JP4645038B2 - Belt type continuously variable transmission - Google Patents

Belt type continuously variable transmission Download PDF

Info

Publication number
JP4645038B2
JP4645038B2 JP2004019066A JP2004019066A JP4645038B2 JP 4645038 B2 JP4645038 B2 JP 4645038B2 JP 2004019066 A JP2004019066 A JP 2004019066A JP 2004019066 A JP2004019066 A JP 2004019066A JP 4645038 B2 JP4645038 B2 JP 4645038B2
Authority
JP
Japan
Prior art keywords
pulley
misalignment
belt
sheave
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004019066A
Other languages
Japanese (ja)
Other versions
JP2005214238A (en
Inventor
正広 長谷部
久則 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Equos Research Co Ltd
Original Assignee
Equos Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Equos Research Co Ltd filed Critical Equos Research Co Ltd
Priority to JP2004019066A priority Critical patent/JP4645038B2/en
Publication of JP2005214238A publication Critical patent/JP2005214238A/en
Application granted granted Critical
Publication of JP4645038B2 publication Critical patent/JP4645038B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、ベルト式無段変速機に係り、特に、動力伝達時のベルトノイズを低減する技術に関する。   The present invention relates to a belt-type continuously variable transmission, and more particularly to a technique for reducing belt noise during power transmission.

無段変速機(CVT)の一形式として、平行軸配置の2つのプーリの間に無端ベルトを巻き掛けてトルクを伝達するベルト式無段変速機がある。無端ベルトを用いた無段変速機では、平行な回転軸上の一対のプーリ(プライマリプーリとセカンダリプーリ)円錐壁面の間隔を変化させることで回転軸中心から無端ベルトがプーリ円錐壁面に巻きつく位置までの距離(すなわち無端ベルトがプーリに巻きつく際の回転半径、本明細書においてピッチ円半径という)を変化させることで変速(プライマリプーリとセカンダリプーリの回転比の変化)が実現される。例えばプライマリプーリ側のピッチ円半径を小さくし、セカンダリプーリ側のピッチ円半径を大きくすれば、変速比(入力回転数に対する出力回転数の比、ベルト式無段変速機の場合プーリ比)はプーリ比大の減速(アンダドライブ)側となり、逆にプライマリプーリ側のピッチ円半径を大きくし、セカンダリプーリ側のピッチ円半径を小さくすれば、変速比はプーリ比小の増速(オーバドライブ)側となる。それにより無端ベルトがプーリ壁面に巻きつく位置で、駆動側ではプライマリプーリから無端ベルトへ、また従動側では無端ベルトからセカンダリプーリへトルクが伝達される。   One type of continuously variable transmission (CVT) is a belt-type continuously variable transmission that transmits torque by winding an endless belt between two pulleys arranged in parallel shafts. In a continuously variable transmission using an endless belt, the position where the endless belt winds around the conical wall of the pulley from the center of the rotating shaft by changing the distance between the conical wall of a pair of pulleys (primary pulley and secondary pulley) on the parallel rotating shaft Speed change (change in the rotation ratio between the primary pulley and the secondary pulley) is realized by changing the distance up to (that is, the radius of rotation when the endless belt is wound around the pulley, referred to as pitch circle radius in this specification). For example, if the pitch circle radius on the primary pulley side is reduced and the pitch circle radius on the secondary pulley side is increased, the gear ratio (ratio of output rotation speed to input rotation speed, pulley ratio in the case of a belt-type continuously variable transmission) is a pulley. If the pitch circle radius on the primary pulley side is increased, and the pitch circle radius on the secondary pulley side is decreased, the gear ratio becomes the speed reduction (overdrive) side with a small pulley ratio. It becomes. As a result, torque is transmitted from the primary pulley to the endless belt on the driving side and from the endless belt to the secondary pulley on the driven side at a position where the endless belt wraps around the pulley wall surface.

この種のベルト式無段変速機の伝動用無端ベルトとしては、耐久性を考慮して通常金属製のリンク部品を組合わせたベルトやチェーンが用いられる。これに対して前記プーリも同様の理由で金属材料製とされることから、ベルトがプーリに巻きつく際に、ベルトを構成するリンク部品がプーリ円錐壁面に繰り返し衝突することになり、この衝撃によるプーリの振動がノイズとしてプーリから放射される。以下、本明細書において、このノイズをベルトノイズという。   As an endless belt for transmission of this type of belt-type continuously variable transmission, a belt or a chain in which metal link parts are usually combined in consideration of durability is used. On the other hand, since the pulley is also made of a metal material for the same reason, when the belt is wound around the pulley, the link parts constituting the belt repeatedly collide with the pulley cone wall surface. Pulley vibration is radiated from the pulley as noise. Hereinafter, this noise is referred to as belt noise in this specification.

ところで、プーリをプーリ軸に対して軸線方向に固定の円錐面を有する部材(本明細書において固定シーブという)と軸線方向に可動な円錐面を有する部材(同じく可動シーブという)とで構成し、固定シーブと可動シーブをプライマリプーリ側とセカンダリプーリ側とでベルトに対して逆向きの配置とするベルト式無段変速機にあっては、特定のプーリ比のところでプライマリプーリ側の円錐面間の中心位置とセカンダリプーリ側の円錐面間の中心位置とを一致させたとしても、プーリ比を変化させる(ベルトが巻付くピッチ円上での円錐面間距離をベルト幅に合わせるべく、プライマリプーリとセカンダリプーリの円錐面間距離を変化させる)ことで、相互の中心位置に軸線方向のずれ(ミスアライメント)が生じることが避けられない。その理由は、それぞれの円錐面間の中心位置は、プライマリプーリ側で固定シーブから遠ざかる方向に移動する場合、セカンダリシーブ側では固定シーブに近付く方向に移動し、逆にプライマリプーリ側で固定シーブに近付く方向に移動する場合、セカンダリシーブ側では固定シーブから遠ざかる方向に移動することになり、この移動量がプーリ比の変化に対してプライマリプーリ側とセカンダリプーリ側とで異なるためである。すなわち、プーリを構成する一方のシーブをプーリ軸に固定とする限り、プーリ比の変更に伴うミスアライメントの発生は不可避である。このミスアライメント量Cは、プーリ比1のときのピッチ円半径を2倍した値をD、プーリ角(プーリの円錐面とプーリ軸線に対して直角な線とのなす角)をβ、プーリ軸間距離をa、プーリ比をiとして
C=(D/πa)・{(i−1)/(i+1)}・tanβ
となる。この関係を横軸をプーリ比(i)、縦軸をミスアライメント量(C)としてグラフ化すると、図2に示すように、プーリ比(i)の変化に対して下向きに凸の曲線として表される特性となる。この特性を踏まえて、従来、耐久性の確保と効率の維持の見地から、図2に●印をつないだ曲線で示すように、最高速時のプーリ比において、ミスアライメント(C)を0とする設定が最良とされている。こうしたミスアライメントの設定を論じた文献として、非特許文献1がある。
「エス・エイ・イー ペーパー 881734(SAE Paper 881734)」,(米国),ソサエティ・オブ・オートモーティブ・エンジニアズ(Society of Automotive Engineers,inc.),1988年,第97巻(Vol. 97),第4号(No. 4),p.4.1311‐4.1321
By the way, the pulley is composed of a member having a conical surface fixed in the axial direction with respect to the pulley shaft (referred to as a fixed sheave in this specification) and a member having a conical surface movable in the axial direction (also referred to as a movable sheave). In a belt-type continuously variable transmission in which the fixed sheave and the movable sheave are arranged opposite to the belt on the primary pulley side and the secondary pulley side, between the conical surfaces on the primary pulley side at a specific pulley ratio. Even if the center position matches the center position between the conical surfaces on the secondary pulley side, the pulley ratio is changed (in order to match the distance between the conical surfaces on the pitch circle around which the belt is wound to the belt width, By changing the distance between the conical surfaces of the secondary pulley), it is inevitable that axial misalignment occurs at the center positions of each other. The reason is that when the center position between each conical surface moves in the direction away from the fixed sheave on the primary pulley side, it moves in the direction approaching the fixed sheave on the secondary sheave side, and conversely on the primary pulley side to the fixed sheave. This is because when moving in the approaching direction, the secondary sheave side moves away from the fixed sheave, and the amount of movement differs between the primary pulley side and the secondary pulley side with respect to the change in pulley ratio. That is, as long as one sheave constituting the pulley is fixed to the pulley shaft, misalignment due to the change in the pulley ratio is inevitable. This misalignment amount C is a value obtained by doubling the pitch circle radius when the pulley ratio is 1, D, a pulley angle (an angle formed between a pulley conical surface and a line perpendicular to the pulley axis), β, a pulley shaft The distance is a and the pulley ratio is i. C = (D 2 / πa) · {(i−1) 2 / (i + 1) 2 } · tan β
It becomes. When this relationship is graphed with the horizontal axis representing the pulley ratio (i) and the vertical axis representing the misalignment amount (C), as shown in FIG. 2, it is expressed as a downwardly convex curve with respect to the change in the pulley ratio (i). It becomes a characteristic to be. Based on this characteristic, from the standpoint of ensuring durability and maintaining efficiency, the misalignment (C) is 0 at the pulley ratio at the maximum speed as shown by the curve connected with the ● mark in FIG. The setting to be made is the best. Non-patent document 1 is a document that discusses the setting of such misalignment.
"SAE Paper 881734", (USA), Society of Automotive Engineers, Inc., 1988, Vol. 97 (Vol. 97), Vol. 97 4 (No. 4), p. 4.1311-14.121

ここで最高速時プーリ比について、図4を参照して説明する。一般に変速機搭載車両では、エンジンの出力が変速機を介して車軸の出力に変換されることになるが、車軸の出力は車軸トルク×回転数となり、車速が上がると回転数が上がるため、エンジン出力を一定(最高出力点で運転している)とすると、車軸トルクがこれに反比例して低下する関係にある。したがって最大駆動力(車両を前進させるカ)は、車速が増加するほど低下し、図に示すような右下がりの曲線となる。これに対して、ベルト式無段変速機搭載車両では、エンジンは一定速度以上では常に最高出力点(一定回転)で運転され、変速機による変速比(プーリ比)は車速に比例してアンダドライブ(U/D)からオーバドライブ(O/D)に増速して行く。また、車両走行抵抗(図には平坦路走行時の走行抵抗を示す)は車速が増加するほど上昇し、図に示すように右上がりになる。この関係から、最大駆動力=走行抵抗となる速度がこの車両がそれ以上加速できない最高速度となり、その時のプーリ比が最高速時プーリ比となる。   Here, the maximum speed pulley ratio will be described with reference to FIG. Generally, in a vehicle equipped with a transmission, the output of the engine is converted into the output of the axle via the transmission, but the output of the axle is the axle torque x the rotational speed, and the rotational speed increases as the vehicle speed increases. Assuming that the output is constant (operating at the maximum output point), the axle torque decreases in inverse proportion. Therefore, the maximum driving force (the force that moves the vehicle forward) decreases as the vehicle speed increases, resulting in a downward-sloping curve as shown in the figure. In contrast, in a vehicle equipped with a belt-type continuously variable transmission, the engine is always operated at the maximum output point (constant rotation) above a certain speed, and the transmission gear ratio (pulley ratio) is underdrive in proportion to the vehicle speed. The speed is increased from (U / D) to overdrive (O / D). Further, the vehicle running resistance (shown in the figure shows the running resistance when running on a flat road) increases as the vehicle speed increases, and rises to the right as shown in the figure. From this relationship, the speed at which maximum driving force = running resistance is the maximum speed at which this vehicle cannot be accelerated any more, and the pulley ratio at that time is the maximum speed pulley ratio.

ところで、前記のように最高速時のプーリ比において、ミスアライメント(C)を0とする従来の設定は、専らベルト式無段変速機の耐久性と効率を追求するもので、ベルトノイズについての考慮がなく、車載されるベルト式無段変速機のように、ノイズの発生を嫌う用途には必ずしも適した設定とは言いがたい。   By the way, as described above, in the pulley ratio at the maximum speed, the conventional setting in which the misalignment (C) is 0 is exclusively for pursuing the durability and efficiency of the belt-type continuously variable transmission. There is no consideration, and it is difficult to say that this setting is always suitable for applications that do not like the generation of noise, such as on-board belt-type continuously variable transmissions.

本発明は、前記の問題点に鑑み、従来看過させていたベルト式無段変速機特有の構造とベルトノイズとの関係に着目し、プーリ比に対するミスアライメントの設定によりベルトノイズを低減することを主たる目的とする。   In view of the above problems, the present invention pays attention to the relationship between belt noise and a structure peculiar to a belt-type continuously variable transmission that has been overlooked, and reduces belt noise by setting misalignment with respect to a pulley ratio. Main purpose.

本発明は、互いに平行な2つのプーリ軸(1,2)と、各プーリ軸上に配置されたプライマリプーリ(3)及びセカンダリプーリ(4)と、プライマリプーリ及びセカンダリプーリに巻き掛けられた無端ベルト(5)とを備えてなり、前記プライマリプーリは、それぞれが対向する円錐面を有し、該円錐面間に無端ベルトを挟持すべくプーリ軸(1)に軸線方向不動に固定された固定シーブ(31)と、軸線方向可動に支持された可動シーブ(32)とを有し、前記セカンダリプーリは、それぞれが対向する円錐面を有し、該円錐面間に無端ベルトを挟持すべくプーリ軸(2)に軸線方向不動に固定された固定シーブ(41)と、軸線方向可動に支持された可動シーブ(42)とを有し、前記プライマリプーリの固定シーブとセカンダリプーリの固定シーブが、無端ベルトに対して軸線方向反対側に位置するように配置されたベルト式無段変速機において、前記プライマリプーリの固定シーブと可動シーブの円錐面間の中心線位置と前記セカンダリプーリの固定シーブと可動シーブの円錐面間の中心線位置との間の軸線方向距離をミスアライメント(C)として、前記軸線方向距離がプライマリプーリの中心線位置からプライマリプーリの固定シーブ側への距離である場合を正と定義して、負方向のミスアライメントが生じるプーリ比領域を、達成し得る全プーリ比領域としたことを主要な特徴とする The present invention includes two pulley shafts (1, 2) parallel to each other, a primary pulley (3) and a secondary pulley (4) disposed on each pulley shaft, and an endless coil wound around the primary pulley and the secondary pulley. The primary pulley has conical surfaces facing each other, and is fixed to the pulley shaft (1) so as to be fixed in the axial direction so as to sandwich an endless belt between the conical surfaces. A sheave (31) and a movable sheave (32) supported so as to be movable in the axial direction. The secondary pulleys have conical surfaces opposed to each other, and a pulley for sandwiching an endless belt between the conical surfaces. A fixed sheave (41) fixed to the shaft (2) so as not to move in the axial direction; and a movable sheave (42) supported so as to be movable in the axial direction; In the belt-type continuously variable transmission arranged so that the fixed sheave is positioned on the opposite side in the axial direction with respect to the endless belt, the center line position between the fixed sheave of the primary pulley and the conical surface of the movable sheave and the secondary sheave The axial distance between the fixed sheave of the pulley and the centerline position between the conical surfaces of the movable sheave is misaligned (C), and the axial distance is from the centerline position of the primary pulley to the fixed sheave side of the primary pulley. The main feature is that the pulley ratio region where the misalignment in the negative direction is defined as the total pulley ratio region that can be achieved by defining the case of distance as positive .

前記の構成において、前記プライマリプーリ及びセカンダリプーリは、それぞれの可動シーブを軸線方向移動させるアクチュエータの油圧室(33,43)を備えるものとされる。また、前記ミスアライメントは、前記プライマリプーリ及びセカンダリプーリに巻き掛かる前記無端ベルトのピッチ円半径が等しくなるプーリ比1において所定の値に設定される。この場合の前記所定の値は、プーリ比(i)の変化に対するミスアライメントの変化の特性に基づき、プーリ比の変化に対して生じ得るミスアライメントの負方向の最大値(−α)として設定される。   The said structure WHEREIN: The said primary pulley and the secondary pulley shall be provided with the hydraulic chamber (33, 43) of the actuator which moves each movable sheave to an axial direction. Further, the misalignment is set to a predetermined value in a pulley ratio 1 where the pitch circle radii of the endless belts wound around the primary pulley and the secondary pulley are equal. The predetermined value in this case is set as the maximum value (−α) in the negative direction of misalignment that can occur with respect to the change in pulley ratio, based on the characteristics of the change in misalignment with respect to the change in pulley ratio (i). The

本発明のベルト式無段変速機によれば、達成し得る全プーリ比領域に渡って負方向のミスアライメントが設定されることで、プーリ軸に対して可動であることで振動を緩衝しやすい可動シーブ側に無端ベルトが強く押し付けられる動力伝達状態がプーリ比において達成されるため、ベルト式無段変速機のベルトノイズが総合的に低減する。 According to the belt type continuously variable transmission of the present invention, the misalignment in the negative direction is set over the entire range of pulley ratios that can be achieved , so that vibration is easily buffered by being movable with respect to the pulley shaft. Since the power transmission state in which the endless belt is strongly pressed against the movable sheave side is achieved at all pulley ratios, the belt noise of the belt type continuously variable transmission is comprehensively reduced.

本発明は、プライマリプーリ及びセカンダリプーリが、それぞれの可動シーブの背後に、可動シーブをプーリ軸線方向に移動させるアクチュエータの油圧室を備える油圧操作式のベルト式無段変速機に適用することが望ましい。これにより油圧室をプーリ振動に対するオイルダンパとして機能させることができるため、プーリ振動がより効果的に緩衝され、ベルトノイズ低減効果が一層向上する。   The present invention is preferably applied to a hydraulically operated belt-type continuously variable transmission in which a primary pulley and a secondary pulley have a hydraulic chamber of an actuator for moving the movable sheave in the pulley axial direction behind each movable sheave. . As a result, the hydraulic chamber can function as an oil damper against pulley vibration, so that the pulley vibration is more effectively buffered and the belt noise reduction effect is further improved.

図1は本発明の一実施例に係るベルト式無段変速機の構成を模式化して示す。この変速機は、互いに平行な2つのプーリ軸1,2と、各プーリ軸上に配置されたプライマリプーリ3及びセカンダリプーリ4と、プライマリプーリ及びセカンダリプーリに巻き掛けられた無端ベルト5とを備えてなる。プライマリプーリ3は、それぞれが対向する円錐面を有し、該円錐面間に無端ベルト5を挟持すべくプーリ軸1に軸線方向不動に固定された固定シーブ31と、円錐面を軸線方向可動に支持された可動シーブ32とを有し、同様にセカンダリプーリ4は、それぞれが対向する円錐面を有し、該円錐面間に無端ベルト5を挟持すべくプーリ軸2に軸線方向不動に固定された固定シーブ41と、円錐面を軸線方向可動に支持された可動シーブ42とを有し、プライマリプーリ3の固定シーブ31とセカンダリプーリ4の固定シーブ41が、無端ベルト5に対して軸線方向反対側に位置するように配置されている。   FIG. 1 schematically shows a configuration of a belt type continuously variable transmission according to an embodiment of the present invention. This transmission includes two pulley shafts 1 and 2 parallel to each other, a primary pulley 3 and a secondary pulley 4 disposed on each pulley shaft, and an endless belt 5 wound around the primary pulley and the secondary pulley. It becomes. The primary pulley 3 has conical surfaces facing each other, a fixed sheave 31 fixed to the pulley shaft 1 so as to be axially immovable so as to sandwich the endless belt 5 between the conical surfaces, and the conical surface movable in the axial direction. Similarly, the secondary pulleys 4 have conical surfaces facing each other, and are fixed to the pulley shaft 2 so as to be axially immovable so as to sandwich the endless belt 5 between the conical surfaces. The fixed sheave 41 and the movable sheave 42 whose conical surface is supported so as to be movable in the axial direction. The fixed sheave 31 of the primary pulley 3 and the fixed sheave 41 of the secondary pulley 4 are opposite to the endless belt 5 in the axial direction. It is arranged to be located on the side.

本実施例では、プライマリプーリ3及びセカンダリプーリ4における両可動シーブ32,42は、油圧の給排により両シーブ32,42の円錐面を軸線方向移動させるべく、それらシーブの背後に、油圧アクチュエータの油圧室33,43を備える。また、プーリ軸1側のプライマリプーリ3に対するプーリ軸2側のセカンダリプーリ4の軸線方向位置の公差を修正し、ミスアライメントを設計値に保つためのスペーサとしてのシム6が、一方のプーリ軸1側に配置されている。   In this embodiment, the movable sheaves 32 and 42 in the primary pulley 3 and the secondary pulley 4 are arranged behind the sheaves so that the conical surfaces of the sheaves 32 and 42 are moved in the axial direction by supplying and discharging hydraulic pressure. Hydraulic chambers 33 and 43 are provided. In addition, a shim 6 as a spacer for correcting the tolerance of the axial position of the secondary pulley 4 on the pulley shaft 2 side with respect to the primary pulley 3 on the pulley shaft 1 side and keeping the misalignment at the design value is provided on one pulley shaft 1. Arranged on the side.

こうした構成からなるベルト式無段変速機は、プライマリプーリ3側において油圧室33の油量を減少させて、可動シーブ32の円錐面を後退させることで両シーブ31,32の円錐面間距離を増加させ、セカンダリプーリ4側において油圧室43の油量を増加させて、可動シーブ42の円錐面を前進させることで両シーブ41,42の円錐面間距離を減少させることで、それら円錐面間に画定されるベルト挟持空間の幅が調整され、プライマリプーリ3側のピッチ円半径を小さくし、セカンダリプーリ4側のピッチ円半径を大きくすることでプーリ比が1より大きなアンダドライブ状態の動力伝達を行う。また、これとは逆に、油圧室33の油量を増加させ、油圧室43の油量を減少させて、プライマリプーリ3側において円錐面間距離を減少させ、セカンダリプーリ4側において円錐面間距離を増加させることで、それら円錐面間に画定されるベルト挟持空間の幅が調整され、プライマリプーリ3側のピッチ円半径を大きくし、セカンダリプーリ4側のピッチ円半径を小さくすることでプーリ比が1より小さなオーバドライブ状態の動力伝達を行う。   The belt-type continuously variable transmission having such a configuration reduces the amount of oil in the hydraulic chamber 33 on the primary pulley 3 side and moves the conical surface of the movable sheave 32 backward to reduce the distance between the conical surfaces of the sheaves 31 and 32. By increasing the amount of oil in the hydraulic chamber 43 on the secondary pulley 4 side and advancing the conical surface of the movable sheave 42, the distance between the conical surfaces of both sheaves 41, 42 is decreased, so that the distance between the conical surfaces is reduced. The width of the belt clamping space defined in the above is adjusted, the pitch circle radius on the primary pulley 3 side is reduced, and the pitch circle radius on the secondary pulley 4 side is increased, so that the power transmission in an underdrive state where the pulley ratio is greater than 1 I do. Conversely, the oil amount in the hydraulic chamber 33 is increased, the oil amount in the hydraulic chamber 43 is decreased, the distance between the conical surfaces is reduced on the primary pulley 3 side, and the distance between the conical surfaces on the secondary pulley 4 side is decreased. By increasing the distance, the width of the belt clamping space defined between the conical surfaces is adjusted, the pitch circle radius on the primary pulley 3 side is increased, and the pitch circle radius on the secondary pulley 4 side is decreased to reduce the pulley. Power transmission is performed in an overdrive state in which the ratio is smaller than 1.

このような変速操作に伴い、ある特定のプーリ比のところでプライマリプーリ3及びセカンダリプーリ4それぞれの円錐面間に画定されるベルト挟持空間の軸線方向位置(円錐面間の中心位置)を整合させてミスアライメントを0としたとしても、冒頭に記したように、他のプーリ比の位置ではミスアライメント(C)が不可避のものとして発生する。この関係を再度図2を参照して説明する。図において、ミスアライメント(C)の正とは、プライマリプーリ3の固定シーブ31と可動シーブ32の円錐面間の中心線位置とセカンダリプーリ4の固定シーブ41と可動シーブ42の円錐面間の中心線位置との間の軸線方向距離をミスアライメント(C)として、この軸線方向距離がプライマリプーリ3の中心線位置からプライマリプーリ3の固定シーブ31側への距離である場合として定義される。この定義は、ミスアライメントを専らプライマリプーリ側からみたときの位置関係で定義したものであるが、この位置関係はセカンダリプーリ4側からみても全く同様である。この場合、前記軸線方向距離がセカンダリプーリ4の中心線位置から同プーリ4の固定シーブ41側への距離である場合がミスアライメントが正として定義される。したがって、これとは逆に、軸線方向距離がプライマリプーリ3(又はセカンダリプーリ4)の中心線位置からプライマリプーリ3(又はセカンダリプーリ4)の可動シーブ32(又は可動シーブ42)側への距離である場合、ミスアライメント(C)が負となる。図に●印をつないで示す特性は、従来の手法に従い、最高速時プーリ比のところでミスアライメントが0となる設定とした場合を示す。この場合、プーリ比約1.5のところを境として、それよりプーリ比(i)が大きい領域では、プーリ比の増加につれて正方向のミスアライメントが概ねリニアに増加し、プーリ比が小さい領域では、プーリ比の減少につれて負方向のミスアライメントが増加していき、プーリ比1のところで最大値となり、それを過ぎると負方向のミスアライメントが減少方向に変わり、最終的に最高速プーリ比として設定されているプーリ比が約0.7のところで0となることが分かる。この特性を表す曲線の形状は、ミスアライメントをどのプーリ比のところで0とするかに関わりなく一定であり、特定のプーリ比に対するミスアライメント量を変更することに伴い、図に■印をつないで示すように縦軸方向に移動するだけである。   Along with such a speed change operation, the axial position (center position between the conical surfaces) of the belt clamping space defined between the conical surfaces of the primary pulley 3 and the secondary pulley 4 is aligned at a specific pulley ratio. Even if the misalignment is set to 0, as described at the beginning, misalignment (C) occurs inevitable at other pulley ratio positions. This relationship will be described again with reference to FIG. In the figure, the positive misalignment (C) means the center line position between the conical surfaces of the fixed sheave 31 and the movable sheave 32 of the primary pulley 3 and the center between the conical surfaces of the fixed sheave 41 and the movable sheave 42 of the secondary pulley 4. The axial distance from the line position is defined as misalignment (C), and this axial distance is defined as the distance from the center line position of the primary pulley 3 to the fixed sheave 31 side of the primary pulley 3. This definition is defined by the positional relationship when misalignment is viewed exclusively from the primary pulley side, but this positional relationship is completely the same when viewed from the secondary pulley 4 side. In this case, the misalignment is defined as positive when the axial distance is a distance from the center line position of the secondary pulley 4 to the fixed sheave 41 side of the pulley 4. Therefore, on the contrary, the axial distance is the distance from the center line position of the primary pulley 3 (or secondary pulley 4) to the movable sheave 32 (or movable sheave 42) side of the primary pulley 3 (or secondary pulley 4). In some cases, misalignment (C) is negative. The characteristic indicated by the mark ● in the figure shows the case where the misalignment is set to 0 at the maximum speed pulley ratio according to the conventional method. In this case, in the region where the pulley ratio (i) is larger than that at the pulley ratio of about 1.5, the positive misalignment increases approximately linearly as the pulley ratio increases, and in the region where the pulley ratio is small. As the pulley ratio decreases, the misalignment in the negative direction increases and reaches the maximum value at the pulley ratio of 1. After that, the misalignment in the negative direction changes to the decreasing direction and is finally set as the highest speed pulley ratio. It can be seen that the pulley ratio is 0 when the pulley ratio is about 0.7. The shape of the curve representing this characteristic is constant regardless of the pulley ratio at which the misalignment is set to 0. As the misalignment amount for a specific pulley ratio is changed, the mark ■ is added to the figure. It only moves in the direction of the vertical axis as shown.

本発明は、前記のような特性を利用するものであり、プライマリプーリ及びセカンダリプーリそれぞれの円錐面間に画定されるベルト挟持空間の軸線方向位置のミスアライメントを前記のように定義して、概括的には、達成し得る全プーリ比領域に対して、負方向のミスアライメントが生じるプーリ比領域を、少なくとも正方向のミスアライメントが生じるプーリ比領域より広く設定するものである。この場合の負方向のミスアライメントが生じるプーリ比領域は、その広さにもよるが、全プーリ比領域として設定することもできる。こうした設定を他の視点から捉えると、全プーリ比領域内における負方向のミスアライメントの最大値を正方向のミスアライメントの最大値より大きくした設定、あるいは、全プーリ比領域内における負方向のミスアライメントの最大値を正方向のミスアライメントが生じない値とする設定ということもできる。   The present invention utilizes the above-described characteristics. The misalignment of the axial position of the belt clamping space defined between the conical surfaces of the primary pulley and the secondary pulley is defined as described above, and is summarized. Specifically, the pulley ratio region in which the negative misalignment occurs in the entire pulley ratio region that can be achieved is set wider than at least the pulley ratio region in which the positive misalignment occurs. In this case, the pulley ratio region in which the misalignment in the negative direction occurs can be set as the entire pulley ratio region, although it depends on the width. If these settings are viewed from other viewpoints, the maximum negative misalignment in the entire pulley ratio region is set to be larger than the maximum misalignment in the positive direction, or the negative misalignment in the entire pulley ratio region. It can also be said that the maximum alignment value is a value that does not cause misalignment in the positive direction.

本実施例の変速機では、前記の発明概念に基づき、車載状態での前記最高速時に対応する出力側プーリ軸の最高回転時のプーリ比において負方向のミスアライメントを有するものとされる。この設定をより具体的にいうと、ミスアライメントは、プライマリプーリ3及びセカンダリプーリ4に巻き掛かる無端ベルト5のピッチ円半径が等しくなるプーリ比1において所定の値に設定される。この場合の所定の値は、プーリ比の変化に対して生じ得るミスアライメントの負方向の最大値(−α)として設定される。この設定は、具体的には図1に示すシム6の厚さの異なるものの選択によりなされる。   In the transmission of the present embodiment, based on the concept of the present invention, a negative misalignment is assumed in the pulley ratio at the maximum rotation of the output pulley shaft corresponding to the maximum speed in the vehicle-mounted state. More specifically, the misalignment is set to a predetermined value in the pulley ratio 1 where the pitch circle radii of the endless belt 5 wound around the primary pulley 3 and the secondary pulley 4 are equal. The predetermined value in this case is set as the maximum value (−α) in the negative direction of misalignment that can occur with respect to the change in the pulley ratio. Specifically, this setting is made by selecting a shim 6 having a different thickness as shown in FIG.

こうしたミスアライメント設定を採ることにより、図2の■印をつなぐ曲線の特性を参照してわかるように、極高いプーリ比領域(車両の発進加速時等に対応する)を除く大部分のプーリ比領域において、常に負方向のミスアライメントが生じた状態で動力伝達がなされるようになる。   By adopting such misalignment settings, most pulley ratios excluding the extremely high pulley ratio region (corresponding to the vehicle starting acceleration, etc.), as can be seen by referring to the characteristics of the curve connecting the ■ marks in FIG. In the region, power transmission is always performed in a state where a negative misalignment has occurred.

図3は従来のミスアライメント設定と本発明によるミスアライメント設定により各プーリ比においてミスアライメント量の変化にどのような違いか生じるかを示す。先ず図の(A)に示す従来の設定では、図の右側に示すように最高速時プーリ比においてミスアライメントが0となる設定がなされることから、図の中央に示すプーリ比1のときには、図の上方のプライマリプーリ側でみて、円錐面間の中心位置から可動シーブ方向への距離としてミスアライメントが生じているので、ミスアライメントは負の値となり、図の左側に示すプーリ比が大きい領域では、同じくプライマリプーリ側でみて、円錐面間の中心位置から固定シーブ方向への距離としてミスアライメントが生じて、ミスアライメントが正の値に変化する。これに対して、本実施例に従う図の(B)に示す設定では、図の中央に示すようにプーリ比1のときのミスアライメントが負の最大値(−α)として設定されるため、図の右側に示すプーリ比が最高速時プーリ比でもミスアライメントは負の値を保ち、図の左側に示すプーリ比がかなり大きい状態においてミスアライメントが0となる。図3(B)の左側の図は、図2の■印をつないだ曲線において、プーリ比約1.9の場合である。プーリ比がこれより大きくなると、ミスアライメントは正に転ずる。なお、図3における白抜き矢印は、ミスアライメント0の状態からの円錐面間の中心位置のずれの方向を示す。   FIG. 3 shows how the misalignment amount changes in each pulley ratio between the conventional misalignment setting and the misalignment setting according to the present invention. First, in the conventional setting shown in (A) of the figure, since the misalignment is set to 0 in the pulley ratio at the maximum speed as shown on the right side of the figure, when the pulley ratio is 1 shown in the center of the figure, In the upper primary pulley side in the figure, misalignment occurs as the distance from the center position between the conical surfaces to the movable sheave direction, so the misalignment is a negative value and the pulley ratio shown on the left side of the figure is large Then, similarly on the primary pulley side, misalignment occurs as a distance from the center position between the conical surfaces to the fixed sheave direction, and the misalignment changes to a positive value. On the other hand, in the setting shown in (B) of the diagram according to the present embodiment, the misalignment when the pulley ratio is 1 is set as the negative maximum value (−α) as shown in the center of the diagram. The misalignment remains negative even when the pulley ratio shown on the right side is the maximum speed pulley ratio, and the misalignment becomes 0 in the state where the pulley ratio shown on the left side of the figure is quite large. The left side of FIG. 3B is a case where the pulley ratio is about 1.9 in the curve connected with the ■ mark in FIG. If the pulley ratio is larger than this, the misalignment turns positive. 3 indicates the direction of deviation of the center position between the conical surfaces from the misalignment 0 state.

次に本発明において、前記のような負方向のミスアライメントが生じるプーリ比領域をプーリ比領域に対して広げるか又は全プーリ比領域として設定する理由について図1を参照して説明する。図1はミスアライメント(C)が負の状態、すなわちプライマリプーリ3の固定シーブ31と可動シーブ32の円錐面間の中心線位置P3と、セカンダリプーリ4の固定シーブ41と可動シーブ42の円錐面間の中心線位置P4との間の軸線方向距離(ミスアライメント)Cが、プライマリプーリ3の中心線位置P3からプライマリプーリ3の固定シーブ42側への距離とは逆の距離として現れていることを示している。この状態では、ベルト5はプーリ軸1,2に対して垂直な方向ではなく、プーリ間のずれに沿って傾くことになる。このミスアライメントが負の状態では、ベルト5はプーリ軸線に垂直な方向に対して、プライマリプーリ3とセカンダリプーリ4の固定シーブ31,41側に傾くことになる。図1はこの状態を表しており、ベルト5はプーリ軸線に対する垂直状態に対して、プライマリプーリ3側では右側に、セカンダリプーリ4側では左側に傾いている。ベルト5の張力はベルト5の長手方向に働くが、上述のようにベルト5が傾くことで、ベルト5の張力には、プーリ軸線方向の分力が生じる。図2の場合には、プライマリプーリ3側ではベルト5を左側(可動シーブ32側)に押す方向となり、セカンダリプーリ4側ではベルト5を右側(可動シーブ42側に押すことになる。すなわち、ミスアライメント(C)が図2のように負の値を持つ場合には、この分力はベルト5を、プライマリプーリ側でもセカンダリプーリ側でも可動シーブ側に押し付ける方向に働く。この分力に抗するために可動シーブ(32,42)側では、固定シーブ(31,41)側より相対的に大きな抗力が生じることになる。一方、ベルト5の張力のうちプーリ軸垂直方向の分力は、可動シーブと固定シーブがベルトに対して生じる(シーブとベルトの接触圧による)垂直抗力のうち、プーリ軸垂直方向成分の合力と釣り合うことになるが、可動シーブ側のプーリ軸方向分力が大きくなる分、可動シーブの垂直抗力が大きくなり、その分、固定シーブ側の垂直抗力が小さくなる。すなわち、ミスアライメント(C)が負方向に生じる場合には、可動シーブ側の垂直抗力(接触圧)が大きくなり、相対的に固定シーブ側の垂直抗力(接触圧)が小さくなる。   Next, the reason why the pulley ratio region in which the negative misalignment as described above occurs in the present invention is set wider than the pulley ratio region or set as the total pulley ratio region will be described with reference to FIG. 1 shows a state in which the misalignment (C) is negative, that is, a center line position P3 between the conical surfaces of the fixed sheave 31 and the movable sheave 32 of the primary pulley 3, and the conical surfaces of the fixed sheave 41 and the movable sheave 42 of the secondary pulley 4. An axial distance (misalignment) C between the centerline position P4 and the centerline position P4 between them appears as a distance opposite to the distance from the centerline position P3 of the primary pulley 3 to the fixed sheave 42 side of the primary pulley 3 Is shown. In this state, the belt 5 is inclined not along the direction perpendicular to the pulley shafts 1 and 2 but along the displacement between the pulleys. When this misalignment is negative, the belt 5 is inclined toward the fixed sheaves 31 and 41 of the primary pulley 3 and the secondary pulley 4 with respect to the direction perpendicular to the pulley axis. FIG. 1 shows this state, and the belt 5 is inclined to the right side on the primary pulley 3 side and to the left side on the secondary pulley 4 side with respect to the state perpendicular to the pulley axis. Although the tension of the belt 5 works in the longitudinal direction of the belt 5, the belt 5 is inclined as described above, so that a component force in the pulley axis direction is generated in the tension of the belt 5. 2, the belt 5 is pushed to the left (movable sheave 32 side) on the primary pulley 3 side, and the belt 5 is pushed to the right (movable sheave 42 side) on the secondary pulley 4 side. When the alignment (C) has a negative value as shown in Fig. 2, this component force acts in a direction in which the belt 5 is pressed against the movable sheave side on either the primary pulley side or the secondary pulley side. Therefore, a relatively greater drag force is generated on the movable sheave (32, 42) side than on the fixed sheave (31, 41) side, whereas the component force in the direction perpendicular to the pulley axis of the tension of the belt 5 is movable. The sheave and the fixed sheave against the belt are balanced with the resultant force of the vertical component of the pulley shaft (due to the contact pressure between the sheave and the belt). -The vertical force of the movable sheave increases as the axial force increases, and the vertical force on the fixed sheave decreases accordingly, that is, if misalignment (C) occurs in the negative direction The vertical drag (contact pressure) on the sheave side increases and the vertical drag (contact pressure) on the fixed sheave side relatively decreases.

油圧操作式のベルト式無段変速機においては、前記のように可動シーブ32,42は、それらの背後に油圧室33,43を備える構成とされる。この油圧室内の油圧は、可動シーブ32,42の振動を緩衝するオイルダンパとして作用する。そこで、前記のように固定シーブ31,41と可動シーブ32,42に挟まれるベルト5が可動シーブ32,42の円錐面側により強く押し付けられるようにすると、固定シーブ32,42側についてはベルト5と円錐面との接触圧が小さくなることで、ベルト構成リンク部材の繰り返し衝突により生じる振動が小さくなる。また接触圧が大きい可動シーブ32,42側では、可動シーブが前記ベルト構成リンク部材の衝突により強く振動しようとしても、その振動が油圧室33,43のダンパ効果により緩衝され、振動は減衰する。この結果、プライマリプーリ3とセカンダリプーリ4の総合的な振動も小さくなる。このように無端ベルト5が可動シーブ32,42側により強く押し付けられる状態は、前記のミスアライメントが負の値となる領域において生じる。したがって、この負のミスアライメント領域をプーリ比領域に対して実施例のように広げることで、広いプーリ比領域に渡ってベルトノイズが減少することになる。   In the hydraulically operated belt type continuously variable transmission, the movable sheaves 32 and 42 are provided with the hydraulic chambers 33 and 43 behind them as described above. The hydraulic pressure in the hydraulic chamber acts as an oil damper that buffers the vibration of the movable sheaves 32 and 42. Therefore, when the belt 5 sandwiched between the fixed sheaves 31 and 41 and the movable sheaves 32 and 42 is pressed more strongly against the conical surface side of the movable sheaves 32 and 42 as described above, the belt 5 on the fixed sheaves 32 and 42 side is provided. By reducing the contact pressure between the belt and the conical surface, vibration caused by repeated collisions of the belt constituting link members is reduced. On the movable sheave 32 and 42 side where the contact pressure is large, even if the movable sheave tries to vibrate strongly due to the collision of the belt-constituting link member, the vibration is buffered by the damper effect of the hydraulic chambers 33 and 43, and the vibration is attenuated. As a result, the overall vibration of the primary pulley 3 and the secondary pulley 4 is also reduced. The state in which the endless belt 5 is pressed more strongly on the movable sheaves 32 and 42 side in this manner occurs in a region where the misalignment is a negative value. Therefore, by expanding the negative misalignment region as compared with the pulley ratio region as in the embodiment, the belt noise is reduced over a wide pulley ratio region.

しかも、通常の車両走行において、最高速時プーリ比近傍のプーリ比が多用されるのに対して、従来の最高速時プーリ比におけるミスアライメントを0とする設定では、最高速時プーリ比近傍から固定プーリ側へのベルトの押し付け力が減少することになり、ベルトノイズが増加する方向に向かうことになる。これに対して、本実施例の設定によれば、通常の車両走行において多用される最高速時プーリ比を含むその近傍において、常に負のミスアライメントが保たれることになるため、実際に車両の搭乗者に体感される定常走行時のベルトノイズが有効に低減される。   Moreover, while the pulley ratio near the maximum speed pulley ratio is frequently used in normal vehicle travel, the misalignment in the conventional maximum speed pulley ratio is set to 0, and from the vicinity of the maximum speed pulley ratio. The pressing force of the belt to the fixed pulley side is reduced, and the belt noise is increased. On the other hand, according to the setting of the present embodiment, negative misalignment is always maintained in the vicinity including the maximum speed pulley ratio frequently used in normal vehicle travel. The belt noise at the time of steady running experienced by the passenger of the vehicle is effectively reduced.

本発明の実施例に係るベルト式無段変速機の模式側面図である。1 is a schematic side view of a belt type continuously variable transmission according to an embodiment of the present invention. 実施例の変速機におけるミスアライメントの設定を従来の設定と対比して示すミスアライメント特性図である。FIG. 6 is a misalignment characteristic diagram showing a misalignment setting in the transmission of the embodiment in comparison with a conventional setting. 実施例の変速機のプーリ比の変化に対するミスアライメントの変化を従来の設定によるものと対比して示す作動説明図である。It is operation | movement explanatory drawing which shows the change of the misalignment with respect to the change of the pulley ratio of the transmission of an Example with contrast with what is based on the conventional setting. ベルト式無段変速機を搭載した車両の走行特性を示すグラフである。It is a graph which shows the driving | running | working characteristic of the vehicle carrying a belt type continuously variable transmission.

符号の説明Explanation of symbols

1,2 プーリ軸
3 プライマリプーリ
4 セカンダリプーリ
5 無端ベルト
31,41 固定シーブ
32,42 可動シーブ
33,43 油圧室
1, 2 Pulley shaft 3 Primary pulley 4 Secondary pulley 5 Endless belt 31, 41 Fixed sheave 32, 42 Movable sheave 33, 43 Hydraulic chamber

Claims (4)

互いに平行な2つのプーリ軸(1,2)と、各プーリ軸上に配置されたプライマリプーリ(3)及びセカンダリプーリ(4)と、プライマリプーリ及びセカンダリプーリに巻き掛けられた無端ベルト(5)とを備えてなり、前記プライマリプーリは、それぞれが対向する円錐面を有し、該円錐面間に無端ベルトを挟持すべくプーリ軸(1)に軸線方向不動に固定された固定シーブ(31)と、軸線方向可動に支持された可動シーブ(32)とを有し、前記セカンダリプーリは、それぞれが対向する円錐面を有し、該円錐面間に無端ベルトを挟持すべくプーリ軸(2)に軸線方向不動に固定された固定シーブ(41)と、軸線方向可動に支持された可動シーブ(42)とを有し、前記プライマリプーリの固定シーブとセカンダリプーリの固定シーブが、無端ベルトに対して軸線方向反対側に位置するように配置されたベルト式無段変速機において、
前記プライマリプーリの固定シーブと可動シーブの円錐面間の中心線位置と前記セカンダリプーリの固定シーブと可動シーブの円錐面間の中心線位置との間の軸線方向距離をミスアライメント(C)として、前記軸線方向距離がプライマリプーリの中心線位置からプライマリプーリの固定シーブ側への距離である場合を正と定義して、負方向のミスアライメントが生じるプーリ比領域を、達成し得る全プーリ比領域としたことを特徴とするベルト式無段変速機。
Two pulley shafts (1, 2) parallel to each other, a primary pulley (3) and a secondary pulley (4) disposed on each pulley shaft, and an endless belt (5) wound around the primary pulley and the secondary pulley The primary pulley has a conical surface facing each other, and a fixed sheave (31) fixed to the pulley shaft (1) so as to hold the endless belt between the conical surfaces. And a movable sheave (32) supported so as to be movable in the axial direction, the secondary pulleys having conical surfaces facing each other, and a pulley shaft (2) for sandwiching an endless belt between the conical surfaces A fixed sheave (41) fixed in the axial direction and a movable sheave (42) supported so as to be movable in the axial direction, the fixed sheave of the primary pulley and the fixed sheave of the secondary pulley. Bed is in arranged belt-type continuously variable transmission so as to be positioned axially opposite to the endless belt,
Misalignment (C) is the axial distance between the centerline position between the fixed sheave of the primary pulley and the conical surface of the movable sheave and the centerline position between the fixed sheave of the secondary pulley and the conical surface of the movable sheave. All pulley ratio regions that can achieve a pulley ratio region in which a misalignment in the negative direction occurs when the axial distance is defined as positive when the distance from the center line position of the primary pulley to the fixed sheave side of the primary pulley belt type continuously variable transmission, characterized in that the the.
前記プライマリプーリ及びセカンダリプーリは、それぞれの可動シーブを軸線方向移動させるアクチュエータの油圧室(33,43)を備える、請求項記載のベルト式無段変速機。 The primary pulley and secondary pulley, each provided in the hydraulic chamber of the actuator to the movable sheave is axially moved (33, 43), a belt type continuously variable transmission according to claim 1. 前記ミスアライメントは、前記プライマリプーリ及びセカンダリプーリに巻き掛かる前記無端ベルトのピッチ円半径が等しくなるプーリ比1において所定の値に設定される、請求項1または2記載のベルト式無段変速機。 The belt type continuously variable transmission according to claim 1 or 2 , wherein the misalignment is set to a predetermined value in a pulley ratio 1 in which pitch circle radii of the endless belts wound around the primary pulley and the secondary pulley are equal. 前記所定の値は、プーリ比(i)の変化に対するミスアライメントの変化の特性に基づき、プーリ比の変化に対して生じ得るミスアライメントの負方向の最大値(−α)として設定される、請求項記載のベルト式無段変速機。 The predetermined value is set as a maximum value (−α) in the negative direction of misalignment that can occur with respect to a change in pulley ratio, based on a characteristic of a change in misalignment with respect to a change in pulley ratio (i). Item 4. The belt type continuously variable transmission according to item 3 .
JP2004019066A 2004-01-27 2004-01-27 Belt type continuously variable transmission Expired - Fee Related JP4645038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004019066A JP4645038B2 (en) 2004-01-27 2004-01-27 Belt type continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004019066A JP4645038B2 (en) 2004-01-27 2004-01-27 Belt type continuously variable transmission

Publications (2)

Publication Number Publication Date
JP2005214238A JP2005214238A (en) 2005-08-11
JP4645038B2 true JP4645038B2 (en) 2011-03-09

Family

ID=34903396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004019066A Expired - Fee Related JP4645038B2 (en) 2004-01-27 2004-01-27 Belt type continuously variable transmission

Country Status (1)

Country Link
JP (1) JP4645038B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014224946B4 (en) 2014-12-05 2016-10-13 Schaeffler Technologies AG & Co. KG Belting for a motor vehicle
JP6465100B2 (en) * 2016-12-13 2019-02-06 トヨタ自動車株式会社 Belt type continuously variable transmission

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161953A (en) * 2000-09-18 2002-06-07 Nissan Motor Co Ltd Belt-type continuously variable transmission

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6165952A (en) * 1984-09-07 1986-04-04 Nissan Motor Co Ltd V-belt type non-stage transmission
JPH0792124B2 (en) * 1986-10-22 1995-10-09 富士重工業株式会社 Belt type continuously variable transmission for automobiles
NL8701134A (en) * 1987-05-13 1988-12-01 Doornes Transmissie Bv CONTINUOUSLY VARIABLE TRANSMISSION WITH CORRECTED PULLEY ALIGNMENT.
JPH03194244A (en) * 1989-12-20 1991-08-23 Mazda Motor Corp Continuously variable transmission

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161953A (en) * 2000-09-18 2002-06-07 Nissan Motor Co Ltd Belt-type continuously variable transmission

Also Published As

Publication number Publication date
JP2005214238A (en) 2005-08-11

Similar Documents

Publication Publication Date Title
EP1884682B1 (en) Power transmission chain, method for manufacturing power transmission member of the power transmission chain, and power transmission device
US9005058B2 (en) Belt-type stepless transmission
US8485927B2 (en) Power transmission chain and power transmission device
US6409620B1 (en) Belt for continuosly variable transmission
JP2007010049A (en) Power transmission chain and power transmission equipped with the same
CN101809315B (en) Power transmission chain, and power transmission device
US20100035713A1 (en) Power transmission chain and power transmission device
JP4645038B2 (en) Belt type continuously variable transmission
US8678966B2 (en) Power transmission chain and power transmission apparatus including same
JP4918964B2 (en) Power transmission device
JP2008298243A (en) Power transmission chain and power transmission device furnished with it
JP4761113B2 (en) Power transmission chain and power transmission device including the same
CN112443632B (en) Continuously variable transmission and endless belt
JP4591764B2 (en) Power transmission chain and power transmission device including the same
JP5019128B2 (en) POWER TRANSMISSION CHAIN, POWER TRANSMISSION DEVICE HAVING THE SAME, AND METHOD FOR PRODUCING POWER TRANSMISSION CHAIN
JP5393417B2 (en) Chain type continuously variable transmission
JP5125648B2 (en) Power transmission chain and power transmission device
JP4529073B2 (en) Power transmission chain and power transmission device including the same
JP2008151317A (en) Power transmission chain and power transmission device
JP2011069410A (en) Power transmission device
JP2008215448A (en) Power transmission chain and power transmitting device
JP2006144855A (en) Power transmission and power transmission device having the same
JP2008298242A (en) Power transmission chain and power transmission device furnished with it
JP2007263178A (en) Power transmitting chain and power transmission having the same
JP2006010049A (en) Power transmission chain and power transmission device equipped therewith

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4645038

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees