜の場合、基材の腐食や、基材への液体の浸透の防止には十分な効果が得られず、また、この皮膜上に表面の凹凸を損なわないように薄くはっ水コーティングを施した場合、比較的耐久性に優れたはっ水膜が得られるものの、超はっ水性が得られるほどの膜表面の凹凸による形状効果はないという問題がある。
【0004】
この発明の目的は、上記問題を解決し、緻密な皮膜と凹凸を持った皮膜との長所を合わせ持った酸化物皮膜を提供することにある。
【0005】
【課題を解決するための手段と発明の効果】
この発明による酸化物皮膜は、SiOを主成分とするとともに、ゾル−ゲル法により形成されており、緻密層上に凹凸層が一体に形成され、凹凸層の表面全体に微細な凹凸が形成されて粗面化されているものである。
【0006】
この発明の酸化物皮膜によれば、SiOを主成分とするとともに、ゾル−ゲル法により形成されており、緻密層上に凹凸層が一体に形成され、凹凸層の表面全体に微細な凹凸が形成されて粗面化されているので、緻密層の働きにより、この酸化物皮膜が形成された基材の腐食や基材への液体の浸透を防止することができる。また、凹凸層の働きにより、皮膜表面に凹凸層の形状を損なわないように薄くはっ水コートすることによって超はっ水性を得ることができ、しかも凹凸皮膜表面に塗膜を施す場合、塗膜の密着性が優れたものとなる。
【0007】
上記酸化物皮膜において、膜厚が0.1〜10μmであることが好ましい。
【0008】
また、上記酸化物皮膜において、凹凸層の表面粗さが最大高さRmaxで0.03〜3μmであり、凹部から最近接の凹部あるいは凸部から最近接の凸部までの間隔が0.03〜10μmとなされていることが好ましい。また、上記凹凸層の表面に、微細な凹凸に加え、さらに相当直径0.03〜10μm、深さ0.03〜3μmの孔が形成され、この孔の周面および底面全体にも微細な凹凸が形成されて粗面化されており、孔の周面および底面の表面粗さが最大高さRmaxで0.01〜1μmであり、凹部から最近接の凹部あるいは凸部から最近接の凸部までの間隔が0.01〜1μmとなされていることが好ましい。ここで、相当直径とは、孔の横断面積と等しい面積を有する円の直径を意味する。
【0009】
この発明による酸化物皮膜の製造方法は、RnSi(OR4−n(但し式中Rはアルキル基、フェニル基等の疎水基、あるいはアルキル基等のC−H結合の一部がC−F結合に置換されたものであり、Rはアルキル基であり、n=1、2である。)と、溶媒と、水と、酸触媒とよりなる液組成物に、酸化物粒子を混ぜ合わせたものを攪拌することにより得たゾルを基材に塗布して乾燥させることによりゲル膜を作製し、その後焼成することを特徴とするものである。
【0010】
上記において、アルキル基等のC−H結合の一部がC−F結合に置換されたものの具体例としては、たとえばCF(CFCHCHSi(OCH、CF(CFCHCHSi(CH)(OCH(但し両式中n=0、1、2、3、4…である。)等のフルオロアルキルアルコキシシランが挙げられる。
【0011】
上記において、溶媒としては、イソプロパノール、エタノール、メタノール等の低級アルコールが単独でもしくは混合して用いられ、またはこれらにブタノールや、ブタノールより炭素数の多いアルコールを適量添加して用いられる。あるいは、これらにエーテル、ケトン、アミド等の有機溶媒が添加される場合もある。
【0012】
上記において、酸化物粒子としては、SiO、TiO等の表面に−OH基を有するもの、あるいはカップリング剤で表面修飾したものが用いられ、その粒径は5nm〜2μmであることが好ましい。酸化物粒子は、RnSi(OR4−nが加水分解し、縮合重合した生成物と結合し、表面が疎水基で覆われる。
【0013】
上記において、液組成物には、さらに微量のSi(ORやRnSi(OR4−n(但し式中Rはアルキル基であり、Rは末端に親水基を有するHN(CH等の置換基であり、n=1、2である。)を添加しておいてもよい。その添加量は適宜変更されるが、Si(ORがテトラエトキシシランの場合、RnSi(OR4−nがメチルトリエトキシシランであれば、テトラエトキシシランのメチルトリエトキシシランに対する混合比は、モル比でx:(1−x)(但し0<x≦0.3)である。
【0014】
この発明の酸化物皮膜の製造方法によれば、固体として残る成分、すなわちRnSi(OR4−nが加水分解し、縮合重合した生成物および表面がRnSi(OR4−nからの疎水基を持つ生成物で覆われた酸化物粒子と水とが膜乾燥時にはじき合うことにより、SiOを主成分とするとともに、緻密層上に凹凸層が一体に形成されている酸化物皮膜が1回の工程で形成される。
【0015】
上記方法において、RnSi(OR4−nと、溶媒と、水と、酸触媒との混合比は、好ましくはモル比で1:1〜20:1〜20:0.00001〜0.3である。
【0016】
また、上記方法において、原料全体中の酸化物粒子の量は40wt%以下が好ましい。40wt%を越えると、酸化物粒子を液組成物中に分散できなくなるおそれがある。
【0017】
さらに、上記方法において、酸化物粒子がSiOからなることが好ましい。この場合、製造される酸化物皮膜が無色透明となり、この皮膜上に表面の凹凸を損なわないようにさらにフッ化炭素鎖を持つシランカップリング剤等ではっ水コートすることにより、たとえば自動車のフロントガラスに適用した場合、充分な視界を確保した上で、超はっ水性を得ることができ、極めて好都合である。
【0018】
【発明の実施の形態】
以下、この発明の実施の形態を、図面を参照して説明する。
【0019】
図1はこの発明による酸化物皮膜の1実施形態を示す。図1において、酸化物皮膜(1)は、SiOを主成分とするとともに、ゾル−ゲル法により形成されており、緻密層(2)上に凹凸層(3)が一体に形成されているものである。凹凸層(3)の表面全体に微細な凹凸が形成されて粗面化されている。
【0020】
酸化物皮膜(1)の膜厚(T)は、0.1〜10μmである。凹凸層(3)の表面粗さは最大高さRmaxで0.03〜3μmであり、凹部(4)から最近接の凹部(4)あるいは凸部(5)から最近接の凸部(5)までの間隔(W)が0.03〜10μmとなされている。
【0021】
図2はこの発明による酸化物皮膜の他の実施形態を示す。図2において、酸化物皮膜(10)は、図1と同様な酸化物皮膜(1)における凹凸層(3)の表面に、微細な凹凸に加え、さらに相当直径(D)0.03〜10μm、深さ(S)0.03〜3μmの孔(11)が形成されたものである。この孔(11)の周面および底面全体にも微細な凹凸が形成されて粗面化されており、孔(11)の周面および底面の表面粗さは最大高さRmaxで0.01〜1μmであり、凹部(12)から最近接の凹部(12)あるいは凸部(13)から最近接の凸部(13)までの間隔(W1)が0.01〜1μmとなされている。
【0022】
図1および図2に見られる酸化物皮膜(1)(10)の製造方法は、RnSi(OR4−n(但し式中Rはアルキル基、フェニル基等の疎水基、あるいはアルキル基等のC−H結合の一部がC−F結合に置換されたものであり、Rはアルキル基であり、n=1、2である。)と、溶媒と、水と、酸触媒とよりなる液組成物に、酸化物粒子を混ぜ合わせたものを攪拌することにより得たゾルを基材に塗布する工程と、基材に塗布したゾルを乾燥させゲル膜を形成する工程と、ゲル膜を焼成する工程とを含む。
【0023】
ここで、液組成物におけるRnSi(OR4−nと、溶媒と、水と、酸触媒との混合比は、モル比で1:1〜20:1〜20:0.00001〜0.3であることが好ましく、原料全体中の酸化物微粒子の量は40wt%であることが好ましい。
【0024】
ゾルの基材への塗布は、ディッピング、スプレーコティング、スピン等により行う。スピンとは、基材表面にゾルを滴下した後、遠心力により塗布する方法である。
【0025】
ゲル膜の焼成は70〜800℃で30秒〜10分間加熱することにより行う。
【0026】
なお、製造された酸化物皮膜に化学的、機械的耐久性を持たせるために、180℃以上で熱処理することが好ましい。
【0027】
【実施例と比較例】
以下、この発明の具体的実施例を比較例とともに説明する。
【0028】
実施例1
メチルトリエトキシシランと、溶媒であるエタノールおよび2−プロパノールと、水と、塩酸と、2−プロパノールに分散させた粒径0.01〜0.02μmのSiO粒子を原料として用意した。なお、SiO粒子を分散させている2−プロパノールは溶媒の一部として用いた。メチルトリエトキシシラン、溶媒(エタノール、2−プロパノールのモル比が1:1)、水、塩酸のモル比が1:5:4:0.005、粒子濃度が10wt%となるように原料を混合し、メチルトリエトキシシランを加水分解、縮合重合させることによりゾルを得た。ついで、このゾル中にアルミニウム板およびガラス板を浸漬し、2mm/秒の引き上げ速度で引き上げ、乾燥させた後、400℃で5分間焼成し、アルミニウム板およびガラス板の表面に酸化物皮膜を形成した。
【0029】
アルミニウム板の表面に形成された酸化物皮膜をSEMにより観察したところ、膜厚は0.8μmであり、緻密層上に、表面全体に微細な凹凸が形成されて粗面化された凹凸層が一体に形成されていた。凹凸層の表面粗さは最大高さRmaxで0.03〜0.1μmであり、凹部から最近接の凹部あるいは凸部から最近接の凸部までの間隔は0.03〜0.1μmであった。さらに、凹凸層の表面に、微細な凹凸に加えて相当直径0.05〜0.1μm、深さ0.05〜0.1μmの孔が5×10個/cm以上形成されていた。この孔の周面および底面全体にも微細な凹凸が形成されて粗面化されており、孔の周面および底面の表面粗さは最大高さRmaxで0.03〜0.05μmであり、凹部から最近接の凹部あるいは凸部から最近接の凸部までの間隔は0.03〜0.05μmであった。
【0030】
また、表面に酸化物皮膜が形成されたガラス板の透過率を、測定波長域400〜700nmで測定したところ、90〜92%であった。なお、用いたガラス板自体の透過率は測定波長域400〜700nmで90〜91%である。
【0031】
実施例2
ゾル中にアルミニウム板およびガラス板を浸漬した後、アルミニウム板およびガラス板を引き上げるさいの引上げ速度を20mm/秒とした他は、上記実施例1と同様にしてアルミニウム板およびガラス板の表面に酸化物皮膜を形成した。
【0032】
アルミニウム板の表面に形成された酸化物皮膜をSEMにより観察したところ、膜厚は2.6μmであり、緻密層上に、表面全体に微細な凹凸が形成されて粗面化された凹凸層が一体に形成されていた。凹凸層の表面粗さは最大高さRmaxで0.03〜0.1μmであり、凹部から最近接の凹部あるいは凸部から最近接の凸部までの間隔は0.03〜0.1μmであった。さらに、凹凸層の表面に、微細な凹凸に加えて相当直径0.2〜0.5μm、深さ0.2〜0.5μmの孔が3.8×10個/cm、相当直径0.05〜0.1μm、深さ0.05〜0.1μmの孔が5×10個/cm以上形成されていた。これらの孔の周面および底面全体にも微細な凹凸が形成されて粗面化されており、孔の周面および底面の表面粗さは最大高さRmaxで0.03〜0.1μmであり、凹部から最近接の凹部あるいは凸部から最近接の凸部までの間隔は0.03〜0.1μmであった。
【0033】
また、表面に酸化物皮膜が形成されたガラス板の透過率を、測定波長域400〜700nmで測定したところ、83〜91%であった。
【0034】
実施例3
液組成物中の溶媒として、2−プロパノールを単独で用いた他は、上記実施例1と同様にしてアルミニウム板およびガラス板の表面に酸化物皮膜を形成した。
【0035】
アルミニウム板の表面に形成された酸化物皮膜をSEMにより観察したところ、膜厚は0.6μmであり、緻密層上に、表面全体に微細な凹凸が形成されて粗面化された凹凸層が一体に形成されていた。凹凸層の表面粗さは最大高さRmaxで0.03〜0.1μmであり、凹部から最近接の凹部あるいは凸部から最近接の凸部までの間隔は0.03〜0.1μmであった。さらに、凹凸層の表面に、微細な凹凸に加えて相当直径0.05〜0.1μm、深さ0.05〜0.1μmの孔が5×10個/cm以上形成されており、この孔の周面および底面全体にも微細な凹凸が形成されて粗面化されており、孔の周面および底面の表面粗さは最大高さRmaxで0.03〜0.05μmであり、凹部から最近接の凹部あるいは凸部から最近接の凸部までの間隔は0.03〜0.05μmであった。
【0036】
また、表面に酸化物皮膜が形成されたガラス板の透過率を、測定波長域400〜700nmで測定したところ、91〜93%であった。
【0037】
実施例4
ゾル中にアルミニウム板およびガラス板を浸漬した後、アルミニウム板およびガラス板を引き上げるさいの引上げ速度を5mm/秒とした他は、上記実施例3と同様にしてアルミニウム板およびガラス板の表面に酸化物皮膜を製造した。
【0038】
アルミニウム板の表面に形成された酸化物皮膜をSEMにより観察したところ、膜厚は1.3μmであり、緻密層上に、表面全体に微細な凹凸が形成されて粗面化された凹凸層が一体に形成されていた。凹凸層の表面粗さは最大高さRmaxで0.03〜0.1μmであり、凹部から最近接の凹部あるいは凸部から最近接の凸部までの間隔は0.03〜0.1μmであった。さらに、凹凸層の表面に、微細な凹凸に加えて相当直径0.1〜0.2μm、深さ0.1〜0.2μmの孔が1.8×10個/cm、相当直径0.05〜0.1μm、深さ0.05〜0.1μmの孔が5×10個/cm以上形成されていた。これら孔の周面および底面全体にも微細な凹凸が形成されて粗面化されており、孔の周面および底面の表面粗さは最大高さRmaxで0.03〜0.07μmであり、凹部から最近接の凹部あるいは凸部から最近接の凸部までの間隔は0.03〜0.07μmであった。
【0039】
また、表面に酸化物皮膜が形成されたガラス板の透過率を、測定波長域400〜700nmで測定したところ、92〜93%であった。
【0040】
実施例5
ゾル中にアルミニウム板およびガラス板を浸漬した後、アルミニウム板およびガラス板を引き上げるさいの引上げ速度を20mm/秒とした他は、上記実施例3と同様にしてアルミニウム板およびガラス板の表面に酸化物皮膜を形成した。
【0041】
アルミニウム板の表面に形成された酸化物皮膜をSEMにより観察したところ、膜厚は2.8μmであり、緻密層上に、表面全体に微細な凹凸が形成されて粗面化された凹凸層が一体に形成されていた。凹凸層の表面粗さは最大高さRmaxで0.03〜0.1μmであり、凹部から最近接の凹部あるいは凸部から最近接の凸部までの間隔は0.03〜0.1μmであった。さらに、凹凸層の表面に、微細な凹凸に加えて相当直径0.2〜0.5μm、深さ0.2〜0.5μmの孔が1.1×10個/cm、相当直径0.05〜0.1μm、深さ0.05〜0.1μmの孔が5×10個/cm以上形成されていた。これら孔の周面および底面全体にも微細な凹凸が形成されて粗面化されており、孔の周面および底面の表面粗さは最大高さRmaxで0.03〜0.1μmであり、凹部から最近接の凹部あるいは凸部から最近接の凸部までの間隔は0.03〜0.1μmであった。
【0042】
また、表面に酸化物皮膜が形成されたガラス板の透過率を、測定波長域400〜700nmで測定したところ、86〜91%であった。
【0043】
実施例6
液組成物中の溶媒として、1−ブタノールと2−プロパノールとをモル比で48:52となるように混合したものを用いた他は、上記実施例1と同様にしてアルミニウム板およびガラス板の表面に酸化物皮膜を製造した。
【0044】
アルミニウム板の表面に形成された金属酸化物皮膜をSEMにより観察したところ、膜厚は0.8μmであり、緻密層上に、表面全体に微細な凹凸が形成されて粗面化された凹凸層が一体に形成されていた。凹凸層の表面粗さは最大高さRmaxで0.03〜0.1μmであり、凹部から最近接の凹部あるいは凸部から最近接の凸部までの間隔は0.03〜0.1μmであった。
【0045】
また、表面に酸化物皮膜が形成されたガラス板の透過率を、測定波長域400〜700nmで測定したところ、90〜93%であった。
【0046】
実施例7
ゾル中にアルミニウム板およびガラス板を浸漬した後、アルミニウム板およびガラス板を引き上げるさいの引上げ速度を20mm/秒とした他は、上記実施例6と同様にしてアルミニウム板およびガラス板の表面に酸化物皮膜を製造した。
【0047】
アルミニウム板の表面に形成された金属酸化物皮膜をSEMにより観察したところ、膜厚は2.4μmであり、緻密層上に、表面全体に微細な凹凸が形成されて粗面化された凹凸層が一体に形成されていた。凹凸層の表面粗さは最大高さRmaxで0.03〜0.1μmであり、凹部から最近接の凹部あるいは凸部から最近接の凸部までの間隔は0.03〜0.1μmであった。
【0048】
また、表面に酸化物皮膜が形成されたガラス板の透過率を、測定波長域400〜700nmで測定したところ、92〜93%であった。
【0049】
比較例1
メチルトリエトキシシランと、テトラエトキシシランと、2−プロパノールと、水と、塩酸と、2−プロパノールに分散させた粒径0.01〜0.02μmのSiO粒子を原料として用意した。なお、SiO粒子を分散させている2−プロパノールは溶媒の一部として用いた。メチルトリエトキシシラン、テトラエトキシシラン、2−プロパノール、水、塩酸のモル比が0.5:0.5:5:4:0.005、粒子濃度が10wt%となるように原料を混合し、メチルトリエトキシシランおよびテトラエトキシシランを加水分解、縮合重合させることによりゾルを得た。ついで、このゾル中にアルミニウム板およびガラス板を浸漬し、5mm/秒の引き上げ速度で引き上げ、乾燥させた後、400℃で5分間焼成し、アルミニウム板およびガラス板の表面に酸化物皮膜を形成した。
【0050】
アルミニウム板の表面に形成された酸化物皮膜をSEMにより観察したところ、膜厚は1.5μmであった。皮膜表面には相当直径0.05〜0.15μm、深さ0.05〜0.15μmの孔が2.8×10個/cm形成されていたが、実施例1〜7に見られるような微細な凹凸は存在しなかった。
【0051】
また、表面に酸化物皮膜が形成されたガラス板の透過率を、測定波長域400〜700nmで測定したところ、91〜93%であった。
【0052】
比較例2
メチルトリエトキシシランと、2−プロパノールと、水と、塩酸とよりなり、かつ各成分の量がモル比で1:5:4:0.005である液組成物を用意した。そして、この液組成物を混合し、メチルトリエトキシシランの加水分解、縮合重合によりゾルを得た。ついで、このゾル中にアルミニウム板およびガラス板を浸漬し、5mm/秒の引き上げ速度で引き上げ、乾燥させた後、400℃で5分間焼成し、アルミニウム板およびガラス板の表面に酸化物皮膜を形成した。
【0053】
アルミニウム板の表面に形成された酸化物皮膜を観察したところ、膜厚は0.7μmであった。また、皮膜全体が緻密であって、表面は全体に平滑であった。
【0054】
また、表面に酸化物皮膜が形成されたガラス板の透過率を、測定波長域400〜700nmで測定したところ、91〜93%であった。
【図面の簡単な説明】
【図1】 この発明による酸化物皮膜の1実施形態を示す一部切欠き拡大斜視図である。
【図2】 この発明による酸化物皮膜の他の実施形態を示す一部切欠き拡大斜視図である。
【符号の説明】
(1)(10):酸化物皮膜
(2):緻密層
(3):凹凸層
[0001]
BACKGROUND OF THE INVENTION
The present invention, metal, relates to an oxide skin film composed mainly of SiO 2 formed on the surface of various materials of the base material such as glass.
[0002]
[Prior art and problems to be solved by the invention]
A sol obtained by hydrolysis of metal alkoxide and subsequent condensation polymerization is applied to a substrate, and then dried to form a oxide film by firing the gel film obtained by drying, thereby smoothing the surface. It is known that a thin film with a dense inside and a thin film with irregularities on the surface can be produced.
[0003]
In the case of a coating with a smooth surface and a dense interior, there is little problem of corrosion of the substrate or penetration of liquid into the substrate, but a silane coupling agent having a fluorocarbon chain on the surface of the coating, etc. Even if it is coated, it is not possible to obtain super water repellency, and there is a problem that good coating film adhesion cannot be obtained when a coating such as resin is applied to the smooth film surface. On the other hand, in the case of an uneven thin film produced by an existing sol-gel method, sufficient effects cannot be obtained for corrosion of the base material and prevention of liquid penetration into the base material. When a thin water-repellent coating is applied so as not to impair the surface irregularities, a water-repellent film with relatively high durability can be obtained, but the shape effect due to the film surface irregularities enough to obtain super water-repellency There is no problem.
[0004]
The purpose of this invention is to solve the above problems, provides with the combined advantages of a film having a dense film and uneven oxide skin film.
[0005]
[Means for Solving the Problems and Effects of the Invention]
The oxide film according to the present invention has SiO 2 as a main component and is formed by a sol-gel method. The uneven layer is integrally formed on the dense layer, and fine unevenness is formed on the entire surface of the uneven layer. And roughened.
[0006]
According to the oxide film of the present invention, SiO 2 is the main component and is formed by a sol-gel method. The uneven layer is integrally formed on the dense layer, and fine unevenness is formed on the entire surface of the uneven layer. Is formed and roughened, the corrosion of the base material on which the oxide film is formed and the penetration of liquid into the base material can be prevented by the action of the dense layer. In addition, due to the function of the concavo-convex layer, it is possible to obtain super water repellency by thinly water-repellent coating so as not to impair the shape of the concavo-convex layer on the surface of the film, The film adhesion is excellent.
[0007]
In the oxide film, the film thickness is preferably 0.1 to 10 μm.
[0008]
Further, in the above oxide film, the surface roughness of the uneven layer is 0.03 to 3 μm at the maximum height Rmax, and the distance from the recessed portion to the nearest recessed portion or the protruding portion to the nearest protruding portion is 0.03. It is preferable that the thickness is 10 μm. Further, in addition to the fine unevenness, a hole having an equivalent diameter of 0.03 to 10 μm and a depth of 0.03 to 3 μm is formed on the surface of the uneven layer, and fine unevenness is also formed on the entire peripheral surface and bottom surface of the hole. Is formed, and the surface roughness of the peripheral surface and bottom surface of the hole is 0.01 to 1 μm at the maximum height Rmax, and the concave portion closest to the concave portion or the convex portion closest to the convex portion. It is preferable that the space | interval is set to 0.01-1 micrometer. Here, the equivalent diameter means the diameter of a circle having an area equal to the cross-sectional area of the hole.
[0009]
The method for producing an oxide film according to the present invention comprises: R 1 nSi (OR 2 ) 4-n (wherein R 1 is a hydrophobic group such as an alkyl group, a phenyl group, or a part of a C—H bond such as an alkyl group) Is substituted with a C—F bond, R 2 is an alkyl group, and n = 1 and 2), a liquid composition comprising a solvent, water, and an acid catalyst. A sol obtained by stirring the mixture of particles is applied to a substrate and dried to prepare a gel film and then fired.
[0010]
In the above, as a specific example of a part in which a C—H bond such as an alkyl group is substituted with a C—F bond, for example, CF 3 (CF 2 ) n CH 2 CH 2 Si (OCH 3 ) 3 , CF 3 Fluoroalkylalkoxysilanes such as (CF 2 ) n CH 2 CH 2 Si (CH 3 ) (OCH 3 ) 2 (where n = 0, 1, 2, 3, 4...) Are mentioned.
[0011]
In the above, as the solvent, lower alcohols such as isopropanol, ethanol, methanol and the like are used alone or in combination, or butanol and an alcohol having a higher carbon number than butanol are added in an appropriate amount. Alternatively, an organic solvent such as ether, ketone or amide may be added to these.
[0012]
In the above, as the oxide particles, those having a —OH group on the surface of SiO 2 , TiO 2 or the like, or those modified with a coupling agent are used, and the particle diameter is preferably 5 nm to 2 μm. . In the oxide particles, R 1 nSi (OR 2 ) 4-n is hydrolyzed and bonded to the condensation polymerized product, and the surface is covered with a hydrophobic group.
[0013]
In the above, the liquid composition further contains a trace amount of Si (OR 2 ) 4 or R 3 nSi (OR 2 ) 4-n (where R 2 is an alkyl group, and R 3 has a hydrophilic group at the terminal). A substituent such as H 2 N (CH 2 ) 3 and n = 1, 2) may be added. The amount of addition is appropriately changed, but when Si (OR 2 ) 4 is tetraethoxysilane, if R 1 nSi (OR 2 ) 4-n is methyltriethoxysilane, methyltriethoxysilane of tetraethoxysilane The mixing ratio with respect to is x: (1-x) (where 0 <x ≦ 0.3) in molar ratio.
[0014]
According to the method for producing an oxide film of the present invention, a component remaining as a solid, that is, a product obtained by hydrolysis and condensation polymerization of R 1 nSi (OR 2 ) 4-n and the surface thereof are R 1 nSi (OR 2 ) 4. -Oxide particles covered with a product having a hydrophobic group from n and water repel each other at the time of film drying, so that SiO 2 is the main component and an uneven layer is integrally formed on the dense layer. The oxide film is formed in one step.
[0015]
In the above method, the mixing ratio of R 1 nSi (OR 2 ) 4-n , solvent, water, and acid catalyst is preferably 1: 1 to 20: 1 to 20: 0.00001 to 0 in molar ratio. .3.
[0016]
In the above method, the amount of oxide particles in the entire raw material is preferably 40 wt% or less. If it exceeds 40 wt%, the oxide particles may not be dispersed in the liquid composition.
[0017]
Furthermore, in the above method, the oxide particles are preferably made of SiO 2 . In this case, the manufactured oxide film is colorless and transparent, and is coated with a silane coupling agent or the like having a fluorocarbon chain so as not to impair the surface irregularities. When applied to glass, it is extremely advantageous because it can obtain a super water repellency while securing a sufficient field of view.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0019]
FIG. 1 shows an embodiment of an oxide film according to the present invention. In FIG. 1, the oxide film (1) has SiO 2 as a main component and is formed by a sol-gel method, and an uneven layer (3) is integrally formed on the dense layer (2). Is. Fine irregularities are formed and roughened on the entire surface of the irregular layer (3).
[0020]
The film thickness (T) of the oxide film (1) is 0.1 to 10 μm. The surface roughness of the concavo-convex layer (3) is 0.03 to 3 μm at the maximum height Rmax, and the concave portion (4) closest to the concave portion (4) or the convex portion closest to the convex portion (5) (5). (W) is 0.03 to 10 μm.
[0021]
FIG. 2 shows another embodiment of the oxide film according to the present invention. In FIG. 2, the oxide film (10) has an equivalent diameter (D) of 0.03 to 10 μm in addition to the fine unevenness on the surface of the uneven layer (3) in the oxide film (1) similar to FIG. , A hole (11) having a depth (S) of 0.03 to 3 μm is formed. Fine irregularities are also formed on the entire peripheral surface and bottom surface of the hole (11) to roughen the surface, and the surface roughness of the peripheral surface and bottom surface of the hole (11) is 0.01 to maximum height Rmax. The distance (W1) from the concave portion (12) to the nearest concave portion (12) or the convex portion (13) to the nearest convex portion (13) is set to 0.01 to 1 µm.
[0022]
The manufacturing method of the oxide film (1) (10) seen in FIG. 1 and FIG. 2 is R 1 nSi (OR 2 ) 4-n (where R 1 is a hydrophobic group such as an alkyl group or a phenyl group, or A part of the C—H bond such as an alkyl group is substituted with a C—F bond, R 2 is an alkyl group, and n = 1, 2), a solvent, water, an acid to become more liquid composition and the catalyst, a step of applying a sol obtained by stirring those mixed oxide particles to a substrate, forming a gel film is dried the sol applied to the substrate And a step of firing the gel film.
[0023]
Here, the mixing ratio of R 1 nSi (OR 2 ) 4-n , solvent, water, and acid catalyst in the liquid composition is 1: 1 to 20: 1 to 20: 0.00001 to a molar ratio. 0.3 is preferable, and the amount of oxide fine particles in the entire raw material is preferably 40 wt%.
[0024]
Application of the sol to the substrate is performed by dipping, spray coating, spinning, or the like. Spin is a method in which a sol is dropped onto a substrate surface and then applied by centrifugal force.
[0025]
The gel film is baked by heating at 70 to 800 ° C. for 30 seconds to 10 minutes.
[0026]
In addition, in order to give chemical and mechanical durability to the manufactured oxide film, it is preferable to heat-process at 180 degreeC or more.
[0027]
[Examples and comparative examples]
Hereinafter, specific examples of the present invention will be described together with comparative examples.
[0028]
Example 1
Methyltriethoxysilane, ethanol and 2-propanol as solvents, water, hydrochloric acid, and SiO 2 particles having a particle diameter of 0.01 to 0.02 μm dispersed in 2-propanol were prepared as raw materials. In addition, 2 -propanol in which SiO 2 particles are dispersed was used as a part of the solvent. The raw materials are mixed so that the molar ratio of methyltriethoxysilane, solvent (ethanol, 2-propanol molar ratio is 1: 1), water, hydrochloric acid is 1: 5: 4: 0.005, and the particle concentration is 10 wt%. A sol was obtained by hydrolysis and condensation polymerization of methyltriethoxysilane. Next, an aluminum plate and a glass plate are immersed in this sol, pulled up at a pulling rate of 2 mm / second, dried, and then fired at 400 ° C. for 5 minutes to form an oxide film on the surfaces of the aluminum plate and the glass plate. did.
[0029]
When the oxide film formed on the surface of the aluminum plate was observed with an SEM, the film thickness was 0.8 μm, and the uneven layer roughened by forming fine unevenness on the entire surface on the dense layer. It was integrally formed. The surface roughness of the concavo-convex layer is 0.03 to 0.1 μm at the maximum height Rmax, and the distance from the concave portion to the nearest concave portion or from the convex portion to the nearest convex portion is 0.03 to 0.1 μm. It was. Furthermore, 5 × 10 9 holes / cm 2 or more of an equivalent diameter of 0.05 to 0.1 μm and a depth of 0.05 to 0.1 μm were formed on the surface of the uneven layer in addition to fine unevenness. Fine irregularities are also formed on the entire peripheral surface and bottom surface of the hole to be roughened, and the surface roughness of the peripheral surface and bottom surface of the hole is 0.03 to 0.05 μm at the maximum height Rmax, The distance from the concave portion to the nearest concave portion or from the convex portion to the nearest convex portion was 0.03 to 0.05 μm.
[0030]
Moreover, it was 90 to 92% when the transmittance | permeability of the glass plate in which the oxide film was formed on the surface was measured in the measurement wavelength range 400-700 nm. In addition, the transmittance | permeability of the used glass plate itself is 90 to 91% in a measurement wavelength range 400-700 nm.
[0031]
Example 2
The surface of the aluminum plate and the glass plate was oxidized in the same manner as in Example 1 except that the aluminum plate and the glass plate were immersed in the sol, and then the pulling speed was 20 mm / sec. A physical film was formed.
[0032]
When the oxide film formed on the surface of the aluminum plate was observed by SEM, the film thickness was 2.6 μm, and the uneven layer roughened by forming fine unevenness on the entire surface on the dense layer. It was integrally formed. The surface roughness of the concavo-convex layer is 0.03 to 0.1 μm at the maximum height Rmax, and the distance from the concave portion to the nearest concave portion or from the convex portion to the nearest convex portion is 0.03 to 0.1 μm. It was. Further, on the surface of the uneven layer, in addition to fine unevenness, there are 3.8 × 10 7 holes / cm 2 with an equivalent diameter of 0.2 to 0.5 μm and a depth of 0.2 to 0.5 μm, and an equivalent diameter of 0. There were formed 5 × 10 9 holes / cm 2 or more of holes having a thickness of 0.05 to 0.1 μm and a depth of 0.05 to 0.1 μm. Fine irregularities are also formed on the entire peripheral surface and bottom surface of these holes to roughen the surface, and the surface roughness of the peripheral surface and bottom surface of the holes is 0.03-0.1 μm at the maximum height Rmax. The distance from the concave portion to the nearest concave portion or from the convex portion to the nearest convex portion was 0.03 to 0.1 μm.
[0033]
Moreover, it was 83 to 91% when the transmittance | permeability of the glass plate in which the oxide film was formed on the surface was measured in the measurement wavelength range 400-700 nm.
[0034]
Example 3
An oxide film was formed on the surfaces of the aluminum plate and the glass plate in the same manner as in Example 1 except that 2-propanol was used alone as the solvent in the liquid composition.
[0035]
When the oxide film formed on the surface of the aluminum plate was observed by SEM, the film thickness was 0.6 μm, and the uneven layer roughened by forming fine unevenness on the entire surface on the dense layer. It was integrally formed. The surface roughness of the concavo-convex layer is 0.03 to 0.1 μm at the maximum height Rmax, and the distance from the concave portion to the nearest concave portion or from the convex portion to the nearest convex portion is 0.03 to 0.1 μm. It was. Furthermore, 5 × 10 9 holes / cm 2 or more of an equivalent diameter of 0.05 to 0.1 μm and a depth of 0.05 to 0.1 μm are formed on the surface of the uneven layer in addition to fine unevenness, Fine irregularities are also formed on the entire peripheral surface and bottom surface of the hole to be roughened, and the surface roughness of the peripheral surface and bottom surface of the hole is 0.03 to 0.05 μm at the maximum height Rmax, The distance from the concave portion to the nearest concave portion or from the convex portion to the nearest convex portion was 0.03 to 0.05 μm.
[0036]
Moreover, it was 91 to 93% when the transmittance | permeability of the glass plate in which the oxide film was formed on the surface was measured in the measurement wavelength range 400-700 nm.
[0037]
Example 4
The surface of the aluminum plate and the glass plate was oxidized in the same manner as in Example 3 except that the aluminum plate and the glass plate were immersed in the sol, and then the pulling rate was 5 mm / sec. A physical coating was produced.
[0038]
When the oxide film formed on the surface of the aluminum plate was observed by SEM, the film thickness was 1.3 μm, and on the dense layer, there was an uneven layer roughened by forming fine unevenness on the entire surface. It was integrally formed. The surface roughness of the concavo-convex layer is 0.03 to 0.1 μm at the maximum height Rmax, and the distance from the concave portion to the nearest concave portion or from the convex portion to the nearest convex portion is 0.03 to 0.1 μm. It was. Further, on the surface of the concavo-convex layer, in addition to the fine concavo-convex, 1.8 × 10 8 holes / cm 2 with an equivalent diameter of 0.1 to 0.2 μm and a depth of 0.1 to 0.2 μm and an equivalent diameter of 0 There were formed 5 × 10 9 holes / cm 2 or more of holes having a thickness of 0.05 to 0.1 μm and a depth of 0.05 to 0.1 μm. Fine irregularities are also formed on the entire peripheral surface and bottom surface of these holes to be roughened, and the surface roughness of the peripheral surface and bottom surface of the holes is 0.03 to 0.07 μm at the maximum height Rmax, The distance from the concave portion to the nearest concave portion or from the convex portion to the nearest convex portion was 0.03 to 0.07 μm.
[0039]
Moreover, it was 92 to 93% when the transmittance | permeability of the glass plate in which the oxide film was formed on the surface was measured in the measurement wavelength range 400-700 nm.
[0040]
Example 5
The surface of the aluminum plate and the glass plate was oxidized in the same manner as in Example 3 except that the aluminum plate and the glass plate were immersed in the sol, and then the pulling speed was 20 mm / sec. A physical film was formed.
[0041]
When the oxide film formed on the surface of the aluminum plate was observed by SEM, the film thickness was 2.8 μm, and the uneven layer roughened by forming fine unevenness on the entire surface on the dense layer. It was integrally formed. The surface roughness of the concavo-convex layer is 0.03 to 0.1 μm at the maximum height Rmax, and the distance from the concave portion to the nearest concave portion or from the convex portion to the nearest convex portion is 0.03 to 0.1 μm. It was. Furthermore, 1.1 × 10 8 holes / cm 2 with an equivalent diameter of 0.2 to 0.5 μm and a depth of 0.2 to 0.5 μm in addition to the fine unevenness on the surface of the uneven layer, the equivalent diameter of 0 There were formed 5 × 10 9 holes / cm 2 or more of holes having a thickness of 0.05 to 0.1 μm and a depth of 0.05 to 0.1 μm. Fine irregularities are also formed on the entire peripheral surface and bottom surface of these holes to be roughened, and the surface roughness of the peripheral surface and bottom surface of the hole is 0.03-0.1 μm at the maximum height Rmax, The distance from the concave portion to the nearest concave portion or from the convex portion to the nearest convex portion was 0.03 to 0.1 μm.
[0042]
Moreover, it was 86 to 91% when the transmittance | permeability of the glass plate in which the oxide film was formed on the surface was measured in the measurement wavelength range 400-700 nm.
[0043]
Example 6
As the solvent in the liquid composition, aluminum plates and glass plates were formed in the same manner as in Example 1 except that 1-butanol and 2-propanol were mixed in a molar ratio of 48:52. An oxide film was produced on the surface.
[0044]
When the metal oxide film formed on the surface of the aluminum plate was observed by SEM, the film thickness was 0.8 μm, and the uneven layer was roughened by forming fine unevenness on the entire surface on the dense layer. Was integrally formed. The surface roughness of the concavo-convex layer is 0.03 to 0.1 μm at the maximum height Rmax, and the distance from the concave portion to the nearest concave portion or from the convex portion to the nearest convex portion is 0.03 to 0.1 μm. It was.
[0045]
Moreover, it was 90 to 93% when the transmittance | permeability of the glass plate in which the oxide film was formed on the surface was measured in the measurement wavelength range 400-700 nm.
[0046]
Example 7
The surface of the aluminum plate and the glass plate was oxidized in the same manner as in Example 6 except that the aluminum plate and the glass plate were immersed in the sol, and then the pulling rate was 20 mm / sec. A physical coating was produced.
[0047]
When the metal oxide film formed on the surface of the aluminum plate was observed by SEM, the film thickness was 2.4 μm, and the uneven layer was roughened by forming fine unevenness on the entire surface on the dense layer. Was integrally formed. The surface roughness of the concavo-convex layer is 0.03 to 0.1 μm at the maximum height Rmax, and the distance from the concave portion to the nearest concave portion or from the convex portion to the nearest convex portion is 0.03 to 0.1 μm. It was.
[0048]
Moreover, it was 92 to 93% when the transmittance | permeability of the glass plate in which the oxide film was formed on the surface was measured in the measurement wavelength range 400-700 nm.
[0049]
Comparative Example 1
Methyltriethoxysilane, tetraethoxysilane, 2-propanol, water, hydrochloric acid, and SiO 2 particles having a particle diameter of 0.01 to 0.02 μm dispersed in 2-propanol were prepared as raw materials. In addition, 2 -propanol in which SiO 2 particles are dispersed was used as a part of the solvent. The raw materials are mixed so that the molar ratio of methyltriethoxysilane, tetraethoxysilane, 2-propanol, water, hydrochloric acid is 0.5: 0.5: 5: 4: 0.005, and the particle concentration is 10 wt%. A sol was obtained by hydrolysis and condensation polymerization of methyltriethoxysilane and tetraethoxysilane. Next, an aluminum plate and a glass plate are immersed in this sol, pulled up at a pulling rate of 5 mm / second, dried, and then fired at 400 ° C. for 5 minutes to form an oxide film on the surfaces of the aluminum plate and the glass plate. did.
[0050]
When the oxide film formed on the surface of the aluminum plate was observed by SEM, the film thickness was 1.5 μm. Although 2.8 × 10 7 holes / cm 2 having an equivalent diameter of 0.05 to 0.15 μm and a depth of 0.05 to 0.15 μm were formed on the surface of the film, it can be seen in Examples 1 to 7. There were no such fine irregularities.
[0051]
Moreover, it was 91 to 93% when the transmittance | permeability of the glass plate in which the oxide film was formed on the surface was measured in the measurement wavelength range 400-700 nm.
[0052]
Comparative Example 2
A liquid composition comprising methyltriethoxysilane, 2-propanol, water, and hydrochloric acid, and the amount of each component in a molar ratio of 1: 5: 4: 0.005 was prepared. Then, this liquid composition was mixed, and a sol was obtained by hydrolysis and condensation polymerization of methyltriethoxysilane. Next, an aluminum plate and a glass plate are immersed in this sol, pulled up at a pulling rate of 5 mm / second, dried, and then fired at 400 ° C. for 5 minutes to form an oxide film on the surfaces of the aluminum plate and the glass plate. did.
[0053]
When the oxide film formed on the surface of the aluminum plate was observed, the film thickness was 0.7 μm. Further, the entire film was dense and the surface was smooth overall.
[0054]
Moreover, it was 91 to 93% when the transmittance | permeability of the glass plate in which the oxide film was formed on the surface was measured in the measurement wavelength range 400-700 nm.
[Brief description of the drawings]
FIG. 1 is a partially cutaway enlarged perspective view showing an embodiment of an oxide film according to the present invention.
FIG. 2 is a partially cutaway enlarged perspective view showing another embodiment of the oxide film according to the present invention.
[Explanation of symbols]
(1) (10): Oxide film (2): Dense layer (3): Concavity and convexity layer

Claims (3)

SiO2を主成分とするとともに、 1 n Si(OR 2 4-n (式中、R 1 はアルキル基、フェニル基または前記アルキル基のC−H結合の一部がC−F結合に置換されてなる疎水基であり、R 2 はアルキル基であり、nは1または2である。)を含む組成物と酸化物粒子を用いたゾル−ゲル法により形成されており、緻密な膜体の表面全体に微細な凹凸が一体に形成されて粗面化されていて、前記凹凸の表面粗さが最大高さRmaxで0.03〜3μmであり、凹部から最近接の凹部あるいは凸部から最近接の凸部までの間隔が0.03〜10μmである酸化物皮膜。Is a principal component of SiO 2, R 1 n Si ( OR 2) in 4-n (wherein, R 1 represents an alkyl group, part of the C-H bonds of the phenyl group or the alkyl group is a C-F bond And a dense film formed by a sol-gel method using a composition containing a hydrophobic group, R 2 is an alkyl group, and n is 1 or 2) and oxide particles. A fine unevenness is integrally formed on the entire surface of the body to be roughened, and the surface roughness of the unevenness is 0.03 to 3 μm at the maximum height Rmax. oxide coating interval between the convex portions closest is 0.03~10μm from. SiO 2 を主成分とするとともに、R 1 n Si(OR 2 4-n (式中、R 1 はアルキル基、フェニル基または前記アルキル基のC−H結合の一部がC−F結合に置換されてなる疎水基であり、R 2 はアルキル基であり、nは1または2である。)を含む組成物と酸化物粒子を用いたゾル−ゲル法により形成されてなる酸化物皮膜であって、表面に直径0.03〜10μm、深さ0.03〜3μmの孔を有する緻密な膜体の表面全体に微細な凹凸が一体に形成されて粗面化されていて、前記凹凸のうち孔の周面および底面における凹凸の表面粗さが最大高さRmaxで0.01〜1μmであり、凹部から最近接の凹部あるいは凸部から最近接の凸部までの間隔が0.01〜1μmであり、それ以外の凹凸の表面粗さが最大高さRmaxで0.03〜3μmであり、凹部から最近接の凹部あるいは凸部から最近接の凸部までの間隔が0.03〜10μmである酸化物皮膜。 Is a principal component of SiO 2, R 1 n Si ( OR 2) in 4-n (wherein, R 1 represents an alkyl group, part of the C-H bonds of the phenyl group or the alkyl group is a C-F bond A substituted hydrophobic group, R 2 is an alkyl group, and n is 1 or 2.) and an oxide film formed by a sol-gel method using oxide particles. In addition, fine irregularities are integrally formed on the entire surface of the dense film body having holes having a diameter of 0.03 to 10 μm and a depth of 0.03 to 3 μm on the surface, The surface roughness of the irregularities on the peripheral surface and bottom surface of the hole is 0.01 to 1 μm at the maximum height Rmax, and the distance from the concave portion to the nearest concave portion or the convex portion to the nearest convex portion is 0.01 to The surface roughness of the other irregularities is 0.03 to 3 μm at the maximum height Rmax. Oxide film spacing from the recess or protrusion closest to the convex portion of the closest is 0.03~10μm from the recess. 膜厚が0.1〜10μmである請求項1または2記載の酸化物皮膜。  The oxide film according to claim 1 or 2, wherein the film thickness is 0.1 to 10 µm.
JP2002219386A 2002-07-29 2002-07-29 Oxide film mainly composed of SiO2 Expired - Fee Related JP4650991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002219386A JP4650991B2 (en) 2002-07-29 2002-07-29 Oxide film mainly composed of SiO2

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002219386A JP4650991B2 (en) 2002-07-29 2002-07-29 Oxide film mainly composed of SiO2

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP00834497A Division JP3364672B2 (en) 1997-01-21 1997-01-21 Method for producing oxide film containing SiO2 as a main component

Publications (2)

Publication Number Publication Date
JP2003154597A JP2003154597A (en) 2003-05-27
JP4650991B2 true JP4650991B2 (en) 2011-03-16

Family

ID=19196042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002219386A Expired - Fee Related JP4650991B2 (en) 2002-07-29 2002-07-29 Oxide film mainly composed of SiO2

Country Status (1)

Country Link
JP (1) JP4650991B2 (en)

Also Published As

Publication number Publication date
JP2003154597A (en) 2003-05-27

Similar Documents

Publication Publication Date Title
JP4689467B2 (en) Functional film-coated article, manufacturing method thereof, and functional film-forming coating material
US6649266B1 (en) Substrates provided with a microstructured surface, methods for the production thereof, and their use
JP2809889B2 (en) Water- and oil-repellent coating and method for producing the same
KR20030076665A (en) Self-Cleaning Paint Coating And A Method And Agent For Producing The Same
JP6650368B2 (en) Glass plate with low-reflection coating, method for producing substrate with low-reflection coating, and coating liquid for forming low-reflection coating on substrate with low-reflection coating
JP5680900B2 (en) Oil-repellent coated article and method for producing the same
JP2000504302A (en) Improved hydrophilic or hydrophobic support with irregularities
JP2017177683A (en) Base material with water-repellent coating film and method for producing the same
JP4247354B2 (en) Low temperature formation method of surface fine uneven structure and substrate having the structure
JP2001503100A (en) Surface-treated substrate and surface treatment method for substrate
CN1076416C (en) Iron with anti-friction layer
JP2008023368A (en) Iron and soleplate for iron
JPH11171592A (en) Water-repellent article and its manufacture
WO2017056405A1 (en) Coated glass plate and method for manufacturing same
TW202035596A (en) Easy to clean coating
US20170327416A1 (en) Low-reflection coated glass sheet
JP2019210392A (en) Liquid repellent surface and manufacturing method therefor
JPH11171594A (en) Water repellent glass article and its production
JP2008020864A (en) Sound absorbing non-woven fabric sheet
JP4650991B2 (en) Oxide film mainly composed of SiO2
JPWO2016143297A1 (en) Glass plate with coating film and method for producing the same
JP3649585B2 (en) Water repellent coating solution
JP3364672B2 (en) Method for producing oxide film containing SiO2 as a main component
JP2001205187A (en) Method for manufacturing silica-base film coated article and silica-base film coated article
JP5821567B2 (en) Surface treatment method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070410

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070821

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101210

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees