JP4645115B2 - Processing method of liquid crystal material - Google Patents

Processing method of liquid crystal material Download PDF

Info

Publication number
JP4645115B2
JP4645115B2 JP2004274908A JP2004274908A JP4645115B2 JP 4645115 B2 JP4645115 B2 JP 4645115B2 JP 2004274908 A JP2004274908 A JP 2004274908A JP 2004274908 A JP2004274908 A JP 2004274908A JP 4645115 B2 JP4645115 B2 JP 4645115B2
Authority
JP
Japan
Prior art keywords
liquid crystal
column chromatography
crystal material
distillation
processing method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004274908A
Other languages
Japanese (ja)
Other versions
JP2006091266A (en
Inventor
浩史 長谷部
清文 竹内
晴義 高津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2004274908A priority Critical patent/JP4645115B2/en
Publication of JP2006091266A publication Critical patent/JP2006091266A/en
Application granted granted Critical
Publication of JP4645115B2 publication Critical patent/JP4645115B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は液晶パネルの製造工程で排出される不良パネルや市場で廃棄された液晶表示素子に利用されている液晶パネル中に含まれる液晶材料を再利用するための処理方法に関する。   The present invention relates to a processing method for reusing a liquid crystal material contained in a liquid crystal panel used in a defective panel discharged in a liquid crystal panel manufacturing process or a liquid crystal display element discarded in the market.

液晶表示素子は人とコンピュータ等とのインターフェースとして様々な用途に使用されており、その生産量及び市場での使用量は急激に増大している。それに伴い、液晶表示素子の生産量に対応する量の使用済み液晶表示素子の発生が予想される。液晶表示素子は従来型の表示装置であるCRTとは異なった部材により構成されているため、従来とは異なる方法により廃棄する必要がある。又、最近の環境意識の高まりから、環境に負担をかけない廃棄方法や、廃棄する量をできる限り削減し再使用できる部材を積極的に再利用方法も検討されている。   Liquid crystal display elements are used for various purposes as an interface between a person and a computer, and their production and usage in the market are rapidly increasing. Along with this, generation of used liquid crystal display elements corresponding to the production volume of liquid crystal display elements is expected. Since the liquid crystal display element is composed of a member different from the CRT which is a conventional display device, it needs to be disposed of by a method different from the conventional method. In addition, due to the recent increase in environmental awareness, a disposal method that does not place a burden on the environment and a method that actively reuses a member that can be reused by reducing the amount to be discarded as much as possible are being studied.

廃液晶パネルから使用可能な部材を再使用できる状態に処理する方法として、液晶材料を回収した後、精製工程、物性測定工程、物性値調節工程を施すことを特徴する処理方法が開示されており(特許文献 1)、当該引用文献に記載の方法により液晶組成物を再利用することが可能となった。   Disclosed is a processing method characterized by performing a purification process, a physical property measurement process, and a physical property value adjustment process after recovering the liquid crystal material as a method for processing a usable member from a waste liquid crystal panel into a reusable state. (Patent Document 1), the liquid crystal composition can be reused by the method described in the cited document.

一方、アクティブマトリクス用液晶材料においては、電圧保持率を十分高い値とする必要がある。電圧保持率とは液晶材料の性能指標の一つで、いわばコンデンサを構成する誘電体材料として如何に優れているかを示すものである。液晶材料の回収時に電圧保持率は悪化してしまうが、これを回復させないと表示品位が悪化してしまい実用に耐えない。特に、回収した液晶材料には不純物を含めて極めて多くの成分が含まれていることから、電圧保持率を高くすることは簡単ではなかった。つまり、精製に特段の注意を払わないと、重要な特性パラメータである電圧保持率を効率良く回復できない場合があるという問題があった。   On the other hand, in the liquid crystal material for active matrix, the voltage holding ratio needs to be a sufficiently high value. The voltage holding ratio is one of the performance indicators of the liquid crystal material, and it indicates how excellent it is as a dielectric material constituting the capacitor. When the liquid crystal material is recovered, the voltage holding ratio is deteriorated. However, if this is not recovered, the display quality is deteriorated and cannot be practically used. In particular, since the recovered liquid crystal material contains an extremely large amount of components including impurities, it is not easy to increase the voltage holding ratio. That is, there is a problem that the voltage holding ratio, which is an important characteristic parameter, may not be efficiently recovered unless special attention is paid to purification.

特開2004−137467号公報JP 2004-137467 A

本発明の目的は、液晶パネルから取り出した液晶材料を再利用するための処理方法において、液晶材料の電圧保持率を効率良く回復させることが可能な処理方法を提供することにある。   An object of the present invention is to provide a processing method capable of efficiently recovering the voltage holding ratio of a liquid crystal material in a processing method for reusing a liquid crystal material taken out from a liquid crystal panel.

上記課題を解決するために鋭意検討した結果、蒸留に先立ってカラムクロマトグラフィーを行うのが良いことを見出した。即ち、本発明は、液晶パネルから取り出した液晶材料を再利用するための処理方法において、カラムクロマトグラフィーにより精製した後、蒸留を行うことを特徴とする処理方法を提供する。   As a result of intensive studies to solve the above problems, it was found that column chromatography should be performed prior to distillation. That is, the present invention provides a processing method for reusing a liquid crystal material taken out from a liquid crystal panel, which is purified by column chromatography and then distilled.

カラムクロマトグラフィー及び蒸留は、有機合成の分野では良く用いられる精製方法であり、カラムクロマトグラフィーと蒸留の併用も新規ではない。しかしながら、カラムクロマトグラフィーと蒸留を併用する場合、蒸留、カラムクロマトグラフィーの順で行うことが一般的である。なぜなら、カラムクロマトグラフィーは蒸留と比較して操作が煩雑で処理時間が長く、流出溶媒として使用する溶媒コストもかかるため総じてコスト高の精製手段だからである。まず、蒸留で除去可能な不純物を除去することによりカラムクロマトグラフィー処理の対象となる量をなるべく低減してから、カラムクロマトグラフィー処理をした方がコストの観点から合理的である。   Column chromatography and distillation are purification methods often used in the field of organic synthesis, and the combined use of column chromatography and distillation is not new. However, when column chromatography and distillation are used in combination, it is generally performed in the order of distillation and column chromatography. This is because column chromatography is a complicated and costly purification means because the operation is complicated and the processing time is long, and the solvent used as an effluent solvent is also expensive. First, it is reasonable from the viewpoint of cost to perform column chromatography after reducing the amount to be subjected to column chromatography as much as possible by removing impurities that can be removed by distillation.

液晶パネルから回収した液晶材料を精製する場合には、蒸留、カラムクロマトグラフィーの順に処理を施すと電圧保持率を十分に回復させることが困難であることが我々の検討で明らかとなった。   When the liquid crystal material collected from the liquid crystal panel is purified, it has been clarified by our examination that it is difficult to sufficiently recover the voltage holding ratio if treatment is performed in the order of distillation and column chromatography.

液晶パネルから取り出した液晶材料の電圧保持率を効率良く回復させることができる。   The voltage holding ratio of the liquid crystal material taken out from the liquid crystal panel can be efficiently recovered.

以下に本発明の一例について説明する。本発明において、カラムクロマトグラフィーはイオン性の不純物及び極性の高い不純物の除去を主たる目的として行う。アクティブマトリクス用液晶材料は、STN用液晶材料とは異なり比較的低極性の化合物により構成される。すなわち、コアとなる脂環式炭化水素、芳香族炭化水素に、側鎖として鎖状アルキル基、アルコキシ基、フッ素原子、トリフルオロメチル基、トリフルオロメトキシ基などの置換基により構成される構造の化合物を含有する。この様な化合物は、ヘキサンを溶媒とした時の順相のシリカゲル薄層クロマトグラフィー(TLC)のRf値の値は、0.4以上となるようなものが殆どである。実用上、これより極性が高いものは不純物と見なして精製するのが効率が良い。カラムクロマトグラフィーの充填剤としてはシリカゲル、アルミナ等が挙げられる。順相と逆相カラムクロマトグラフィーがあるが、本発明の処理方法としては順相が好ましい。充填剤は回収液晶の質量に対して、0.1倍〜10倍の質量を使用することが好ましく、0.4〜5倍の質量を使用することが更に好ましく、0.8倍〜2倍の質量を使用することが特に好ましい。流出溶媒としては、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、トルエン、キシレン、エチルベンゼン、イソプロピルベンゼンなどが好ましく、ヘキサン、ヘプタン、オクタン、デカン、ドデカン等の低極性の炭化水素系溶媒が特に好ましい。   An example of the present invention will be described below. In the present invention, column chromatography is performed mainly for the purpose of removing ionic impurities and highly polar impurities. Unlike the liquid crystal material for STN, the liquid crystal material for active matrix is composed of a relatively low polarity compound. In other words, it has a structure composed of a substituent such as a chain alkyl group, an alkoxy group, a fluorine atom, a trifluoromethyl group, or a trifluoromethoxy group as a side chain on an alicyclic hydrocarbon or aromatic hydrocarbon as a core. Contains compounds. Most of such compounds have a normal phase silica gel thin layer chromatography (TLC) Rf value of 0.4 or more when hexane is used as a solvent. In practice, it is efficient to purify those having higher polarity than impurities as impurities. Examples of the column chromatography filler include silica gel and alumina. Although there are normal phase and reverse phase column chromatography, the normal phase is preferred as the treatment method of the present invention. The filler is preferably used in an amount of 0.1 to 10 times the mass of the recovered liquid crystal, more preferably 0.4 to 5 times the mass, and more preferably 0.8 to 2 times. It is particularly preferred to use a mass of As the effluent solvent, hexane, heptane, octane, decane, dodecane, toluene, xylene, ethylbenzene, isopropylbenzene and the like are preferable, and low polarity hydrocarbon solvents such as hexane, heptane, octane, decane and dodecane are particularly preferable.

蒸留は液晶材料を回収する際に混入する液晶分子より分子量が大きな不純物を除去することを主たる目的として行う。液晶材料は液晶パネル中で配向膜と接している。配向膜は主に、ポリイミドが用いられている。また、液晶パネル中ではレジスト樹脂で作製されたスペーサーや樹脂スペーサーが存在する。さらに液晶パネル中にはカラーフィルターにはカラーフィルターに用いられているレジスト樹脂も存在する。このように液晶パネルは多くの高分子材料が使用されており、液晶材料の回収時に混入する恐れがある。このような高分子材料の分子量はおよそ数万〜数十万であるが、液晶材料の回収時に混入する恐れが最も大きいのは高分子材料の分解物、もしくは不純物として含有されるオリゴマーと推測される、分子量が1000〜2500程度の不純物である。アクティブマトリクス用液晶材料の分子量は大きくて、約550以下であることを考慮すると、蒸留処理としては分子量が1000以上の不純物、さらに好ましくは分子量が800以上の不純物、特に好ましくは分子量が600以上の不純物を効率良く除去できるような条件に設定することが必要である。   Distillation is performed mainly for the purpose of removing impurities having a molecular weight larger than that of liquid crystal molecules mixed when recovering the liquid crystal material. The liquid crystal material is in contact with the alignment film in the liquid crystal panel. As the alignment film, polyimide is mainly used. In the liquid crystal panel, there are a spacer made of a resist resin and a resin spacer. Further, in the liquid crystal panel, there is a resist resin used for the color filter in the color filter. As described above, many polymer materials are used for the liquid crystal panel, and there is a possibility that the liquid crystal panel is mixed when the liquid crystal material is recovered. The molecular weight of such a polymer material is about tens of thousands to hundreds of thousands, but it is estimated that the most likely to be mixed during recovery of the liquid crystal material is a decomposition product of the polymer material or an oligomer contained as an impurity. These are impurities having a molecular weight of about 1000 to 2500. Considering that the molecular weight of the liquid crystal material for active matrix is large and about 550 or less, the distillation treatment is an impurity having a molecular weight of 1000 or more, more preferably an impurity having a molecular weight of 800 or more, particularly preferably a molecular weight of 600 or more. It is necessary to set the conditions so that impurities can be efficiently removed.

蒸留は、できる限り低い温度で行うのが好ましい。270℃以下が好ましく、220℃以下が更に好ましく、190℃が特に好ましい。低い蒸留温度と高い回収率を両立させる目的から、減圧蒸留が好ましい。減圧度としては、66Pa以下が好ましく、6.6Pa以下がさらに好ましく、0.15Pa以下が特に好ましい。上述のように蒸留の主たる目的は回収した液晶材料に含有される、液晶材料より分子量の大きい不純物の除去であることを考慮すると、分子量が近い化合物を精密に分取するような必要は無い。つまり理論段数が高い必要は無い。むしろ、できる限り低い温度で効率良く液晶材料より分子量が大きい不純物を除去することが重要であるので、分子蒸留装置、もしくは短工程蒸留装置、薄膜蒸留装置と呼ばれる蒸留装置を適用するのが好ましい。このような蒸留装置を用いると、減圧度0.15Pa以下に設定することで、温度200度以下で容易にアクティブマトリクス液晶材料と液晶材料より分子量が大きい不純物を分取することができる。   The distillation is preferably carried out at the lowest possible temperature. 270 ° C. or lower is preferable, 220 ° C. or lower is more preferable, and 190 ° C. is particularly preferable. Vacuum distillation is preferred for the purpose of achieving both a low distillation temperature and a high recovery rate. The degree of vacuum is preferably 66 Pa or less, more preferably 6.6 Pa or less, and particularly preferably 0.15 Pa or less. As described above, considering that the main purpose of distillation is removal of impurities having a molecular weight higher than that of the liquid crystal material contained in the collected liquid crystal material, it is not necessary to accurately fractionate a compound having a molecular weight close to that of the liquid crystal material. In other words, the number of theoretical plates need not be high. Rather, it is important to efficiently remove impurities having a molecular weight higher than that of the liquid crystal material at a temperature as low as possible. Therefore, it is preferable to apply a distillation apparatus called a molecular distillation apparatus, a short process distillation apparatus, or a thin film distillation apparatus. When such a distillation apparatus is used, by setting the degree of vacuum to 0.15 Pa or less, it is possible to easily collect impurities having a molecular weight higher than that of the active matrix liquid crystal material and the liquid crystal material at a temperature of 200 degrees or less.

カラムクロマトグラフィー、蒸留の順で精製処理を施した後、更に精製度を上げる目的でカラムクロマトグラフィー処理をしても良い。蒸留処理は加熱を伴うため、アクティブマトリクス用液晶材料の損傷を完全に防止することは困難である。そのため、蒸留により損傷を受けたアクティブマトリクス用液晶材料を除去することは品質保持の観点から好ましい。ここで行うカラムクロマトグラフィー条件は上述と同様に設定することができる。   After performing purification in the order of column chromatography and distillation, column chromatography may be performed for the purpose of further increasing the degree of purification. Since the distillation process involves heating, it is difficult to completely prevent the active matrix liquid crystal material from being damaged. Therefore, it is preferable from the viewpoint of quality maintenance to remove the active matrix liquid crystal material damaged by distillation. The column chromatography conditions performed here can be set in the same manner as described above.

以下、実施例を挙げて本発明を更に詳述するが、本発明はこれらの実施例に限定されるものではない。また、以下の実施例及び比較例の組成物における「%」は『質量%』を意味する。電圧保持率の測定は(株)東陽テクニカ製の「VHR-1A」を用い、フレーム周期が200ミリ秒、パルス幅が64マイクロ秒、印加電圧5Vに設定して行った。イオン密度の測定は(株)東陽テクニカ製の「MTR-1」を用い、±20Vの三角波(周波数0.5Hz)で行った。電圧保持率、イオン密度の測定いずれも、ポリイミド配向膜を形成した、電極面積1cm2、セルギャップ6μmのガラスセルを用いて行った。
(参考例1) 液晶材料の回収
市中に出回ったアクティブマトリクス液晶ディスプレイからディスプレイパネルを取り出し、そのディスプレイパネルを金槌で1cm角程度まで粉砕した。この粉砕物45kgをアセトン9000mlで3回洗浄した。このアセトン洗浄液(計27000ml)を減圧留去して回収液晶(A)を45g得た。この回収液晶(A)は若干赤色に着色しており、ネマチック液晶−等方性液体相転移温度(TNI)は96℃、複屈折率は0.083、誘電率の異方性は+4.2であった。80℃での電圧保持率は4%であった。イオン密度は、イオン密度が大きすぎるため測定不能であった。また、この回収液晶は以下の式(e-1)から式(e-60)で表される化合物を含有していた。
EXAMPLES Hereinafter, although an Example is given and this invention is further explained in full detail, this invention is not limited to these Examples. Further, “%” in the compositions of the following examples and comparative examples means “mass%”. The voltage holding ratio was measured using “VHR-1A” manufactured by Toyo Corporation, with a frame period of 200 milliseconds, a pulse width of 64 microseconds, and an applied voltage of 5V. The ion density was measured using a “MTR-1” manufactured by Toyo Corporation and a triangular wave of ± 20 V (frequency 0.5 Hz). Both the voltage holding ratio and the ion density were measured using a glass cell having an electrode area of 1 cm 2 and a cell gap of 6 μm on which a polyimide alignment film was formed.
(Reference Example 1) Recovery of liquid crystal material A display panel was taken out from an active matrix liquid crystal display that was circulated in the city, and the display panel was crushed to about 1 cm square with a hammer. 45 kg of this pulverized product was washed with 9000 ml of acetone three times. The acetone washing liquid (27000 ml in total) was distilled off under reduced pressure to obtain 45 g of recovered liquid crystal (A). The recovered liquid crystal (A) was slightly colored in red, the nematic liquid crystal-isotropic liquid phase transition temperature (TNI) was 96 ° C., the birefringence was 0.083, and the dielectric anisotropy was +4.2. . The voltage holding ratio at 80 ° C. was 4%. The ion density was not measurable because the ion density was too high. The recovered liquid crystal contained a compound represented by the following formulas (e-1) to (e-60).

Figure 0004645115
Figure 0004645115

Figure 0004645115
Figure 0004645115

Figure 0004645115
Figure 0004645115

Figure 0004645115
Figure 0004645115

(実施例1) カラムクロマトグラフィー、減圧蒸留、カラムクロマトグラフィーの順の精製
(カラムクロマトグラフィー)
参考例1で回収した回収液晶(A)の薄層クロマトグラフィー(流出溶媒:ヘキサン)を行ったところ、Rf値が0.46、0.55、0.69の大きく分けて三つのスポットが観察された。回収液晶(A)40gを40gのシリカゲルを用いたカラムクロマトグラフィー(流出溶媒:ヘキサン)によって原点成分の除去、及び着色成分の除去を行った。得られた液晶材料(B)は36gであった。TNIは92℃、複屈折率は0.0889、誘電率の異方性は4.5であった。80℃での電圧保持率は94.8%で、イオン密度は57pC/cm2であった
(減圧蒸留)
カラムクロマトグラフィー処理によって得られた液晶(B)4.1gを、クーゲルロール蒸留装置(減圧度60Pa、温度250℃)にて蒸留し、液晶(C)3.9gを得た。TNIは92℃、複屈折率は0.0870、誘電率の異方性は4.5であった。80℃での電圧保持率は93.0%で、イオン密度は103pC/cm2であった。
(カラムクロマトグラフィー)
液晶(C)2.02gを2.00gのシリカゲルを用いたカラムクロマトグラフィー(流出溶媒:ヘキサン)によって原点成分の除去、及び着色成分の除去を行った。得られた液晶材料(D)は2.00gであった。TNIは92℃、複屈折率は0.0890、誘電率の異方性は4.5であった。80℃での電圧保持率は95.0%で、イオン密度は46pC/cm2であった。
(実施例2) カラムクロマトグラフィー、分子蒸留の順の精製
実施例1のカラムクロマトグラフィー処理によって得られた液晶(B)30.0gを分子蒸留装置(ドイツUIC GmbH製のKDL-5、減圧度0.15Pa以下、温度190度)にて蒸留し、液晶材料(E)28gを得た。TNIは92℃、複屈折率は0.0890、誘電率の異方性は4.5であった。80℃での電圧保持率は94.1%で、イオン密度は80pC/cm2であった
(Example 1) Purification in the order of column chromatography, distillation under reduced pressure, and column chromatography (column chromatography)
When the recovered liquid crystal (A) recovered in Reference Example 1 was subjected to thin layer chromatography (elution solvent: hexane), three spots were roughly divided into Rf values of 0.46, 0.55, and 0.69. 40 g of the recovered liquid crystal (A) was subjected to removal of the origin component and removal of the colored component by column chromatography (elution solvent: hexane) using 40 g of silica gel. The obtained liquid crystal material (B) was 36 g. The TNI was 92 ° C., the birefringence was 0.0889, and the dielectric anisotropy was 4.5. The voltage holding ratio at 80 ° C. was 94.8%, and the ion density was 57 pC / cm 2 (vacuum distillation)
4.1 g of liquid crystal (B) obtained by the column chromatography was distilled with a Kugelrohr distillation apparatus (degree of vacuum 60 Pa, temperature 250 ° C.) to obtain 3.9 g of liquid crystal (C). TNI was 92 ° C., birefringence was 0.0870, and dielectric anisotropy was 4.5. The voltage holding ratio at 80 ° C. was 93.0%, and the ion density was 103 pC / cm 2 .
(Column chromatography)
The origin component and the colored component were removed from the liquid crystal (C) 2.02 g by column chromatography using 2.00 g of silica gel (flowing solvent: hexane). The obtained liquid crystal material (D) was 2.00 g. The TNI was 92 ° C., the birefringence was 0.0890, and the dielectric anisotropy was 4.5. The voltage holding ratio at 80 ° C. was 95.0%, and the ion density was 46 pC / cm 2 .
(Example 2) Purification in the order of column chromatography and molecular distillation 30.0 g of the liquid crystal (B) obtained by the column chromatography treatment of Example 1 was used as a molecular distillation apparatus (KDL-5 manufactured by UIC GmbH, Germany, 0.15 degree of vacuum). Distillation was performed at a temperature of Pa or lower and a temperature of 190 ° C. to obtain 28 g of a liquid crystal material (E). The TNI was 92 ° C., the birefringence was 0.0890, and the dielectric anisotropy was 4.5. The voltage holding ratio at 80 ° C. was 94.1%, and the ion density was 80 pC / cm 2 .

(比較例) 減圧蒸留、カラムクロマトグラフィーの順の精製
(減圧蒸留)
参考例で得られた液晶(A)2.0gを、クーゲルロール蒸留装置(減圧度60Pa、温度250℃)にて蒸留し、液晶(F)1.9gを得た。TNIは92℃、複屈折率は0.0900、誘電率の異方性は4.3であった。80℃での電圧保持率は11.0%で、イオン密度は大きすぎるため、測定不能であった。
(カラムクロマトグラフィー)
液晶(F)1.0gを1.0gのシリカゲルを用いたカラムクロマトグラフィー(流出溶媒:ヘキサン)によって原点成分の除去、及び着色成分の除去を行った。得られた液晶材料(G)は0.95gであった。TNIは90℃、複屈折率は0.0870、誘電率の異方性は4.0であった。80℃での電圧保持率は89.0%で、イオン密度は261pC/cm2であった。
(Comparative Example) Purification in order of vacuum distillation and column chromatography (vacuum distillation)
The liquid crystal (A) 2.0g obtained by the reference example was distilled with the Kugelrohr distillation apparatus (vacuum degree 60Pa, temperature 250 degreeC), and the liquid crystal (F) 1.9g was obtained. The TNI was 92 ° C., the birefringence was 0.0900, and the dielectric anisotropy was 4.3. The voltage holding ratio at 80 ° C. was 11.0%, and the ion density was too large to measure.
(Column chromatography)
The origin component and the colored component were removed from the liquid crystal (F) 1.0 g by column chromatography using 1.0 g of silica gel (flowing solvent: hexane). The obtained liquid crystal material (G) was 0.95 g. TNI was 90 ° C., birefringence was 0.0870, and dielectric anisotropy was 4.0. The voltage holding ratio at 80 ° C. was 89.0%, and the ion density was 261 pC / cm 2 .

以上の実施例と比較例から明らかなように、カラムクロマトグラフィー、蒸留の順に精製した本発明の方法と、蒸留、カラムクロマトグラフィーの順に精製した比較例とを比較すると、本発明の方法の方が電圧保持率が高いことがわかる。


As is clear from the above examples and comparative examples, the method of the present invention is compared between the method of the present invention purified in the order of column chromatography and distillation and the comparative example purified in the order of distillation and column chromatography. It can be seen that the voltage holding ratio is high.


Claims (4)

液晶パネルから取り出した液晶材料を再利用するための処理方法において、カラムクロマトグラフィーにより精製した後、蒸留を行うことを特徴とする処理方法。 A processing method for reusing a liquid crystal material taken out from a liquid crystal panel, comprising purifying by column chromatography and then performing distillation. カラムクロマトグラフィーの充填剤の量が、精製対象となる液晶材料の質量の0.1〜10倍量であることを特徴とする請求項1記載の処理方法。 The processing method according to claim 1, wherein the amount of the column chromatography filler is 0.1 to 10 times the mass of the liquid crystal material to be purified. カラムクロマトグラフィーの流出溶媒がヘキサン、ヘプタン、オクタン、デカン、ドデカンから選ばれる溶媒を含有していることを特徴とする請求項1または2記載の処理方法。 The processing method according to claim 1 or 2, wherein the effluent solvent for column chromatography contains a solvent selected from hexane, heptane, octane, decane, and dodecane. 蒸留が減圧蒸留であり、蒸留温度が220度以下、減圧度が0.15Pa以下であることを特徴とする請求項1〜3のいずれかに記載の処理方法。


Distillation is vacuum distillation, distillation temperature is 220 degrees or less, and the pressure reduction degree is 0.15 Pa or less, The processing method in any one of Claims 1-3 characterized by the above-mentioned.


JP2004274908A 2004-09-22 2004-09-22 Processing method of liquid crystal material Expired - Fee Related JP4645115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004274908A JP4645115B2 (en) 2004-09-22 2004-09-22 Processing method of liquid crystal material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004274908A JP4645115B2 (en) 2004-09-22 2004-09-22 Processing method of liquid crystal material

Publications (2)

Publication Number Publication Date
JP2006091266A JP2006091266A (en) 2006-04-06
JP4645115B2 true JP4645115B2 (en) 2011-03-09

Family

ID=36232341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004274908A Expired - Fee Related JP4645115B2 (en) 2004-09-22 2004-09-22 Processing method of liquid crystal material

Country Status (1)

Country Link
JP (1) JP4645115B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5370739B2 (en) * 2009-03-24 2013-12-18 Dic株式会社 Processing method of liquid crystal material
US8968595B2 (en) * 2011-09-02 2015-03-03 Industrial Technology Research Institute Methods for recycling liquid crystal and forming reformulated liquid crystal mixtures

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05281561A (en) * 1992-03-31 1993-10-29 Shimadzu Corp Liquid crystal injecting device
JP2002166259A (en) * 2000-11-30 2002-06-11 Sony Corp Recovery method of liquid crystal
JP2002332262A (en) * 2001-05-08 2002-11-22 Chisso Corp Fluorene derivative, antiferroelectric liquid crystal composition containing the same and liquid crystal display element produced by using the composition
JP2004137467A (en) * 2002-09-26 2004-05-13 Dainippon Ink & Chem Inc Method for treating liquid crystal material to reuse

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05281561A (en) * 1992-03-31 1993-10-29 Shimadzu Corp Liquid crystal injecting device
JP2002166259A (en) * 2000-11-30 2002-06-11 Sony Corp Recovery method of liquid crystal
JP2002332262A (en) * 2001-05-08 2002-11-22 Chisso Corp Fluorene derivative, antiferroelectric liquid crystal composition containing the same and liquid crystal display element produced by using the composition
JP2004137467A (en) * 2002-09-26 2004-05-13 Dainippon Ink & Chem Inc Method for treating liquid crystal material to reuse

Also Published As

Publication number Publication date
JP2006091266A (en) 2006-04-06

Similar Documents

Publication Publication Date Title
JP5000722B2 (en) Liquid crystal display
JP5408130B2 (en) Optically isotropic liquid crystal medium and optical element
JP5621769B2 (en) Chlorobenzene derivatives, optically isotropic liquid crystal media and optical elements
JP6299019B2 (en) Optically isotropic liquid crystal medium and optical element
JP4645115B2 (en) Processing method of liquid crystal material
KR100960580B1 (en) Treatment method for reusing liquid crystal material
JP4940531B2 (en) Treatment method for reusing liquid crystal materials
JP4887610B2 (en) Processing method of liquid crystal material
EP0863127B1 (en) Method of purifying liquid crystal
JPH08277391A (en) Purification of liquid crystal compound
JP2006265453A (en) Method for producing liquid crystal composition
JP5370739B2 (en) Processing method of liquid crystal material
JP2002166259A (en) Recovery method of liquid crystal
JP5812954B2 (en) Liquid crystal recycling method and modified liquid crystal mixture formation method
JP5472542B1 (en) Liquid crystal composition, liquid crystal display element and liquid crystal display
JP4214448B2 (en) Purification method of liquid crystal compounds
JP5654189B2 (en) Liquid crystal material purification apparatus and liquid crystal material purification method
JP2003104947A (en) Method for purifying liquid crystal compound by magnetic field application
JPH09291281A (en) Purification of liquid crystal compound of liquid crystal composition
JP2006091267A (en) Method for removing zinc from recovered liquid crystal material
CN104159881A (en) Production method for compound
JP2012077308A (en) Method for producing liquid crystal composition
DE10112599A1 (en) Nematic liquid crystal medium for use in plasma-addressed displays, contains at least one cyano-substituted cyclohexyl compound
JPH013134A (en) Purification method of tar acid
JP2003064363A (en) Liquid crystal material-purifying device and liquid crystal material-purifying method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4645115

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees