JP4648844B2 - Method for producing a catalyst for producing a liquid fuel - Google Patents

Method for producing a catalyst for producing a liquid fuel Download PDF

Info

Publication number
JP4648844B2
JP4648844B2 JP2006020469A JP2006020469A JP4648844B2 JP 4648844 B2 JP4648844 B2 JP 4648844B2 JP 2006020469 A JP2006020469 A JP 2006020469A JP 2006020469 A JP2006020469 A JP 2006020469A JP 4648844 B2 JP4648844 B2 JP 4648844B2
Authority
JP
Japan
Prior art keywords
particulate solid
catalyst
producing
beta zeolite
hydrothermal synthesis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006020469A
Other languages
Japanese (ja)
Other versions
JP2007196187A (en
Inventor
範立 椿
博文 紺野
浩幸 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Priority to JP2006020469A priority Critical patent/JP4648844B2/en
Publication of JP2007196187A publication Critical patent/JP2007196187A/en
Application granted granted Critical
Publication of JP4648844B2 publication Critical patent/JP4648844B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

本発明は、一酸化炭素と水素を主成分とする合成ガスを原料として液体燃料を製造するための触媒の製造方法に関する。 The present invention, a synthesis gas mainly composed of carbon monoxide and hydrogen for the preparation method of the catalysts for the production of liquid fuel as a raw material.

近年、環境保全の必要性が求められ、硫黄分および芳香族炭化水素の含有量が低いクリーンな液体燃料への要求が急速に高まってきている。また、埋蔵量に限りのある原油資源を有効に使う必要性より、石油に代替しうるエネルギー源の開発が望まれてきている。以上のような要望に応える技術として、天然ガスを原料に用い、硫黄分および芳香族炭化水素をほとんど含まない液体燃料を製造するGTL(Gas to Liquid)がますます注目されるようになってきている。
GTLによる液体燃料の製造法としては、天然ガスから水素と一酸化炭素を製造する改質工程を経た後、水素と一酸化炭素からなる合成ガスを原料として高級パラフィンを製造するフィッシャー・トロプシュ合成(以下、FT合成という。)を行う工程と、高級パラフィンに富むFT合成生成物を低級パラフィンに富む生成物に転換する水素化分解および異性化を行う工程の、2段階で処理する方法が一般に知られている。
In recent years, the need for environmental conservation has been demanded, and the demand for clean liquid fuels with low contents of sulfur and aromatic hydrocarbons has rapidly increased. In addition, the development of energy sources that can replace oil has been desired due to the necessity of effectively using crude oil resources with limited reserves. GTL (Gas to Liquid), which uses natural gas as a raw material and produces liquid fuel that contains almost no sulfur and aromatic hydrocarbons, is gaining more and more attention. Yes.
As a method for producing liquid fuel by GTL, Fischer-Tropsch synthesis (manufactured by Fischer-Tropsch synthesis, which produces high-grade paraffin using synthetic gas consisting of hydrogen and carbon monoxide as a raw material after a reforming process for producing hydrogen and carbon monoxide from natural gas) Hereinafter, it is generally known a process in which the process is performed in two stages, a process of performing FT synthesis), and a process of hydrocracking and isomerization in which an FT synthesis product rich in higher paraffin is converted into a product rich in lower paraffin. It has been.

FT合成は、鉄やコバルト等の活性金属をシリカやアルミナ等の担体上に担持して得られる触媒(以下、FT合成触媒という。)を用いて実施する方法が一般に知られている。また、水素化分解・異性化反応は、ゼオライトやアモルファスの固体酸触媒を用いて実施する方法が一般に知られている。
一方、非特許文献1には、FT合成触媒とゼオライト等の固体酸触媒を物理的に混合した触媒を用いることで、合成ガスから1段で低級パラフィンを製造することが示されている。
また、非特許文献2には、粒子状のFT合成触媒の外表面にZSM−5の膜をコーティングしたカプセル触媒が調製され、該カプセル触媒を用いて合成ガスから1段で液体燃料を製造する反応が示されている。
Fujimoto 外,「ケミストリー・レターズ(Chemistry Letters)」, 1985年,p783 「石油学会第54回研究発表会講演要旨」,石油学会,平成17年5月16日,102
In general, FT synthesis is carried out using a catalyst obtained by supporting an active metal such as iron or cobalt on a carrier such as silica or alumina (hereinafter referred to as FT synthesis catalyst). In addition, a method in which the hydrocracking / isomerization reaction is performed using a zeolite or an amorphous solid acid catalyst is generally known.
On the other hand, Non-Patent Document 1 shows that lower paraffin is produced from synthesis gas in one stage by using a catalyst obtained by physically mixing a FT synthesis catalyst and a solid acid catalyst such as zeolite.
In Non-Patent Document 2, a capsule catalyst in which the outer surface of a particulate FT synthesis catalyst is coated with a ZSM-5 film is prepared, and liquid fuel is produced in one step from synthesis gas using the capsule catalyst. The reaction is shown.
Fujimoto et al., “Chemistry Letters”, 1985, p783. "Abstracts of the 54th Annual Meeting of the Petroleum Society of Japan", Petroleum Society, May 16, 2005, 102

FT合成と水素化分解・異性化反応を一段で行うプロセスは、別々に反応を行う場合と比較して装置の建設コストが低く、経済性の高いプロセスであるといえる。更に経済性を向上させる為には、触媒の開発は必要不可欠である。しかしながら、例えば、上記のようにFT合成触媒にZSM−5膜を有するカプセル触媒の製造例はあるものの、それ以上の高性能を有する触媒、すなわち副生するメタンおよびCO選択性が低く、イソパラフィン収率が高い触媒の報告例は未だ無いに等しい。経済性のあるプロセスによるクリーン燃料製造の為には、メタン選択率およびCO選択率をより低減し、かつイソパラフィン収率をより高める触媒が求められている。 The process in which the FT synthesis and the hydrocracking / isomerization reaction are performed in one stage can be said to be an economical process with a low construction cost of the apparatus as compared with the case of performing the reactions separately. In order to further improve the economy, the development of a catalyst is indispensable. However, for example, although there is an example of producing a capsule catalyst having a ZSM-5 membrane as an FT synthesis catalyst as described above, a catalyst having higher performance than that, that is, byproduct methane and CO 2 selectivity is low, and isoparaffin There are no reports of high yield catalysts yet. In order to produce clean fuel by an economical process, a catalyst that further reduces methane selectivity and CO 2 selectivity and increases isoparaffin yield is required.

本発明者らはかかる課題を解決するため鋭意研究したところ、優れた水素化分解および異性化が期待できるベータゼオライト膜を有するカプセル触媒を調製することにより、この問題を解決できることが分かった。しかしながら、従来公知の方法を用いてカプセル化触媒の調製を行っても粒子状固体の表面にベータゼオライトの膜を生成させることはできなかった。その理由は明らかではないが、ある特殊な合成条件下においてのみベータゼオライトが粒子状固体触媒の表面上で膜を形成することが可能となるためと考えられる。また、ベータゼオライト膜形成時にFT合成触媒上に担持された金属が流出してしまうという問題もあり、このこともベータゼオライト膜を有するカプセル触媒の製造を困難にしている要因といえる。   The inventors of the present invention have intensively studied to solve such problems, and have found that this problem can be solved by preparing a capsule catalyst having a beta zeolite membrane that can be expected to have excellent hydrocracking and isomerization. However, even when an encapsulated catalyst is prepared using a conventionally known method, a beta zeolite membrane cannot be formed on the surface of the particulate solid. The reason is not clear, but it is thought that beta zeolite can form a film on the surface of the particulate solid catalyst only under certain special synthesis conditions. There is also a problem that the metal supported on the FT synthesis catalyst flows out during the formation of the beta zeolite membrane, which can be said to be a factor that makes it difficult to produce a capsule catalyst having a beta zeolite membrane.

本発明者らはさらに検討を行った結果、粒子状固体に特定の前処理を施し、かつ、水熱合成反応時に特殊な条件で攪拌処理することによって、FT合成触媒上に担持された金属の流出を抑制したベータゼオライト膜を有する粒子状固体触媒を調製できることを見出し、上記の課題を解決するに至った。   As a result of further investigations, the present inventors have conducted specific pretreatment on the particulate solid, and stirring treatment under special conditions during the hydrothermal synthesis reaction, so that the metal supported on the FT synthesis catalyst can be obtained. The inventors have found that a particulate solid catalyst having a beta zeolite membrane with suppressed outflow can be prepared and have solved the above problems.

発明は、(A)水熱合成反応を行う前に、粒子状固体をベータゼオライトの水熱合成反応時に用いるテンプレートを含んだ水溶液で還流処理を行う工程、(B)還流処理された粒子状固体を、ベータゼオライトの前駆溶液と共にリアクターに入れ、攪拌と停止を繰り返して水熱合成反応を行う工程、及び(C)水熱合成反応後に、洗浄、乾燥および焼成処理を行う工程、を包含することを特徴とする粒子状固体の表面をベータゼオライトからなる膜でコーティングしてなる触媒の製造方法に関する。 The present invention includes (A) a step of refluxing a particulate solid with an aqueous solution containing a template used in the hydrothermal synthesis reaction of beta zeolite before performing the hydrothermal synthesis reaction; Including a step in which a solid is put into a reactor together with a precursor solution of beta zeolite, and a hydrothermal synthesis reaction is performed by repeatedly stirring and stopping ; and (C) a step in which washing, drying and calcining are performed after the hydrothermal synthesis reaction. The present invention relates to a method for producing a catalyst obtained by coating the surface of a particulate solid with a membrane made of beta zeolite.

本発明の製造方法に従う触媒を用いることにより、合成ガスから1段で、メタン選択性とCO選択性をより低くし、かつイソパラフィン収率をより高くした液体燃料を製造することができる。 By using the catalyst according to the production method of the present invention, it is possible to produce a liquid fuel having a lower methane selectivity and CO 2 selectivity and a higher isoparaffin yield in a single stage from the synthesis gas.

以下に本発明を詳述する。
本発明の製造方法に従う触媒は、粒子状固体の表面をベータゼオライトからなる膜でコーティングしてなる触媒である。
The present invention is described in detail below.
The catalyst according to the production method of the present invention is a catalyst obtained by coating the surface of a particulate solid with a membrane made of beta zeolite.

粒子状固体は主として無機酸化物から構成される。粒子状固体を構成する無機酸化物としては、シリカ、アルミナ、チタニア、シリカアルミナ等を好ましい例として挙げることができる。この中ではアルミナが特に好ましい。
使用する無機酸化物の平均粒子径については特に制限はないが、通常10μm〜10mm、好ましくは50μm〜5mmのものをプロセスに応じ適宜選択して使用する。また、使用する無機酸化物の比表面積についても特に制限はないが、通常100〜400m/g、好ましくは200〜300m/gのものが用いられる。
The particulate solid is mainly composed of an inorganic oxide. As an inorganic oxide constituting the particulate solid, silica, alumina, titania, silica alumina and the like can be given as preferable examples. Of these, alumina is particularly preferred.
Although there is no restriction | limiting in particular about the average particle diameter of the inorganic oxide to be used, Usually, 10 micrometers-10 mm, Preferably 50 micrometers-5 mm thing is suitably selected and used according to a process. Although there is no special restriction on the specific surface area of the inorganic oxide used, usually 100 to 400 m 2 / g, preferably it is used as the 200 to 300 m 2 / g.

粒子状固体としては前記無機酸化物に金属を担持したものが好ましく用いられる。担持する金属としてはCo金属が特に好ましい。担持量には特に制限はないが、無機酸化物担体に対して金属あたり1〜50質量%が好ましく、さらに好ましくは5〜30質量%である。   As the particulate solid, a material in which a metal is supported on the inorganic oxide is preferably used. As the metal to be supported, Co metal is particularly preferable. Although there is no restriction | limiting in particular in the carrying amount, 1-50 mass% per metal is preferable with respect to an inorganic oxide support | carrier, More preferably, it is 5-30 mass%.

また本発明においては、必要であれば、さらに、Ru、Zr、ReおよびOsから選択される1種または2種以上の金属をプロモーターとして担持することができる。これらのプロモーターの担持量は特に制限はないが、通常、粒子状固体あたりの金属量として1〜20質量%の範囲で使用することができる。   In the present invention, if necessary, one or more metals selected from Ru, Zr, Re and Os can be further supported as a promoter. Although the amount of these promoters supported is not particularly limited, it can be generally used in the range of 1 to 20% by mass as the amount of metal per particulate solid.

粒子状固体の表面をベータゼオライトからなる膜でコーティングする方法としては、下記の工程(A)〜(C)を包含する。
(A)水熱合成反応を行う前に、粒子状固体をベータゼオライトの水熱合成反応時に用いるテンプレートを含んだ水溶液で還流処理を行う工程
(B)還流処理された粒子状固体を、ベータゼオライトの前駆溶液と共にリアクターに入れ、水熱合成反応を行う工程
(C)水熱合成反応後に、洗浄、乾燥および焼成処理を行う工程
The method of coating the surface of the particulate solid with a film made of beta zeolite includes the following steps (A) to (C).
(A) The step of refluxing the particulate solid with an aqueous solution containing a template used in the hydrothermal synthesis reaction of beta zeolite before the hydrothermal synthesis reaction (B) The particulate solid subjected to the reflux treatment is treated with beta zeolite (C) A step of performing hydrothermal synthesis reaction after the hydrothermal synthesis reaction, followed by washing, drying, and firing treatment

すなわち、まず前処理として、粒子状固体をベータゼオライトの水熱合成反応時に用いるテンプレートを含んだ水溶液中で還流処理を行う。テンプレートとしては、通常、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウムなどを用いることができる。テンプレート水溶液の濃度は、通常1〜50質量%、好ましくは5〜30質量%の範囲で行う。この還流処理時間は特に制限はないが、好ましくは2〜5時間行う。さらに必要に応じて、還流後の粒子状固体を水および/またはアルコールで洗浄する。   That is, first, as a pretreatment, the particulate solid is refluxed in an aqueous solution containing a template used in the hydrothermal synthesis reaction of beta zeolite. As the template, usually tetraethylammonium hydroxide, tetrapropylammonium hydroxide, or the like can be used. The concentration of the template aqueous solution is usually 1 to 50% by mass, preferably 5 to 30% by mass. The reflux treatment time is not particularly limited but is preferably 2 to 5 hours. If necessary, the particulate solid after reflux is washed with water and / or alcohol.

次に、上記の還流処理による前処理後の粒子状固体を、ベータゼオライトの前駆溶液と共にリアクターに入れ、水熱合成反応を行わせる。前駆溶液としては、SiO、水酸化テトラエチルアンモニウム(TEAOH:Tetraethyl annmonium Hydroxide)、((CHCHO)Al(Aluminium triisopropoxide)を含む水溶液が好ましく用いられる。
水熱合成反応の条件は、特に制限はなく、通常の条件にて行うことができる。例えば、反応温度は100〜200℃、好ましくは130〜180℃、反応時間は1〜10日、好ましくは1〜5日の範囲で行うことができる。
Next, the particulate solid after the pretreatment by the above reflux treatment is put into a reactor together with the beta zeolite precursor solution, and a hydrothermal synthesis reaction is performed. As the precursor solution, an aqueous solution containing SiO 2 , tetraethyl ammonium hydroxide (TEAOH), ((CH 3 ) 2 CHO) 3 Al (Aluminium triisopropoxide) is preferably used.
The conditions for the hydrothermal synthesis reaction are not particularly limited and can be performed under ordinary conditions. For example, the reaction temperature is 100 to 200 ° C., preferably 130 to 180 ° C., and the reaction time is 1 to 10 days, preferably 1 to 5 days.

また、本発明においては、水熱合成反応は攪拌下で行われるが、一定の速度で攪拌を継続して行うのではなく、攪拌と停止を繰り返して行う。攪拌速度は、1〜20rpmが好ましく、より好ましくは1〜10rpmである。この場合、攪拌と停止の回数は少なくとも2回以上繰り返して行うことが好ましく、より好ましくは5回以上であり、さらに好ましくは10回以上であり、効果および経済性等を考慮して適宜決定する。具体的には、まず1〜20時間、好ましくは1〜5時間攪拌下に反応を行わせ、次に反応を停止する。停止時間は好ましくは30分〜10時間、より好ましくは30分〜5時間である。次に再び攪拌を行う。2回目以降の攪拌時間は1〜30分、好ましくは1〜10分である。   In the present invention, the hydrothermal synthesis reaction is carried out under stirring, but is not carried out continuously at a constant rate, but is carried out repeatedly by stirring and stopping. The stirring speed is preferably 1 to 20 rpm, more preferably 1 to 10 rpm. In this case, the number of stirring and stopping is preferably repeated at least 2 times, more preferably 5 times or more, and even more preferably 10 times or more, and is appropriately determined in consideration of effects, economy, and the like. . Specifically, the reaction is first carried out with stirring for 1 to 20 hours, preferably 1 to 5 hours, and then the reaction is stopped. The stop time is preferably 30 minutes to 10 hours, more preferably 30 minutes to 5 hours. Then stir again. The stirring time after the second time is 1 to 30 minutes, preferably 1 to 10 minutes.

水熱合成反応終了後、ベータゼオライトからなる膜で表面をコーティングされた粒子状固体は、水で充分洗浄した後、乾燥および焼成処理を行う。乾燥条件については、特に制限はないが、通常、100〜200℃、好ましくは110〜150℃で、0.5〜48時間、好ましくは5〜24時間行う。焼成条件についても、特に制限はないが、通常、空気雰囲気下において、300〜600℃、好ましくは350〜580℃において、0.5〜10時間、好ましくは3〜8時間の範囲で行う。   After completion of the hydrothermal synthesis reaction, the particulate solid whose surface is coated with a membrane made of beta zeolite is sufficiently washed with water, and then dried and calcined. Although there is no restriction | limiting in particular about drying conditions, Usually, it is 100-200 degreeC, Preferably it is 110-150 degreeC, 0.5 to 48 hours, Preferably it carries out for 5 to 24 hours. The firing conditions are not particularly limited, but are usually performed in an air atmosphere at 300 to 600 ° C., preferably 350 to 580 ° C., for 0.5 to 10 hours, preferably 3 to 8 hours.

以上の方法により、粒子状固体の表面をベータゼオライトからなる膜でコーティングした触媒が得られる。粒子状固体の表面にコーティングされるベータゼオライトの量には特に制限はないが、粒子状固体に対して好ましくは5〜40質量%、さらに好ましくは10〜30質量%の範囲である。
本発明の製造方法に従う触媒は、合成ガスから1段で、メタン選択性とCO選択性をより低くし、かつイソパラフィン収率をより高くした液体燃料を製造するのにきわめて好適である。
By the above method, a catalyst in which the surface of the particulate solid is coated with a membrane made of beta zeolite can be obtained. The amount of beta zeolite coated on the surface of the particulate solid is not particularly limited, but is preferably 5 to 40% by mass, more preferably 10 to 30% by mass with respect to the particulate solid.
The catalyst according to the production method of the present invention is very suitable for producing a liquid fuel with one stage from synthesis gas, lower methane selectivity and CO 2 selectivity, and higher isoparaffin yield.

以下に実施例および比較例を挙げて、本発明を具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these.

[実施例1]
(1)粒子状固体の調製
2.7gのCo(NO・6HOをイオン交換水4.7gで溶かした水溶液を調製し、400℃で2時間乾燥したAl(粒子径10−20mesh、比表面積180m/g、細孔容積0.93ml/g)5.0gに、Incipient Wetness法により含浸させた。その後、デシケーター中に置き、水流ポンプで1時間減圧した後、120℃で12時間乾燥させた。その後、マッフル炉中で20℃から400℃まで3時間かけて昇温し、400℃で2時間保持し焼成した。粒子状固体中のCo含有量は10質量%となるようにした。
[Example 1]
(1) Preparation of particulate solid Al 2 O 3 (particles) prepared by preparing an aqueous solution in which 2.7 g of Co (NO 3 ) 2 .6H 2 O was dissolved in 4.7 g of ion-exchanged water and dried at 400 ° C. for 2 hours. The impregnated material was impregnated with 5.0 g of diameter 20-20 mesh, specific surface area 180 m 2 / g, pore volume 0.93 ml / g) by the Incipient Wetness method. Then, after placing in a desiccator and depressurizing with a water pump for 1 hour, it was dried at 120 ° C. for 12 hours. Thereafter, the temperature was raised from 20 ° C. to 400 ° C. over 3 hours in a muffle furnace, and held at 400 ° C. for 2 hours for firing. The Co content in the particulate solid was set to 10% by mass.

(2)ベータゼオライト前駆溶液の調製
4.1gのSiO(fumed Silica、比表面積200m/g)を、10.3gのTEAOHに溶かし、1時間攪拌して均一なコロイド状にした。
((CHCHO)Al(Aluminium triisopropoxide)0.3gを、4.1gのTEAOHに溶解し、SiO/TEAOH溶液に15分かけて滴下した。その後、3.6gのイオン交換水を加え、室温で2時間攪拌し、前駆溶液を調製した。
(2) Preparation of Beta Zeolite Precursor Solution 4.1 g of SiO 2 (fumed Silica, specific surface area 200 m 2 / g) was dissolved in 10.3 g of TEAOH and stirred for 1 hour to form a uniform colloid.
0.3 g of ((CH 3 ) 2 CHO) 3 Al (Aluminium triisopropoxide) was dissolved in 4.1 g of TEAOH and added dropwise to the SiO 2 / TEAOH solution over 15 minutes. Thereafter, 3.6 g of ion-exchanged water was added and stirred at room temperature for 2 hours to prepare a precursor solution.

(3)粒子状固体の前処理
前記で調製した粒子状固体1gを25質量%TEAOH水溶液5g中に入れ、104℃で4時間還流した。
(3) Pretreatment of particulate solid 1 g of the particulate solid prepared above was put in 5 g of 25% by mass TEAOH aqueous solution and refluxed at 104 ° C. for 4 hours.

(4)水熱合成反応
前処理を行った粒子状固体を、濾紙で表面のエタノールを吸い取った後、水熱合成反応リアクターに入れた。次に、調製したベータゼオライト前駆溶液をリアクター入れ、155℃で3日間水熱合成反応を行った。
回転は、最初は2rpmで5時間回転させ、その後は、1時間停止の後2rpmで2分間回転、という操作を60回繰り返した。水熱合成反応終了後、反応生成物をリアクターから取り出し、イオン交換水で洗液のpHが8以下になるまで洗浄した。洗浄後、120℃で12時間乾燥し、その後、マッフル炉で20℃から550℃まで8時間かけて昇温させ、550℃で5時間保持し焼成した。
以上の工程により、ベータゼオライト皮膜を有する粒子状固体触媒を調製した。
(4) Hydrothermal synthesis reaction The particulate solid that had been pretreated was blotted of ethanol on the surface with a filter paper, and then placed in a hydrothermal synthesis reaction reactor. Next, the prepared beta zeolite precursor solution was put into a reactor, and a hydrothermal synthesis reaction was performed at 155 ° C. for 3 days.
The rotation was initially rotated at 2 rpm for 5 hours, and thereafter, the operation of stopping for 1 hour and then rotating at 2 rpm for 2 minutes was repeated 60 times. After completion of the hydrothermal synthesis reaction, the reaction product was taken out of the reactor and washed with ion-exchanged water until the pH of the washing solution became 8 or less. After washing, it was dried at 120 ° C. for 12 hours, and then heated from 20 ° C. to 550 ° C. over 8 hours in a muffle furnace, held at 550 ° C. for 5 hours, and fired.
Through the above steps, a particulate solid catalyst having a beta zeolite film was prepared.

[実施例2]
粒子状固体の前処理工程において、TEAOH水溶液の還流処理後に、イオン交換水での洗浄及びエタノールへの浸漬を行わずに、その他の工程は、実施例1と同様の操作で触媒を調製した。
[Example 2]
In the pretreatment step of the particulate solid, after the TEAOH aqueous solution was refluxed, the catalyst was prepared in the same manner as in Example 1 except that washing with ion-exchanged water and immersion in ethanol were not performed.

[比較例1]
粒子状固体の前処理工程を行わなず、その他は実施例1と同様の操作で触媒を調製した。
[Comparative Example 1]
A catalyst was prepared in the same manner as in Example 1 except that the pretreatment step of the particulate solid was not performed.

[比較例2]
水熱合成反応の工程において、回転と停止の繰り返しを行わずに、2rpmで回転させ続けて水熱合成反応を行い、その他は実施例1と同様の操作で触媒を調製した。
[Comparative Example 2]
In the hydrothermal synthesis reaction step, the catalyst was prepared in the same manner as in Example 1 except that the hydrothermal synthesis reaction was carried out by continuing to rotate at 2 rpm without repeating rotation and stopping.

実施例1〜2及び比較例1〜2において得られた触媒について、表面のベータゼオライト膜の生成の有無をXRD及びSEMで確認した。また、粒子状固体中のCo含有量をEDXにより調べた。その結果を表1に示す。
表1に示されるとおり、粒子状固体の前処理工程がない場合(比較例1)はベータゼオライト膜が形成されず、かつCoの流出が大きい。また、水熱合成反応時において攪拌の回転と停止を繰り返さない場合(比較例2)には、Coの流出は抑制されるものの、ベータゼオライト膜が生成しなかった。実施例2のように、前処理後にイオン交換水での洗浄及びエタノールへの浸漬を行わない場合には、ベータゼオライト膜は形成するものの、Coの流出がやや見られた。
実施例1の操作に従って調製を行った場合は、ベータゼオライト膜が生成し、かつ粒子状固体中のCo量も低下しないことが分かった。
About the catalyst obtained in Examples 1-2 and Comparative Examples 1-2, the presence or absence of the production | generation of the surface beta zeolite film was confirmed by XRD and SEM. Further, the Co content in the particulate solid was examined by EDX. The results are shown in Table 1.
As shown in Table 1, when there is no pretreatment step for particulate solid (Comparative Example 1), the beta zeolite membrane is not formed and the outflow of Co is large. Further, when the rotation and stop of stirring were not repeated during the hydrothermal synthesis reaction (Comparative Example 2), the outflow of Co was suppressed, but a beta zeolite membrane was not formed. As in Example 2, when washing with ion-exchanged water and immersion in ethanol were not performed after pretreatment, a beta zeolite membrane was formed, but Co outflow was slightly observed.
It was found that when prepared according to the procedure of Example 1, a beta zeolite membrane was formed and the amount of Co in the particulate solid was not reduced.

Figure 0004648844
Figure 0004648844

Claims (5)

(A)水熱合成反応を行う前に、粒子状固体をベータゼオライトの水熱合成反応時に用いるテンプレートを含んだ水溶液で還流処理を行う工程、(B)還流処理された粒子状固体を、ベータゼオライトの前駆溶液と共にリアクターに入れ、攪拌と停止を繰り返して水熱合成反応を行う工程、及び(C)水熱合成反応後に、洗浄、乾燥および焼成処理を行う工程、を包含することを特徴とする粒子状固体の表面をベータゼオライトからなる膜でコーティングしてなる触媒の製造方法。(A) A step of refluxing the particulate solid with an aqueous solution containing a template used in the hydrothermal synthesis reaction of beta zeolite before performing the hydrothermal synthesis reaction; (B) Including a step of performing a hydrothermal synthesis reaction by repeating stirring and stopping together with a zeolite precursor solution, and (C) a step of performing washing, drying and calcining after the hydrothermal synthesis reaction. A method for producing a catalyst obtained by coating the surface of a particulate solid to be coated with a membrane made of beta zeolite. 粒子状固体がアルミナを主成分とする無機酸化物からなることを特徴とする請求項1に記載の触媒の製造方法2. The method for producing a catalyst according to claim 1, wherein the particulate solid is made of an inorganic oxide mainly composed of alumina. 粒子状固体がCoを含むことを特徴とする請求項1または2に記載の触媒の製造方法The method for producing a catalyst according to claim 1 or 2, wherein the particulate solid contains Co. 粒子状固体が、さらにRu、Zr、Re、Os及びそれらの組合せから成る群より選択される金属を含むことを特徴とする請求項3に記載の触媒の製造方法The method for producing a catalyst according to claim 3, wherein the particulate solid further contains a metal selected from the group consisting of Ru, Zr, Re, Os, and combinations thereof. 工程(A)において、ベータゼオライトのテンプレートとして、水酸化テトラエチルアンモニウムを用いることを特徴とする請求項1乃至4のいずれかに記載の触媒の製造方法 The method for producing a catalyst according to any one of claims 1 to 4, wherein in the step (A), tetraethylammonium hydroxide is used as a template of beta zeolite .
JP2006020469A 2006-01-30 2006-01-30 Method for producing a catalyst for producing a liquid fuel Expired - Fee Related JP4648844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006020469A JP4648844B2 (en) 2006-01-30 2006-01-30 Method for producing a catalyst for producing a liquid fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006020469A JP4648844B2 (en) 2006-01-30 2006-01-30 Method for producing a catalyst for producing a liquid fuel

Publications (2)

Publication Number Publication Date
JP2007196187A JP2007196187A (en) 2007-08-09
JP4648844B2 true JP4648844B2 (en) 2011-03-09

Family

ID=38451308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006020469A Expired - Fee Related JP4648844B2 (en) 2006-01-30 2006-01-30 Method for producing a catalyst for producing a liquid fuel

Country Status (1)

Country Link
JP (1) JP4648844B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4889307B2 (en) * 2006-01-30 2012-03-07 Jx日鉱日石エネルギー株式会社 Method for producing liquid fuel using capsule catalyst
JP6830828B2 (en) * 2016-02-15 2021-02-17 日本製鉄株式会社 A catalyst for producing a hydrocarbon from a synthetic gas, a method for producing a catalyst for producing a hydrocarbon from a synthetic gas, and a method for producing a hydrocarbon.
JP7129063B2 (en) * 2018-11-28 2022-09-01 日揮触媒化成株式会社 Zeolite containing transition metal near surface and method for producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005082530A1 (en) * 2004-01-29 2005-09-09 Institut Francais Du Petrole Catalyst in the form of grains comprising an acidic porous core surrounded by a uniform outer layer
JP2007197628A (en) * 2006-01-30 2007-08-09 Nippon Oil Corp Method for producing liquid fuel by using capsule catalyst

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8809214D0 (en) * 1988-04-19 1988-05-25 Exxon Chemical Patents Inc Reductive alkylation process
JP3464079B2 (en) * 1995-06-28 2003-11-05 新日本石油株式会社 Method for hydroisomerization of benzene-containing hydrocarbon oil
JPH11292651A (en) * 1998-04-03 1999-10-26 Nippon Sharyo Seizo Kaisha Ltd Zeolite-forming porous body and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005082530A1 (en) * 2004-01-29 2005-09-09 Institut Francais Du Petrole Catalyst in the form of grains comprising an acidic porous core surrounded by a uniform outer layer
JP2007519518A (en) * 2004-01-29 2007-07-19 アンスティテュ フランセ デュ ペトロール A catalyst in granular form containing an acidic porous core surrounded by a uniform outer layer
JP2007197628A (en) * 2006-01-30 2007-08-09 Nippon Oil Corp Method for producing liquid fuel by using capsule catalyst

Also Published As

Publication number Publication date
JP2007196187A (en) 2007-08-09

Similar Documents

Publication Publication Date Title
JP5759447B2 (en) Method for producing Fischer-Tropsch synthesis catalyst and method for producing hydrocarbon
WO2015161701A1 (en) Cobalt-based fischer-tropsch synthesis catalyst coated with mesoporous materials and preparation method therefor
JP5947912B2 (en) Cobalt-based Fischer-Tropsch synthesized nanocatalyst for porous material confinement system and its preparation method
JP5676120B2 (en) Process for producing activated Fischer-Tropsch synthesis catalyst and process for producing hydrocarbon
CN103100415A (en) Catalyst with active component nano particles embedded in molecular sieve to crystallize, method and application
BRPI0808255B1 (en) PRECURSOR FOR FISCHER-TROPSCH CATALYST, CATALYST, USE OF A CATALYST AND METHOD OF PREPARING A CATALYST PRECURSOR
WO2012135993A1 (en) Catalyst for converting syngas into high-grade gasoline fraction with high selectivity and preparation method thereof
US11278870B2 (en) Cobalt-containing catalyst composition
CN106140273A (en) A kind of cladded type cobalt-base catalyst for Fiscber-Tropscb synthesis and preparation thereof and application
CN101098752B (en) Cobalt-based catalyst for fischer-tropsch synthesis
JP4889307B2 (en) Method for producing liquid fuel using capsule catalyst
Martín et al. MOF‐derived/zeolite hybrid catalyst for the production of light olefins from CO2
JP5795483B2 (en) Activated Fischer-Tropsch synthesis reaction catalyst and hydrocarbon production method
JP4648844B2 (en) Method for producing a catalyst for producing a liquid fuel
WO2008147013A2 (en) Preparation methods for liquid hydrocarbons from syngas by using the zirconia-aluminum oxide-based fischer-tropsch catalysts
JP5424206B2 (en) Method for producing liquid hydrocarbon
US7056955B2 (en) Attrition resistant bulk metal catalysts and methods of making and using same
CN107537489B (en) Porous composite catalyst, preparation method and application thereof
CN114588934A (en) Silicon-modified indium-based oxide-molecular sieve composite material and preparation method and application thereof
JP4769173B2 (en) Catalyst for producing fuel and method for producing the same
WO2024048119A1 (en) Catalyst, method for manufacturing same, and method for manufacturing liquid fuel
WO2011108348A1 (en) Method for manufacturing a regenerated fischer-tropsch synthesis catalyst, and hydrocarbon manufacturing method
JP5311345B2 (en) Method for producing oxygen-containing compound
CN105833898A (en) Carbon tube microcapsule catalyst and its preparation method and use
JP2008239878A (en) Method for manufacturing hydrocarbon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4648844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees