JP4645076B2 - Phase shift mask, manufacturing method thereof, and pattern transfer method - Google Patents

Phase shift mask, manufacturing method thereof, and pattern transfer method Download PDF

Info

Publication number
JP4645076B2
JP4645076B2 JP2004189357A JP2004189357A JP4645076B2 JP 4645076 B2 JP4645076 B2 JP 4645076B2 JP 2004189357 A JP2004189357 A JP 2004189357A JP 2004189357 A JP2004189357 A JP 2004189357A JP 4645076 B2 JP4645076 B2 JP 4645076B2
Authority
JP
Japan
Prior art keywords
phase shift
laser
refractive index
transparent substrate
shift mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004189357A
Other languages
Japanese (ja)
Other versions
JP2006011121A (en
Inventor
陽 坂田
尚子 伊藤
敏雄 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2004189357A priority Critical patent/JP4645076B2/en
Publication of JP2006011121A publication Critical patent/JP2006011121A/en
Application granted granted Critical
Publication of JP4645076B2 publication Critical patent/JP4645076B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、例えば半導体集積回路等の製造工程で、回路パターンの転写に用いられる位相シフト型フォトマスクおよびその製造方法およびパターン転写方法に関する。   The present invention relates to a phase shift photomask used for transferring a circuit pattern in a manufacturing process of a semiconductor integrated circuit, for example, a manufacturing method thereof, and a pattern transfer method.

従来、半導体素子や薄膜磁気ヘッドあるいは液晶表示素子等をフォトリソグラフィ工程で製造する場合にフォトマスクに形成されたパターンの像を、表面にフォトレジスト等の感光剤を塗布された基板上に投影光学系を介して投影する露光方式が使用されている。近年、基板上のショット領域に投影されるパターン形状の微細化に伴い、使用される露光用照明光(以下、露光光と記す)は短波長化される傾向にある。すなわち、これまで主流だった水銀ランプに代わって、KrFエキシマレーザー(波長248nm)やArFエキシマレーザー(波長193nm)を用いた露光装置が実用化されている。近年ではさらなるパターンの形状の微細化を目指してF2レーザー(波長157nm)を用いた露光方法の開発も進められている。   Conventionally, when a semiconductor element, a thin film magnetic head, a liquid crystal display element or the like is manufactured by a photolithography process, an image of a pattern formed on a photomask is projected onto a substrate coated with a photosensitive agent such as a photoresist on the surface. An exposure system that projects through a system is used. In recent years, with the miniaturization of a pattern shape projected on a shot area on a substrate, the exposure illumination light used (hereinafter referred to as exposure light) tends to be shortened in wavelength. That is, an exposure apparatus using a KrF excimer laser (wavelength 248 nm) or an ArF excimer laser (wavelength 193 nm) has been put into practical use in place of the mercury lamps that have been mainstream. In recent years, an exposure method using an F2 laser (wavelength of 157 nm) has been developed for further miniaturization of the pattern shape.

また、露光光の短波長化の他に投影露光光学系の解像度を向上させる一手法としてフォトマスク上の隣接する2個所の透明部分を透過する光の位相を変え、パターン解像度を向上させる光学的な効果を用いた位相シフト法が採用されてきている。この方法としては透過型(レベンソン)位相シフトマスクや減衰型(ハーフトーン)位相シフトマスクが考案されている。   In addition to shortening the wavelength of the exposure light, as one method for improving the resolution of the projection exposure optical system, an optical that improves the pattern resolution by changing the phase of the light transmitted through two adjacent transparent portions on the photomask. A phase shift method using various effects has been adopted. As this method, a transmission type (Levenson) phase shift mask and an attenuation type (halftone) phase shift mask have been devised.

従来の透過型位相シフトマスクは基板表面の透過部パターン部において位相シフトを所望する位置に基板表面から断面深さ方向に彫り込んだ凹部を形成する。一方、減衰型位相シフトマスクではシフターと呼ばれるシフトパターン膜を基板表面上に形成することで露光光の透過部の位相反転制御を行うことをその原理としていた。位相シフト部の膜厚をd、屈折率をn、露光波長をλとするとき、d=λ/2(n−1)の関係を満たすように形成することで位相反転制御を行う。この位相反転制御では隣接する透過部の透過光と逆位相(約180度のずれ)であるため、パターン境界部で光強度がゼロとなり、パターンが分離し解像度が向上する。   A conventional transmission type phase shift mask forms a recess carved in the cross-sectional depth direction from the substrate surface at a position where a phase shift is desired in the transmission portion pattern portion on the substrate surface. On the other hand, the principle of the attenuation type phase shift mask is to perform phase inversion control of the transmission part of the exposure light by forming a shift pattern film called a shifter on the substrate surface. When the film thickness of the phase shift portion is d, the refractive index is n, and the exposure wavelength is λ, the phase inversion control is performed by forming the phase shift portion so as to satisfy the relationship d = λ / 2 (n−1). In this phase inversion control, the light intensity is zero at the pattern boundary portion because the phase is opposite to the transmitted light of the adjacent transmission portion (shift of about 180 degrees), the pattern is separated, and the resolution is improved.

また、透過型位相シフトマスクではパターンの微細化や隣接するパターン間の距離が近接、高密度化することにより、位相反転凹部の側壁の影響による凹部の光量低下が発生する問題が無視できず、非位相反転部にも凹部を形成する発明(特許文献1及び図11参照)がなされている。図11は、従来の透過型位相シフトマスクの一例の側断面図で、透明基板10の片側面にパターン110Aと、非位相シフト透明部110B及び位相シフト透明部110Cが形成されている。非位相シフト透明部110B及び位相シフト透明部110Cの露出した透明基板表面には凹部が形成されている。また、基板内部を透過してくる露光光が開口部の彫り込みの有無でその透過光強度が変化するため、凹部が金属または金属酸化物で形成した遮光部の下層にアンダーカットされ、遮光部材が下地基板からオーバーハングした構造(庇)の出願や、このオーバーハング(庇)を解消するため凹部断面形状を斜面とし、遮光膜を垂直断面ではなく斜面に形成した構造の発明(特許文献2)がなされている。   In addition, in the transmission type phase shift mask, the problem that the light amount of the concave portion is reduced due to the influence of the side wall of the phase inversion concave portion cannot be ignored due to the miniaturization of the pattern and the proximity between the adjacent patterns and the high density. An invention (see Patent Document 1 and FIG. 11) in which a concave portion is formed also in a non-phase inversion portion has been made. FIG. 11 is a side sectional view of an example of a conventional transmission type phase shift mask. A pattern 110A, a non-phase shift transparent portion 110B, and a phase shift transparent portion 110C are formed on one side of the transparent substrate 10. Concave portions are formed on the exposed transparent substrate surfaces of the non-phase shift transparent portion 110B and the phase shift transparent portion 110C. In addition, since the intensity of transmitted light that passes through the inside of the substrate changes depending on whether or not the opening is engraved, the concave portion is undercut below the light shielding portion formed of metal or metal oxide, and the light shielding member An application for a structure (庇) overhanging from the base substrate, or an invention of a structure in which the cross-sectional shape of the recess is inclined to eliminate this overhang (庇), and the light shielding film is formed on the inclined surface instead of the vertical section (Patent Document 2) Has been made.

以下に公知文献を記す。
特開平07−306524号公報 特開2002−268197号公報
The known literature is described below.
JP 07-306524 A JP 2002-268197 A

従来技術の透過型位相シフトマスクは遮光部(庇)の構造強度や位相反転部と非位相反転部それぞれの形成のために2回露光(リソグラフィを2回繰り返す)するなど製造工程の複雑化が免れなかった。さらに、位相反転部の凹部深さのエッチングでは深さを制限するストッパー(終点)層の形成は不可能である。減衰型位相シフトマスクについても位相シフト部を基板表面上に成膜する必要があり、その透過率と位相角度を両方同時に制御する必要があった。その材料として金属酸化物やSOG(Spin On Glass)の方法として塗布やスパッタリング、化学気相成長法、化学液相成長法などが挙げられる。また、透過型位相シフトマスク同様、透過部と位相シフト部の形成のために2回露光する必要があった。さらに、非位相シフト部のエッチングによるパターン形成ではガラス面のエッチングを抑止するストッパー層の必要性を請求した公知技術もある。透過型位相シフトマスクについては基板表面に凹部の形成を必要とし、また、減衰型位相シフトマスクについては単層膜構造については透過率と位相の両方を制御必要がある。従って、場合によっては各々の制御を分離した複数層膜構造が必要となり、構造が複雑であり、工程が増加する問題がある。   The conventional transmission type phase shift mask complicates the manufacturing process, such as the structure intensity of the light-shielding part (庇) and the exposure twice (repeating the lithography twice) to form each of the phase inversion part and the non-phase inversion part. I couldn't escape. Furthermore, it is impossible to form a stopper (end point) layer that limits the depth by etching the depth of the concave portion of the phase inversion portion. Also for the attenuation type phase shift mask, it is necessary to form a phase shift portion on the substrate surface, and it is necessary to control both the transmittance and the phase angle at the same time. Examples of the material include metal oxide and SOG (Spin On Glass) methods such as coating, sputtering, chemical vapor deposition, and chemical liquid growth. Further, like the transmission type phase shift mask, it is necessary to expose twice in order to form the transmission part and the phase shift part. Furthermore, there is a known technique that claims the necessity of a stopper layer that suppresses etching of the glass surface in pattern formation by etching of the non-phase shift portion. For the transmission type phase shift mask, it is necessary to form a recess on the substrate surface, and for the attenuation type phase shift mask, it is necessary to control both the transmittance and the phase for the single layer film structure. Therefore, in some cases, a multi-layered film structure in which each control is separated is necessary, and there is a problem that the structure is complicated and the number of processes increases.

本発明の課題は、位相シフトマスクにおいて、基板表面に凹部の形成を必要としない、複数層膜構造を必要としない、構造が単純な位相シフトマスクであり、位相シフトマスクの製造工程が増加しない位相シフトマスクおよびその製造方法およびパターン転写方法を提供することにある。   An object of the present invention is a phase shift mask that does not require the formation of recesses on the substrate surface, does not require a multi-layer film structure, has a simple structure, and does not increase the manufacturing process of the phase shift mask. A phase shift mask, a manufacturing method thereof, and a pattern transfer method are provided.

本発明の請求項1に係る発明は、透明基板上の一面上に遮光層を形成し、前記遮光層上にレジストを塗布し、前記レジストを電子線描画装置もしくはレーザー描画装置で露光し現像処理して所定形状に開口部を有した前記レジストが形成されたレジストパターン部を形成し、前記開口部下の前記遮光部に対し薬液もしくはガスによるエッチングを前記透明基板表面に到達するまで行い、前記遮光部上に形成された前記レジストを薬液により溶解、分解もしくは炭化により剥離処理し、さらに、少なくとも1つの前記開口部直下の前記透明基板内部にレーザーアブレーションにより屈折率変化層を形成し、前記屈折率変化部は、前記開口部の開口幅以上の長さで形成し、前記屈折率変化部を透過する透過光と、前記透明基板を透過する透過光との位相差を略180度となるように前記屈折率変化部を形成したこと特徴とする位相シフトマスクである。
また、請求項2に係る発明は、透明基板上の一面上に透過率制御層を形成し、前記透過率制御層上にレジストを塗布し、前記レジストを電子線描画装置もしくはレーザー描画装置で露光し現像処理して所定形状に開口部を有した前記レジストが形成されたレジストパターン部を形成し、前記開口部下の前記透過率制御層に対し薬液もしくはガスによるエッチングを前記透明基板表面に到達するまで行い、前記透過率制御層上に形成された前記レジストを薬液により溶解、分解もしくは炭化により剥離処理し、さらに、少なくとも1つの前記透過率制御部直下の前記透明基板内部にレーザーアブレーションにより屈折率変化層を形成し、前記屈折率変化部を透過する透過光と、前記透明基板を透過する透過光との位相差を略180度となるように前記屈折率変化部を形成したこと特徴とする位相シフトマスクである。
また、請求項3に係る発明は、透明基板上の一面上に透過率制御層を形成し、前記透過率制御層上にレジストを塗布し、前記レジストを電子線描画装置もしくはレーザー描画装置で露光し現像処理して所定形状に開口部を有した前記レジストが形成されたレジストパターン部を形成し、前記開口部下の前記透過率制御層に対し薬液もしくはガスによるエッチングを前記透明基板表面に到達するまで行い、前記透過率制御層上に形成された前記レジストを薬液により溶解、分解もしくは炭化により剥離処理し、さらに、少なくとも1つの前記開口部直下の前記透明基板内部にレーザーアブレーションにより屈折率変化層を形成し、前記屈折率変化部を透過する透過光と、前記透明基板を透過する透過光との位相差を略180度となるように前記屈折率変化部を形成したこと特徴とする位相シフトマスクである
In the invention according to claim 1 of the present invention , a light shielding layer is formed on one surface of a transparent substrate, a resist is applied on the light shielding layer, and the resist is exposed with an electron beam drawing apparatus or a laser drawing apparatus and developed. Then, a resist pattern portion is formed in which the resist having an opening in a predetermined shape is formed, and the light shielding portion under the opening is etched with a chemical solution or a gas until it reaches the surface of the transparent substrate, and the light shielding is performed. The resist formed on the part is removed by dissolution, decomposition or carbonization with a chemical solution, and further, a refractive index changing layer is formed by laser ablation in the transparent substrate immediately below the at least one opening, and the refractive index change part includes a transmitted light formed by the length of the above opening width of the opening, it passes through the refractive index change portion, and the light transmitted through the transparent substrate Is a phase shift mask, characterized by the formation of the refractive index change portion to the phase difference is substantially 180 degrees.
According to a second aspect of the present invention, a transmittance control layer is formed on one surface of a transparent substrate, a resist is coated on the transmittance control layer, and the resist is exposed by an electron beam lithography apparatus or a laser lithography apparatus. Then, a development process is performed to form a resist pattern portion in which the resist having an opening in a predetermined shape is formed, and chemical etching or gas etching is performed on the transmittance control layer below the opening to reach the surface of the transparent substrate. The resist formed on the transmittance control layer is stripped by dissolving, decomposing or carbonizing with a chemical solution, and the refractive index by laser ablation inside the transparent substrate immediately below at least one transmittance control portion. A change layer is formed so that the phase difference between the transmitted light transmitted through the refractive index changing portion and the transmitted light transmitted through the transparent substrate is approximately 180 degrees. It is a phase shift mask, characterized by the formation of the refractive index change portion.
According to a third aspect of the present invention, a transmittance control layer is formed on one surface of a transparent substrate, a resist is coated on the transmittance control layer, and the resist is exposed by an electron beam drawing apparatus or a laser drawing apparatus. Then, a development process is performed to form a resist pattern portion in which the resist having an opening in a predetermined shape is formed, and chemical etching or gas etching is performed on the transmittance control layer below the opening to reach the surface of the transparent substrate. The resist formed on the transmittance control layer is dissolved, dissolved or decomposed by a chemical solution, and peeled off by at least one of the transparent substrate just below the opening, and the refractive index changing layer is formed by laser ablation. And the phase difference between the transmitted light transmitted through the refractive index changing portion and the transmitted light transmitted through the transparent substrate is approximately 180 degrees. It is a phase shift mask, characterized by the formation of the folding rate change unit

本発明の請求項に係る発明は、前記屈折率変化部は、透明基板自身の屈折率に対して高屈折率又は低屈折率であることを特徴とする請求項1記載の位相シフトマスクである。 The invention according to claim 4 of the present invention is the phase shift mask according to claim 1, wherein the refractive index changing portion has a high refractive index or a low refractive index with respect to the refractive index of the transparent substrate itself. is there.

本発明の請求項に係る発明は、前記屈折率変化部は、高密度化した透明基板又は真空の空孔からなることを特徴とする請求項1、又は2記載の位相シフトマスクである。 The invention according to claim 5 of the present invention is the phase shift mask according to claim 1, wherein the refractive index changing portion is made of a transparent substrate or a vacuum hole having a high density.

本発明は位相シフト効果を有するフォトマスクにおいて、透明基板表面ではなく、透明基板内部に屈折率変化部を発現させ、透明基板内部に位相シフト部を形成した位相シフトマスクである。
本発明の請求項6に係る発明は、前記レーザーアブレーションのレーザーは、フェムト秒(1×10 −15 秒)パルスレーザーであることを特徴とする請求項1〜5のいずれか1項に記載の位相シフトマスクである。
本発明の請求項7に係る発明は、前記レーザーアブレーションのレーザーは、アト秒(1×10 −18 秒)パルスレーザーであることを特徴とする請求項1〜5のいずれか1項に記載の位相シフトマスクである。
本発明の請求項8に係る発明は、前記レーザーアブレーションのレーザーは、ゼプト秒(1×10 −21 秒)パルスレーザーであることを特徴とする請求項1〜5のいずれか1項に記載の位相シフトマスクである。
本発明の請求項9に係る発明は、前記レーザーアブレーションのレーザーは、ヨクト秒(1×10 −24 秒)パルスレーザーであることを特徴とする請求項1〜5のいずれか1項に記載の位相シフトマスクである。
本発明の請求項10に係る発明は、位相シフトマスクのその位相差を用いて解像度を向上するパターン転写方法において、請求項1乃至5のいずれか1項記載の位相シフトマスクを用い、フォトリソグラフィ法による露光転写で被転写基板上にパターン形成を行うことを特徴とするパターン転写方法である。
The present invention is a photomask having a phase shift effect, in which a refractive index changing portion is expressed inside a transparent substrate, not a surface of the transparent substrate, and a phase shift portion is formed inside the transparent substrate.
The invention according to claim 6 of the present invention is the laser ablation laser according to any one of claims 1 to 5 , wherein the laser is a femtosecond (1 × 10 −15 seconds) pulse laser. It is a phase shift mask.
In the invention according to claim 7 of the present invention, the laser of the laser ablation is an attosecond (1 × 10 −18 seconds) pulse laser, according to any one of claims 1 to 5. It is a phase shift mask.
The invention according to claim 8 of the present invention is the laser ablation laser according to any one of claims 1 to 5 , wherein the laser is a zept second (1 × 10 −21 seconds) pulse laser. It is a phase shift mask.
The invention according to claim 9 of the present invention is the laser ablation laser according to any one of claims 1 to 5 , wherein the laser is a joctosecond (1 × 10 −24 seconds) pulse laser. It is a phase shift mask.
The invention according to claim 10 of the present invention is a pattern transfer method for improving resolution by using the phase difference of the phase shift mask, wherein the phase shift mask according to any one of claims 1 to 5 is used and photolithography is performed. A pattern transfer method characterized in that a pattern is formed on a transfer substrate by exposure transfer by a method.

本発明の請求項11に係る発明は、透明基板内部に屈折率変化部を有し、該屈折率変化部を透過する透過光と、透明基板を透過する透過光との位相差を略180度とする位相シフトマスクの製造方法において、該屈折率変化部は、透明基板の内部のその位置にレーザ光を収束させ発現するレーザーアブレーションにより形成し、前記屈折率変化部は、前記開口部の開口幅以上の長さで形成することを特徴とする位相シフトマスクの製造方法である。 The invention according to claim 11 of the present invention has a refractive index changing portion inside the transparent substrate, and the phase difference between the transmitted light transmitted through the refractive index changed portion and the transmitted light transmitted through the transparent substrate is approximately 180 degrees. In the method of manufacturing a phase shift mask, the refractive index changing portion is formed by laser ablation that converges and expresses laser light at the position inside the transparent substrate, and the refractive index changing portion is an opening of the opening. a method of manufacturing a phase shift mask is characterized that you formed with more length width.

本発明は位相シフト効果を有するフォトマスクにおいて、基板表面ではなく、基板内部にレーザー光を収束させて屈折率変化部を形成を発現させるレーザーアブレーションを利用して基板内部にシフト部を形成する。レーザーアブレーションとは、パルス幅が超短パルス光の非線形光学現象を利用したものであり、1光子では吸収を持たない透明媒質内部に集光すると、非線形光学効果により、媒質は集光点近傍の空間的に限定された領域のみで三次元的に局在した構造変化を誘起することが出来る技術である。集光点に集光されたエネルギーにより多光子イオン化が起こり、このとき生成された自由電子が周囲の原子やイオンと衝突し、アバランシェイオン化が起こる。このとき集光点付近ではプラズマ密度が急激に増加すると同時に吸収係数が増加し、光子は電子によって吸収され、微少領域に閉じ込められたプラズマが爆発的に拡散する。この衝撃波により屈折率変化や空孔が形成される。   According to the present invention, in a photomask having a phase shift effect, the shift portion is formed inside the substrate by using laser ablation for converging the laser light not inside the substrate surface but inside the substrate to develop the refractive index changing portion. Laser ablation uses a nonlinear optical phenomenon in which the pulse width is ultrashort pulsed light. When the light is condensed inside a transparent medium that does not absorb with one photon, the medium is near the focal point due to the nonlinear optical effect. This is a technique that can induce a three-dimensional localized structural change only in a spatially limited region. Multiphoton ionization occurs due to the energy focused at the focal point, and the free electrons generated at this time collide with surrounding atoms and ions, resulting in avalanche ionization. At this time, in the vicinity of the condensing point, the plasma density increases rapidly and at the same time, the absorption coefficient increases, the photons are absorbed by the electrons, and the plasma confined in the minute region is diffused explosively. This shock wave forms a refractive index change and holes.

本発明の請求項12に係る発明は、前記レーザーアブレーションのレーザーは、フェムト秒(1×10−15秒)パルスレーザーであることを特徴とする請求項4記載の位相シフトマスクの製造方法である。 The invention according to claim 12 of the present invention is the method of manufacturing a phase shift mask according to claim 4, wherein the laser of laser ablation is a femtosecond (1 × 10 −15 seconds) pulse laser. .

本発明の請求項13に係る発明は、前記レーザーアブレーションのレーザーは、アト秒(1×10−18秒)パルスレーザーであることを特徴とする請求項4記載の位相シフトマスクの製造方法である。 The invention according to claim 13 of the present invention is the method of manufacturing a phase shift mask according to claim 4, wherein the laser ablation laser is an attosecond (1 × 10 −18 seconds) pulse laser. .

本発明の請求項14に係る発明は、前記レーザーアブレーションのレーザーは、ゼプト秒(1×10−21秒)パルスレーザーであることを特徴とする請求項4記載の位相シフトマスクの製造方法である。 The invention according to claim 14 of the present invention is the method of manufacturing a phase shift mask according to claim 4, wherein the laser ablation laser is a zept second (1 × 10 −21 sec) pulse laser. .

本発明の請求項15に係る発明は、前記レーザーアブレーションのレーザーは、ヨクト秒(1×10−24秒)パルスレーザーであることを特徴とする請求項4記載の位相シフトマスクの製造方法である。 The invention according to claim 15 of the present invention is the method of manufacturing a phase shift mask according to claim 4, wherein the laser ablation laser is a joctosecond (1 × 10 −24 seconds) pulse laser. .

超短パルスレーザー(フェムト秒レーザー)による微細構造加工技術は、その加工サイズとしてレーザー波長以下に制御可能であり、例えば、波長800nmのチタン・サファイヤレーザーはBBO(β−ホウ酸バリウム)結晶板を透過させることにより、第3高調波の266nmに変換され、その1/10から3/5のサイズに制御可能である。   Fine structure processing technology using ultra-short pulse laser (femtosecond laser) can be controlled to the laser wavelength or less as the processing size. For example, a titanium sapphire laser with a wavelength of 800 nm uses a BBO (β-barium borate) crystal plate. By transmitting the light, it is converted to 266 nm of the third harmonic, and the size can be controlled to 1/10 to 3/5.

本発明の請求項10に係る発明は、位相シフトマスクのその位相差を用いて解像度を向上するパターン転写方法において、請求項1乃至のいずれか1項記載の位相シフトマスクを用い、フォトリソグラフィ法による露光転写で被転写基板上にパターン形成を行うことを特徴とするパターン転写方法である。 The invention according to claim 10 of the present invention is a pattern transfer method for improving resolution by using the phase difference of the phase shift mask, wherein the phase shift mask according to any one of claims 1 to 5 is used and photolithography is performed. A pattern transfer method characterized in that a pattern is formed on a transfer substrate by exposure transfer by a method.

係るパターン転写方法によると、被転写基板に形成されたレジストに対して、精度良くパターン露光が可能となり、その結果、半導体等のパターンの製造を、高い歩留まりで行うことができる。   According to such a pattern transfer method, pattern exposure can be performed with high accuracy on the resist formed on the transfer substrate, and as a result, patterns of semiconductors and the like can be manufactured with a high yield.

本発明によれば透過型位相シフトマスクにおいては、基板表面への凹部形成を不要にすることにより、遮光膜がある場合は、透明基板の表面は遮光層のみ1回露光(1回リソ)のパターン形成で良い。さらに遮光層のオーバーハング(庇)も無いため、構造強度が低下することが無く、洗浄工程におけるオーバーハング(庇)下部へのゴミの滞留の問題も発生しない。   According to the present invention, in the transmission type phase shift mask, it is not necessary to form a recess on the substrate surface. When there is a light shielding film, the surface of the transparent substrate is exposed only once to the light shielding layer (one time lithography). Pattern formation is sufficient. Further, since there is no overhang (庇) of the light shielding layer, the structural strength does not decrease, and the problem of dust staying under the overhang (庇) in the cleaning process does not occur.

また、本発明によれば、凹部底面や側壁斜面にも遮光部を設置する従来の構造で、焦点平面が基板表面とは異なる2回目の露光が必要でなくなり従来の欠点を解消する。さらに、薬液でのウエットエッチングによる方法では、凹部深さの終点制御がエッチング液の濃度(飽和溶解度)変化や液温度(化学反応熱)変化により影響をうけるが、本方法では影響が無い。そもそも本発明では基板エッチング薬液自体が不要であり、廃液も発生しない。同様に、腐食性ガスによるドライエッチングによる方法に比べるとエッチングガス自体不要となり、ガスの除害処理も不要となる。ウエット及び、ドライエッチングに共通して被エッチング物質(ガラス基板)とレジストパターンの選択比の概念も不要とする効果がある。また、本発明のレーザアブレーションを用いる方法はガラス内部のみに作用するので加工に伴う発塵の発生も無く、好適である。また、本発明によれば減衰型位相シフトマスクにおいては、位相シフト膜は屈折率制御を必要とせず、透過率のみの制御で良い。さらに、薬液処理による位相シフト膜表面又は内部侵入による変質、例えば透過率、反射率、屈折率等の変化の影響がない。従って、本発明は従来の透過型および減衰型の2つの位相シフトマスクの欠点を解消する。   In addition, according to the present invention, the conventional structure in which the light-shielding portion is also provided on the bottom surface of the recess and the side wall slope eliminates the need for the second exposure whose focal plane is different from the substrate surface, thereby eliminating the conventional drawbacks. Furthermore, in the method using wet etching with a chemical solution, the end point control of the recess depth is affected by changes in the concentration (saturated solubility) of the etching solution and changes in the solution temperature (chemical reaction heat), but this method has no effect. In the first place, in the present invention, the substrate etching chemical itself is unnecessary, and no waste liquid is generated. Similarly, as compared with the dry etching method using a corrosive gas, the etching gas itself is unnecessary, and the gas detoxification process is also unnecessary. In common with wet and dry etching, there is an effect that the concept of the selection ratio between the substance to be etched (glass substrate) and the resist pattern is also unnecessary. Further, the method using laser ablation according to the present invention is preferable because it acts only on the inside of the glass and does not generate dust during processing. Further, according to the present invention, in the attenuation type phase shift mask, the phase shift film does not require the refractive index control, and only the transmittance can be controlled. Furthermore, there is no influence of alteration of the phase shift film surface or internal penetration due to chemical treatment, such as changes in transmittance, reflectance, refractive index, and the like. Therefore, the present invention eliminates the disadvantages of the conventional transmission type and attenuation type two phase shift masks.

本発明のパターン転写方法によると、被転写基板に形成されたレジストに対して、精度良くパターン露光が可能となり、その結果、半導体等のパターンの製造を、高い歩留まりで行うことができる。   According to the pattern transfer method of the present invention, it is possible to accurately perform pattern exposure on a resist formed on a transfer substrate, and as a result, a pattern of a semiconductor or the like can be manufactured with a high yield.

まず、本発明の位相シフトマスクで必要な位相シフト部の構造について説明する。図10は、位相シフト部の構造を説明する側断面図で、(a)は、本発明の構造であり、(b)は、従来の構造である。位相反転の原理は、位相シフト部の基板材質と環境媒質の屈折率の違いにより、その差分変化する光速度を利用し、位相シフト部と非位相シフト部で通過する露光光の距離を半波長分ずらすことである。すなわち、分岐した露光光により、位相シフト部を透過した光と透明基板の基板基材を透過した光との境界部において光強度がゼロとなることを利用してパターンを分離ことである。位相シフト部の基板断面方向の距離をd、透明基板の基板材質の屈折率をn2、透明基板が設置される環境媒質の密度をn1、露光波長をλとするとき、d=λ/2(n2−n1)の関係を満たせばよい。   First, the structure of the phase shift unit necessary for the phase shift mask of the present invention will be described. 10A and 10B are side cross-sectional views for explaining the structure of the phase shift portion. FIG. 10A is a structure of the present invention, and FIG. 10B is a conventional structure. The principle of phase inversion is based on the difference in the refractive index of the substrate material of the phase shift unit and the refractive index of the environmental medium. It is to shift. That is, the pattern is separated by utilizing the fact that the light intensity becomes zero at the boundary between the light transmitted through the phase shift portion and the light transmitted through the substrate substrate of the transparent substrate by the branched exposure light. When the distance in the substrate cross-sectional direction of the phase shift portion is d, the refractive index of the substrate material of the transparent substrate is n2, the density of the environmental medium in which the transparent substrate is installed is n1, and the exposure wavelength is λ, d = λ / 2 ( It is only necessary to satisfy the relationship of n2-n1).

以下に、図10(a)により、本発明の位相シフト部の構造を説明する。露光光は分岐し、透明基板10の表面位置Cより入射し、一方は、位相シフト透明部110Cを透過し、すなわち、基板材質10と、位相シフト部140と、再度基板材質10を透過し、透明基板裏面位置Aから大気中に出射する。また、他方は、非位相シフト透明部110Bを透過し、すなわち、基板材質10のみを透過し、透明基板裏面位置Aから大気中に出射する。この際、透明基板裏面位置Aでの双方の露光光は位相が反転する。位相シフト部140の屈折率は本発明では、例えば真空の場合ゼロであることから、環境媒質の密度n1は従来の大気(空気)の屈折率1の適用ではなく、本構造で新たに生じる位相シフト部140の屈折率として発生した真空のゼロを適用する。従って、透過型位相シフトマスクの位相シフト部(140)形成ではλをF2レーザーの波長157nm、ガラスの屈折率n1を1.5で計算した場合、本発明ではd=157/2(1.5−0)=52.3nmである。計算式では、本発明の位相シフト部(140)は透明基板の層内に形成し、その位相シフト部140の深さはB2〜B1までのdfとなる。レーザーアブレーションの照射では、透明基板の内部のB1の深さ位置にレーザの焦点を合わせ所定の照射条件により照射加工処理し、順次、段階的にB2まで焦点位置を移動させ加工処理を行ない本発明の位相シフト部ができる。   Hereinafter, the structure of the phase shift unit of the present invention will be described with reference to FIG. The exposure light branches off and enters from the surface position C of the transparent substrate 10, one of which passes through the phase shift transparent portion 110C, that is, the substrate material 10, the phase shift portion 140, and the substrate material 10 again, The light is emitted from the back surface position A of the transparent substrate into the atmosphere. The other is transmitted through the non-phase shift transparent portion 110B, that is, only through the substrate material 10, and is emitted from the transparent substrate back surface position A into the atmosphere. At this time, the phases of both exposure lights at the back surface position A of the transparent substrate are inverted. In the present invention, the refractive index of the phase shift unit 140 is zero in the case of a vacuum, for example. Therefore, the density n1 of the environmental medium is not an application of the conventional refractive index 1 of the atmosphere (air), but a phase newly generated in this structure. The vacuum zero generated as the refractive index of the shift unit 140 is applied. Therefore, in the case of forming the phase shift portion (140) of the transmission type phase shift mask, when λ is calculated as F2 laser wavelength 157 nm and the refractive index n1 of glass is 1.5, in the present invention, d = 157/2 (1.5 −0) = 52.3 nm. In the calculation formula, the phase shift portion (140) of the present invention is formed in the layer of the transparent substrate, and the depth of the phase shift portion 140 is df from B2 to B1. In laser ablation irradiation, the laser is focused on the depth position of B1 inside the transparent substrate, and irradiation processing is performed under predetermined irradiation conditions, and the processing is performed by sequentially moving the focus position to B2 in stages. The phase shift part can be formed.

図10(b)により、従来の位相シフト部の構造を説明する。露光光は分岐し、透明基板10の表面位置Cより入射し、一方は、位相シフト透明部110Cを透過し、すなわち、基板材質10と、環境媒質の密度n1よりなる凹部の位相シフト部140Aとを透過し、透明基板裏面位置Aから大気中に出射する。また、他方は、非位相シフト透明部110Bを透過し、すなわち、基板材質10のみを透過し、透明基板裏面位置Aから大気中に出射する。位相シフト部140Aの環境媒質の密度n1は大気(空気)であり、その屈折率は1となる。従って、透過型位相シフトマスクの凹部形成ではλをF2レーザーの波長157nm、ガラスの屈折率n1を1.5で計算した場合、図10(b)に示す従来では、環境媒質の密度n1は従来の大気(空気)の屈折率1となり、凹部膜厚はd=157/2(1.5−1)=157nmとなる。計算式では、従来の位相シフト部140Aは透明基板の裏面表面に形成し、その位相シフト部140Aの深さは透明基板裏面位置A〜Bまでのdとなる。   The structure of the conventional phase shift unit will be described with reference to FIG. The exposure light branches off and enters from the surface position C of the transparent substrate 10, and one of the light passes through the phase shift transparent portion 110C, that is, the substrate material 10 and the phase shift portion 140A of the recess made of the density n1 of the environmental medium. And is emitted from the back surface position A of the transparent substrate into the atmosphere. The other is transmitted through the non-phase shift transparent portion 110B, that is, only through the substrate material 10, and is emitted from the transparent substrate back surface position A into the atmosphere. The density n1 of the environmental medium of the phase shift unit 140A is the atmosphere (air), and its refractive index is 1. Therefore, in the formation of the concave portion of the transmissive phase shift mask, when the wavelength 157 nm of the F2 laser and the refractive index n1 of the glass are calculated as 1.5, in the conventional case shown in FIG. The refractive index of the atmosphere (air) is 1 and the thickness of the concave portion is d = 157/2 (1.5-1) = 157 nm. In the calculation formula, the conventional phase shift portion 140A is formed on the back surface of the transparent substrate, and the depth of the phase shift portion 140A is d from the transparent substrate back surface position A to B.

以下、本発明の実施例1の位相シフトマスクの構造を図1に示す。図1はフォトマスク100の断面図であり、ラインパターン配列の一部である。合成石英を主組成とする透明基板10に遮光部のパターン110Aと透明基板10の表面上に位相シフト透明部110Cと非位相シフト部110Bが形成されている。パターン110Aは、本発明の位相シフトマスクに用いる露光光の波長に対し、Crなどの金属や金属酸化物など不透明な材質でフォトリソグラフィ法などで形成されている。位相シフトを発現する位相シフト部140は位相シフト透明部110Cの直下の透明基板10の断面中に形成する。位相シフト部140は位相シフト透明部110Cの開口幅150と同一幅、もしくは大きい寸法で形成する。   The structure of the phase shift mask according to the first embodiment of the present invention is shown in FIG. FIG. 1 is a cross-sectional view of a photomask 100, which is a part of a line pattern arrangement. A light-shielding portion pattern 110A and a phase-shifting transparent portion 110C and a non-phase-shifting portion 110B are formed on the surface of the transparent substrate 10 on the transparent substrate 10 mainly composed of synthetic quartz. The pattern 110A is formed by a photolithography method or the like with an opaque material such as a metal such as Cr or a metal oxide with respect to the wavelength of exposure light used in the phase shift mask of the present invention. The phase shift portion 140 that develops the phase shift is formed in the cross section of the transparent substrate 10 immediately below the phase shift transparent portion 110C. The phase shift portion 140 is formed to have the same width as or larger than the opening width 150 of the phase shift transparent portion 110C.

本発明の実施例1の位相シフトマスクの製造方法を図2を用いて説明する。実施例1では、従来の透過型の欠点を改善する事例であり、図1に示す構造であり、位相シフト部の形成を遮光部形成後の工程とする。まず、図2(a)のような透明基板10上の一面上に遮光層110を形成する。次に遮光層110の一面上に電子線もしくは感光性樹脂(以下レジストと記す)200を塗布(図2(b))し、電子線描画装置もしくはレーザー描画装置でそれぞれ露光し、現像処理して所定形状に電子線または感光性樹脂が形成されたレジストパターン部210Aと非位相シフトレジストパターン部210B、位相シフトレジストパターン部210Cを形成する。レジストパターン部210Aと210B及び210Cはそれぞれ図1における遮光部のパターン110Aと非位相シフト部110B、位相シフト透明部110Cに対応する(図2(c))。次に遮光部のパターン110Aの形成のために遮光部110に対しエッチング反応を示す薬液もしくはガスによるエッチングを透明基板10表面に到達するまで行う(図2(d))。次に遮光部110上に形成された感光性樹脂200を薬液により溶解、分解もしくは炭化などで剥離処理する。この時点で、遮光部パターン110Aと、非位相シフト透明部110B及び位相シフト透明部110Cが形成される(図2(e))。次に透明基板10の層中に位相シフト部140を位相シフト透明部110C直下にレーザーアブレーションにより所定寸法の屈折率変化層を形成する(図2(f))。位相シフト部140の形成はレーザー照射を必要とすることから、遮光膜部のパターン110Aとは反対面側から照射処理を行う。以上の工程により位相シフトマスクを得た。   The manufacturing method of the phase shift mask of Example 1 of this invention is demonstrated using FIG. Example 1 is an example of improving the defect of the conventional transmission type, and has the structure shown in FIG. 1, and the formation of the phase shift part is a process after the formation of the light shielding part. First, the light shielding layer 110 is formed on one surface of the transparent substrate 10 as shown in FIG. Next, an electron beam or a photosensitive resin (hereinafter referred to as a resist) 200 is applied on one surface of the light shielding layer 110 (FIG. 2B), exposed and developed by an electron beam drawing apparatus or a laser drawing apparatus, respectively. A resist pattern portion 210A, a non-phase shift resist pattern portion 210B, and a phase shift resist pattern portion 210C in which an electron beam or a photosensitive resin is formed in a predetermined shape are formed. The resist pattern portions 210A, 210B, and 210C correspond to the light shielding portion pattern 110A, the non-phase shift portion 110B, and the phase shift transparent portion 110C in FIG. 1, respectively (FIG. 2C). Next, in order to form the light-shielding portion pattern 110A, the light-shielding portion 110 is etched with a chemical solution or gas that shows an etching reaction until it reaches the surface of the transparent substrate 10 (FIG. 2D). Next, the photosensitive resin 200 formed on the light shielding portion 110 is stripped by dissolution, decomposition, carbonization, or the like with a chemical solution. At this time, the light-shielding part pattern 110A, the non-phase shift transparent part 110B, and the phase shift transparent part 110C are formed (FIG. 2E). Next, a phase shift portion 140 is formed in the layer of the transparent substrate 10, and a refractive index change layer having a predetermined dimension is formed by laser ablation just below the phase shift transparent portion 110C (FIG. 2 (f)). Since the formation of the phase shift part 140 requires laser irradiation, the irradiation process is performed from the side opposite to the pattern 110A of the light shielding film part. A phase shift mask was obtained by the above process.

図2を用いた前記実施例1では位相シフト部140の形成は遮光膜部110の形成後であったが、遮光膜部110の形成前でも可能であり、この場合のレーザー照射方向は透明基板10の両面のどちらでも良いことは明らかである。   In the first embodiment using FIG. 2, the phase shift portion 140 is formed after the light shielding film portion 110 is formed, but can be formed before the light shielding film portion 110 is formed. In this case, the laser irradiation direction is a transparent substrate. It is clear that either of the 10 sides can be used.

本発明の実施例2の位相シフトマスクの側断面構造を図3に示す。透明基板10の片側上に非位相シフト透明部310B及び透過率制御パターン310Aが形成され、該透過率制御パターン310Aの直下に位相シフト部140が形成されている。   FIG. 3 shows a side sectional structure of the phase shift mask according to the second embodiment of the present invention. A non-phase shift transparent portion 310B and a transmittance control pattern 310A are formed on one side of the transparent substrate 10, and a phase shift portion 140 is formed immediately below the transmittance control pattern 310A.

本発明の実施例2の位相シフトマスクの製造方法を図4を用いて説明する。本実施例では従来の減衰型の欠点を改善する事例であり、図3の構造とする。第1の実施例と同様の説明には同一の記号を用いて説明する。まず図4(a)のような透明基板10の上の一面上に透過率制御層310を形成する。次に透過率制御層310の一面上に電子線もしくは感光性樹脂(以下レジストと記す)200を塗布し(図4(b))、電子線描画装置もしくはレーザー描画装置でそれぞれ露光し、現像処理して所定形状に電子線または感光性樹脂が形成されたレジストパターン部210Aと、非位相シフト透明部レジストパターン部210Bを形成する。レジストパターン部210Aと非位相シフト透明部レジストパターン部210Bは、それぞれ図3における透過率制御部310Aと非位相シフト部310Bに対応する(図4(c))。次に非位相シフト部310Bの形成のために透過率制御層310に対しエッチング反応を示す薬液もしくはガスによるエッチングを透明基板10表面に到達するまで行う(図4(d))。次に透過率制御層310上に形成された感光性樹脂200を薬液により溶解、分解もしくは炭化などで剥離処理する。この時点で透過率制御部310Aと非位相シフト透明部310Bが形成される(図4(e))。次に透明基板10中に位相シフト部140を透過率制御部310A直下にレーザーアブレーションにより所定寸法の屈折率変化層を形成する(図4(f))。位相シフト部140の形成はレーザー照射を必要とすることから、透過率制御層310とは反対面側から照射処理を行う。以上の工程により位相シフトマスクを得た。本実施例による光強度分布を図3に併せて示す。   A method of manufacturing the phase shift mask according to the second embodiment of the present invention will be described with reference to FIG. This embodiment is an example of improving the drawbacks of the conventional attenuation type, and has the structure shown in FIG. Descriptions similar to those of the first embodiment are made using the same symbols. First, the transmittance control layer 310 is formed on one surface of the transparent substrate 10 as shown in FIG. Next, an electron beam or a photosensitive resin (hereinafter referred to as a resist) 200 is applied on one surface of the transmittance control layer 310 (FIG. 4B), and exposed and developed by an electron beam drawing apparatus or a laser drawing apparatus, respectively. Then, a resist pattern portion 210A in which an electron beam or a photosensitive resin is formed in a predetermined shape and a non-phase shift transparent portion resist pattern portion 210B are formed. The resist pattern part 210A and the non-phase shift transparent part resist pattern part 210B correspond to the transmittance control part 310A and the non-phase shift part 310B in FIG. 3, respectively (FIG. 4C). Next, in order to form the non-phase shift portion 310B, the transmittance control layer 310 is etched with a chemical solution or gas that exhibits an etching reaction until it reaches the surface of the transparent substrate 10 (FIG. 4D). Next, the photosensitive resin 200 formed on the transmittance control layer 310 is stripped by dissolution, decomposition, carbonization, or the like with a chemical solution. At this point, the transmittance control unit 310A and the non-phase shift transparent unit 310B are formed (FIG. 4E). Next, a refractive index changing layer having a predetermined size is formed by laser ablation just below the transmittance control unit 310A in the phase shift unit 140 in the transparent substrate 10 (FIG. 4F). Since the formation of the phase shift unit 140 requires laser irradiation, irradiation processing is performed from the side opposite to the transmittance control layer 310. A phase shift mask was obtained by the above process. The light intensity distribution according to this example is also shown in FIG.

本発明の実施例3の位相シフトマスクの側断面構造を図5に示す。透明基板10の片側
上に透過率制御パターン310A及び位相シフト透明部310Cが形成され、該位相シフ
ト透明部310Cの直下に位相シフト部140が形成されている。
FIG. 5 shows a side sectional structure of the phase shift mask according to the third embodiment of the present invention. A transmittance control pattern 310A and a phase shift transparent portion 310C are formed on one side of the transparent substrate 10, and a phase shift portion 140 is formed immediately below the phase shift transparent portion 310C.

本発明の実施例3の位相シフトマスクの製造方法を図6を用いて説明する。製造方法は実施例2と同様であり、同様の説明には同一の番号を用いて説明する。まず図6(a)のような透明基板10の上の一面上に透過率制御層310を形成する。次に透過率制御層310の一面上に電子線もしくは感光性樹脂200を塗布し(図6(b))、電子線描画装置もしくはレーザー描画装置でそれぞれ露光し、現像処理して所定形状に電子線または感光性樹脂が形成されたレジストパターン部210Aと位相シフト透明部レジストパターン部210Cを形成する。レジストパターン部210Aと位相シフト透明部レジストパターン部210Cはそれぞれ図5における透過率制御部310Aと位相シフト透過部310Cに対応する(図6(c))。次に位相シフト透明部310Cの形成のために透過率制御層310に対しエッチング反応を示す薬液もしくはガスによるエッチングを透明基板10表面に到達するまで行う(図6(d))。次に透過率制御層310上に形成された感光性樹脂200を薬液により溶解、分解もしくは炭化などで剥離処理する。この時点で透過率制御部310Aと位相シフト透明部310Cが形成される(図6(e))。次に透明基板10中に位相シフト部140を位相シフト透過部310C直下にレーザーアブレーションにより所定寸法の屈折率変化層を形成する(図6(f))。位相シフト部140の形成はレーザー照射を必要とすることから、透過率制御部310Aとは反対面側から照射処理を行う。以上の工程により位相シフトマスクを得た。本実施例による光強度分布を図5に併せて示す。   A method of manufacturing the phase shift mask according to the third embodiment of the present invention will be described with reference to FIG. The manufacturing method is the same as that of the second embodiment, and the same number is used for the same description. First, the transmittance control layer 310 is formed on one surface of the transparent substrate 10 as shown in FIG. Next, an electron beam or a photosensitive resin 200 is applied on one surface of the transmittance control layer 310 (FIG. 6B), exposed with an electron beam drawing apparatus or a laser drawing apparatus, developed, and processed into a predetermined shape. A resist pattern portion 210A on which a line or a photosensitive resin is formed and a phase shift transparent portion resist pattern portion 210C are formed. The resist pattern portion 210A and the phase shift transparent portion resist pattern portion 210C correspond to the transmittance control portion 310A and the phase shift transmission portion 310C in FIG. 5, respectively (FIG. 6C). Next, in order to form the phase shift transparent portion 310C, the transmittance control layer 310 is etched with a chemical solution or a gas showing an etching reaction until it reaches the surface of the transparent substrate 10 (FIG. 6D). Next, the photosensitive resin 200 formed on the transmittance control layer 310 is stripped by dissolution, decomposition, carbonization, or the like with a chemical solution. At this point, the transmittance control unit 310A and the phase shift transparent unit 310C are formed (FIG. 6E). Next, a refractive index changing layer having a predetermined dimension is formed by laser ablation just below the phase shift transmission part 310C and the phase shift part 140 in the transparent substrate 10 (FIG. 6F). Since the formation of the phase shift unit 140 requires laser irradiation, the irradiation process is performed from the side opposite to the transmittance control unit 310A. A phase shift mask was obtained by the above process. The light intensity distribution according to this example is also shown in FIG.

以下、本発明の実施例4〜6は従来の位相シフトの構造と本発明の構造を比較したものであり、光近接効果補正パターンにも適用可能とする実施例の一例である。   Hereinafter, Examples 4 to 6 of the present invention compare the structure of the conventional phase shift and the structure of the present invention, and are examples of examples applicable to the optical proximity effect correction pattern.

本発明の実施例4を図7に示す。図7(a)は、補助パターンによる位相シフトマスクの平面図で、本パターン1の四方に補助パターン2が近接され配置されている。図7(b)は、従来構造の透過型構造及び減衰型構造の位相シフトマスクの側断面図である。従来の透過型構造は、遮光部110よりなる補助パターン2と、本パターン1よりなる構造であり、本パターン1は、露出した透明基板面10を深さ方向に凹部を形成する。すなわち、補助パターン2の部位は非位相シフト透明部、本パターン1の部位は位相シフト透明部である。また、従来の減衰型構造は、本パターン1の部位には凹部を形成せずに非位相シフト透明部とし、補助パターンの部位には、該パターン部に位相制御層410を形成し位相シフト透明部とした。対して、図7(c)は、本発明の構造の透過型構造の位相シフトマスクの側断面図である。本発明の透過型構造は甲及び乙の2型あり、甲型は遮光部110よりなる補助パターン2と、本パターン1よりなる構造であり、本パターン1は、露出した透明基板面10の直下に本発明の方法により位相シフト部140を形成する。すなわち、補助パターン2の部位は非位相シフト透明部、本パターン1の部位は位相シフト透明部である。乙型は、その逆である。また本発明の減衰型構造を図7(d)に示す。本パターン1の部位は凹部を形成せずに非位相シフト透明部とし、本発明の方法により位相シフト部140を透過率制御層310直下の領域で本パターン1と補助パターン2の間の領域3に形成し位相シフト透明部とした。   A fourth embodiment of the present invention is shown in FIG. FIG. 7A is a plan view of the phase shift mask using the auxiliary pattern, and the auxiliary pattern 2 is arranged close to the four sides of the main pattern 1. FIG. 7B is a side sectional view of a phase shift mask having a transmission structure and an attenuation structure having a conventional structure. The conventional transmissive structure is a structure composed of the auxiliary pattern 2 made of the light-shielding portion 110 and the main pattern 1, and the main pattern 1 forms a concave portion in the depth direction on the exposed transparent substrate surface 10. That is, the part of the auxiliary pattern 2 is a non-phase shift transparent part, and the part of the main pattern 1 is a phase shift transparent part. Further, the conventional attenuation type structure has a non-phase shift transparent portion without forming a recess in the portion of the pattern 1, and a phase control layer 410 is formed in the pattern portion in the portion of the auxiliary pattern to thereby make the phase shift transparent. The part. On the other hand, FIG. 7C is a side sectional view of a phase shift mask having a transmission structure having the structure of the present invention. The transmission type structure of the present invention has two types, A and B. The A type is a structure consisting of the auxiliary pattern 2 made of the light shielding portion 110 and the main pattern 1, and this pattern 1 is directly under the exposed transparent substrate surface 10. In addition, the phase shift portion 140 is formed by the method of the present invention. That is, the part of the auxiliary pattern 2 is a non-phase shift transparent part, and the part of the main pattern 1 is a phase shift transparent part. The second type is the opposite. FIG. 7 (d) shows the damping structure of the present invention. The portion of the pattern 1 is a non-phase shift transparent portion without forming a recess, and the phase shift portion 140 is a region 3 between the pattern 1 and the auxiliary pattern 2 in the region immediately below the transmittance control layer 310 by the method of the present invention. To form a phase shift transparent portion.

本発明の実施例5を図8に示す。図8(a)は、エッジ強調による位相シフトマスクの平面図で、本パターン1の周縁部四方に透明部パターン3が隣接され配置されている。図8(b)は、従来構造の透過型構造及び甲又は乙型の減衰型構造の位相シフトマスクの側断面図である。従来の透過型構造は、透明基板1よりなる透明パターン3と、本パターン1よりなる構造であり、本パターン1は、露出した透明基板面10を深さ方向に凹部を形成する。すなわち、透明パターン3の部位は非位相シフト透明部、本パターン1の部位は位相シフト透明部である。また、従来の減衰型構造では、甲型は本パターン1の部位には凹部を形成せずに非位相シフト透明部とし、透明パターン3の部位には透明パターン3及び遮光部110の表面上に位相制御層410を形成して位相シフト透明部とした。乙型は遮光部110と位相制御層410の形成順序を逆としたものであり、同一の位相シフト効果を発現する。対して、図8(c)は、本発明の構造の透過型構造及び減衰型構造の位相シフトマスクの側断面図である。本発明の透過型構造は、透明基板1よりなる透明パターン3と、本パターン1よりなる構造であり、本パターン1は、露出した透明基板面10の直下に本発明の方法により位相シフト部140を形成する。すなわち、透明パターン3の部位は非位相シフト透明部、本パターン1の部位は位相シフト透明部である。本発明の減衰型構造は、本パターン1の部位は直下に本発明の方法により位相シフト部140を形成せずに非位相シフト透明部とし、透明パターン3の直下に本発明の方法により位相シフト部140を形成し位相シフト透明部とした。   A fifth embodiment of the present invention is shown in FIG. FIG. 8A is a plan view of a phase shift mask by edge enhancement, and the transparent portion pattern 3 is arranged adjacent to the four peripheral portions of the pattern 1. FIG. 8B is a side sectional view of a phase shift mask having a transmission structure having a conventional structure and an attenuator-type or attenuator-type attenuation structure. The conventional transmission structure is a structure composed of the transparent pattern 3 made of the transparent substrate 1 and the main pattern 1, and the pattern 1 forms a recess in the exposed transparent substrate surface 10 in the depth direction. That is, the part of the transparent pattern 3 is a non-phase shift transparent part, and the part of the present pattern 1 is a phase shift transparent part. Further, in the conventional attenuation type structure, the former is a non-phase shift transparent part without forming a recess in the part of the pattern 1, and the transparent pattern 3 is provided on the surface of the transparent pattern 3 and the light shielding part 110. A phase control layer 410 was formed to form a phase shift transparent portion. The second type is the one in which the formation order of the light-shielding part 110 and the phase control layer 410 is reversed, and exhibits the same phase shift effect. On the other hand, FIG. 8C is a side sectional view of a phase shift mask having a transmission structure and an attenuation structure having the structure of the present invention. The transmissive structure of the present invention is a transparent pattern 3 made of a transparent substrate 1 and a structure made of the present pattern 1, and this pattern 1 is directly below the exposed transparent substrate surface 10 by the method of the present invention. Form. That is, the part of the transparent pattern 3 is a non-phase shift transparent part, and the part of the present pattern 1 is a phase shift transparent part. In the attenuation type structure of the present invention, the portion of the pattern 1 is formed as a non-phase shift transparent portion immediately below the transparent pattern 3 without forming the phase shift portion 140 by the method of the present invention, and the phase shift is performed by the method of the present invention immediately below the transparent pattern 3. A portion 140 was formed as a phase shift transparent portion.

本発明の実施例6を図9に示す。図9(a)は、クロムレスによる位相シフトマスクの平面図で、本パターン1のみ配置されている。図9(b)は、従来構造の透過型構造及び減衰型構造の位相シフトマスクの側断面図である。従来の透過型構造は、透明基板10上に本パターン1よりなる構造であり、本パターン1は、露出した透明基板面10を深さ方向に凹部を形成する。すなわち、透明基板10の部位は非位相シフト透明部、本パターン1の部位は位相シフト透明部である。また、従来の減衰型構造は、本パターン1の部位には位相制御層410を形成して位相シフト透明部とし、透明基板10の部位には位相シフト透明部とした。対して、図9(c)は、本発明の構造の透過型構造の位相シフトマスクの側断面図である。本発明の透過型構造は、本パターン1よりなる構造であり、本パターン1は、露出した透明基板面10の直下に本発明の方法により位相シフト部140を形成する。すなわち、透明基板10の部位は非位相シフト透明部、本パターン1の部位は位相シフト透明部である。   A sixth embodiment of the present invention is shown in FIG. FIG. 9A is a plan view of a chromeless phase shift mask, in which only this pattern 1 is arranged. FIG. 9B is a side sectional view of a phase shift mask having a transmission structure and an attenuation structure having a conventional structure. The conventional transmission structure is a structure made of the main pattern 1 on the transparent substrate 10, and the main pattern 1 forms a concave portion in the depth direction on the exposed transparent substrate surface 10. That is, the part of the transparent substrate 10 is a non-phase shift transparent part, and the part of the pattern 1 is a phase shift transparent part. Further, in the conventional attenuation type structure, the phase control layer 410 is formed in the portion of the pattern 1 to form a phase shift transparent portion, and the phase shift transparent portion is formed in the portion of the transparent substrate 10. On the other hand, FIG. 9C is a side sectional view of a phase shift mask having a transmission structure having the structure of the present invention. The transmissive structure of the present invention is a structure made of the present pattern 1, and the present pattern 1 forms the phase shift portion 140 by the method of the present invention immediately below the exposed transparent substrate surface 10. That is, the part of the transparent substrate 10 is a non-phase shift transparent part, and the part of the pattern 1 is a phase shift transparent part.

係るパターン転写方法によると、被転写基板に形成されたレジストに対して、精度良くパターン露光が可能となり、その結果、半導体等のパターンの製造を、高い歩留まりで行うことができる。   According to such a pattern transfer method, pattern exposure can be performed with high accuracy on the resist formed on the transfer substrate, and as a result, patterns of semiconductors and the like can be manufactured with a high yield.

本発明の位相シフトフォトマスクの第1実施例の構造断面図。1 is a structural cross-sectional view of a first embodiment of a phase shift photomask of the present invention. 本発明の位相シフトフォトマスクの第1実施例の製造工程を示す説明図。Explanatory drawing which shows the manufacturing process of 1st Example of the phase shift photomask of this invention. 本発明の位相シフトフォトマスクの第2実施例の構造断面図。The structure sectional view of the 2nd example of the phase shift photomask of the present invention. 本発明の位相シフトフォトマスクの第2実施例の製造工程を示す説明図。Explanatory drawing which shows the manufacturing process of 2nd Example of the phase shift photomask of this invention. 本発明の位相シフトフォトマスクの第3実施例の構造断面図。Sectional drawing of structure of 3rd Example of the phase shift photomask of this invention. 本発明の位相シフトフォトマスクの第3実施例の製造工程。The manufacturing process of 3rd Example of the phase shift photomask of this invention. 本発明の位相シフトフォトマスクの第4実施例。4 shows a fourth embodiment of the phase shift photomask of the present invention. 本発明の位相シフトフォトマスクの第5実施例。5 shows a fifth embodiment of the phase shift photomask of the present invention. 本発明の位相シフトフォトマスクの第6実施例。6 shows a sixth embodiment of the phase shift photomask of the present invention. 本発明の位相シフトフォトマスクの位相シフト部の構造を説明する側断面図。4 is a side cross-sectional view illustrating the structure of a phase shift portion of the phase shift photomask of the present invention. FIG. 従来の透過型位相シフトマスクを説明するための断面構造図。FIG. 6 is a cross-sectional structure diagram for explaining a conventional transmission type phase shift mask.

1…本パターン
2…補助パターン
3…透明パターン
100…位相シフトマスク
10…透明基板(透明材質)
110…遮光部
110A…パターン部
110B…非位相シフト透明部
110C…位相シフト透明部
140…位相シフト部
140A…凹部形成の位相シフト部
150…開口幅
200…電子線または感光性樹脂(レジスト)
210A…レジストパターン部
210B…非位相シフト透明部レジストパターン部
210C…位相シフト透明部レジストパターン部
310…透過率制御層
310A…透過率制御部(パターン)
310B…非位相シフト透明部
310C…位相シフト透明部
410…位相制御層
DESCRIPTION OF SYMBOLS 1 ... Main pattern 2 ... Auxiliary pattern 3 ... Transparent pattern 100 ... Phase shift mask 10 ... Transparent substrate (transparent material)
DESCRIPTION OF SYMBOLS 110 ... Light-shielding part 110A ... Pattern part 110B ... Non-phase shift transparent part 110C ... Phase shift transparent part 140 ... Phase shift part 140A ... Phase shift part 150 of recessed part formation ... Opening width 200 ... Electron beam or photosensitive resin (resist)
210A ... resist pattern part 210B ... non-phase shift transparent part resist pattern part 210C ... phase shift transparent part resist pattern part 310 ... transmittance control layer 310A ... transmittance control part (pattern)
310B ... Non-phase shift transparent part 310C ... Phase shift transparent part 410 ... Phase control layer

Claims (15)

透明基板上の一面上に遮光層を形成し、前記遮光層上にレジストを塗布し、前記レジストを電子線描画装置もしくはレーザー描画装置で露光し現像処理して所定形状に開口部を有した前記レジストが形成されたレジストパターン部を形成し、前記開口部下の前記遮光部に対し薬液もしくはガスによるエッチングを前記透明基板表面に到達するまで行い、前記遮光部上に形成された前記レジストを薬液により溶解、分解もしくは炭化により剥離処理し、さらに、少なくとも1つの前記開口部直下の前記透明基板内部にレーザーアブレーションにより屈折率変化層を形成し、前記屈折率変化部は、前記開口部の開口幅以上の長さで形成し、前記屈折率変化部を透過する透過光と、前記透明基板を透過する透過光との位相差を略180度となるように前記屈折率変化部を形成したこと特徴とする位相シフトマスク。 The light-shielding layer is formed on one surface of the transparent substrate, a resist is coated on the light-shielding layer, the resist is exposed and developed by an electron beam drawing apparatus or a laser drawing apparatus, and the opening has a predetermined shape. Forming a resist pattern portion on which a resist is formed, and performing etching with a chemical solution or gas on the light shielding portion under the opening until reaching the surface of the transparent substrate, and the resist formed on the light shielding portion with a chemical solution Stripping treatment is performed by dissolution, decomposition, or carbonization, and a refractive index change layer is formed by laser ablation in the transparent substrate immediately below at least one of the openings, and the refractive index change portion is equal to or larger than the opening width of the opening. the forming length, and light transmitted through said refractive index change portion, so as to be substantially 180 degrees phase difference between the transmitted light transmitted through the transparent substrate Phase shift mask, characterized by the formation of the refractive index change portion. 透明基板上の一面上に透過率制御層を形成し、前記透過率制御層上にレジストを塗布し、前記レジストを電子線描画装置もしくはレーザー描画装置で露光し現像処理して所定形状に開口部を有した前記レジストが形成されたレジストパターン部を形成し、前記開口部下の前記透過率制御層に対し薬液もしくはガスによるエッチングを前記透明基板表面に到達するまで行い、前記透過率制御層上に形成された前記レジストを薬液により溶解、分解もしくは炭化により剥離処理し、さらに、少なくとも1つの前記透過率制御部直下の前記透明基板内部にレーザーアブレーションにより屈折率変化層を形成し、前記屈折率変化部を透過する透過光と、前記透明基板を透過する透過光との位相差を略180度となるように前記屈折率変化部を形成したこと特徴とする位相シフトマスク。A transmittance control layer is formed on one surface of a transparent substrate, a resist is applied on the transmittance control layer, the resist is exposed to an electron beam lithography apparatus or a laser lithography apparatus, and developed to have a predetermined shape. Forming a resist pattern portion on which the resist having the above is formed, and performing etching with a chemical solution or gas on the transmittance control layer below the opening until reaching the surface of the transparent substrate, and on the transmittance control layer The formed resist is removed by dissolution, decomposition or carbonization with a chemical solution, and further, a refractive index change layer is formed by laser ablation inside the transparent substrate immediately below at least one of the transmittance control units, and the refractive index change The refractive index changing portion is formed so that the phase difference between the transmitted light transmitted through the transparent portion and the transmitted light transmitted through the transparent substrate is approximately 180 degrees. Phase shift mask which is characterized with. 透明基板上の一面上に透過率制御層を形成し、前記透過率制御層上にレジストを塗布し、前記レジストを電子線描画装置もしくはレーザー描画装置で露光し現像処理して所定形状に開口部を有した前記レジストが形成されたレジストパターン部を形成し、前記開口部下の前記透過率制御層に対し薬液もしくはガスによるエッチングを前記透明基板表面に到達するまで行い、前記透過率制御層上に形成された前記レジストを薬液により溶解、分解もしくは炭化により剥離処理し、さらに、少なくとも1つの前記開口部直下の前記透明基板内部にレーザーアブレーションにより屈折率変化層を形成し、前記屈折率変化部を透過する透過光と、前記透明基板を透過する透過光との位相差を略180度となるように前記屈折率変化部を形成したこと特徴とする位相シフトマスク。A transmittance control layer is formed on one surface of a transparent substrate, a resist is applied on the transmittance control layer, the resist is exposed to an electron beam lithography apparatus or a laser lithography apparatus, and developed to have a predetermined shape. Forming a resist pattern portion on which the resist having the above is formed, and performing etching with a chemical solution or gas on the transmittance control layer below the opening until reaching the surface of the transparent substrate, and on the transmittance control layer The formed resist is stripped by dissolution, decomposition or carbonization with a chemical solution, and further, a refractive index changing layer is formed by laser ablation inside the transparent substrate immediately below at least one of the openings, and the refractive index changing portion is formed. The refractive index changing portion is formed so that the phase difference between the transmitted light transmitted and the transmitted light transmitted through the transparent substrate is approximately 180 degrees. Phase shift mask to be. 前記屈折率変化部は、透明基板自身の屈折率に対して高屈折率又は低屈折率であることを特徴とする請求項1〜3のいずれか一つに記載の位相シフトマスク。 The phase shift mask according to any one of claims 1 to 3, wherein the refractive index changing portion has a high refractive index or a low refractive index with respect to a refractive index of the transparent substrate itself. 前記屈折率変化部は、高密度化した透明基板又は真空の空孔からなることを特徴とする請求項1〜4のいずれか一つに記載の位相シフトマスク。 The phase shift mask according to any one of claims 1 to 4, wherein the refractive index changing portion is formed of a transparent substrate or a vacuum hole having a high density. 前記レーザーアブレーションのレーザーは、フェムト秒(1×10−15秒)パルスレーザーであることを特徴とする請求項1〜5のいずれか1項に記載の位相シフトマスク。 The laser laser ablation, phase Shifutomasu click according to any one of claims 1-5, characterized in that the femtosecond (1 × 10 -15 sec) pulsed laser. 前記レーザーアブレーションのレーザーは、アト秒(1×10−18秒)パルスレーザーであることを特徴とする請求項1〜5のいずれか1項に記載の位相シフトマスク。 Laser of the laser ablation, the phase Shifutomasu click according to any one of claims 1 to 5, wherein the attosecond (1 × 10 -18 sec) which is a pulse laser. 前記レーザーアブレーションのレーザーは、ゼプト秒(1×10−21秒)パルスレーザーであることを特徴とする請求項1〜5のいずれか1項に記載の位相シフトマスク。 Laser of the laser ablation, the phase Shifutomasu click according to claim 1, characterized in that the Zeputo sec (1 × 10 -21 sec) pulsed laser. 前記レーザーアブレーションのレーザーは、ヨクト秒(1×10−24秒)パルスレーザーであることを特徴とする請求項1〜5のいずれか1項に記載の位相シフトマスク。 Laser of the laser ablation, the phase Shifutomasu click according to claim 1, characterized in that the Yokuto sec (1 × 10 -24 sec) pulsed laser. 位相シフトマスクのその位相差を用いて解像度を向上するパターン転写方法において、請求項1乃至のいずれか1項記載の位相シフトマスクを用い、フォトリソグラフィ法による露光転写で被転写基板上にパターン形成を行うことを特徴とするパターン転写方法。 6. A pattern transfer method for improving resolution by using the phase difference of a phase shift mask, wherein a pattern is formed on a substrate to be transferred by exposure transfer by photolithography using the phase shift mask according to any one of claims 1 to 5. A pattern transfer method characterized by forming. 透明基板内部に屈折率変化部を有し、該屈折率変化部を透過する透過光と、透明基板を透過する透過光との位相差を略180度とする位相シフトマスクの製造方法において、該屈折率変化部は、透明基板の内部のその位置にレーザ光を収束させ発現するレーザーアブレーションにより形成し、前記屈折率変化部は、前記開口部の開口幅以上の長さで形成することを特徴とする位相シフトマスクの製造方法。 In a method of manufacturing a phase shift mask having a refractive index changing portion inside a transparent substrate, wherein a phase difference between transmitted light transmitted through the refractive index changed portion and transmitted light transmitted through the transparent substrate is approximately 180 degrees. refractive index change portion is formed by laser ablation expressing converges the laser beam in its position inside the transparent substrate, the refractive index change unit that you formed with a length of more than the opening width of the opening A manufacturing method of a phase shift mask characterized in that 前記レーザーアブレーションのレーザーは、フェムト秒(1×10−15秒)パルスレーザーであることを特徴とする請求項11記載の位相シフトマスクの製造方法。 12. The method of manufacturing a phase shift mask according to claim 11, wherein the laser of the laser ablation is a femtosecond (1 × 10 −15 second) pulse laser. 前記レーザーアブレーションのレーザーは、アト秒(1×10−18秒)パルスレーザーであることを特徴とする請求項11記載の位相シフトマスクの製造方法。 12. The method of manufacturing a phase shift mask according to claim 11, wherein the laser ablation laser is an attosecond (1 × 10 −18 second) pulse laser. 前記レーザーアブレーションのレーザーは、ゼプト秒(1×10−21秒)パルスレーザーであることを特徴とする請求項11記載の位相シフトマスクの製造方法。 12. The method of manufacturing a phase shift mask according to claim 11, wherein the laser of the laser ablation is a zept second (1 × 10 −21 second) pulse laser. 前記レーザーアブレーションのレーザーは、ヨクト秒(1×10−24秒)パルスレーザーであることを特徴とする請求項11記載の位相シフトマスクの製造方法 12. The method of manufacturing a phase shift mask according to claim 11, wherein the laser ablation laser is a joctosecond (1 × 10 −24 second) pulse laser.
JP2004189357A 2004-06-28 2004-06-28 Phase shift mask, manufacturing method thereof, and pattern transfer method Expired - Fee Related JP4645076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004189357A JP4645076B2 (en) 2004-06-28 2004-06-28 Phase shift mask, manufacturing method thereof, and pattern transfer method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004189357A JP4645076B2 (en) 2004-06-28 2004-06-28 Phase shift mask, manufacturing method thereof, and pattern transfer method

Publications (2)

Publication Number Publication Date
JP2006011121A JP2006011121A (en) 2006-01-12
JP4645076B2 true JP4645076B2 (en) 2011-03-09

Family

ID=35778451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004189357A Expired - Fee Related JP4645076B2 (en) 2004-06-28 2004-06-28 Phase shift mask, manufacturing method thereof, and pattern transfer method

Country Status (1)

Country Link
JP (1) JP4645076B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7241539B2 (en) * 2002-10-07 2007-07-10 Samsung Electronics Co., Ltd. Photomasks including shadowing elements therein and related methods and systems
KR100787090B1 (en) 2006-03-31 2007-12-21 엘지마이크론 주식회사 a half tone mask having multi?half permeation part and a method for manufacturing thereof
US8133641B2 (en) 2007-05-11 2012-03-13 Lg Innotek Co., Ltd. Half tone mask having multi-half permeation part and a method of manufacturing the same
JP5353230B2 (en) * 2008-12-25 2013-11-27 大日本印刷株式会社 Photomask pattern position correction method and position-corrected photomask
EP2705812A1 (en) * 2012-09-05 2014-03-12 Universität zu Lübeck Device for laser cutting within transparent materials
JP6260149B2 (en) * 2013-08-30 2018-01-17 凸版印刷株式会社 Reflective mask blank and reflective mask
JP6581759B2 (en) * 2014-07-17 2019-09-25 Hoya株式会社 Photomask, photomask manufacturing method, photomask blank, and display device manufacturing method
US9632407B2 (en) 2014-07-18 2017-04-25 Kabushiki Kaisha Yoshiba Mask processing apparatus and mask processing method
JP6335735B2 (en) * 2014-09-29 2018-05-30 Hoya株式会社 Photomask and display device manufacturing method
US9618664B2 (en) * 2015-04-15 2017-04-11 Finisar Corporation Partially etched phase-transforming optical element
US9921465B2 (en) 2016-03-16 2018-03-20 Toppan Printing Co., Ltd. Reflective mask, reflective mask blank and manufacturing method therefor
US10539723B2 (en) 2016-10-19 2020-01-21 Finisar Corporation Phase-transforming optical reflector formed by partial etching or by partial etching with reflow
JP6731441B2 (en) * 2018-05-01 2020-07-29 Hoya株式会社 Photomask and display device manufacturing method
JP6872061B2 (en) * 2020-05-11 2021-05-19 Hoya株式会社 Manufacturing method of photomask and display device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02287542A (en) * 1989-04-28 1990-11-27 Fujitsu Ltd Phase shift mask
JPH04361521A (en) * 1991-06-10 1992-12-15 Hitachi Ltd Manufacture of semiconductor integrated circuit device, exposing method and mask to be used therefor
JPH1184631A (en) * 1997-09-08 1999-03-26 Nec Corp Method for correcting phase defective part of phase shift mask and apparatus therefor
JPH11267861A (en) * 1998-01-16 1999-10-05 Sumitomo Heavy Ind Ltd Marking of optical transmitting material
JP2000056112A (en) * 1998-08-03 2000-02-25 Japan Science & Technology Corp Three-dimensional diffraction optical device and its production
JP2000155409A (en) * 1998-11-20 2000-06-06 Japan Science & Technology Corp Method for correcting photomask
JP2001235609A (en) * 2000-02-22 2001-08-31 Central Glass Co Ltd Nonmetal particle precipitation glass and method of manufacturing the same
JP2003329821A (en) * 2002-05-16 2003-11-19 Nitto Denko Corp Method for selectively etching inorganic material, inorganic material selectively etched therewith and optical element
JP2004170786A (en) * 2002-11-21 2004-06-17 Toshiba Corp Optical element, method for manufacturing optical element, apparatus for correcting phase defect in optical element, and method for correcting phase defect in optical element

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02287542A (en) * 1989-04-28 1990-11-27 Fujitsu Ltd Phase shift mask
JPH04361521A (en) * 1991-06-10 1992-12-15 Hitachi Ltd Manufacture of semiconductor integrated circuit device, exposing method and mask to be used therefor
JPH1184631A (en) * 1997-09-08 1999-03-26 Nec Corp Method for correcting phase defective part of phase shift mask and apparatus therefor
JPH11267861A (en) * 1998-01-16 1999-10-05 Sumitomo Heavy Ind Ltd Marking of optical transmitting material
JP2000056112A (en) * 1998-08-03 2000-02-25 Japan Science & Technology Corp Three-dimensional diffraction optical device and its production
JP2000155409A (en) * 1998-11-20 2000-06-06 Japan Science & Technology Corp Method for correcting photomask
JP2001235609A (en) * 2000-02-22 2001-08-31 Central Glass Co Ltd Nonmetal particle precipitation glass and method of manufacturing the same
JP2003329821A (en) * 2002-05-16 2003-11-19 Nitto Denko Corp Method for selectively etching inorganic material, inorganic material selectively etched therewith and optical element
JP2004170786A (en) * 2002-11-21 2004-06-17 Toshiba Corp Optical element, method for manufacturing optical element, apparatus for correcting phase defect in optical element, and method for correcting phase defect in optical element

Also Published As

Publication number Publication date
JP2006011121A (en) 2006-01-12

Similar Documents

Publication Publication Date Title
JP2862183B2 (en) Manufacturing method of mask
JP4645076B2 (en) Phase shift mask, manufacturing method thereof, and pattern transfer method
EP0577297B1 (en) Self-aligned method of making phase-shifting lithographic masks having three or more phase-shifts
JPH10161293A (en) Method for correcting residual defect of photomask
US7838173B2 (en) Structure design and fabrication on photomask for contact hole manufacturing process window enhancement
CN105097455A (en) Reticle and method of fabricating the same
US8563227B2 (en) Method and system for exposure of a phase shift mask
KR102638753B1 (en) Photomask for manufacturing display device and method for manufacturing display device
JP2005531819A (en) Method of using an amorphous carbon layer for the production of an improved reticle
JPH1097052A (en) Production of phase inversion mask by controlling exposure light
TWI476818B (en) Method of making a lithography mask
JP5767140B2 (en) Photomask, pattern transfer method, and pellicle
JP2007219128A (en) Method for manufacturing phase shift mask
JP6322682B2 (en) Pattern transfer method, display device manufacturing method, and multi-tone photomask
KR100546269B1 (en) Half-tone phase shift mask and manufacturing method thereof
KR20030071194A (en) Phase shift mask for euv exposure process and method for fabricating the same
JP3320062B2 (en) Mask and pattern forming method using the mask
JP3007846B2 (en) Mask, manufacturing method thereof and pattern forming method using mask
JPH06148870A (en) Method for correcting photomask having phase shift layer
JPH0651489A (en) Production of halftone phase shift photomask
JP2001222098A (en) Lithography method using phase shift mask
JP4539955B2 (en) Phase shift mask, manufacturing method thereof, and exposure method
JP2002303967A (en) Mask for exposure, method for producing the same and exposure method using the same
JP3322837B2 (en) Mask, manufacturing method thereof and pattern forming method using mask
KR100190075B1 (en) Method of manufacturing tcm in semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees