JP4646026B2 - Operation method of lift pump device - Google Patents

Operation method of lift pump device Download PDF

Info

Publication number
JP4646026B2
JP4646026B2 JP2005049509A JP2005049509A JP4646026B2 JP 4646026 B2 JP4646026 B2 JP 4646026B2 JP 2005049509 A JP2005049509 A JP 2005049509A JP 2005049509 A JP2005049509 A JP 2005049509A JP 4646026 B2 JP4646026 B2 JP 4646026B2
Authority
JP
Japan
Prior art keywords
pump
driven
discharge
lifting
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005049509A
Other languages
Japanese (ja)
Other versions
JP2006233865A (en
Inventor
孝司 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsurumi Manufacturing Co Ltd
Original Assignee
Tsurumi Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsurumi Manufacturing Co Ltd filed Critical Tsurumi Manufacturing Co Ltd
Priority to JP2005049509A priority Critical patent/JP4646026B2/en
Publication of JP2006233865A publication Critical patent/JP2006233865A/en
Application granted granted Critical
Publication of JP4646026B2 publication Critical patent/JP4646026B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

本発明は、サイホン作用を利用した省エネルギー型のポンプ装置の運転方法に関するものである。 The present invention relates to a method of operating the pump equipment of energy saving type using the siphon action.

サイホン作用を利用したポンプ起動手段として、例えば特開昭54−17501号公報の第1図に見られるよう、吸水側槽7内に単独のポンプ1を設置し該ポンプ1の吐出口より上導された吐出管2の頂部を排水槽8内の吐出水位W2よりも高くし先端開口部を排水槽8内の吐出水位W2の水面以下に導下させ該先端開口部には吸水側槽7への逆流を防止するための逆流防止弁4を付設した装置は公知である。この装置によりポンプ1を起動すれば、サイホン作用の形成前は吸水側槽7の吸込水位W1から吐出管2の頂部までの鉛直距離Ha'がポンプ1の実揚程となり高い揚程が必要とされ、サイホン作用が形成されるとポンプ1の実揚程は大きく変化して吸水側槽7の吸込水位W1から排水槽8の吐出水位W2との水位差Haとなる。そして、この装置を用いた揚送方法におけるポンプの揚程と流量との関係は、上記特開昭54−17501号公報の第2図に示されるようになる。該第2図においてP1は本来の目的を設計点としたポンプ性能曲線であり、P2は自力サイホン形成のための大容量ポンプのポンプ性能曲線を表している。このようにサイホン作用の形成前後でポンプ実揚程が大きく変動し、高揚程および低揚程のそれぞれ相反するポンプ仕様が必要とされる場合、単一ポンプの使用で相反するポンプ仕様をクリアするため、本来目的とするポンプ仕様以上の大容量ポンプを使用し且つそのポンプの最高効率点から外れたポンプ効率の悪いポンプ運転点で使用しなければならず無駄に動力が消費されるだけでなく、受電設備等の大型化を招き、イニシャルおよびランニングコストが嵩むことになる(特許文献1参照。)。
特開昭54−17501号公報(第1図および第2図)
As pump starting means utilizing siphon action, for example, as shown in FIG. 1 of Japanese Patent Laid-Open No. 54-17501, a single pump 1 is installed in the water-absorbing side tank 7 and is led from the discharge port of the pump 1. The top of the discharged discharge pipe 2 is made higher than the discharge water level W2 in the drainage tank 8, and the tip opening is guided below the water level of the discharge water level W2 in the drainage tank 8, and the tip opening opens to the water absorption side tank 7. A device provided with a backflow prevention valve 4 for preventing the backflow of air is well known. If the pump 1 is started by this device, the vertical distance Ha ′ from the suction water level W1 of the water suction side tank 7 to the top of the discharge pipe 2 becomes the actual head of the pump 1 before the siphon action is formed, and a high head is required. When the siphon action is formed, the actual head of the pump 1 changes greatly and becomes the water level difference Ha between the suction water level W1 of the water absorption side tank 7 and the discharge water level W2 of the drainage tank 8. The relationship between the pump head and the flow rate in the pumping method using this apparatus is as shown in FIG. 2 of the above-mentioned JP-A-54-17501. In FIG. 2, P1 is a pump performance curve with the original purpose as a design point, and P2 represents a pump performance curve of a large capacity pump for forming a self-siphon. In this way, if the actual pump head fluctuates greatly before and after the formation of the siphon action, and conflicting pump specifications are required for the high and low heads, in order to clear the conflicting pump specifications with the use of a single pump, The pump must be used at a pump operating point with poor pump efficiency that deviates from the highest efficiency point of the pump, and the power is not only wasted. The equipment and the like are increased in size, and the initial cost and running cost increase (see Patent Document 1).
JP 54-17501 A (FIGS. 1 and 2)

解決しようとする課題は、ポンプの実揚程および流量がサイホン作用の発生前と後で高揚程の小流量から底揚程の大流量とポンプ運転状態が大きく変化するポンプ装置の運転において、それぞれ異なった相反するポンプ仕様に最適なポンプ運転状態が確保される省エネルギー型の揚送ポンプ装置の運転方法を提供することである。 The problem to be solved is that the actual pump head and flow rate differed in the operation of the pump device where the pump flow condition changed greatly from the small flow rate of the high lift to the large flow rate of the bottom lift before and after the occurrence of siphoning. optimum pump operating condition in opposite pump specification is to provide a method of operating pumped pump equipment energy-saving reserved.

本発明装置の運転方法では、吸込槽内の揚水を揚送して吐出槽へ吐出する揚送ポンプ装置において、複数台の揚送ポンプを直列状に接続し、始端部の揚送ポンプの吸込口を吸込槽内へ開口させ、最終端部の揚送ポンプの吐出口から上導された吐出管路の先端開口部を吐出槽内の水面下に導下させた揚送ポンプ装置を使用して、揚送開始時は直列状に接続された複数台の揚送ポンプ全てを駆動させ、吐出管路内が満水状態となり該吐出管路を介して吸込槽と吐出槽との間にサイホン作用が発生すると、最少必要台数の揚送ポンプのみを運転しその他の揚送ポンプを停止させ吐出または吸込水路として機能させることを最も主要な特徴とする。 In the operation method of the apparatus of the present invention, in the pumping pump device that pumps the pumped water in the suction tank and discharges it to the discharge tank, a plurality of pumps are connected in series, and the suction of the pump at the start end Use a pumping device that opens the mouth into the suction tank and leads the tip opening of the discharge pipe led from the discharge port of the pump at the final end to the water surface in the discharge tank. At the start of pumping, all the pumps connected in series are driven, and the discharge pipe is filled with water, and the siphon action is established between the suction tank and the discharge tank via the discharge pipe. When this occurs, the main feature is that only the minimum required number of pumps are operated and the other pumps are stopped to function as discharge or suction channels.

本発明によれば、複数台の揚送ポンプを直列状に接続させて、揚送開始時は全てのポンプを直列運転させることでポンプ性能が高揚程仕様傾向となるので、サイホン形成前の高揚程ポンプ仕様においても動力ロスの少ない最適なポンプ運転を行わせることができ、また、サイホン形成後の低揚程ポンプ仕様においては当該低揚程ポンプ仕様に最少必要台数の揚送ポンプのみ運転を継続しその他の揚送ポンプは停止され吐出または吸込水路として機能するため、低揚程ポンプ仕様においても動力ロスの少ない最適なポンプ運転を行わせることができ、省エネルギー効果が極めて大きく、また、停止中の揚送ポンプはこれを故障や緊急時等のバックアップポンプとして活用することができ、更に、現状運転の揚送ポンプと停止中の揚送ポンプを交互に入替えて運転させることで、それぞれの揚送ポンプ寿命が延命されるという利点もある。そしてポンプの大容量化を招くこともないため、イニシャルおよびランニングコストを低く抑えると共に揚送ポンプ装置の運転方法としての信頼性を高め得るとういう利点もある。
According to the present invention, since a plurality of pumps are connected in series and all pumps are operated in series at the start of pumping, the pump performance tends to have a high head specification. Even in the pump specifications, the optimum pump operation with little power loss can be performed, and in the low lift pump specifications after siphon formation, only the minimum required number of pumps are continued in the low lift pump specifications. Other lift pumps are stopped and function as discharge or suction channels, so that even with a low lift pump specification, optimum pump operation with little power loss can be performed, and energy saving effect is extremely large. The feed pump can be used as a backup pump in the event of a failure or emergency.In addition, a pump that is currently operating and a pump that is stopped are exchanged. The replacement and it be operated, there is an advantage that each of the pumped pump life is survival. Further, since the capacity of the pump is not increased, there is an advantage that the initial and running costs can be kept low and the reliability as the operation method of the lift pump device can be improved.

吸込槽内の揚水を揚送して吐出槽へ吐出する揚送ポンプ装置において、商用周波数電源で駆動される複数台の揚送ポンプを直列状に接続し、始端部の揚送ポンプの吸込口を吸込槽内へ開口させ、最終端部の揚送ポンプの吐出口から上導された吐出管路の先端開口部を吐出槽内の水面下へ導下させ、揚送開始時は直列状に接続された複数台の揚送ポンプ全てを駆動させ、吐出管路内が満水状態となり該吐出管路を介して吸込槽と吐出槽との間にサイホン作用が発生すると、最少必要台数の揚送ポンプのみを運転しその他の揚送ポンプを停止させ吐出または吸込水路として機能させる。   In the pumping device that pumps the pumped water in the suction tank and discharges it to the discharge tank, a plurality of pumps driven by a commercial frequency power supply are connected in series, and the suction port of the pump at the start end Is opened into the suction tank, and the tip opening of the discharge pipe led from the discharge port of the lifting pump at the final end is guided below the surface of the water in the discharge tank. When all the connected pumps are driven and the inside of the discharge pipe is full and siphon action occurs between the suction tank and the discharge tank via the discharge pipe, the minimum number of pumps Operate only the pump and stop the other pumps to function as a discharge or suction channel.

図1は本発明装置の構成を例示したブロック図であり、商用周波数電源で駆動される便宜上2台の揚送ポンプPa,Pbを直列状に接続した事例が示されている。1は吸込槽、2は吐出槽であり、吸込槽1内の揚水を揚送して吐出槽2へ吐出するため、揚送ポンプPaとPbを直列状に接続し、始端部の揚送ポンプPaの吸込口3aを吸込槽1内の水面下へ開口させ、終端部の揚送ポンプPbの吐出口3bから上導された吐出管路4の先端開口部4eを吐出槽2内の水面下へ導下させる。5は吐出管路4の上導頂部に付設されたサイホンブレーカーバルブであり、揚送ポンプPa,Pbの停止時におけるサイホン作用による吐出槽2からの逆流防止に供される。6は吐出管路4内の上導頂部に付設されたセンサーであり吐出管路4内の満水によりサイホン形成を検知したときは、該検出信号が制御盤7へ送信されることでサイホン形成が認識され、制御盤7によって揚送ポンプPaまたはPbのいずれか一方への電源供給が停止され、他方駆動の揚送ポンプにより揚送が継続させる。   FIG. 1 is a block diagram illustrating the configuration of the apparatus of the present invention, and shows an example in which two pumps Pa and Pb are connected in series for convenience of driving with a commercial frequency power supply. 1 is a suction tank, 2 is a discharge tank, and in order to pump the pumped water in the suction tank 1 and discharge it to the discharge tank 2, the pumps Pa and Pb are connected in series, and the pump at the start end The Pa suction port 3a is opened below the surface of the water in the suction tank 1, and the tip opening 4e of the discharge pipe 4 led from the discharge port 3b of the lifting pump Pb at the end is below the surface of the water in the discharge tank 2. Lead to A siphon breaker valve 5 is provided at the top of the discharge pipe 4 and serves to prevent backflow from the discharge tank 2 due to siphon action when the pumps Pa and Pb are stopped. Reference numeral 6 denotes a sensor attached to the top of the discharge pipe 4. When the siphon formation is detected due to full water in the discharge pipe 4, the detection signal is transmitted to the control panel 7, thereby forming the siphon. Recognized, the control panel 7 stops the power supply to either the pumping pump Pa or Pb, and the pumping is continued by the other driving pump.

サイホン形成により停止させた揚送ポンプが例えば吸込側に配置される場合、吸込口3aから吸水されている揚水は停止中の揚送ポンプのポンプケーシング内を経由し、ポンプケーシングの吐出口から直列状に接続される吐出側の揚送ポンプPbへの吸込水路として形成され、揚送ポンプPbの吸込口より吸水され、ポンプケーシングに収容される回転中の羽根車の回転エネルギーにより吸水された揚水に速度エネルギーが与えられ、その速度エネルギーを有する揚水はポンプケーシングにより圧力エネルギーに変換されて揚水が吐出口に接続された吐出管路4内を経由し吐出槽3内に揚送される。また、停止させた揚送ポンプが吐出側に配置されている場合、吸込口3aから吸水される揚水は揚送ポンプPaのポンプケーシングに収容される回転中の羽根車の回転エネルギーにより吸水された揚水に速度エネルギーが与えられ、その速度エネルギーを有する揚水はポンプケーシングにより圧力エネルギーに変換されて揚水が吐出口から直列状に接続されている吐出側配置の揚送ポンプPbの吸込口に揚送され停止中の揚送ポンプのポンプケーシング内を経由し吐出口3bに接続された吐出管路4への吐出水路として形成され、吐出管路4内を経由し吐出槽3内に揚送される。   For example, when the lifting pump stopped by the siphon formation is disposed on the suction side, the pumped water from the suction port 3a passes through the pump casing of the stopped lifting pump and is connected in series from the discharge port of the pump casing. Pumping water formed as a suction channel to the discharge pump Pb on the discharge side connected in the form of water, absorbed by the suction port of the pump Pb, and absorbed by the rotational energy of the rotating impeller housed in the pump casing The pumped water having the speed energy is converted into pressure energy by the pump casing, and the pumped water is pumped into the discharge tank 3 through the discharge pipe 4 connected to the discharge port. Moreover, when the pumping pump stopped is arranged on the discharge side, the pumped water sucked from the suction port 3a was absorbed by the rotational energy of the rotating impeller housed in the pump casing of the pumping pump Pa. Speed energy is given to the pumped water, the pumped water having the speed energy is converted into pressure energy by the pump casing, and the pumped water is pumped to the suction port of the pumping pump Pb arranged on the discharge side where the pumped water is connected in series from the discharge port. It is formed as a discharge water channel to the discharge pipe 4 connected to the discharge port 3b through the pump casing of the stopped lifting pump, and is pumped into the discharge tank 3 through the discharge pipe 4 .

サイホン形成後における揚送ポンプPa,Pbの交互運転条件を予め制御盤7に設定しておけば、その設定条件に従って運転中のポンプと停止中のポンプを交互に入替えて運転することもできる。また、吸込槽1内の水位を検出する水位センサー9sおよび吐出槽2内の水位を検出する水位センサー9dをそれぞれの槽に付設して各槽内の水位を検知させることが望ましく、例えば渇水や越流防止運転として、吸込槽1内の水位が規定以下に低下したり吐出槽2内の水位が規定以上に上昇する場合に運転中の揚送ポンプを自動的に停止させたり、或いは、サイホン形成後の吸込槽1と吐出槽2との水位差H2が規定以上に上昇または吸込槽1内の水位が規定以上に異常上昇する場合に停止中の揚送ポンプを自動的に再起動させて緊急排水運転を行わせることもできる。   If the alternate operation conditions of the lift pumps Pa and Pb after the siphon formation are set in the control panel 7 in advance, the pump being operated and the pump being stopped can be alternately switched according to the set condition. In addition, it is desirable to attach a water level sensor 9s for detecting the water level in the suction tank 1 and a water level sensor 9d for detecting the water level in the discharge tank 2 to each tank to detect the water level in each tank. As the overflow prevention operation, when the water level in the suction tank 1 drops below the specified level, or when the water level in the discharge tank 2 rises above the specified level, the pump in operation is automatically stopped, or siphon When the water level difference H2 between the suction tank 1 and the discharge tank 2 after formation rises above the specified level, or when the water level in the suction tank 1 rises abnormally above the specified level, the suspended pump is automatically restarted. Emergency drainage operation can also be performed.

サイホン形成前後における揚送ポンプPa,Pbによるポンプ性能に関し、図3に示されるサイホン形成前は流量Q1において揚送ポンプPaとPbが同一性能とした場合、ポンプ運転特性曲線L2上におけるポンプ運転点の揚程H1aとH1bは同一であり、両揚送ポンプを直列運転させるので高揚程仕様であるその揚程は「H1a+H1b」であり、ポンプ運転特性曲線L1上のポンプ運転点の揚程H1となる。そして、当該揚程H1からサイホン形成後は揚送ポンプPa,Pbのいずれか一方を停止させるので、低揚程仕様であるポンプ運転特性曲線L2上における揚程H2で流量Q2のポンプ運転点に移行されそのときに運転される揚送ポンプの運転効率はポンプ運転効率曲線PE1上における最高効率点η1での運転となり、従って動力ロスの少ない最適な省エネルギー状態でのポンプ運転が行われる。   Regarding the pump performance by the lift pumps Pa and Pb before and after the siphon formation, when the lift pumps Pa and Pb have the same performance at the flow rate Q1 before the siphon formation shown in FIG. 3, the pump operation point on the pump operation characteristic curve L2 The heads H1a and H1b are the same, and both pumps are operated in series, so the head of the high head specification is “H1a + H1b”, which is the head H1 of the pump operating point on the pump operating characteristic curve L1. Then, after the siphon is formed from the head H1, either one of the pumps Pa and Pb is stopped. Therefore, the pump is moved to the pump operating point at the flow rate Q2 at the head H2 on the pump operating characteristic curve L2 which is a low head specification. The operation efficiency of the lift pump that is sometimes operated is the operation at the highest efficiency point η1 on the pump operation efficiency curve PE1, and therefore, the pump operation is performed in an optimum energy saving state with little power loss.

図2は実施例1の構成を前提として更に別の構成条件を付加した事例のブロック図であり、便宜上2台の直列状に連結された揚送ポンプPaおよびPbのいずれか一方が制御盤7により商用周波数電源で駆動され他方は可変周波数インバーター8により所定の周波数電源で駆動される。そして、サイホン形成前の揚送開始時は、商用周波数電源により駆動される揚送ポンプPaと可変周波数インバーター8により駆動される揚送ポンプPbとの同時運転を行わせるのであるが、揚送ポンプPbについては、可変周波数インバーター8により前記商用周波数電源以上の周波数電源で増速駆動させて前記揚送ポンプPaよりもポンプ能力を増大させる。このようにして両揚送ポンプPa,Pbを運転させることで吐出管路4内を逸早く満水状態にし、吐出管路4に付設されたセンサー6の検出信号が制御盤7へ送信されるとサイホン形成が認識され、制御盤7により可変速制御されている揚送ポンプPbへの電源供給が停止されるが、他方の商用周波数電源駆動の揚送ポンプPaによる揚送は継続される。   FIG. 2 is a block diagram of an example in which another configuration condition is added on the premise of the configuration of the first embodiment. For convenience, one of two pumps Pa and Pb connected in series is connected to the control panel 7. Is driven by a commercial frequency power source, and the other is driven by a variable frequency inverter 8 by a predetermined frequency power source. At the start of the pumping before the siphon is formed, the pumping pump Pa driven by the commercial frequency power supply and the pumping pump Pb driven by the variable frequency inverter 8 are operated simultaneously. As for Pb, the variable frequency inverter 8 is driven at a speed higher than the commercial frequency power supply by the variable frequency inverter 8 to increase the pumping capacity of the pump pump Pa. When the pumps Pa and Pb are operated in this way, the inside of the discharge pipe 4 is quickly filled with water, and the detection signal of the sensor 6 attached to the discharge pipe 4 is transmitted to the control panel 7. The formation is recognized, and the power supply to the pumping pump Pb that is controlled at the variable speed by the control panel 7 is stopped, but the pumping by the pumping pump Pa driven by the other commercial frequency power supply is continued.

サイホン形成前後における商用周波数電源駆動の揚送ポンプPaと該商用周波数電源以上の周波数電源で増速駆動の揚送ポンプPbによるポンプ性能に関し、図4に示されるサイホン形成前は流量Q1において、揚送ポンプPaはポンプ運転特性曲線L5上のポンプ運転点の揚程H1aで運転され、揚送ポンプPbはポンプ運転特性曲線L4上のポンプ運転点の揚程H1bで運転され、且つ、両揚送ポンプPa,Pbが直列運転させるので高揚程仕様であるその揚程は「H1a+H1b」であり、ポンプ運転特性曲線L3上のポンプ運転点の揚程H1となる。そして、当該揚程H1からサイホン形成後は揚送ポンプPbを停止させ揚送ポンプPaのみが運転継続されるので、低揚程仕様であるポンプ運転特性曲線L5上における揚程H2で流量Q2のポンプ運転点に移行されそのときの運転効率はポンプ運転効率曲線PE2上における最高効率点η2での運転となり、従って動力ロスの少ない最適な省エネルギー状態でのポンプ運転が行われる。   Regarding the pump performance of the pump pump Pa driven by the commercial frequency power supply before and after the siphon formation and the pump pump Pb driven at a higher speed by the frequency power supply higher than the commercial frequency power supply, before the siphon formation shown in FIG. The feed pump Pa is operated at the pump operating point lift H1a on the pump operating characteristic curve L5, and the feed pump Pb is operated at the pump operating point lift H1b on the pump operating characteristic curve L4. , Pb are operated in series so that the head, which is a high head specification, is “H1a + H1b”, which is the head H1 of the pump operating point on the pump operating characteristic curve L3. Then, after the siphon is formed from the head H1, the pump Pb is stopped and only the pump Pa is continuously operated. Therefore, the pump operating point of the flow rate Q2 at the head H2 on the pump operating characteristic curve L5 which is a low head specification. The operation efficiency at that time is the operation at the maximum efficiency point η2 on the pump operation efficiency curve PE2, and therefore the pump operation is performed in an optimum energy saving state with little power loss.

サイホン形成後に上述とは逆に商用周波数電源駆動の揚送ポンプPaを停止させ、可変周波数インバーター8により商用周波数電源以上の周波数電源で増速駆動の揚送ポンプPbにより揚送が継続させる場合に関し、図4に示される揚程H1からサイホン形成後は揚送ポンプPaを停止させ揚送ポンプPbのみを運転継続させるので前述の流量Q2より更に流量の多いQ2bの低揚程仕様であるポンプ運転特性曲線L4上のポンプ運転点の揚程H2に移行されることになり、大流量揚送のポンプ運転が行われる。また、揚送ポンプPbの流量をQ2とした場合、該揚送ポンプPb単独で揚程H2より高揚程のH2bまでの広範囲のポンプ運転を行わせることができる。更に、揚送ポンプPbを可変周波数インバーター8により商用周波数電源と同等の周波数電源で減速駆動させる場合、揚送ポンプPbは揚送ポンプPaと同等のポンプ運転特性となるため、動力ロスの少ない最適な省エネルギー状態でのポンプ運転を行わせることもできる。   Contrary to the above, after the siphon is formed, the pump pump Pa driven by the commercial frequency power supply is stopped, and the variable frequency inverter 8 continues the pumping by the pump pump Pb that is driven at a speed higher than the commercial frequency power supply by the variable frequency inverter 8. After the siphon formation from the head H1 shown in FIG. 4, the pumping pump Pa is stopped and only the pumping pump Pb is continued to operate. Therefore, the pump operating characteristic curve which is a low head specification of Q2b having a higher flow rate than the flow rate Q2 described above. The pump operation point L2 is shifted to the head H2 of the pump operation point, and the pump operation for large flow rate pumping is performed. Further, when the flow rate of the lift pump Pb is Q2, the pump operation in a wide range from the lift H2 to the higher lift H2b can be performed by the lift pump Pb alone. Further, when the pumping pump Pb is driven by the variable frequency inverter 8 with a frequency power supply equivalent to the commercial frequency power supply, the pumping pump Pb has the same pump operation characteristics as the pumping pump Pa. The pump can be operated in a state of energy saving.

本発明装置の一実施例の構成を示すブロック図である。It is a block diagram which shows the structure of one Example of this invention apparatus. 本発明装置の別実施例の構成を示すブロック図である。It is a block diagram which shows the structure of another Example of this invention apparatus. 図1の装置におけるポンプ運転時のポンプの特性を示す線図である。It is a diagram which shows the characteristic of the pump at the time of the pump operation | movement in the apparatus of FIG. 図2の装置におけるポンプ運転時のポンプの特性を示す線図である。It is a diagram which shows the characteristic of the pump at the time of pump operation in the apparatus of FIG.

符号の説明Explanation of symbols

1 吸込槽
2 吐出槽
3a 吸込口
3b 吐出口
4 吐出管路
4e 先端開口部
8 可変周波数インバーター
Pa 揚送ポンプ
Pb 揚送ポンプ
DESCRIPTION OF SYMBOLS 1 Suction tank 2 Discharge tank 3a Suction port 3b Discharge port 4 Discharge conduit 4e Tip opening 8 Variable frequency inverter Pa Lifting pump Pb Lifting pump

Claims (4)

吸込槽内の揚水を揚送して吐出槽へ吐出されるよう複数台の揚送ポンプを直列状に接続し、始端部の揚送ポンプの吸込口を吸込槽内へ開口させ、最終端部の揚送ポンプの吐出口から上導された吐出管路の先端開口部を吐出槽内の水面下へ導下された揚送ポンプ装置を使用して、揚送開始時は直列状に接続された複数台の揚送ポンプ全てを駆動させ、吐出管路内が満水状態となり該吐出管路を介して吸込槽と吐出槽との間にサイホン作用が発生すると、最少必要台数の揚送ポンプのみを運転しその他の揚送ポンプを停止させ吐出または吸込水路として機能させることを特徴とする、揚送ポンプ装置の運転方法。 Multiple pumps are connected in series so that the pumped water in the suction tank is pumped and discharged into the discharge tank, and the suction port of the pump at the start end is opened into the suction tank. At the start of pumping, the pump is connected in series at the start of pumping using a pumping device that is guided from the discharge port of the pumping pump to the lower end of the discharge pipe. If all of the multiple pumps are driven and the inside of the discharge pipe becomes full and siphon action occurs between the suction tank and the discharge tank via the discharge pipe, only the minimum required number of pumps And operating other pumps to stop them and function as discharge or suction water channels. 前記揚送ポンプ装置が、商用周波数電源で駆動されるよう構成された揚送ポンプ装置を使用して、揚送開始時は直列状に接続された複数台の揚送ポンプ全てを駆動させ、吐出管路内が満水状態となり該吐出管路を介して吸込槽と吐出槽との間にサイホン作用が発生すると、商用周波数電源により駆動される最少必要台数の揚送ポンプのみを運転させ、その他の揚送ポンプを停止させて吐出または吸込水路として機能させることを特徴とする、揚送ポンプ装置の運転方法。 The lifting pump device uses a lifting pump device that is configured to be driven by a commercial frequency power source, and at the start of lifting, drives all of the plurality of lifting pumps connected in series and discharges them. When the inside of the pipe is full and siphon action occurs between the suction tank and the discharge tank through the discharge pipe, only the minimum necessary number of pumps driven by the commercial frequency power supply are operated. A method for operating a lift pump device, wherein the lift pump is stopped to function as a discharge or suction channel. 前記揚送ポンプ装置が、商用周波数電源により駆動される揚送ポンプと可変周波数インバーターにより駆動される揚送ポンプとで混成され、それぞれ各別に駆動されるよう構成された揚送ポンプ装置を使用して、揚送開始時は直列状に接続された複数台の揚送ポンプ全てを駆動させ、これら複数台の揚送ポンプのうち、可変周波数インバーターにより駆動される揚送ポンプは商用周波数電源で駆動される揚送ポンプの回転数以上に増速して商用周波数電源で駆動される揚送ポンプよりも能力を増大させて運転し、吐出管路内が満水状態となり該吐出管路を介して吸込槽と吐出槽との間にサイホン作用が発生すると、商用周波数電源で駆動されている揚送ポンプのみ運転を継続させ、可変周波数インバーターで駆動されている揚送ポンプを停止させて吐出または吸込水路として機能させることを特徴とする、揚送ポンプ装置の運転方法。 The lifting pump device is a hybrid of a lifting pump driven by a commercial frequency power source and a lifting pump driven by a variable frequency inverter, and uses a lifting pump device configured to be driven individually. At the start of pumping, all the pumps connected in series are driven. Of these pumps, the pump driven by the variable frequency inverter is driven by a commercial frequency power supply. The pump is operated at a higher speed than that of a pump driven by a commercial frequency power supply at a speed higher than the number of rotations of the pump, and the discharge line is filled with water, and suction is performed via the discharge pipe. When a siphon action occurs between the tank and the discharge tank, only the pump that is driven by the commercial frequency power supply is operated, and the pump that is driven by the variable frequency inverter is stopped. Was characterized thereby function as the ejection or suction water passage, the method operation of pumped pumping device. 前記揚送ポンプ装置が、商用周波数電源により駆動される揚送ポンプと可変周波数インバーターにより駆動される揚送ポンプとで混成され、それぞれ各別に駆動されるよう構成された揚送ポンプ装置を使用して、揚送開始時は直列状に接続された複数台の揚送ポンプ全てを駆動させ、これら複数台の揚送ポンプのうち、可変周波数インバーターにより駆動される揚送ポンプを可変速制御し、吐出管路内が満水状態となり該吐出管路を介して吸込槽と吐出槽との間にサイホン作用が発生すると、可変周波数インバーターで駆動されている揚送ポンプのみ運転を継続させ、商用周波数電源で駆動されている揚送ポンプを停止させて吐出または吸込水路として機能させることを特徴とする、揚送ポンプ装置の運転方法。 The lifting pump device is a hybrid of a lifting pump driven by a commercial frequency power source and a lifting pump driven by a variable frequency inverter, and uses a lifting pump device configured to be driven individually. At the start of lifting, all the plurality of lifting pumps connected in series are driven, and among these lifting pumps, the lifting pump driven by the variable frequency inverter is controlled at a variable speed, When the inside of the discharge pipe becomes full and siphon action occurs between the suction tank and the discharge tank via the discharge pipe, only the lift pump driven by the variable frequency inverter is operated, and the commercial frequency power supply A method for operating a lift pump device, wherein the lift pump driven by the pump is stopped so as to function as a discharge or suction channel.
JP2005049509A 2005-02-24 2005-02-24 Operation method of lift pump device Active JP4646026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005049509A JP4646026B2 (en) 2005-02-24 2005-02-24 Operation method of lift pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005049509A JP4646026B2 (en) 2005-02-24 2005-02-24 Operation method of lift pump device

Publications (2)

Publication Number Publication Date
JP2006233865A JP2006233865A (en) 2006-09-07
JP4646026B2 true JP4646026B2 (en) 2011-03-09

Family

ID=37041801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005049509A Active JP4646026B2 (en) 2005-02-24 2005-02-24 Operation method of lift pump device

Country Status (1)

Country Link
JP (1) JP4646026B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5308033B2 (en) * 2008-01-10 2013-10-09 株式会社荏原製作所 Pump equipment
JP5479252B2 (en) * 2010-07-15 2014-04-23 株式会社日立製作所 Pressure water injection pump system
JP6139752B1 (en) * 2016-06-13 2017-05-31 通信土木コンサルタント株式会社 Drainage equipment
JP6853733B2 (en) * 2017-05-29 2021-03-31 株式会社荏原製作所 Water supply system and water supply method
CN109505780B (en) * 2019-01-22 2020-01-07 燕山大学 Numerical control siphon energy-saving centrifugal pump device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417501A (en) * 1977-07-11 1979-02-08 Hitachi Ltd Method of starting pump and its device
JPS5713290A (en) * 1980-06-26 1982-01-23 Kubota Ltd Underwater pump device
JPS61116081A (en) * 1984-11-12 1986-06-03 Toshiba Corp Pump control device
JPH05187388A (en) * 1992-01-08 1993-07-27 Kubota Corp Storage pump device
JPH07224765A (en) * 1994-02-14 1995-08-22 Kawamoto Seisakusho:Kk Water feeder
JPH07243392A (en) * 1994-03-01 1995-09-19 Ebara Corp Pump unit
JP2000097189A (en) * 1998-09-21 2000-04-04 Teral Kyokuto Inc Piping for speed-up water supplying pump, operation control method, and control device
JP2003322077A (en) * 2002-05-07 2003-11-14 Yamatatsugumi:Kk Water supply device and method
JP2004156559A (en) * 2002-11-08 2004-06-03 Yaskawa Electric Corp Pump control device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417501A (en) * 1977-07-11 1979-02-08 Hitachi Ltd Method of starting pump and its device
JPS5713290A (en) * 1980-06-26 1982-01-23 Kubota Ltd Underwater pump device
JPS61116081A (en) * 1984-11-12 1986-06-03 Toshiba Corp Pump control device
JPH05187388A (en) * 1992-01-08 1993-07-27 Kubota Corp Storage pump device
JPH07224765A (en) * 1994-02-14 1995-08-22 Kawamoto Seisakusho:Kk Water feeder
JPH07243392A (en) * 1994-03-01 1995-09-19 Ebara Corp Pump unit
JP2000097189A (en) * 1998-09-21 2000-04-04 Teral Kyokuto Inc Piping for speed-up water supplying pump, operation control method, and control device
JP2003322077A (en) * 2002-05-07 2003-11-14 Yamatatsugumi:Kk Water supply device and method
JP2004156559A (en) * 2002-11-08 2004-06-03 Yaskawa Electric Corp Pump control device

Also Published As

Publication number Publication date
JP2006233865A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
JP4646026B2 (en) Operation method of lift pump device
JP5643385B2 (en) Booster water supply system
JPH09217851A (en) Air valve device
JP2000097189A (en) Piping for speed-up water supplying pump, operation control method, and control device
WO2010057413A1 (en) Automatic-control fluid jet guide lift pump
JP6121267B2 (en) Booster water supply system
CN201687726U (en) Synchronous self-priming pump
KR200439970Y1 (en) Fire engine pump
CN212928228U (en) Water pump is from inhaling system based on control
JP5362438B2 (en) Booster water supply system
KR101042676B1 (en) A jet vacuum system without power
JPH05231397A (en) Pump
JP6220578B2 (en) Booster water supply system
CN212055228U (en) Water pump water inlet structure
JP2836659B2 (en) Siphon type pump
CN209761747U (en) Water supply system of fire pump
JPS5885382A (en) Method of driving variable speed pump
CN212055260U (en) Water outlet structure of water pump
JP4559051B2 (en) Indoor drainage system
WO2015052906A1 (en) Filtration device
JP5926058B2 (en) Automatic connection type submersible pump device
CN102080661A (en) Turbine fluid jet drainage lift pump
JP2000009100A (en) Pump device
CN207673552U (en) A kind of energy-efficient self-priming pump assembly
CN207641588U (en) Ball mill discharging chute blowing mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4646026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151217

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250