JP5311345B2 - Method for producing oxygen-containing compound - Google Patents

Method for producing oxygen-containing compound Download PDF

Info

Publication number
JP5311345B2
JP5311345B2 JP2009059360A JP2009059360A JP5311345B2 JP 5311345 B2 JP5311345 B2 JP 5311345B2 JP 2009059360 A JP2009059360 A JP 2009059360A JP 2009059360 A JP2009059360 A JP 2009059360A JP 5311345 B2 JP5311345 B2 JP 5311345B2
Authority
JP
Japan
Prior art keywords
catalyst
methanol
zsm
particulate solid
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009059360A
Other languages
Japanese (ja)
Other versions
JP2010209038A (en
Inventor
浩幸 関
範立 椿
嘉治 米山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyama University
Eneos Corp
Original Assignee
Toyama University
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyama University, JXTG Nippon Oil and Energy Corp filed Critical Toyama University
Priority to JP2009059360A priority Critical patent/JP5311345B2/en
Publication of JP2010209038A publication Critical patent/JP2010209038A/en
Application granted granted Critical
Publication of JP5311345B2 publication Critical patent/JP5311345B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は含酸素化合物の製造方法に関し、詳しくは一酸化炭素(CO)と水素を主成分とする合成ガスを原料としてメタノールおよびジメチルエーテルを同時に製造する方法に関する。   The present invention relates to a method for producing an oxygen-containing compound, and more particularly to a method for simultaneously producing methanol and dimethyl ether using a synthesis gas mainly composed of carbon monoxide (CO) and hydrogen.

近年、環境保全の必要性が求められ、硫黄分および芳香族炭化水素の含有量が低いクリーンな液体燃料への要求が急速に高まってきている。また、埋蔵量に限りのある原油資源を有効に使う必要性より、石油に代替しうるエネルギー源の開発が望まれてきている。このような要望に応える技術として、天然ガス、バイオマス、石炭、重質油などを原料に用い、硫黄分および芳香族炭化水素をほとんど含まない燃料を製造するプロセスがますます注目されるようになってきている。
原料に違いがあるものの、これらは初めに改質反応またはガス化反応により水素と一酸化炭素から成る合成ガスに変換される。生成した合成ガスは、フィッシャー・トロプシュ合成によりパラフィン系燃料に変換されたり、Cu/Zn系触媒によりメタノールに変換された後、軽油代替として使用が期待されるジメチルエーテル(DME)へと変換される。
化学品の観点から見た場合、合成ガスから製造されるメタノールはホルムアルデヒドや酢酸の原料として付加価値の高い原料である。
In recent years, the need for environmental conservation has been demanded, and the demand for clean liquid fuels with low contents of sulfur and aromatic hydrocarbons has rapidly increased. In addition, the development of energy sources that can replace oil has been desired due to the necessity of effectively using crude oil resources with limited reserves. As a technology that meets these demands, a process that uses natural gas, biomass, coal, heavy oil, and other raw materials to produce fuels that contain almost no sulfur and aromatic hydrocarbons is gaining more and more attention. It is coming.
Although there are differences in the raw materials, these are first converted into synthesis gas composed of hydrogen and carbon monoxide by a reforming reaction or gasification reaction. The produced synthesis gas is converted into paraffinic fuel by Fischer-Tropsch synthesis, or converted to methanol by a Cu / Zn-based catalyst, and then converted to dimethyl ether (DME), which is expected to be used as a light oil substitute.
From the chemical point of view, methanol produced from synthesis gas is a raw material with high added value as a raw material for formaldehyde and acetic acid.

合成ガスからメタノールへの変換においてはCu/Znを活性成分とした触媒や、そこにCrが添加された触媒が一般に用いられ、その合成方法に関しては、たとえば非特許文献1を挙げることができる。
また、合成ガスからDMEへの変換ではメタノールを合成した後、ZSM−5のようなゼオライト触媒を用いてDMEを製造するのが一般的である。その合成方法に関しては、たとえば非特許文献2を挙げることができる。
上述のように、DMEはメタノールを経由する2段プロセスで製造されるのが一般的であるが、装置の建設コストが低く、経済性の高い1段反応プロセスが提案されている。実例は少ないものの、1段プロセス用としてCu/Zn系触媒をコアとし、その外表面にZSM−5膜でコーティングした、所謂カプセル触媒の調製法が特許文献1に提示されている。
In the conversion from synthesis gas to methanol, a catalyst having Cu / Zn as an active component or a catalyst to which Cr is added is generally used, and Non-Patent Document 1 can be cited as an example of the synthesis method.
In the conversion from synthesis gas to DME, it is common to synthesize methanol and then produce DME using a zeolite catalyst such as ZSM-5. As for the synthesis method, Non-Patent Document 2, for example, can be mentioned.
As described above, DME is generally produced in a two-stage process via methanol, but a one-stage reaction process with low equipment construction cost and high economy has been proposed. Although there are few examples, Patent Document 1 proposes a so-called capsule catalyst preparation method in which a Cu / Zn-based catalyst is used as a core for a one-stage process and the outer surface thereof is coated with a ZSM-5 film.

特開2008−126131号公報JP 2008-126131 A

「ヒューエル(Fuel)」,(イギリス),エルセビア(ELSEVIER)社,2002年,第81巻,p.125−127“Fuel”, (UK), ELSEVIER, 2002, Vol. 81, p. 125-127 「アプライド キャタリシス エー:ジェネラル(Applied Catalysis A:General)」,(オランダ),エルセビア(ELSEVIER)社,2004年,第264巻,p.37−41“Applied Catalysis A: General”, (Netherlands), ELSEVIER, 2004, Vol. 264, p. 37-41

燃料として使用するDMEと、化学品としての価値の高いメタノールとを合成ガスから1段で同時に製造し得ることはプロセスの経済上極めて重要である。
DMEおよびメタノールを収率良く同時に製造するためには触媒の開発は不可欠である。しかしながら、DMEおよびメタノールの同時製造に適した合成ガスからの1段製造用触媒は未だ無いに等しく、プロセスの経済性を向上するために1段製造プロセス用の触媒開発が求められている。即ち、DMEおよびメタノールを同時に高収率で製造することが出来る触媒が必要である。
特許文献1に開示されているカプセル触媒は、合成ガスからメタノールを合成するCu/Zn系触媒の外表面に、メタノールからDMEを合成するゼオライト膜をコーティングしたものである。即ち、触媒粒子の外表面がメタノール反応用触媒で覆われているため、内部で生成したメタノールが拡散により触媒系外に出るまでにメタノール反応触媒と接触する為、反応が効率よく行える。
しかしながら、特許文献1に開示されている調製法で得られるカプセル触媒は、DME収率がまだ十分とはいえず、またメタノールとの同時製造の観点からも満足いくものではなかった。したがって、更なる触媒の改良が望まれていた。
It is extremely important in the economics of the process that DME used as fuel and methanol having high chemical value can be produced simultaneously from synthesis gas in one stage.
In order to simultaneously produce DME and methanol with high yield, development of a catalyst is indispensable. However, there is still no single-stage production catalyst from synthesis gas suitable for the simultaneous production of DME and methanol, and development of a catalyst for the single-stage production process is required in order to improve the economics of the process. That is, a catalyst capable of simultaneously producing DME and methanol in a high yield is required.
The capsule catalyst disclosed in Patent Document 1 is obtained by coating the outer surface of a Cu / Zn-based catalyst that synthesizes methanol from synthesis gas with a zeolite membrane that synthesizes DME from methanol. That is, since the outer surface of the catalyst particles is covered with the catalyst for methanol reaction, the methanol produced inside comes into contact with the methanol reaction catalyst before coming out of the catalyst system by diffusion, so that the reaction can be performed efficiently.
However, the capsule catalyst obtained by the preparation method disclosed in Patent Document 1 is not yet satisfactory in DME yield, and is not satisfactory from the viewpoint of simultaneous production with methanol. Therefore, further catalyst improvement has been desired.

本発明者らは鋭意検討を行った結果、クロムおよび亜鉛を含む粒子状固体を核として、その外表面を水熱合成により形成されたZSM−5膜でコーティングした触媒を用いることにより、DMEおよびメタノールを同時に高収率で製造できることを見出し、上記の課題を解決するに至った。   As a result of intensive studies, the present inventors have found that by using a catalyst in which a particulate solid containing chromium and zinc is used as a core and an outer surface thereof is coated with a ZSM-5 film formed by hydrothermal synthesis, DME and It has been found that methanol can be produced at a high yield at the same time, and the above problems have been solved.

すなわち、本発明は、クロムおよび亜鉛を含む粒子状固体の表面を水熱合成により形成されたZSM−5膜でコーティングしてなる触媒を用いて、水素および一酸化炭素を含むガスからメタノールおよびジメチルエーテルを製造する方法に関する。   That is, the present invention uses methanol and dimethyl ether from a gas containing hydrogen and carbon monoxide using a catalyst obtained by coating the surface of a particulate solid containing chromium and zinc with a ZSM-5 membrane formed by hydrothermal synthesis. It relates to a method of manufacturing.

本発明の方法により、合成ガスから1段でDMEおよびメタノールを同時に高収率で製造できるため、プロセスの経済性を向上することができる。   According to the method of the present invention, DME and methanol can be simultaneously produced from synthesis gas in a single stage in a high yield, so that the economics of the process can be improved.

以下に本発明を詳述する。
本発明において用いる触媒は、クロムおよび亜鉛を含む粒子状固体の表面を水熱合成で形成されるZSM−5膜でコーティングした触媒である。
The present invention is described in detail below.
The catalyst used in the present invention is a catalyst obtained by coating the surface of a particulate solid containing chromium and zinc with a ZSM-5 film formed by hydrothermal synthesis.

クロムおよび亜鉛を含む粒子状固体は合成ガスからメタノールを製造する触媒である。粒子状固体中のクロム(Cr)と酸化亜鉛(ZnO)のモル比率は特に制限されないが、通常Cr:ZnO=20:80〜80:20である。この範囲外の割合の場合、CO転化率が低下する傾向にあるので、好ましくない。この粒子状固体にSi、Cなどが含まれていても本発明に悪影響を及ぼすことはない。しかしながら、Cuが混入または添加された場合はCO転化率およびDME選択性は向上するものの、メタノール選択性が著しく減少するので好ましくない。   Particulate solids containing chromium and zinc are catalysts for producing methanol from synthesis gas. The molar ratio of chromium (Cr) and zinc oxide (ZnO) in the particulate solid is not particularly limited, but is usually Cr: ZnO = 20: 80 to 80:20. If the ratio is out of this range, the CO conversion rate tends to decrease, which is not preferable. Even if Si, C, etc. are contained in this particulate solid, the present invention is not adversely affected. However, when Cu is mixed or added, the CO conversion rate and DME selectivity are improved, but the methanol selectivity is remarkably reduced, which is not preferable.

使用する粒子状固体の平均粒子径については特に制限はないが、通常50μm〜20mm、好ましくは100μm〜5mmのものをプロセスに応じ適宜選択して使用する。   Although there is no restriction | limiting in particular about the average particle diameter of the particulate solid to be used, Usually, the thing of 50 micrometers-20 mm, Preferably 100 micrometers-5 mm is suitably selected and used according to a process.

本発明において用いるクロムおよび亜鉛を含む粒子状固体は、Cuを含まない限り市販の触媒を使用することが出来る。また、共沈殿法により調製したものを使用することも可能である。クロムおよび亜鉛を含んだメタノール合成触媒の調製に関しては、文献(「アプライド キャタリシス エー:ジェネラル(Applied Catalysis A:General)」,(オランダ),エルセビア(ELSEVIER)社,2006年,第309巻,p.28−32)に開示されている。   As the particulate solid containing chromium and zinc used in the present invention, a commercially available catalyst can be used as long as it does not contain Cu. Moreover, what was prepared by the coprecipitation method can also be used. For the preparation of methanol synthesis catalysts containing chromium and zinc, the literature ("Applied Catalysis A: General", (Netherlands), ELSEVIER, 2006, Vol. 309, p. 28-32).

クロムおよび亜鉛を含む粒子状固体の表面を水熱合成によりZSM−5膜でコーティングする方法としては、下記の工程(A)〜(C)を包含する。
(A)水熱合成用のゾル溶液を調製する工程
(B)ゾル溶液を用いて水熱合成を行う工程
(C)水熱合成反応後に、洗浄、乾燥および焼成処理を行う後処理工程
The method of coating the surface of a particulate solid containing chromium and zinc with a ZSM-5 film by hydrothermal synthesis includes the following steps (A) to (C).
(A) Step for preparing a sol solution for hydrothermal synthesis (B) Step for performing hydrothermal synthesis using the sol solution (C) Post-processing step for performing washing, drying and firing after the hydrothermal synthesis reaction

以下に各工程について説明する。
(A)ゾル溶液の調製工程
ポリテトラフルオロエチレン(以下、PTFEと表記する。)製の瓶に蒸留水、型剤(10%テトラプロピルアンモニウムハイドロオキサイド溶液:TPAOH)、エタノール、テトラエチルオルソシリケート(TEOS)、硝酸を順に入れ、マグネティックスターラーで攪拌し、透明なゾル溶液を調製する。
通常、蒸留水100gに対してTPAOHは3〜15g使用する。3g未満ではZSM−5の膜ができにくくなる傾向にあり、また15gを超えると粒子状固体が溶解する傾向にあるので好ましくない。
エタノールは蒸留水100gに対して通常5〜40g使用する。40gを超えると膜ができにくくなる傾向にあるので好ましくない。
TEOSは蒸留水100gに対して通常10〜50gの範囲で使用する。
硝酸は蒸留水100gに対して通常0.1〜4.0gの範囲で使用する。
ゾル溶液を調製する為の攪拌混合は、80℃以下の温度範囲で、好ましくは15〜50℃の範囲で行うことができる。80℃を超えると蒸留水の一部が気化し、溶液の組成が変化する傾向にあるので好ましくない。また、攪拌時間は1〜10時間が好ましい。攪拌速度に制限は無いが、攪拌が激しいほどより早く均一なゾル溶液を調製することができるので好ましい。
Each step will be described below.
(A) Preparation process of sol solution
Into a bottle made of polytetrafluoroethylene (hereinafter referred to as PTFE), distilled water, mold (10% tetrapropylammonium hydroxide solution: TPAOH), ethanol, tetraethylorthosilicate (TEOS), nitric acid are placed in this order. Stir with a stirrer to prepare a clear sol solution.
Usually, 3-15 g of TPAOH is used for 100 g of distilled water. If it is less than 3 g, it tends to be difficult to form a ZSM-5 film, and if it exceeds 15 g, the particulate solid tends to dissolve, such being undesirable.
Ethanol is usually used in an amount of 5 to 40 g per 100 g of distilled water. If it exceeds 40 g, it tends to be difficult to form a film.
TEOS is usually used in a range of 10 to 50 g with respect to 100 g of distilled water.
Nitric acid is usually used in the range of 0.1 to 4.0 g with respect to 100 g of distilled water.
The stirring and mixing for preparing the sol solution can be performed in a temperature range of 80 ° C. or less, preferably in the range of 15 to 50 ° C. If it exceeds 80 ° C., some of the distilled water is vaporized and the composition of the solution tends to change, such being undesirable. The stirring time is preferably 1 to 10 hours. The stirring speed is not limited, but vigorous stirring is preferable because a uniform sol solution can be prepared faster.

(B)水熱合成工程
(シリカZSM−5膜合成)
PTFE製耐圧容器にゾル溶液と核となるクロムおよび亜鉛を含む粒子状固体(Cr/Zn触媒)とを入れ、オートクレーブ中で高温下で水熱合成を行う。ゾル溶液と粒子状固体の重量割合は重要であり、粒子状固体に対してゾル溶液は重量で6倍以上、好ましくは10倍以上、より好ましくは15倍以上使用する。6倍未満の場合、ZSM−5膜ができにくい傾向にあり好ましくない。
水熱合成における温度は通常140〜240℃であり、好ましくは160〜200℃である。
また、水熱合成時間は通常12〜72時間以上であり、好ましくは20〜40時間である。12時間未満ではZSM−5膜が一部生成するものの、粒子状固体を完全に覆わない傾向にあるので好ましくない。水熱合成時の攪拌速度は1分間当たり1〜10回転が好ましく、より好ましくは2〜3回転である。1分間あたりの攪拌速度が10回転を超えるとZSM−5膜が形成しにくくなる傾向にあるので好ましくない。この水熱合成によりシリカから成るZSM−5膜を形成することが出来る。
(B) Hydrothermal synthesis process (silica ZSM-5 membrane synthesis)
A PTFE pressure vessel is charged with a sol solution and particulate solid (Cr / Zn catalyst) containing chromium and zinc as nuclei, and hydrothermal synthesis is performed at high temperature in an autoclave. The weight ratio between the sol solution and the particulate solid is important, and the sol solution is used 6 times or more, preferably 10 times or more, more preferably 15 times or more by weight with respect to the particulate solid. If it is less than 6 times, it tends to be difficult to form a ZSM-5 film, which is not preferable.
The temperature in hydrothermal synthesis is usually 140 to 240 ° C, preferably 160 to 200 ° C.
Moreover, hydrothermal synthesis time is 12 to 72 hours or more normally, Preferably it is 20 to 40 hours. If it is less than 12 hours, a ZSM-5 film is partially formed, but it is not preferable because it tends not to completely cover the particulate solid. The stirring speed during hydrothermal synthesis is preferably 1 to 10 rotations per minute, more preferably 2 to 3 rotations. If the stirring speed per minute exceeds 10 revolutions, it tends to be difficult to form a ZSM-5 film, which is not preferable. A ZSM-5 film made of silica can be formed by this hydrothermal synthesis.

(アルミノシリケートZSM−5膜合成)
上記水熱合成の後、オートクレーブからPTFE製耐圧容器を取り出し、デカンテーションにより、上澄み液を捨てる。容器内に残った固形物に、先と同様の組成を有するゾル溶液に硝酸アルミニウムを溶解させた溶液を加え、再び同条件化で水熱合成を行なう。この時の硝酸アルミニウム量は、ゾル溶液に溶解する範囲内であれば特に問題ないが、好ましくは0.1〜10重量%である。この合成によりアルミノシリケートからなるZSM−5膜を作成することが出来る。この水熱合成の回数は特に制限は無いが、通常1〜2回行う。3回以上行うとZSM−5膜は形成されるものの、DME収率が著しく減少する傾向にあるので好ましくない。
(Aluminosilicate ZSM-5 membrane synthesis)
After the hydrothermal synthesis, the PTFE pressure vessel is taken out from the autoclave, and the supernatant is discarded by decantation. A solution in which aluminum nitrate is dissolved in a sol solution having the same composition as above is added to the solid matter remaining in the container, and hydrothermal synthesis is again performed under the same conditions. The amount of aluminum nitrate at this time is not particularly problematic as long as it is within the range of dissolving in the sol solution, but is preferably 0.1 to 10% by weight. By this synthesis, a ZSM-5 film made of aluminosilicate can be produced. The number of hydrothermal syntheses is not particularly limited, but is usually 1 to 2 times. If it is carried out three times or more, a ZSM-5 film is formed, but the DME yield tends to be remarkably reduced, which is not preferable.

(C)後処理工程
水熱合成終了後、デカンテーションにより上澄み液を除去した後、洗浄液のpHが7になるまで固体を蒸留水で洗浄する。このとき洗浄を数回に分けて行うと効率が良い。
その後、120℃で3時間以上、好ましくは12時間以上空気中で乾燥し、最後に400〜550℃、好ましくは480〜550℃で5時間以上空気中で焼成を行い、型剤を除去する。
(C) Post-treatment step After completion of hydrothermal synthesis, the supernatant liquid is removed by decantation, and then the solid is washed with distilled water until the pH of the washing liquid becomes 7. At this time, it is efficient to perform the cleaning in several times.
Then, it is dried in air at 120 ° C. for 3 hours or longer, preferably 12 hours or longer, and finally baked in air at 400 to 550 ° C., preferably 480 to 550 ° C. for 5 hours to remove the mold.

以上の方法により、クロムおよび亜鉛を含む粒子状固体の表面をアルミノシリケートからなるZSM−5膜でコーティングした触媒が得られる。   By the above method, a catalyst in which the surface of a particulate solid containing chromium and zinc is coated with a ZSM-5 film made of aluminosilicate can be obtained.

DMEおよびメタノールを同時に製造する反応は、流通式固定床反応装置を用いて行うことができる。即ち、触媒を反応塔に充填し、COおよび水素を含む合成ガスを反応塔に流通させて所定の条件下で反応を行う。反応条件として、温度は通常250〜420℃、好ましくは300〜400℃である。温度が250℃未満ではCO転化率が低く、また420℃を超えるとDME収率が増加するものの、メタノール収率が著しく減少するので好ましくない。圧力は2〜10MPaを挙げることができ、好ましくは3〜7MPaである。2MPa未満ではメタノールおよびDME収率が低くなる傾向にあり、また10MPaを超えるとメタノール収率が大きく減少する傾向にあるので好ましくない。   The reaction for simultaneously producing DME and methanol can be carried out using a flow-type fixed bed reactor. That is, a catalyst is filled in a reaction tower, and a synthesis gas containing CO and hydrogen is circulated through the reaction tower to carry out the reaction under predetermined conditions. As reaction conditions, the temperature is usually 250 to 420 ° C, preferably 300 to 400 ° C. If the temperature is less than 250 ° C., the CO conversion is low, and if it exceeds 420 ° C., the DME yield increases, but the methanol yield is remarkably reduced. The pressure can be 2 to 10 MPa, preferably 3 to 7 MPa. If it is less than 2 MPa, the yields of methanol and DME tend to be low, and if it exceeds 10 MPa, the methanol yield tends to decrease greatly, such being undesirable.

触媒量と合成ガス流速の比(W/F)は、0.2〜250g・h/molの範囲であり、0.2g・h/mol未満ではCO転化率が低く、また250g・h/molを超えると単位時間当たりのDMEおよびメタノール収率が低下するので、プロセスの経済性を考えると実用的ではない。   The ratio of catalyst amount to synthesis gas flow rate (W / F) is in the range of 0.2 to 250 g · h / mol, and the CO conversion is low at less than 0.2 g · h / mol, and 250 g · h / mol. Since the yield of DME and methanol per unit time will be reduced if it exceeds the range, it is not practical in view of the economics of the process.

以下に実施例および比較例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these.

[実施例1]
共沈法により得られたCr/Zn触媒(Cr:ZnO=1:2(モル比))を0.85〜1.7mmの粒径に粉砕しコアとなる粒子状固体として使用した。
PTFE瓶に蒸留水100g、TPAOH4.6g、エタノール11.8g、TEOS18.5g、硝酸0.7gを順に入れ、30℃に加温しながらマグネティックスターラーで6時間攪拌し、透明なゾル溶液135.6gを得た。
水熱合成用PTFE製耐圧容器にゾル溶液(46g)とCr/Zn触媒(2g)とを同時に入れ、容器を1分間当たり2回の速度で回転させながら180℃で24時間、水熱合成を行った。合成後、容器から上澄み液をデカンテーションで除去した。
次に、先に調製したゾル溶液(46g)に硝酸アルミニウム0.35gを溶解させ、容器内に入れた後、再び同条件下で水熱合成を行った。合成後、上澄み液をデカンテーションで除去した後、得られた固体を蒸留水で5回洗浄(1回当たり100ml使用)した。 その後、120℃で12時間乾燥を行った。最後に500℃で、5時間空気中で焼成し、型剤の除去を行った。
このようにして得られたカプセル触媒の蛍光X線分析を行い、ZSM−5膜の形成を確認した。
メタノールおよびDME合成の反応は固定床流通式反応装置にカプセル触媒1gを充填し、合成ガスを主成分とする混合ガス(Ar:CO:CO:H=3:32:5:60(容量%))を流通して、W/F=13g・h/mol、圧力5MPa、温度300℃、325℃および350℃で行った。得られたメタノールおよびDMEの選択性を表1に示す。
[Example 1]
A Cr / Zn catalyst (Cr: ZnO = 1: 2 (molar ratio)) obtained by the coprecipitation method was pulverized to a particle size of 0.85 to 1.7 mm and used as a particulate solid serving as a core.
In a PTFE bottle, 100 g of distilled water, 4.6 g of TPAOH, 11.8 g of ethanol, 18.5 g of TEOS, and 0.7 g of nitric acid were added in this order, and the mixture was stirred for 6 hours with a magnetic stirrer while heating to 30 ° C. to obtain 135.6 g of a transparent sol solution. Got.
A sol solution (46 g) and a Cr / Zn catalyst (2 g) are placed in a PTFE pressure vessel for hydrothermal synthesis at the same time, and hydrothermal synthesis is carried out at 180 ° C. for 24 hours while rotating the vessel twice per minute. went. After the synthesis, the supernatant was removed from the container by decantation.
Next, 0.35 g of aluminum nitrate was dissolved in the previously prepared sol solution (46 g), placed in a container, and then hydrothermal synthesis was performed again under the same conditions. After the synthesis, the supernatant was removed by decantation, and the obtained solid was washed 5 times with distilled water (use 100 ml each time). Thereafter, drying was performed at 120 ° C. for 12 hours. Finally, the mold was removed by baking in air at 500 ° C. for 5 hours.
The capsule catalyst thus obtained was subjected to fluorescent X-ray analysis, and formation of a ZSM-5 film was confirmed.
For the reaction of methanol and DME synthesis, 1 g of the capsule catalyst is charged in a fixed bed flow type reaction apparatus, and a mixed gas (Ar: CO: CO 2 : H 2 = 3: 32: 5: 60 (volume) %)), And W / F = 13 g · h / mol, pressure 5 MPa, temperature 300 ° C., 325 ° C. and 350 ° C. The selectivity of the obtained methanol and DME is shown in Table 1.

[比較例1]
触媒にCr/Zn触媒のみを用いたこと以外は、実施例1と同条件下でメタノールおよびDMEの合成を行なった。得られたメタノールおよびDMEの選択性を表1に示す。
[Comparative Example 1]
Methanol and DME were synthesized under the same conditions as in Example 1 except that only the Cr / Zn catalyst was used as the catalyst. The selectivity of the obtained methanol and DME is shown in Table 1.

[比較例2]
触媒にCr/Zn触媒およびシリカ/アルミナ比が100であるZSM−5の物理混合物(Cr/Zn触媒:ZSM−5=10:1(質量比))を用いたこと以外は、実施例1と同条件下でメタノールおよびDMEの合成を行なった。得られたメタノールおよびDMEの選択性を表1に示す。
[Comparative Example 2]
Example 1 except that a physical mixture of Cr / Zn catalyst and ZSM-5 having a silica / alumina ratio of 100 (Cr / Zn catalyst: ZSM-5 = 10: 1 (mass ratio)) was used as the catalyst. Methanol and DME were synthesized under the same conditions. The selectivity of the obtained methanol and DME is shown in Table 1.

Figure 0005311345
Figure 0005311345

以上のように、クロムおよびZnを含む粒子状固体に水熱合成により形成されたZSM−5膜でコーティングしてなる触媒を用いることで、合成ガスを主成分とするガスからメタノールおよびジメチルエーテルをバランス良く選択的に1段で製造することが出来る。   As described above, by using a catalyst formed by coating a particulate solid containing chromium and Zn with a ZSM-5 membrane formed by hydrothermal synthesis, methanol and dimethyl ether are balanced from the gas containing syngas as the main component. It can be manufactured selectively in one step.

本発明の方法により、合成ガスから1段でDMEおよびメタノールを同時に高収率で製造できるため産業上有用である。   The method of the present invention is industrially useful because DME and methanol can be simultaneously produced from synthesis gas in a single stage in a high yield.

Claims (4)

クロムおよび亜鉛を含む粒子状固体の表面を水熱合成によりZSM−5膜を形成する処理を1回又は2回行うことによってZSM−5膜でコーティングしてなる触媒を製造し、該触媒を用いて、反応温度300〜400℃、反応圧力3〜7MPaの条件下に水素および一酸化炭素を含むガスからメタノールおよびジメチルエーテルを製造する方法。 A catalyst obtained by coating a surface of a particulate solid containing chromium and zinc with a ZSM-5 film by performing a treatment for forming a ZSM-5 film by hydrothermal synthesis once or twice is manufactured, and the catalyst is used. A process for producing methanol and dimethyl ether from a gas containing hydrogen and carbon monoxide under a reaction temperature of 300 to 400 ° C. and a reaction pressure of 3 to 7 MPa . 粒子状固体が、Cuを含まないことを特徴とする請求項1に記載のメタノールおよびジメチルエーテルを製造する方法。 The method for producing methanol and dimethyl ether according to claim 1, wherein the particulate solid does not contain Cu. クロムおよび亜鉛を含む粒子状固体中のクロム(Cr)と酸化亜鉛(ZnO)のモル比率が、Cr:ZnO=20:80〜80:20であることを特徴とする請求項1または2に記載のメタノールおよびジメチルエーテルを製造する方法。3. The molar ratio of chromium (Cr) to zinc oxide (ZnO) in the particulate solid containing chromium and zinc is Cr: ZnO = 20: 80 to 80:20. Of producing methanol and dimethyl ether. クロムおよび亜鉛を含む粒子状固体の表面をZSM−5膜でコーティングしてなる触媒の製造方法が下記の工程(A)〜(C)を包含することを特徴とする請求項1〜3のいずれかに記載のメタノールおよびジメチルエーテルを製造する方法。The method for producing a catalyst obtained by coating the surface of a particulate solid containing chromium and zinc with a ZSM-5 film includes the following steps (A) to (C): A process for producing methanol and dimethyl ether according to claim 1.
(A)水熱合成用のゾル溶液を調製する工程(A) Step of preparing a sol solution for hydrothermal synthesis
(B)上記(A)で調製されたゾル溶液を用いて、クロムおよび亜鉛を含む粒子状固体の表面にZSM−5膜を形成する処理を1回又は2回行う水熱合成工程(B) Hydrothermal synthesis process in which the ZSM-5 film is formed once or twice on the surface of the particulate solid containing chromium and zinc using the sol solution prepared in (A) above.
(C)水熱合成反応後に、洗浄、乾燥および焼成処理を行う後処理工程(C) A post-treatment process in which washing, drying, and baking are performed after the hydrothermal synthesis reaction
JP2009059360A 2009-03-12 2009-03-12 Method for producing oxygen-containing compound Expired - Fee Related JP5311345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009059360A JP5311345B2 (en) 2009-03-12 2009-03-12 Method for producing oxygen-containing compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009059360A JP5311345B2 (en) 2009-03-12 2009-03-12 Method for producing oxygen-containing compound

Publications (2)

Publication Number Publication Date
JP2010209038A JP2010209038A (en) 2010-09-24
JP5311345B2 true JP5311345B2 (en) 2013-10-09

Family

ID=42969614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009059360A Expired - Fee Related JP5311345B2 (en) 2009-03-12 2009-03-12 Method for producing oxygen-containing compound

Country Status (1)

Country Link
JP (1) JP5311345B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7091842B2 (en) * 2018-05-29 2022-06-28 日本製鉄株式会社 A catalyst for producing para-xylene, a method for producing a catalyst for producing para-xylene, and a method for producing para-xylene.

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03181435A (en) * 1989-12-08 1991-08-07 Kaoru Fujimoto Production of dimethyl ether
DK173614B1 (en) * 1999-02-02 2001-04-30 Topsoe Haldor As Process for preparing methanol / dimethyl ether mixture from synthesis gas
JP4769173B2 (en) * 2006-11-20 2011-09-07 Jx日鉱日石エネルギー株式会社 Catalyst for producing fuel and method for producing the same
JP2010115628A (en) * 2008-11-14 2010-05-27 Toyama Univ Catalyst for producing dimethyl ether and method for producing dimethyl ether using the same

Also Published As

Publication number Publication date
JP2010209038A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
Adeleke et al. Cobalt hybrid catalysts in Fischer-Tropsch synthesis
KR100903439B1 (en) Preparation method of direct synthesis of light hydrocarbons from natural gas
Wang et al. Low temperature hydrodeoxygenation of guaiacol into cyclohexane over Ni/SiO 2 catalyst combined with Hβ zeolite
CN109331865A (en) A kind of preparation method and application for one-step method from syngas ethyl alcohol co-production catalyst for methanol
JP2019037939A (en) Catalyst for lpg synthesis
CN114308042B (en) Attapulgite-based ordered microporous zeolite catalyst and preparation method and application thereof
WO2008071059A1 (en) A slurry catalyst and the preparation thereof
CN105817222A (en) Preparation method and application of catalyst composition for hydrocarbon Fischer-Tropsch synthesis
CN108623436B (en) Method for converting cellulose into bioethanol by one-pot method
CN105921147A (en) Composition of catalyst for hydrocarbon Fischer-Tropsch synthesis and applications thereof
CN102356044A (en) Process for producing mixture of aliphatic and aromatic hydrocarbons
Phung et al. Selective bioethanol conversion to chemicals and fuels via advanced catalytic approaches
CN115400763A (en) For CO 2 Catalyst for preparing higher alcohol by hydrogenation, and preparation method and application of catalyst
JP4889307B2 (en) Method for producing liquid fuel using capsule catalyst
JP5311345B2 (en) Method for producing oxygen-containing compound
CN101722001A (en) Composite catalyst for dimethyl ether synthesis and preparation method and application thereof
JP5424206B2 (en) Method for producing liquid hydrocarbon
KR101480801B1 (en) Monolith type reforming catalyst, preparation method thereof and process for syn gas
CN102918137A (en) Process and system for reducing the olefin content of a fischer-tropsch product stream
JP4769173B2 (en) Catalyst for producing fuel and method for producing the same
Mohammed et al. Overview of the latest progress and prospects in the catalytic hydrogenation of carbon dioxide (CO2) to methanol in membrane reactors
CN1753727A (en) Catalyst for producing liquefied petroleum gas, process for producing the same, and process for producing liquefied petroleum gas with the catalyst
JP2010115628A (en) Catalyst for producing dimethyl ether and method for producing dimethyl ether using the same
JP4648844B2 (en) Method for producing a catalyst for producing a liquid fuel
JP6183916B2 (en) Oxygen synthesis catalyst, oxygen production apparatus, and oxygen production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130625

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees