JP4649787B2 - Process for producing 5'-guanylic acid - Google Patents

Process for producing 5'-guanylic acid Download PDF

Info

Publication number
JP4649787B2
JP4649787B2 JP2001209468A JP2001209468A JP4649787B2 JP 4649787 B2 JP4649787 B2 JP 4649787B2 JP 2001209468 A JP2001209468 A JP 2001209468A JP 2001209468 A JP2001209468 A JP 2001209468A JP 4649787 B2 JP4649787 B2 JP 4649787B2
Authority
JP
Japan
Prior art keywords
reaction
acid
guanosine
enzyme
guanylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001209468A
Other languages
Japanese (ja)
Other versions
JP2003024094A (en
Inventor
政行 荒木
義之 犬塚
巌 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP2001209468A priority Critical patent/JP4649787B2/en
Publication of JP2003024094A publication Critical patent/JP2003024094A/en
Application granted granted Critical
Publication of JP4649787B2 publication Critical patent/JP4649787B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、5’−グアニル酸の製造法に関する。5’−グアニル酸は、調味料、医薬並びにそれらの原料等として有用である。
【0002】
【従来の技術】
グアノシンを酵素的にリン酸化して5’−グアニル酸を製造する方法として、種々の方法が知られている。中でも、副産物が少なく、かつ、効率のよい5’−グアニル酸の製造法として、酸性フォスファターゼをpH3.0〜5.5の条件下でグアノシン等のヌクレオチド、並びにポリリン酸(塩)、フェニルリン酸(塩)及びカルバミルリン酸(塩)から成る群より選択されるリン酸供与体に作用させて5’−グアニル酸等のヌクレオシド−5’−リン酸エステルを製造する方法が開発されている(WO96/37603、特開平10-201481)。また、これらの方法において、好ましい酸性フォスファターゼとして、リン酸エステル加水分解活性が低下した変異型酸性フォスファターゼ(WO96/37603)、あるいは、ヌクレオシドに対する親和性が上昇し及び/又は温度安定性が向上した変異型フォスファターゼ(特開平10-201481)が提案されている。
【0003】
上記の方法においては、グアノシンのような難溶性のヌクレオシドを基質とする際、易溶性のヌクレオシドに比べて反応収率が低下するという問題があった。一方、難溶性のヌクレオシドであっても、有機溶剤、硼酸あるいはジメチルスルホキシドのような界面活性剤を反応系に添加することによって、ヌクレオシド−5’−リン酸エステルの生成収率を向上させることができる場合がある(WO96/37603, 特開平10-201481)。しかし、一般的に有機溶剤や界面活性剤などにより極度の酵素の失活が誘発される恐れがあり、好ましくない場合も少なくないと考えられる。
【0004】
【発明が解決しようとする課題】
本発明は、グアノシン及び重合リン酸を用いて5’−グアニル酸を製造する方法を改良し、5’−グアニル酸の生成効率を向上させる手段を提供することを課題とする。
【0005】
【課題を解決するための手段】
本発明者は、上記課題を解決するために鋭意研究を行った結果、グアノシン及び重合リン酸を用いて酵素反応により5’−グアニル酸を製造する際に、反応の進行に伴って難溶性であるグアノシンの表面積が低下し、前記酵素による重合リン酸の分解反応が進行するために、反応速度が低下するのではないかと考えた。そして、グアノシンの表面積の低下に合わせて酵素活性を低下させることによって、生成効率を向上させることができると考え、反応中の酵素活性を低下させたところ、5’−グアニル酸の生成効率が向上することを見い出し、本発明を完成させるに至った。
すなわち本発明は、以下のとおりである。
【0006】
(1)グアノシンを酵素触媒下で重合リン酸と反応させ、グアノシンをリン酸化して5’−グアニル酸を生成させる、5’−グアニル酸の製造法において、反応中に前記酵素の活性を低下させる処理を行うことを特徴とする5’−グアニル酸の製造法である。
(2)前記酵素が酸性フォスファターゼである(1)の5’−グアニル酸の製造法。
(3)前記酵素の活性を低下させる処理を、反応温度の低下、酵素反応阻害剤の添加、気体バブリングから選ばれる手段によって行うことを特徴とする(1)又は(2)の5’−グアニル酸の製造法。
【0007】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明の5’−グアニル酸の製造法においては、グアノシンを酵素触媒下で重合リン酸と反応させ、グアノシンをリン酸化して5’−グアニル酸を生成させる際に、反応中に前記酵素の活性を低下させる処理を行う。
【0008】
本発明に用いる酵素としては、グアノシンへの、重合リン酸からのリン酸基の転移により5’−グアニル酸を生成する反応を触媒するものであれば制限はない。
酵素の由来は特に制限されず、微生物、植物又は動物等に由来する酵素を用いることができるが、微生物に由来するものが好ましい。また、酵素は、微生物の野生株又は変異株から調製したものであってもよく、遺伝子工学的手法を用いて作製された形質転換株から調製したものであってもよい。さらに、酵素を産生する微生物の菌体を含む培養物、該培養物から分離・回収した菌体、該菌体を固定化処理、アセトン処理、凍結乾燥処理等した菌体処理物を使用することもできる。
【0009】
本発明に用いる好ましい酵素として、酸性フォスファターゼ(EC 3.1.3.2)が挙げられる。酸性ホスファターゼとしては、微生物に由来するものが好ましく、特に好適な例として、モルガネラ属、エシェリヒア属、プロビデンシア属、エンテロバクター属、クレブシエラ属又はセラチア属に属する細菌が、当該酵素活性を有しており、これら細菌に由来する酵素がある。そのような細菌の代表例として以下のような菌株を挙げることができる。
【0010】
モルガネラ・モルガニ(Morganella morganii) NCIMB 10466
モルガネラ・モルガニ(Morganella morganii) IFO 3168
モルガネラ・モルガニ(Morganella morganii) IFO 3848
エシェリヒア・ブラッタエ(Escherichia blattae) JCM 1650
エシェリヒア・ブラッタエ(Escherichia blattae) ATCC 33429
エシェリヒア・ブラッタエ(Escherichia blattae) ATCC 33430
プロビデンシア・スチュアルティ(Providencia stuartii) ATCC 29851
プロビデンシア・スチュアルティ(Providencia stuartii) ATCC 33672
エンテロバクター・アエロゲネス(Enterobacter aerogenes) IFO 12010
エンテロバクター・アエロゲネス(Enterobacter aerogenes) IFO 13534
クレブシエラ・プランティコラ(Klebsiella planticola) IFO 14939
クレブシエラ・プランティコラ(Klebsiella planticola) IAM 1133
セラチア・フィカリア(Serratia ficaria) IAM 13540
セラチア・ マルセセンス(Serratia marcescens) IAM 12143
より好ましくは、ヌクレオシドに対する親和性が上昇した酸性フォスファターゼ(特開平10-201481参照)が挙げられる。このような酸性フォスファターゼとして具体的には、後記参考例1記載のエシェリヒア・ブラッタエ由来変異型酸性フォスファターゼ、エンテロバクター・アエロゲネス由来新規変異型酸性フォスファターゼ、及び、特開平10-201481号公報記載の各種変異型酸性フォスファターゼが挙げられる。
【0011】
また、酸性フォスファターゼは、本来、リン酸エステルを酸性条件下で加水分解する反応を触媒する酵素であり、リン酸転移反応により生成するヌクレオシド−5’−リン酸エステルを分解するヌクレオチダーゼ活性を有しているが、ヌクレオチダーゼ活性(リン酸エステル加水分解活性)が低下した変異型酸性フォスファターゼ(WO96/37603参照)も、本発明に好適に使用することができる。
【0012】
さらに、温度安定性の向上した酸性フォスファターゼ、又は、ヌクレオシドに対する親和性が上昇し、かつ、温度安定性の向上した酸性フォスファターゼ(特開平10-201481)も、本発明に好適に用いることができる。
【0013】
本発明において用いるグアノシンは特に制限されないが、グアノシン結晶を物理的処理により粉砕し、粉砕したグアノシン結晶を用いることが好ましい。グアノシンの結晶の物理的処理による粉砕は、例えば、グアノシンの結晶を水中でスラリーとし、一般的に用いられている粉砕機(例えばスイスWAB社製DYNO-MILL等)を用いて粉砕することによって行うことができる。このような処理によって、微細化された結晶のスラリーが得られる。
【0014】
本発明においては、グアノシンの結晶を粉砕することによって、5’−グアニル酸を生成する反応の効率を高めることができる。したがって、前記反応効率が向上する限り、粉砕の程度は特に問わないが、好ましくは、粉砕後の結晶の比表面積が0.4m2/g以上、より好ましくは0.8m2/g以上となるように粉砕することが望ましい。比表面積の上限は特に制限されないが、5’−グアニル酸の生成効率の向上は結晶の比表面積が一定以上になると頭打ちになるので、通常は1m2/g程度で十分であると考えられる。
しかし、グアノシンの結晶の粉砕は本発明に必須ではなく、5’−グアニル酸を生成する反応の効率が高まるという効果は、反応中に酵素の活性を低下させる処理を行うことによって得られる。
【0015】
粉砕によって微細化された結晶の平均粒径は、例えば、stokesの抵抗則に基づく沈降法に従い、沈降式粒度分布測定装置(例えば、島津製作所(株)遠心沈降式粒度分布測定装置SA-CP3)を用いて測定することができる。また、こうして測定される平均粒径に基づいて、微結晶の比表面積を計算することができる。
【0016】
粉砕するグアノシンの結晶は、精製されたものであってもよく、グアノシンを産生する微生物の培養液中に蓄積する結晶スラリーをそのまま用いてもよい。グアノシンは、例えば特公昭57−14160号公報記載の方法によって取得することができる。また、メルカプトグアノシンのような前駆体を用いることもできる。
【0017】
反応液に添加するグアノシンの濃度は1〜20g/dlが望ましい。グアノシンの結晶を粉砕して微細化することに加えて、硼酸あるいはジメチルスルホキシドのような界面活性剤を反応液に添加すると、さらに反応収率が向上する場合がある。
【0018】
また、本発明に用いる重合リン酸としては、酵素反応によりグアノシンへリン酸基を転移して5’−グアニル酸を生成し得るものであれば特に制限されないが、具体的には、ピロリン酸、トリポリリン酸、テトラポリリン酸、ペンタポリリン酸、もしくはこれらの塩、又はこれらの任意の混合物が挙げられる。重合リン酸の使用濃度は、リン酸受容体であるグアノシンの濃度によって決定される。通常、グアノシンの1〜5倍量が望ましい。
【0019】
本発明においては、上記のような酵素を用いてグアノシンに重合リン酸からリン酸基を転移させ、グアノシンをリン酸化する反応において、反応中に酵素活性を低下させる処理を行うことを特徴とする。反応中に酵素活性を低下させる処理を行う以外は、グアノシンを酵素的にリン酸化して5’−グアニル酸を生成せしめる通常の方法と同様にしてリン酸化反応を行うことができる。
【0020】
反応は通常、温度20〜60℃、好ましくは30〜40℃で、pH3.0〜9.0、好ましくはpH3.5〜6.5、さらに好ましくはpH3.5〜5.5の弱酸性側が好結果を与える。反応には静置又は撹はんのいずれの方法も採用し得る。反応時間は、使用する酵素の活性、基質濃度などの条件によって異なるが、1〜100時間である。
【0021】
酵素として酸性フォスファターゼを用いる場合は、リン酸化反応をpH3.0から5.5の範囲の弱酸性に調整することが好ましい。
反応中の酵素活性を低下させる処理を行うことによって、グアノシンの生成速度を向上させることができる。その結果、反応時間を減縮させることができ、グアノシンの生成収率を高めることができる。この理由は、次のように推定される。反応の初期には、グアノシンから5’−グアニル酸が生成する反応が進行するが、5’−グアニル酸の生成に伴って、基質となるグアノシンの表面積が減少する一方、重合リン酸が酵素により分解されるため、5’−グアニル酸の生成効率が低下する。反応中に、グアノシンの表面積の低下に合わせて酵素活性を低下させることによって、重合リン酸の酵素による分解が抑えら、その結果5’−グアニル酸の生成速度の減少が抑制される。酵素活性の低下は、段階的に行ってもよく、連続的に行ってもよい。
【0022】
酵素活性の低下の程度、酵素活性を低下させるタイミングは、用いる酵素の種類及び初発酵素活性、グアノシンの比表面積、グアノシン及び重合リン酸の濃度等によって、適宜設定することができる。具体的には、酵素活性の低下の程度は、反応開始時の酵素活性に対する活性低下処理後の酵素活性として、20〜80%、より好ましくは20〜60%、さらに好ましくは30〜40%が挙げられる。
【0023】
酵素活性を低下させる方法としては、例えば、▲1▼反応温度の低下、▲2▼酵素反応阻害剤の添加、▲3▼気体バブリング、▲4▼反応液のpHを至適反応pHから遠ざけること、等の手段が挙げられる。これらの手段を組み合わせることによって、酵素活性を低下させてもよい。これらの手段の中では、反応温度の低下、又は気体バブリングが、反応液中の5’−グアニル酸以外の成分を増加させない点で好ましい。気体バブリングに用いる気体に特に制限はなく、空気又は窒素ガス等を好適に用いることができる。
【0024】
尚、反応系に添加する酵素量を減らすことにより、5’−グアニル酸の生成収率を上げることができる場合がある(図2参照)。しかし、酵素量を減らすと反応時間が遅延し、好ましくない場合もある。一方、反応系に適当な量の酵素を加え、その後酵素活性を低下させると、反応時間の遅延が抑制され、生成収率を向上させることができる。
【0025】
上記のようにして生成した5’−グアニル酸を反応終了混合物より採取分離するには、合成吸着樹脂を用いる方法や沈殿剤を用いる方法、その他通常の採取分離方法が採用できる。
【0026】
【実施例】
以下、本発明を実施例によりさらに具体的に説明する。
【0027】
【参考例1】
エシェリヒア・ブラッタエ由来変異型酸性フォスファターゼの取得
エシェリヒア・ブラッタエJCM1650由来野生型酸性フォスファターゼをコードする遺伝子を含むプラスミドpEPI305(WO96/37603参照)を用い、このプラスミドDNAに遺伝子工学的手法により部位特異的変異を導入し、変異型酸性フォスファターゼをコードする遺伝子を作製した(特開平10-201481参照)。
【0028】
pEPI305はエシェリヒア・ブラッタエJCM1650に由来する野生型酸性フォスファターゼをコードする遺伝子を含む、制限酵素ClaIと制限酵素BamHIで切り出される2.4Kbpの大きさのDNA断片を、ClaI及びBamHIで切断したpBluescript KS(+)(ストラタジーン社製)に結合したプラスミドDNAである。pEPI305をエシェリヒア・コリ JM109に保持させた株は、AJ13144と命名され、平成8年2月23日付で工業技術院生命工学工業技術研究所(現 独立行政法人 産業技術総合研究所 特許生物寄託センター、郵便番号305-5466 日本国茨城県つくば市東1丁目1番地1中央第6)にブタペスト条約に基づき国際寄託され、受託番号FERM BP-5423が付与されている。
【0029】
DNA合成装置(アプライドバイオシステム社製モデル394)を用いてホスホアミダイト法にて配列番号1及び配列番号2に示すオリゴヌクレオチドMUT300及びMUT370をそれぞれ合成した。
【0030】
鋳型としてpEPI305 1ng、プライマーとしてM13プライマーRV(宝酒造社製)およびMUT370オリゴヌクレオチド各2.5μmolおよびタックDNAポリメラーゼ(宝酒造社製)2.5ユニットをdATP、dCTP、dGTP、dTTP各200μM、塩化カリウム50mMおよび塩化マグネシウム 1.5mMを含む100mM トリス−塩酸緩衝液(pH8.3)100μlに添加し、94℃を30秒、55℃を2分、72℃を3分のサイクルを25回繰り返すPCR反応を行った。PCR反応はサーマルサイクラーPJ2000型(宝酒造社製)を用いて行った。また別に、鋳型としてプラスミドDNA pEPI305 1ng、プライマーとしてM13プライマーM3(宝酒造社製)およびMUT300オリゴヌクレオチド各2.5μmolを用いて同様にPCR反応を行った。それぞれの反応液をマイクロスピンカラムS-400(ファルマシア社製)を用いてゲル濾過により精製し、プライマーを除去した。
【0031】
それぞれのPCR反応液1μlをdATP、dCTP、dGTP、dTTP各200μM、塩化カリウム 50mMおよび塩化マグネシウム 1.5mMを含む100mM トリス−塩酸緩衝液(pH8.3)95μlに添加し、94℃で10分加熱後、60分間かけて37℃まで冷却した後、37℃で15分保温しヘテロ二本鎖を形成させた。これにタックDNAポリメラーゼ2.5ユニットを添加して72℃で3分反応を行い、ヘテロ二本鎖を完成させた。次に、この反応液にM13プライマーRVおよびM13プライマーM3各2.5μmolを添加して、94℃を30秒、55℃を2分、72℃を3分のサイクルを10回繰り返すPCR反応を行った。
【0032】
2回目のPCR反応の生成物をClaIとBamHIで切断後フェノール/クロロホルム抽出し、エタノール沈殿した。このDNA断片をClaIとBamHIで切断したpBluescript KS(+)に結合し、得られたプラスミドDNAを用いて常法によりエシェリヒア・コリJM109(宝酒造製)を形質転換した。これを100μg/mlのアンピシリンを含むL寒天培地上にプレーティングし、形質転換体を得た。 形質転換体よりアルカリ溶菌法によりプラスミドを調製し、塩基配列の決定を行い、目的の塩基が置換されていることを確認した。塩基配列の決定は Taq DyeDeoxy Terminator Cycle Sequencing Kit (アプライドバイオケミカル社製)を用い、サンガーらの方法(J. Mol. Biol., 143, 161(1980))に従って行った。
【0033】
このようにして、成熟蛋白質の63番目のロイシン残基(CTG)がグルタミン残基(C*AG)に、65番目のアラニン残基(GCG)がグルタミン残基(*C*AG)に、66番目のグルタミン酸残基(GAA)がアラニン残基(G*CA)に、69番目のアスパラギン残基(AAC)がアスパラギン酸残基(*GAC)に、71番目のセリン残基(AGC)がアラニン残基(*G*CC)に、72番目のセリン残基(AGT)がアラニン残基(*G*CT)に、74番目のグリシン残基(GGG)がアスパラギン酸残基(*G*A*T)に、135番目のスレオニン残基(ACC)がリジン残基(*A*A*A)に、136番目のグルタミン酸残基(GAG)がアスパラギン酸残基(GA*C)に、153番目のイソロイシン残基(ATC)がスレオニン残基(A*CC)にそれぞれ置換した、変異型フォスファターゼをコードする変異型遺伝子を作製した。この変異型遺伝子を含むプラスミドをpEPI370と命名した。
【0034】
上記プラスミドpEPI370を保持するエシェリヒア・コリJM109/pEPI370をL培地50mlに接種し、37℃で16時間培養後、培養液から遠心分離により集菌し、酸性フォスファターゼを含む菌体を取得した。
【0035】
【参考例2】
グアノシン結晶の粉砕
グアノシン結晶を水中でスラリーとし、粉砕機(スイスWAB社製DYNO-MILL)により結晶の粉砕処理を行った。この際、粉砕時間などの条件を変更して様々な粒経の結晶を取得した。グアノシン結晶は単位重量あたりの比表面積は0.2m2/gであったものが、粉砕後0.4〜0.8m2/g以上に増加し、結晶の微細化が可能であった。なお、グアノシン結晶の比表面積はstokesの抵抗則に基づく沈降法に従い、沈降式粒度分布測定装置(島津製作所(株)遠心沈降式粒度分布測定装置SA-CP3)で測
【参考例3】
温度変化による酵素活性の変化
参考例2と同様にして粉砕したグアノシン粉砕結晶(比表面積0.8m2/g)0.5g/dl、酸性ピロリン酸100mM、酢酸100mMを含む溶液(苛性ソーダにてpH5.0に調整)1mlを、恒温槽にて各種温度(25〜50℃)で10分間、加温した。これらの溶液に、参考例1で得た酸性フォスファターゼを含む菌体(100mg/dl)を100μl添加し、各温度で5分間反応させた。その後、2N 塩酸200μlを添加し、反応を停止させた。各反応液中の5’−グアニル酸の量を測定した。その結果、反応温度を上げるに従い、5’−グアニル酸の生成量が上昇し(図1)、酸性フォスファターゼの比活性が上昇することが示された。
【0036】
【実施例1】
5’−グアニル酸の製造(I)(反応温度低下による酸性フォスファターゼ活性の低下)
酸性ピロリン酸29.3g、グアノシンの粉砕結晶(比表面積0.6m2/g)のスラリー12.5g(グアノシン含量として)を水溶液中で混合して苛性ソーダでpH4.5付近に調整後、前記菌体を400mg又は300mg添加して最終液量が100mlになるように調整し、表1に示す反応温度で14時間反応を行い、0.5時間毎に生成した5’−グアニル酸の量を測定した。反応は水浴中で行い、反応温度のコントロールは水浴の温度をコントロールすることにより行い、反応温度は直接反応液の温度を測定することにより確認した。表中、「→」は反応温度の変化を表し、温度変更時間は反応開始から反応温度をシフトさせるまでの時間を表す。
【0037】
反応条件(酵素量、反応温度、温度変更時間)と、5’−グアニル酸最大蓄積時点での反応時間、蓄積、収率を表1に、経時的な収率変化を図2に示した。その結果、反応途中で温度を低下させた条件(実験区1-2、1-3)では、反応温度一定の条件(実験区1-1)に比較して、最大蓄積時点までの反応時間の遅延が少なく、5’−グアニル酸生成収率で2〜3%、対リン酸収率で0.3〜0.5%、生成効率が向上した。
【0038】
【表1】

Figure 0004649787
【0039】
【実施例2】
5’−グアニル酸の製造(II)(反応温度低下による酸性フォスファターゼ活性の低下)
酸性ピロリン酸29.3g、及びグアノシン結晶の7.5g(グアノシン含量として)を水溶液中で混合して苛性ソーダでpH4.5付近に調整後、上記菌体を100〜1500mg添加して最終液量が100mlになるように調整し、表2に示す反応温度で30時間反応を行い、適宜サンプリングし、生成した5’−グアニル酸の量を測定した。反応は水浴中で行った。反応温度の測定及びコントロールは、実施例1と同様にして行った。
【0040】
反応条件(酵素量、反応温度、温度変更時間)と、5’−グアニル酸最大蓄積時点での反応時間、蓄積、収率を表2及び図3に示した。その結果、温度変更を実施した実験区では、温度変更を実施しない実験区に比べて、反応時間の増加が少なく、生成収率の向上が認められた。
【0041】
【表2】
Figure 0004649787
【0042】
【実施例3】
5’−グアニル酸の製造(III)(バブリングによる酸性フォスファターゼ活性の低下)
酸性ピロリン酸29.3g、及びグアノシン結晶の7.5g(グアノシン含量として)を水溶液中で混合して苛性ソーダでpH4.5付近に調整後、上記菌体を100〜1500mg添加して最終液量が100mlになるように調整し、反応温度35℃で30時間反応を行った。反応中、反応液はマグネチックスターラーにて攪拌した。実験区5,6,7に関しては、表3に示した通り反応中に1hr、空気をバブリング(口径2mmのチューブから100ml/分)し、酵素を一部失活させた。適宜サンプリングし、生成した5’−グアニル酸の量を測定した。表3中、「〜」はバブリングを実施した時間帯を表し、例えば「6〜7」は、反応開始後6時間〜7時間の間にバブリングを行ったことを表す。
【0043】
反応条件(酵素量、反応温度、バブリング時間)と、最大蓄積時点での反応時間、蓄積、収率を表3及び図4に示した。その結果、バブリングにより酵素失活を実施した実験区では、酵素失活を実施しない実験区に比べ、反応時間の増加が少なく、生成収率の向上が認められた。
【0044】
【表3】
Figure 0004649787
【0045】
【参考例4】
実施例3の実験区1と同様の組成の反応液を2反応分、作製し、35℃で反応させた。それらの一方については、反応開始時から空気をバブリング(口径2mmのチューブから100ml/分)した。反応液を適宜サンプリングし、下記に示す方法で反応液中の酵素活性を測定した。
【0046】
100mM MES、5mM PNPP(p-nitrophenyl phosphate)を含む測定液(苛性ソーダにてpH6.0に調整)1mlを、恒温槽にて30℃で10分間、加温した。この測定液に、前記のリン酸化反応液サンプルの10倍希釈液を80μl添加し、30℃で1分間、反応させた後、10N 苛性ソーダ80μl添加し、反応を停止した。各サンプルの410nmの吸光度を測定し、以下の式に従ってリン酸化反応中の酵素活性の経時変化を算出した。
【0047】
その結果、図5に示す通り、バブリングを行うことにより、酵素活性が低下した。空気の代わりに窒素ガスをバブリングした場合も、同様に酵素活性が低下した。
【0048】
【数1】
各反応時間における相対酵素活性=(反応時間経過後の酵素活性)/(反応開始時の酵素活性)
【数2】
反応開始時の酵素活性=(反応開始時の吸光度)−(ブランクの吸光度)
ブランク:反応液の代わりに水を加えたもの)の吸光度
【数3】
反応時間経過後の酵素活性=(反応時間経過後の酵素活性)−(ブランクの吸光度)
【0049】
【発明の効果】
本発明により、難溶性のグアノシン、及び重合リン酸を用いて、酵素反応により効率よく5’−グアニル酸を製造することができる。
【0050】
【配列表】
Figure 0004649787
Figure 0004649787

【図面の簡単な説明】
【図1】 グアノシンと酸性ピロリン酸から酸性フォスファターゼによる反応によって5’−グアニル酸を生成させる反応において、反応温度と5’−グアニル酸の生成量との関係を示す図。
【図2】 5’−グアニル酸収率の経時的変化を示す図。
【図3】 5’−グアニル酸収率の経時的変化を示す図。
【図4】 5’−グアニル酸収率の経時的変化を示す図。
【図5】 反応液のバブリング実施下、不実施下における、反応液中の酵素活性の経時的変化を示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a process for producing 5′-guanylic acid. 5′-guanylic acid is useful as a seasoning, a medicine, and a raw material thereof.
[0002]
[Prior art]
Various methods are known as a method for producing 5′-guanylic acid by enzymatically phosphorylating guanosine. Among them, as an efficient method for producing 5'-guanylic acid with few by-products, acid phosphatase is treated with nucleotides such as guanosine under conditions of pH 3.0 to 5.5, polyphosphoric acid (salt), phenylphosphoric acid (salt). And nucleoside-5′-phosphate esters such as 5′-guanylic acid have been developed by acting on a phosphate donor selected from the group consisting of carbamyl phosphate (salt) (WO96 / 37603). JP, 10-201481). In these methods, as preferred acid phosphatases, mutant acid phosphatases with reduced phosphate ester hydrolysis activity (WO96 / 37603), or mutations with increased affinity for nucleosides and / or improved temperature stability A type phosphatase (JP-A-10-201481) has been proposed.
[0003]
In the above method, when a poorly soluble nucleoside such as guanosine is used as a substrate, there is a problem that the reaction yield is lower than that of a readily soluble nucleoside. On the other hand, even if it is a poorly soluble nucleoside, the yield of nucleoside-5'-phosphate ester can be improved by adding a surfactant such as an organic solvent, boric acid or dimethyl sulfoxide to the reaction system. There are cases where it can be done (WO96 / 37603, JP-A-10-201481). However, in general, there is a possibility that extreme enzyme deactivation may be induced by an organic solvent, a surfactant, or the like, and it is considered that there are many cases where it is not preferable.
[0004]
[Problems to be solved by the invention]
This invention makes it a subject to provide the means which improves the production | generation efficiency of 5'-guanylic acid by improving the method of manufacturing 5'-guanylic acid using guanosine and polymeric phosphoric acid.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that when 5′-guanylic acid is produced by enzymatic reaction using guanosine and polymerized phosphoric acid, it becomes hardly soluble as the reaction proceeds. Since the surface area of a certain guanosine decreased and the decomposition reaction of the polymerized phosphoric acid by the enzyme progressed, it was thought that the reaction rate would decrease. And, it is thought that the production efficiency can be improved by reducing the enzyme activity in accordance with the reduction of the surface area of guanosine, and when the enzyme activity during the reaction is reduced, the production efficiency of 5′-guanylic acid is improved. As a result, the present invention has been completed.
That is, the present invention is as follows.
[0006]
(1) In the method for producing 5′-guanylic acid, in which guanosine is reacted with polymerized phosphoric acid under an enzyme catalyst, and guanosine is phosphorylated to produce 5′-guanylic acid, the activity of the enzyme is reduced during the reaction. A process for producing 5′-guanylic acid, characterized in that
(2) The method for producing 5′-guanylic acid according to (1), wherein the enzyme is acid phosphatase.
(3) The 5′-guanyl of (1) or (2), wherein the treatment for reducing the activity of the enzyme is performed by means selected from a reduction in reaction temperature, addition of an enzyme reaction inhibitor, and gas bubbling. Acid production method.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
In the method for producing 5'-guanylic acid according to the present invention, when guanosine is reacted with polymerized phosphoric acid under an enzyme catalyst and guanosine is phosphorylated to produce 5'-guanylic acid, the enzyme is reacted during the reaction. A treatment to reduce the activity is performed.
[0008]
The enzyme used in the present invention is not limited as long as it catalyzes a reaction for producing 5′-guanylic acid by transfer of a phosphate group from polymerized phosphoric acid to guanosine.
The origin of the enzyme is not particularly limited, and an enzyme derived from a microorganism, a plant, an animal, or the like can be used, but one derived from a microorganism is preferable. In addition, the enzyme may be prepared from a wild strain or a mutant strain of a microorganism, or may be prepared from a transformant prepared using a genetic engineering technique. Furthermore, use a culture containing microbial cells producing enzymes, microbial cells separated and recovered from the culture, and processed microbial cells that have been subjected to immobilization, acetone treatment, lyophilization treatment, etc. You can also.
[0009]
A preferred enzyme used in the present invention is acid phosphatase (EC 3.1.3.2). As the acid phosphatase, those derived from microorganisms are preferable, and as a particularly preferable example, a bacterium belonging to the genus Morganella, Escherichia, Providencia, Enterobacter, Klebsiella or Serratia has the enzyme activity. There are enzymes derived from these bacteria. The following strains can be mentioned as representative examples of such bacteria.
[0010]
Morganella morganii NCIMB 10466
Morganella morganii IFO 3168
Morganella morganii IFO 3848
Escherichia blattae JCM 1650
Escherichia blattae ATCC 33429
Escherichia blattae ATCC 33430
Providencia stuartii ATCC 29851
Providencia stuartii ATCC 33672
Enterobacter aerogenes IFO 12010
Enterobacter aerogenes IFO 13534
Klebsiella planticola IFO 14939
Klebsiella planticola IAM 1133
Serratia ficaria IAM 13540
Serratia marcescens IAM 12143
More preferred is acid phosphatase (see JP-A-10-201481) having an increased affinity for nucleosides. Specific examples of such acid phosphatase include mutant acid phosphatase derived from Escherichia Brattae described in Reference Example 1 described later, novel mutant acid phosphatase derived from Enterobacter aerogenes, and various mutations described in JP-A-10-201481. Type acid phosphatase.
[0011]
Acid phosphatase is originally an enzyme that catalyzes a reaction of hydrolyzing a phosphate ester under acidic conditions, and has an activity of nucleotidase that decomposes a nucleoside-5′-phosphate ester produced by a phosphoryl transfer reaction. However, a mutant acid phosphatase (see WO96 / 37603) having a reduced nucleotidase activity (phosphate ester hydrolysis activity) can also be suitably used in the present invention.
[0012]
Furthermore, acid phosphatase with improved temperature stability or acid phosphatase with improved affinity for nucleoside and improved temperature stability (Japanese Patent Laid-Open No. 10-201481) can also be suitably used in the present invention.
[0013]
The guanosine used in the present invention is not particularly limited, but it is preferable to use a guanosine crystal obtained by pulverizing a guanosine crystal by physical treatment. The pulverization of guanosine crystals by physical treatment is performed, for example, by making guanosine crystals into a slurry in water and pulverizing them using a commonly used pulverizer (such as DYNO-MILL manufactured by WAB, Switzerland). be able to. By such treatment, a refined crystal slurry is obtained.
[0014]
In the present invention, the efficiency of the reaction for producing 5′-guanylic acid can be increased by grinding guanosine crystals. Therefore, as long as the reaction efficiency is improved, the degree of pulverization is not particularly limited. Preferably, the specific surface area of the crystal after pulverization is 0.4 m 2 / g or more, more preferably 0.8 m 2 / g or more. So that it is desirable to grind. The upper limit of the specific surface area is not particularly limited, but the improvement in the production efficiency of 5′-guanylic acid reaches its peak when the specific surface area of the crystal exceeds a certain level, so it is considered that about 1 m 2 / g is usually sufficient.
However, pulverization of guanosine crystals is not essential to the present invention, and the effect of increasing the efficiency of the reaction for producing 5′-guanylic acid is obtained by performing a treatment for reducing the activity of the enzyme during the reaction.
[0015]
The average particle size of the crystal refined by pulverization is, for example, according to the sedimentation method based on Stokes' resistance law, for example, a sedimentation type particle size distribution measuring device (for example, a centrifugal sedimentation type particle size distribution measuring device SA-CP3, Shimadzu Corporation) Can be measured. Further, the specific surface area of the microcrystal can be calculated based on the average particle diameter thus measured.
[0016]
The guanosine crystals to be pulverized may be purified, or a crystal slurry that accumulates in a culture solution of a microorganism that produces guanosine may be used as it is. Guanosine can be obtained, for example, by the method described in Japanese Patent Publication No. 57-14160. A precursor such as mercaptoguanosine can also be used.
[0017]
The concentration of guanosine added to the reaction solution is preferably 1 to 20 g / dl. In addition to pulverizing and refining guanosine crystals, addition of a surfactant such as boric acid or dimethyl sulfoxide to the reaction solution may further improve the reaction yield.
[0018]
The polymerized phosphoric acid used in the present invention is not particularly limited as long as it can transfer a phosphate group to guanosine by an enzymatic reaction to produce 5′-guanylic acid. Specifically, pyrophosphoric acid, Tripolyphosphoric acid, tetrapolyphosphoric acid, pentapolyphosphoric acid, or salts thereof, or any mixture thereof. The concentration of polymerized phosphoric acid used is determined by the concentration of guanosine, which is a phosphate receptor. Usually 1 to 5 times the amount of guanosine is desirable.
[0019]
In the present invention, in the reaction of transferring a phosphate group from polymerized phosphoric acid to guanosine using the enzyme as described above to phosphorylate guanosine, a treatment for reducing the enzyme activity during the reaction is performed. . A phosphorylation reaction can be carried out in the same manner as in a usual method in which guanosine is phosphorylated enzymatically to produce 5′-guanylic acid, except that a treatment for reducing the enzyme activity is performed during the reaction.
[0020]
The reaction is usually performed at a temperature of 20 to 60 ° C., preferably 30 to 40 ° C., and a pH of 3.0 to 9.0, preferably pH of 3.5 to 6.5, and more preferably pH of 3.5 to 5.5 gives good results. Either a stationary method or a stirring method can be employed for the reaction. The reaction time varies depending on conditions such as the activity of the enzyme used and the substrate concentration, but is 1 to 100 hours.
[0021]
When acid phosphatase is used as the enzyme, it is preferable to adjust the phosphorylation reaction to a weak acid in the range of pH 3.0 to 5.5.
By performing the treatment for reducing the enzyme activity during the reaction, the production rate of guanosine can be improved. As a result, the reaction time can be reduced, and the production yield of guanosine can be increased. The reason for this is estimated as follows. In the early stage of the reaction, a reaction in which 5′-guanylic acid is produced from guanosine proceeds. However, as 5′-guanylic acid is produced, the surface area of guanosine serving as a substrate is reduced, while polymerized phosphoric acid is converted by an enzyme. Since it is decomposed, the production efficiency of 5′-guanylic acid decreases. By reducing the enzyme activity in accordance with the decrease in the surface area of guanosine during the reaction, degradation of the polymerized phosphate by the enzyme is suppressed, and as a result, a decrease in the production rate of 5′-guanylic acid is suppressed. The decrease in enzyme activity may be performed stepwise or continuously.
[0022]
The degree of the decrease in enzyme activity and the timing at which the enzyme activity is decreased can be appropriately set according to the type and initial enzyme activity of the enzyme used, the specific surface area of guanosine, the concentration of guanosine and polymerized phosphate, and the like. Specifically, the degree of decrease in enzyme activity is 20 to 80%, more preferably 20 to 60%, and still more preferably 30 to 40% as the enzyme activity after the activity reduction treatment with respect to the enzyme activity at the start of the reaction. Can be mentioned.
[0023]
Examples of methods for reducing enzyme activity include (1) lowering the reaction temperature, (2) adding an enzyme reaction inhibitor, (3) gas bubbling, and (4) keeping the pH of the reaction solution away from the optimum reaction pH. And the like. The enzyme activity may be decreased by combining these means. Among these means, reduction of the reaction temperature or gas bubbling is preferable in that it does not increase components other than 5′-guanylic acid in the reaction solution. There is no restriction | limiting in particular in the gas used for gas bubbling, Air or nitrogen gas etc. can be used suitably.
[0024]
In some cases, the yield of 5′-guanylic acid can be increased by reducing the amount of enzyme added to the reaction system (see FIG. 2). However, if the amount of enzyme is reduced, the reaction time is delayed, which may not be preferable. On the other hand, when an appropriate amount of enzyme is added to the reaction system and then the enzyme activity is lowered, the reaction time delay is suppressed and the production yield can be improved.
[0025]
In order to collect and separate the 5′-guanylic acid produced as described above from the reaction-terminated mixture, a method using a synthetic adsorption resin, a method using a precipitating agent, or other normal collection and separation methods can be employed.
[0026]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
[0027]
[Reference Example 1]
Acquiring mutant acid phosphatase derived from Escherichia brattae Using plasmid pEPI305 (see WO96 / 37603) containing a gene encoding wild-type acid phosphatase derived from Escherichia brattae JCM1650, site-specific mutation was applied to this plasmid DNA by genetic engineering techniques. After introduction, a gene encoding mutant acid phosphatase was prepared (see JP-A-10-201481).
[0028]
pEPI305 is a DNA fragment having a size of 2.4 Kbp, which is cleaved with restriction enzyme ClaI and restriction enzyme BamHI, containing a gene encoding wild-type acid phosphatase derived from Escherichia brattae JCM1650. ) (Stratagene). The strain in which pEPI305 was held in Escherichia coli JM109 was named AJ13144. As of February 23, 1996, National Institute of Biotechnology, National Institute of Advanced Industrial Science and Technology (now National Institute of Advanced Industrial Science and Technology, Postal code 305-5466 International deposit was made under the Budapest Treaty at Tsukuba City, Ibaraki Prefecture, Japan, 1-chome, 1-chome, 1-center, 6), and the accession number FERM BP-5423 was assigned.
[0029]
Oligonucleotides MUT300 and MUT370 shown in SEQ ID NO: 1 and SEQ ID NO: 2 were respectively synthesized by the phosphoramidite method using a DNA synthesizer (Applied Biosystems model 394).
[0030]
PEPI305 1 ng as a template, M13 primer RV (Takara Shuzo) and 2.5 μmol each of MUT370 oligonucleotide and 2.5 units of Tac DNA polymerase (Takara Shuzo) as primers, dATP, dCTP, dGTP, dTTP 200 μM each, potassium chloride 50 mM and magnesium chloride PCR was performed by adding 100 μl of 100 mM Tris-HCl buffer (pH 8.3) containing 1.5 mM and repeating a cycle of 94 ° C. for 30 seconds, 55 ° C. for 2 minutes, and 72 ° C. for 3 minutes 25 times. The PCR reaction was performed using a thermal cycler PJ2000 type (Takara Shuzo). Separately, PCR was performed in the same manner using 1 ng of plasmid DNA pEPI305 as a template, M13 primer M3 (Takara Shuzo) and 2.5 μmol of MUT300 oligonucleotide as primers. Each reaction solution was purified by gel filtration using a microspin column S-400 (Pharmacia) to remove the primer.
[0031]
Add 1 μl of each PCR reaction solution to 95 μl of 100 mM Tris-HCl buffer (pH 8.3) containing 200 μM each of dATP, dCTP, dGTP, dTTP, 50 mM potassium chloride and 1.5 mM magnesium chloride, and heat at 94 ° C. for 10 minutes. After cooling to 37 ° C. over 60 minutes, the mixture was incubated at 37 ° C. for 15 minutes to form heteroduplexes. To this, 2.5 units of tack DNA polymerase was added and reacted at 72 ° C. for 3 minutes to complete the heteroduplex. Next, 2.5 μmol each of M13 primer RV and M13 primer M3 was added to this reaction solution, and a PCR reaction was performed in which a cycle of 94 ° C. for 30 seconds, 55 ° C. for 2 minutes, and 72 ° C. for 3 minutes was repeated 10 times. .
[0032]
The product of the second PCR reaction was cleaved with ClaI and BamHI, extracted with phenol / chloroform, and ethanol precipitated. This DNA fragment was ligated to pBluescript KS (+) cleaved with ClaI and BamHI, and Escherichia coli JM109 (Takara Shuzo) was transformed by the usual method using the obtained plasmid DNA. This was plated on L agar medium containing 100 μg / ml ampicillin to obtain a transformant. A plasmid was prepared from the transformant by the alkaline lysis method, the base sequence was determined, and it was confirmed that the target base was substituted. The nucleotide sequence was determined using Taq DyeDeoxy Terminator Cycle Sequencing Kit (Applied Biochemical) according to the method of Sanger et al. (J. Mol. Biol., 143, 161 (1980)).
[0033]
In this way, the 63rd leucine residue (CTG) of the mature protein is a glutamine residue (C * AG), the 65th alanine residue (GCG) is a glutamine residue ( * C * AG), 66 The 69th glutamic acid residue (GAA) is the alanine residue (G * CA), the 69th asparagine residue (AAC) is the aspartic acid residue ( * GAC), and the 71st serine residue (AGC) is the alanine. Residue ( * G * CC), 72th serine residue (AGT) is alanine residue ( * G * CT), 74th glycine residue (GGG) is aspartic acid residue ( * G * A * T), 135th threonine residue (ACC) to lysine residue ( * A * A * A), 136th glutamic acid residue (GAG) to aspartic acid residue (GA * C), 153 isoleucine residue (ATC) has been substituted respectively threonine residue (a * CC), co mutant phosphatase Sul to prepare a mutant gene. The plasmid containing this mutant gene was named pEPI370.
[0034]
Escherichia coli JM109 / pEPI370 carrying the above plasmid pEPI370 was inoculated into 50 ml of L medium, cultured at 37 ° C. for 16 hours, and then collected from the culture by centrifugation to obtain cells containing acid phosphatase.
[0035]
[Reference Example 2]
Grinding of guanosine crystals The guanosine crystals were slurried in water, and the crystals were pulverized by a pulverizer (DYNO-MILL manufactured by WAB, Switzerland). At this time, crystals of various grain sizes were obtained by changing conditions such as the grinding time. Although the specific surface area per unit weight of the guanosine crystal was 0.2 m 2 / g, it increased to 0.4 to 0.8 m 2 / g or more after pulverization, and the crystal could be refined. The specific surface area of guanosine crystals was measured with a sedimentation type particle size distribution measuring device (Shimadzu Corporation centrifugal sedimentation type particle size distribution measuring device SA-CP3) according to the sedimentation method based on Stokes' resistance law [Reference Example 3]
Changes in enzyme activity due to temperature change A solution containing 0.5 g / dl of crushed guanosine crystals (specific surface area 0.8 m 2 / g), 100 mM acidic pyrophosphate, 100 mM acetic acid (pH 5.0 with caustic soda) 1 ml) was heated at various temperatures (25 to 50 ° C.) for 10 minutes in a thermostatic bath. To these solutions, 100 μl of the bacterial cell (100 mg / dl) containing acid phosphatase obtained in Reference Example 1 was added and reacted at each temperature for 5 minutes. Thereafter, 200 μl of 2N hydrochloric acid was added to stop the reaction. The amount of 5′-guanylic acid in each reaction solution was measured. As a result, it was shown that as the reaction temperature was raised, the amount of 5′-guanylic acid produced increased (FIG. 1), and the specific activity of acid phosphatase increased.
[0036]
[Example 1]
Production of 5′-guanylic acid (I) (decrease in acid phosphatase activity due to reduction in reaction temperature)
After mixing 29.3 g of acidic pyrophosphate and 12.5 g of guanosine ground crystals (specific surface area 0.6 m 2 / g) slurry (with guanosine content) in aqueous solution and adjusting the pH to around 4.5 with caustic soda, 400 mg of the cells Alternatively, 300 mg was added to adjust the final liquid volume to 100 ml, the reaction was carried out at the reaction temperature shown in Table 1 for 14 hours, and the amount of 5′-guanylic acid produced every 0.5 hour was measured. The reaction was performed in a water bath, the reaction temperature was controlled by controlling the temperature of the water bath, and the reaction temperature was confirmed by directly measuring the temperature of the reaction solution. In the table, “→” represents a change in the reaction temperature, and the temperature change time represents the time from the start of the reaction to the shift of the reaction temperature.
[0037]
The reaction conditions (enzyme amount, reaction temperature, temperature change time), reaction time, accumulation, and yield at the time of maximum accumulation of 5′-guanylic acid are shown in Table 1, and the change in yield over time is shown in FIG. As a result, under the conditions in which the temperature was lowered during the reaction (Experimental Sections 1-2 and 1-3), the reaction time until the maximum accumulation time was longer than in the conditions where the reaction temperature was constant (Experimental Section 1-1). The production efficiency was improved with little delay and 2-3% in 5′-guanylic acid production yield and 0.3-0.5% in phosphoric acid yield.
[0038]
[Table 1]
Figure 0004649787
[0039]
[Example 2]
Production of 5'-guanylic acid (II) (decrease in acid phosphatase activity due to reaction temperature decrease)
29.3g of acid pyrophosphate and 7.5g of guanosine crystals (as guanosine content) are mixed in an aqueous solution and adjusted to about pH 4.5 with caustic soda, and then 100 to 1500mg of the above cells are added to make the final volume 100ml. The reaction was carried out at the reaction temperature shown in Table 2 for 30 hours, sampled appropriately, and the amount of 5′-guanylic acid produced was measured. The reaction was carried out in a water bath. Reaction temperature was measured and controlled in the same manner as in Example 1.
[0040]
Table 2 and FIG. 3 show the reaction conditions (enzyme amount, reaction temperature, temperature change time), and the reaction time, accumulation, and yield at the time of maximum accumulation of 5′-guanylic acid. As a result, in the experimental group in which the temperature was changed, the reaction time was less increased and the production yield was improved compared to the experimental group in which the temperature was not changed.
[0041]
[Table 2]
Figure 0004649787
[0042]
[Example 3]
Production of 5'-guanylic acid (III) (reduction of acid phosphatase activity by bubbling)
29.3g of acid pyrophosphate and 7.5g of guanosine crystals (as guanosine content) are mixed in an aqueous solution and adjusted to about pH 4.5 with caustic soda, and then 100 to 1500mg of the above cells are added to make the final volume 100ml. The reaction was carried out at a reaction temperature of 35 ° C. for 30 hours. During the reaction, the reaction solution was stirred with a magnetic stirrer. For experimental groups 5, 6, and 7, as shown in Table 3, air was bubbled (100 ml / min from a 2 mm diameter tube) for 1 hr during the reaction to partially deactivate the enzyme. Sampling was performed appropriately, and the amount of 5′-guanylic acid produced was measured. In Table 3, “to” represents a time zone in which bubbling was performed. For example, “6 to 7” represents that bubbling was performed between 6 hours and 7 hours after the start of the reaction.
[0043]
Table 3 and FIG. 4 show the reaction conditions (enzyme amount, reaction temperature, bubbling time), and the reaction time, accumulation, and yield at the maximum accumulation point. As a result, in the experimental group in which the enzyme was deactivated by bubbling, the reaction time was less increased and the production yield was improved compared to the experimental group in which the enzyme was not deactivated.
[0044]
[Table 3]
Figure 0004649787
[0045]
[Reference Example 4]
Two reaction solutions having the same composition as in experimental group 1 of Example 3 were prepared and reacted at 35 ° C. For one of them, air was bubbled from the start of the reaction (100 ml / min from a 2 mm diameter tube). The reaction solution was sampled as appropriate, and the enzyme activity in the reaction solution was measured by the method described below.
[0046]
1 ml of a measurement solution (adjusted to pH 6.0 with caustic soda) containing 100 mM MES and 5 mM PNPP (p-nitrophenyl phosphate) was heated in a thermostatic bath at 30 ° C. for 10 minutes. To this measurement solution, 80 μl of the 10-fold diluted solution of the phosphorylation reaction solution sample was added and reacted at 30 ° C. for 1 minute, and then 80 μl of 10N caustic soda was added to stop the reaction. The absorbance at 410 nm of each sample was measured, and the change over time in the enzyme activity during the phosphorylation reaction was calculated according to the following formula.
[0047]
As a result, as shown in FIG. 5, the enzyme activity was reduced by bubbling. Similarly, when nitrogen gas was bubbled instead of air, the enzyme activity decreased.
[0048]
[Expression 1]
Relative enzyme activity at each reaction time = (enzyme activity after the reaction time has elapsed) / (enzyme activity at the start of the reaction)
[Expression 2]
Enzyme activity at the start of the reaction = (absorbance at the start of the reaction)-(absorbance of the blank)
Blank: Absorbance of water added to the reaction solution)
Enzyme activity after reaction time = (Enzyme activity after reaction time)-(Blank absorbance)
[0049]
【The invention's effect】
According to the present invention, 5′-guanylic acid can be efficiently produced by enzymatic reaction using poorly soluble guanosine and polymerized phosphoric acid.
[0050]
[Sequence Listing]
Figure 0004649787
Figure 0004649787

[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the reaction temperature and the amount of 5′-guanylic acid produced in a reaction in which 5′-guanylic acid is produced from guanosine and acid pyrophosphate by a reaction with acid phosphatase.
FIG. 2 is a graph showing changes in 5′-guanylic acid yield over time.
FIG. 3 is a graph showing changes in 5′-guanylic acid yield over time.
FIG. 4 is a graph showing changes in 5′-guanylic acid yield over time.
FIG. 5 is a graph showing changes in enzyme activity in the reaction solution over time with and without bubbling of the reaction solution.

Claims (2)

グアノシンを酸性フォスファターゼ触媒下で重合リン酸と反応させ、グアノシンをリン酸化して5’−グアニル酸を生成させる、5’−グアニル酸の製造法において、反応中に前記酸性フォスファターゼの活性を低下させる処理を行うことを特徴とする5’−グアニル酸の製造法。Guanosine is reacted with polymerized phosphoric acid under acid phosphatase catalyst, guanosine phosphorylated to produce 5'-guanylate, in the preparation of 5'-guanylate, reduce the activity of the acid phosphatase in the reaction APPLICATIONS A process for producing 5′-guanylic acid, characterized in that the treatment is carried out. 前記酸性フォスファターゼの活性を低下させる処理を、反応温度の低下、酸性フォスファターゼの反応阻害剤の添加、気体バブリングから選ばれる手段によって行うことを特徴とする請求項1に記載の5’−グアニル酸の製造法。2. The 5′-guanylic acid according to claim 1, wherein the treatment for reducing the activity of acid phosphatase is performed by means selected from a reduction in reaction temperature, addition of an acid phosphatase reaction inhibitor, and gas bubbling. Manufacturing method.
JP2001209468A 2001-07-10 2001-07-10 Process for producing 5'-guanylic acid Expired - Fee Related JP4649787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001209468A JP4649787B2 (en) 2001-07-10 2001-07-10 Process for producing 5'-guanylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001209468A JP4649787B2 (en) 2001-07-10 2001-07-10 Process for producing 5'-guanylic acid

Publications (2)

Publication Number Publication Date
JP2003024094A JP2003024094A (en) 2003-01-28
JP4649787B2 true JP4649787B2 (en) 2011-03-16

Family

ID=19045116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001209468A Expired - Fee Related JP4649787B2 (en) 2001-07-10 2001-07-10 Process for producing 5'-guanylic acid

Country Status (1)

Country Link
JP (1) JP4649787B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100721868B1 (en) 2006-07-20 2007-05-28 케이엔디티앤아이 주식회사 THE SYSTEM OF OPERATION ON CRYSTALLIZATION USING Couette-Taylor REACTORS OVER GMP

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996037603A1 (en) * 1995-05-25 1996-11-28 Ajinomoto Co., Inc. Process for producing nucleoside-5'-phosphate
JPH10201481A (en) * 1996-11-21 1998-08-04 Ajinomoto Co Inc Production of nucleoside 5'-phosphate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996037603A1 (en) * 1995-05-25 1996-11-28 Ajinomoto Co., Inc. Process for producing nucleoside-5'-phosphate
JPH10201481A (en) * 1996-11-21 1998-08-04 Ajinomoto Co Inc Production of nucleoside 5'-phosphate

Also Published As

Publication number Publication date
JP2003024094A (en) 2003-01-28

Similar Documents

Publication Publication Date Title
US6207435B1 (en) Method for producing nucleoside-5′-phosphate ester
TWI682998B (en) A composition for producing tagatose and methods for producing tagatose using the same
CN108753669B (en) Adenine production strain and construction method and application thereof
EP3604514A1 (en) Composition for tagatose production and method for tagatose production using same
JPH0937785A (en) Production of nucleoside-5'-phosphate
KR100400338B1 (en) Process for producing purine nucleotides
EP2548949B1 (en) Microorganism with improved production of 5'-xanthosine monophosphate and 5'-guanine monophosphate, and production method of 5'-xanthosine monophosphate and 5'-guanine monophosphate using same
KR100376635B1 (en) Method of producing nucleic acid
JP4192408B2 (en) Method for producing nucleoside-5'-phosphate ester
JP3941390B2 (en) Mutant acid phosphatase
EP2358866A2 (en) A corynebacteria strain having enhanced 5'-xanthosine monophosphate productivity and a method of producing 5'-xanthosine monophosphate using the same
JP4649787B2 (en) Process for producing 5'-guanylic acid
KR101818564B1 (en) Methods for Preparing 3'-amino-2',3'-dideoxyguanosine by Using Nucleoside Phosphorylases Derived from Bacillus and Adenosine Deaminase Derived from Lactococcus
JP5140242B2 (en) Process for producing CMP-N-acetylneuraminic acid
JP4336897B2 (en) Novel microorganism, maltose phosphorylase, trehalose phosphorylase and method for producing the same
JP4173815B2 (en) Method for producing 2'-deoxyguanosine
KR100680765B1 (en) 3'--2'3'- Methods of preparation of 3'-amino-2'3'-dideoxyguanosine
JP2003093091A5 (en)
CN116925993B (en) Genetically engineered strains and methods for enzyme-catalyzed production of cytidine acids
JP4172281B2 (en) Method for producing DNA-degrading enzyme and method for producing deoxynucleoside using the same
CN116240193A (en) Choline kinase mutant and application thereof in production of citicoline
JP2003250570A (en) Method for producing 2'-deoxyribonucleoside compound, method for producing intermediate of the compound and 2-deoxyribose 5-phosphate aldolase gene to be used therefor
JP2000135097A (en) Production of guanosine 5'-monophosphate by enzyme

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101129

R150 Certificate of patent or registration of utility model

Ref document number: 4649787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees