JP4644759B2 - Ionic conductor and fuel cell using the same - Google Patents

Ionic conductor and fuel cell using the same Download PDF

Info

Publication number
JP4644759B2
JP4644759B2 JP2005212692A JP2005212692A JP4644759B2 JP 4644759 B2 JP4644759 B2 JP 4644759B2 JP 2005212692 A JP2005212692 A JP 2005212692A JP 2005212692 A JP2005212692 A JP 2005212692A JP 4644759 B2 JP4644759 B2 JP 4644759B2
Authority
JP
Japan
Prior art keywords
inorganic porous
porous body
electrolyte material
ionic
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005212692A
Other languages
Japanese (ja)
Other versions
JP2007035300A (en
Inventor
弘志 小川
寿弘 竹川
聖志 金村
弘幸 大野
航 荻原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Nissan Motor Co Ltd
Tokyo Metropolitan University
Original Assignee
NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Nissan Motor Co Ltd
Tokyo Metropolitan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY, Nissan Motor Co Ltd, Tokyo Metropolitan University filed Critical NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Priority to JP2005212692A priority Critical patent/JP4644759B2/en
Publication of JP2007035300A publication Critical patent/JP2007035300A/en
Application granted granted Critical
Publication of JP4644759B2 publication Critical patent/JP4644759B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、イオン伝導体、及びこれを用いた燃料電池セルに係り、更に詳細には、電解質材料がイオン液体単独であるときに比べてイオン伝導度が向上し得るイオン伝導体、及びこれを用いた燃料電池セルに関する。 The present invention relates to an ionic conductor and a fuel cell using the ionic conductor, and more specifically, an ionic conductor capable of improving ionic conductivity as compared with a case where an electrolyte material is an ionic liquid alone, and It relates to the fuel cell used.

燃料電池の電解質膜として、「イオン液体を浸透した、カチオン伝導性/プロトン伝導性のセラミック膜」が提案されている(例えば特許文献1参照)。
この膜は、特許文献2に記載された多孔質で柔軟なセラミック膜を基礎として、イオン伝導性を示すように改質し、その後イオン液体で処理して得られる。
また、この膜は、イオン液体の使用により、100℃より高い温度で極めて良好なプロトン伝導性又はカチオン伝導性を有する。更に、柔軟性を維持し、燃料電池の電解質膜として使用できるというものである。
特表2004−515351号公報 PCT/EP98/05939号
As a fuel cell electrolyte membrane, a “cation-conductive / proton-conductive ceramic membrane infiltrated with an ionic liquid” has been proposed (see, for example, Patent Document 1).
This membrane is obtained by modifying so as to exhibit ionic conductivity on the basis of a porous and flexible ceramic membrane described in Patent Document 2, and then treating with an ionic liquid.
In addition, this membrane has extremely good proton conductivity or cation conductivity at a temperature higher than 100 ° C. by using an ionic liquid. Furthermore, flexibility is maintained and it can be used as an electrolyte membrane of a fuel cell.
JP-T-2004-515351 PCT / EP98 / 05939

しかしながら、このような従来のセラミック膜とイオン液体を組み合わせた電解質膜においては、イオン液体単独に対してイオン伝導度が向上しないという問題点があった。   However, in such an electrolyte membrane in which a conventional ceramic membrane and an ionic liquid are combined, there is a problem that the ionic conductivity is not improved as compared with the ionic liquid alone.

本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、電解質材料がイオン液体単独であるときに比べてイオン伝導度が向上し、耐熱性が高く、含水時の膨潤を抑制でき、安価に製造できるイオン伝導体、及びこれを用いたエネルギーデバイス、燃料電池セルを提供することにある。   The present invention has been made in view of such problems of the prior art. The object of the present invention is to improve ionic conductivity and heat resistance compared to when the electrolyte material is an ionic liquid alone. An object of the present invention is to provide an ionic conductor that is high, can suppress swelling when containing water, and can be manufactured at low cost, and an energy device and a fuel cell using the ionic conductor.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、無機多孔体の孔内に、イオン伝導性の高い電解質材料を配設することにより、上記課題が解決できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by disposing an electrolyte material having high ion conductivity in the pores of the inorganic porous body. The invention has been completed.

即ち、本発明のイオン伝導体は、シリカによって形成される無機多孔体と電解質材料と一対の電極材料とから構成されるイオン伝導体であって、
上記無機多孔体は、複数の球状孔を有し、該球状孔は、内径がほぼ均一で、隣接する球状孔同士が連通しており、該球状孔内に上記電解質材料を備え、
上記電解質材料は、イオン液体であって、カチオン成分とアニオン成分を含み、該アニオン成分は少なくとも多価アニオンとしてSO 2− を含み、
上記電極材料は、該電解質材料を保持した無機多孔体を挟持する、ことを特徴とする。
That is, the ionic conductor of the present invention is an ionic conductor composed of an inorganic porous body formed of silica, an electrolyte material, and a pair of electrode materials,
The inorganic porous body has a plurality of spherical holes, the inner diameter of the spherical holes is substantially uniform, and adjacent spherical holes communicate with each other, and the electrolyte material is provided in the spherical holes,
The electrolyte material is an ionic liquid and includes a cation component and an anion component, and the anion component includes at least SO 4 2- as a polyvalent anion ,
The electrode material sandwiches an inorganic porous body holding the electrolyte material.

更にまた、本発明のイオン伝導体の他の好適形態は、上記無機多孔体の気孔率が70〜90%であることを特徴とする。   Furthermore, another preferred embodiment of the ion conductor of the present invention is characterized in that the inorganic porous body has a porosity of 70 to 90%.

また、本発明の燃料電池セルは、上記イオン伝導体を適用して成ることを特徴とする。 Further, the fuel cell of the present invention is characterized by the formation Turkey by applying the ion conductor.

本発明によれば、複数の球状孔を有し、該球状孔は、内径がほぼ均一で、隣接する球状孔同士が連通したシリカによって形成される無機多孔体の孔内に電解質材料を保持し、該電解質材料がイオン液体であってカチオン成分とアニオン成分を含み、該アニオン成分は少なくとも多価アニオンとしてSO 2− を含み、電極材料が該電解質材料を保持した無機多孔体を挟持するイオン伝導体であるので、電解質材料がイオン液体単独であるときに比べてイオン伝導度が向上し、耐熱性が高く、含水時の膨潤を抑制できるイオン伝導体が安価に得られる。 According to the present invention, a plurality of spherical holes are provided, and the spherical holes hold the electrolyte material in the pores of the inorganic porous body formed of silica having a substantially uniform inner diameter and in which adjacent spherical holes communicate with each other. The electrolyte material is an ionic liquid and contains a cation component and an anion component, the anion component contains at least SO 4 2− as a polyvalent anion , and an electrode material sandwiches an inorganic porous body holding the electrolyte material. Since it is a conductor, the ionic conductivity is improved compared to the case where the electrolyte material is an ionic liquid alone, the heat resistance is high, and an ionic conductor that can suppress swelling when containing water can be obtained at a low cost.

以下、本発明のイオン伝導体について詳細に説明する。なお、本明細書及び特許請求の範囲において、「%」は特記しない限り質量百分率を示す。   Hereinafter, the ion conductor of the present invention will be described in detail. In the present specification and claims, “%” indicates a mass percentage unless otherwise specified.

本発明のイオン伝導体は、無機多孔体と電解質材料と一対の電極材料とから構成される。
ここで、上記無機多孔体は、複数の細孔を有し、その孔内に電解質材料を保持している。
また、上記電解質材料は、カチオン成分とアニオン成分を含んで成る。このアニオン成分は少なくとも多価アニオンを含むものとする。
更に、上記電極材料は、該電解質材料を保持した無機多孔体を挟持している。
図1にイオン伝導体の概略及び写真を示す。
The ionic conductor of the present invention is composed of an inorganic porous material, an electrolyte material, and a pair of electrode materials.
Here, the inorganic porous body has a plurality of pores and holds an electrolyte material in the pores.
The electrolyte material includes a cation component and an anion component. This anion component contains at least a polyvalent anion.
Further, the electrode material sandwiches an inorganic porous body holding the electrolyte material.
FIG. 1 shows an outline and a photograph of the ion conductor.

このように、カチオン成分及びアニオン成分を含む電解質材料を無機多孔体へ含浸することで、電解質材料の固定化と、イオン伝導度の向上が一挙に達成される。即ち、固定化された電解質材料と無機多孔体との界面に働く相互作用の副次的効果が得られ、電解質材料を液体状態のまま使用するよりもイオン伝導度がより高くなる。
また、フッ素系電解質などを用いた従来品に比べて、安価な材料で構成できるため、より普及に適したイオン伝導体が得られる。
更に、アニオン成分に多価アニオンを含めたことにより、無機多孔体と電解質材料との共同効果により、イオン伝導を促進する領域が両者の界面に形成され得る。
As described above, by impregnating the inorganic porous material with the electrolyte material containing the cation component and the anion component, the fixation of the electrolyte material and the improvement of the ionic conductivity can be achieved at once. That is, a secondary effect of interaction acting on the interface between the immobilized electrolyte material and the inorganic porous body is obtained, and the ionic conductivity is higher than when the electrolyte material is used in a liquid state.
Moreover, since it can be comprised with an inexpensive material compared with the conventional product using a fluorine-type electrolyte etc., the ion conductor more suitable for spread is obtained.
Furthermore, by including a polyvalent anion in the anion component, a region that promotes ionic conduction can be formed at the interface between the two due to the joint effect of the inorganic porous material and the electrolyte material.

また、上記電解質材料は、1.優れた熱安定性(不揮発性、蒸気圧がゼロ、広い温度域で液体である)、2.高イオン密度、3.大熱容量などの観点から、イオン液体を使用することが好適である。   In addition, the electrolyte material includes: Excellent thermal stability (non-volatile, zero vapor pressure, liquid in a wide temperature range), 2. 2. high ion density; From the viewpoint of a large heat capacity and the like, it is preferable to use an ionic liquid.

代表的なイオン液体としては、カチオン成分は、例えば、以下の化学式1〜3に示すイミダゾリウム誘導体(Imidazolium Derivatives、1〜3置換体)、化学式4に示すピリジニウム誘導体(Pyridinium Derivatives)、化学式5に示すピロリジニウム誘導体(Pyrrolidinium Derivatives)、化学式6に示すアンモニウム誘導体(Ammonium Derivatives)、化学式7に示すホスフォニウム誘導体(Phosphonium Derivatives)、化学式8〜12に示すグアニジニウム誘導体(Guanidinium Derivatives)、化学式13〜15に示すイソウロニウム誘導体(Isouronium Derivatives)、などが挙げられる。   As a typical ionic liquid, the cation component includes, for example, imidazolium derivatives (Imidazolium Derivatives, 1 to 3 substituents) represented by the following Chemical Formulas 1 to 3, pyridinium derivatives (Pyridinium Derivatives) represented by the Chemical Formula 4, Pyrrolidinium derivatives (Pyrrolidinium Derivatives), ammonium derivatives (Ammonium Derivatives) shown in Chemical Formula 6, phosphonium derivatives (Phosphonium Derivatives) shown in Chemical Formula 7, guanidinium derivatives (TiV), Derivatives (Isouronium Derivat ves), and the like.

Figure 0004644759
Figure 0004644759

化学式1中のRは、例えばCmHn(m=0〜40、n=0〜40)などで表され、より好ましくは、m=0、n=0やm=4、n=9の組合せをとり得る。   R in Chemical Formula 1 is represented by, for example, CmHn (m = 0 to 40, n = 0 to 40), and more preferably takes a combination of m = 0, n = 0, m = 4, and n = 9. obtain.

Figure 0004644759
Figure 0004644759

化学式2中のR、Rは、それぞれ個別に、例えばCmHn(m=0〜40、n=0〜40)などで表され、より好ましくは、以下の表1に示す組合せをとり得る。 R 1 and R 2 in Chemical Formula 2 are each individually represented by, for example, CmHn (m = 0 to 40, n = 0 to 40), and more preferably a combination shown in Table 1 below.

Figure 0004644759
Figure 0004644759

Figure 0004644759
Figure 0004644759

化学式3中のR、R、Rは、それぞれ個別に、例えばCmHn(m=0〜40、n=0〜40)などで表され、より好ましくは、以下の表2に示す組合せをとり得る。 R 1 , R 2 , and R 3 in Chemical Formula 3 are each individually represented by, for example, CmHn (m = 0 to 40, n = 0 to 40), and more preferably the combinations shown in Table 2 below. It can take.

Figure 0004644759
Figure 0004644759

Figure 0004644759
Figure 0004644759

化学式4中のR、Rは、それぞれ個別に、例えばCmHn(m=0〜40、n=0〜40)などで表され、より好ましくは、以下の表3に示す組合せをとり得る。 R 1 and R 2 in Chemical Formula 4 are each individually represented by, for example, CmHn (m = 0 to 40, n = 0 to 40), and more preferably a combination shown in Table 3 below.

Figure 0004644759
Figure 0004644759

Figure 0004644759
Figure 0004644759

化学式5中のR、Rは、それぞれ個別に、例えばCmHn(m=0〜40、n=0〜40)などで表され、より好ましくは、以下の表4に示す組合せをとり得る。 R 1 and R 2 in Chemical Formula 5 are each individually represented by, for example, CmHn (m = 0 to 40, n = 0 to 40), and more preferably a combination shown in Table 4 below.

Figure 0004644759
Figure 0004644759

Figure 0004644759
Figure 0004644759

化学式6中のR〜Rは、それぞれ個別に、例えばCmHn(m=0〜40、n=0〜40)などで表され、より好ましくは、以下の表5に示す組合せをとり得る。 R 1 to R 4 in Chemical Formula 6 are each individually represented by, for example, CmHn (m = 0 to 40, n = 0 to 40), and more preferably a combination shown in Table 5 below.

Figure 0004644759
Figure 0004644759

Figure 0004644759
Figure 0004644759

化学式6中のR〜Rは、それぞれ個別に、例えばCmHn(m=0〜40、n=0〜40)やPhを含むアルキル基などで表され、より好ましくは、以下の表6に示す組合せをとり得る。 R 1 to R 4 in Chemical Formula 6 are individually represented, for example, by CmHn (m = 0 to 40, n = 0 to 40), an alkyl group containing Ph, or the like, and more preferably in Table 6 below. The combinations shown can be taken.

Figure 0004644759
Figure 0004644759

Figure 0004644759
Figure 0004644759

Figure 0004644759
Figure 0004644759

Figure 0004644759
Figure 0004644759

Figure 0004644759
Figure 0004644759

Figure 0004644759
Figure 0004644759

Figure 0004644759
Figure 0004644759

Figure 0004644759
Figure 0004644759

Figure 0004644759
Figure 0004644759

アニオン成分は、例えば、以下の化学式16に示すハロゲン類(Halogenides)、化学式17,18に示すスルフェート類及びスルホン酸類(Sulfates and sulfonates)、化学式19に示すアミド類及びイミド類(Amides and imides)、化学式20に示すメタン類(Methanes)、化学式21〜26に示すホウ酸塩類(Borates)、化学式27,28に示すリン酸塩類及びアンチモン類(Phosphates and Antimonates)、化学式29に示すその他の塩類、などが挙げられる。   Examples of the anionic component include halogens represented by the following chemical formula 16, sulfates and sulfonic acids represented by the chemical formulas 17 and 18, amides and imides represented by the chemical formula 19, and amides and imides. Methanes represented by Chemical Formula 20 (Methanes), Borates represented by Chemical Formulas 21 to 26 (Borates), Phosphate and Antimones represented by Chemical Formulas 27 and 28, Phosphates and Antimonates, Other salts represented by Chemical Formula 29, etc. Is mentioned.

Figure 0004644759
Figure 0004644759

Figure 0004644759
Figure 0004644759

Figure 0004644759
Figure 0004644759

Figure 0004644759
Figure 0004644759

Figure 0004644759
Figure 0004644759

Figure 0004644759
Figure 0004644759

Figure 0004644759
Figure 0004644759

Figure 0004644759
Figure 0004644759

Figure 0004644759
Figure 0004644759

Figure 0004644759
Figure 0004644759

Figure 0004644759
Figure 0004644759

Figure 0004644759
Figure 0004644759

Figure 0004644759
Figure 0004644759

Figure 0004644759
Figure 0004644759

また、多価アニオンは、例えば、以下の化学式30に示すものなどが好適に使用できる。   In addition, as the polyvalent anion, for example, those represented by the following chemical formula 30 can be preferably used.

Figure 0004644759
Figure 0004644759

なお、これらのカチオン成分又はアニオン成分は、1種又は2種以上を適宜組合わせて使用できる。   In addition, these cation components or anion components can be used singly or in appropriate combination of two or more.

更に、上記無機多孔体は、金属酸化物を含む焼結体であることが好適である。
金属酸化物は安定性が高く、安価に入手可能なものが多いため有効である。
かかる金属酸化物としては、例えば、アルミナ(Al)、シリカ(SiO)、チタニア(TiO)又はジルコニア(ZrO)、及びこれらの任意の組合わせに係るものが挙げられる。
Furthermore, the inorganic porous body is preferably a sintered body containing a metal oxide.
Metal oxides are effective because they have high stability and many are available at low cost.
Examples of such metal oxides include alumina (Al 2 O 3 ), silica (SiO 2 ), titania (TiO 2 ), zirconia (ZrO 2 ), and any combination thereof.

更にまた、上記無機多孔体の有する複数の細孔が球状孔であること、該球状孔は、内径がほぼ均一で、隣接する球状孔同士が連通していることが好適である。換言すれば、無機多孔体内部に球状孔が3次元的に存在し、隣接する球状孔と連通口を介して連通していることが良い。図1に、このような無機多孔体1に電解質材料2を充填し、電極材料3で挟持したイオン伝導体及び無機多孔体の拡大写真を示す。
なお、球状孔の内壁面は、プロトン供与性官能基が存在するように処理されることが望ましい。また、電解質材料は、該連通口を介して充填できる。
Furthermore, it is preferable that the plurality of pores of the inorganic porous body are spherical pores, that the spherical pores have a substantially uniform inner diameter and that adjacent spherical pores communicate with each other. In other words, it is preferable that spherical pores exist three-dimensionally inside the inorganic porous body and communicate with adjacent spherical pores via a communication port. FIG. 1 shows an enlarged photograph of an ionic conductor and an inorganic porous body in which such an inorganic porous body 1 is filled with an electrolyte material 2 and sandwiched between electrode materials 3.
The inner wall surface of the spherical hole is preferably treated so that the proton donating functional group exists. Further, the electrolyte material can be filled through the communication port.

このように、無機多孔体の内部に電解質材料が規則的に保持されることで、両材料がコンポジット化され、全体的にイオン伝導量を多くすることができる。
また、湿潤状態においては、無機多孔体が電解質材料の膨潤を抑制する。特に、多孔体内部に存在する球状孔がほぼ均一な径で構成されることで、電解質材料の含水時における膨潤に対して、多孔体は均質且つ分散された膨潤力を受けるので、イオン伝導体の局所的な破損が抑制できる。換言すれば、無機多孔体の球状孔が3次元規則配列構造をとることで、電解質材料の膨潤圧が無機多孔体に均等にかかるよう支持され得る。
Thus, by regularly holding the electrolyte material inside the inorganic porous body, both materials are made into a composite, and the amount of ion conduction can be increased as a whole.
In the wet state, the inorganic porous body suppresses the swelling of the electrolyte material. In particular, since the spherical pores existing in the porous body have a substantially uniform diameter, the porous body receives a uniform and dispersed swelling force against the swelling of the electrolyte material when it contains water. Can be prevented from local damage. In other words, since the spherical pores of the inorganic porous body have a three-dimensional regular array structure, the swelling pressure of the electrolyte material can be supported evenly on the inorganic porous body.

また、上記無機多孔体の気孔率は70〜90%であることが好適である。このときは、電解質材料を多量に導入でき、優れたイオン伝導性が実現できる。
更に、上記無機多孔体の孔径は、イオン伝導性と電解質材料の導入容易性とのバランスから、100〜1500nmに設計できる。100nm未満では、球状樹脂をテンプレートとした多孔体の形成が困難となり易い。
The porosity of the inorganic porous material is preferably 70 to 90%. In this case, a large amount of electrolyte material can be introduced, and excellent ion conductivity can be realized.
Furthermore, the pore diameter of the inorganic porous material can be designed to be 100 to 1500 nm from the balance between ion conductivity and ease of introduction of the electrolyte material. If it is less than 100 nm, formation of a porous body using a spherical resin as a template tends to be difficult.

更に、上記無機多孔体は、無機ゾルを形成する材料より成ることが好適である。
このときは、簡易な無機材形成技術であるゾルゲル法を適用できる。また、安価に無機多孔体が得られる。
上記無機ゾル形成材料は、無機コロイドであることが好適である。無機コロイドは、ポリマー粒子を鋳型に用いた無機多孔体の形成に適しており、3次元規則配列状態が保持された球状孔を形成できる。
Furthermore, the inorganic porous body is preferably made of a material that forms an inorganic sol.
In this case, a sol-gel method, which is a simple inorganic material forming technique, can be applied. Moreover, an inorganic porous body can be obtained at low cost.
The inorganic sol-forming material is preferably an inorganic colloid. The inorganic colloid is suitable for forming an inorganic porous body using polymer particles as a template, and can form a spherical hole in which a three-dimensional ordered arrangement state is maintained.

更にまた、上記無機多孔体は、例えば、ポリマー微粒子と無機材料を混合した懸濁液から得られる。
このような懸濁液を適用することで、高い空孔率(70%以上)が実現できるため、電解質材料を多量に保持させることができ、高いイオン伝導性が期待できる。また、ポリマー微粒子が積み重なることで形成される3次元規則配列構造を鋳型として、無機多孔体が得らえれる。更に、ポリマー微粒子の粒径サイズ、積層状態を制御することで、任意の空間を有する無機多孔体を設計できる。
なお、細孔内のポリマー微粒子は熱処理などにより除去することで、電解質材料の入るスペースが確保される。
Furthermore, the said inorganic porous body is obtained from the suspension which mixed polymer microparticles | fine-particles and an inorganic material, for example.
By applying such a suspension, a high porosity (70% or more) can be realized, so that a large amount of electrolyte material can be retained, and high ion conductivity can be expected. In addition, an inorganic porous material can be obtained using a three-dimensional regular array structure formed by stacking polymer fine particles as a template. Furthermore, an inorganic porous body having an arbitrary space can be designed by controlling the particle size and the lamination state of the polymer fine particles.
The polymer fine particles in the pores are removed by heat treatment or the like, so that a space for the electrolyte material is secured.

また、上記電極材料としては、例えば、白金(Pt)、ルテニウム(Ru)等の貴金属、ロジウム(Rh)、グラッシーカーボンなどの電極触媒成分を含むことが望ましい。
これらの電極触媒成分は、例えば、カーボンペーパー、カーボンブラック、これらにポリテトラフルオロエチレン(PTFE)を混合したものなどの担持基材を介して高分散させることが良い。
Moreover, as said electrode material, it is desirable to contain electrode catalyst components, such as noble metals, such as platinum (Pt) and ruthenium (Ru), rhodium (Rh), and glassy carbon, for example.
These electrode catalyst components are preferably highly dispersed through a supporting substrate such as, for example, carbon paper, carbon black, or a mixture of polytetrafluoroethylene (PTFE).

ここで、本発明のイオン伝導体は、代表的には、図2に示すような工程により製造できる。更に詳細には、以下のような工程を行うことで製造できる。
1.無機ゾルと球状有機樹脂を溶媒を用いて混合する工程
2.この混合溶液を攪拌して懸濁液とする工程
3.この懸濁液を濾過して製膜する工程
4.濾過成形膜の余剰水分を除去する工程
5.濾過成形膜を乾燥する工程
6.濾過成形膜を加熱焼成して無機多孔体を得る工程
7.無機多孔体の球状孔に電解質材料を含浸させる工程
8.乾燥し、電極で挟持してイオン伝導体を形成する工程
Here, the ion conductor of the present invention can be typically manufactured by a process as shown in FIG. In more detail, it can manufacture by performing the following processes.
1. 1. Step of mixing inorganic sol and spherical organic resin using solvent 2. Stir the mixed solution to make a suspension. 3. Filtration of the suspension to form a film 4. Step of removing excess water from the filtration molded membrane 5. Drying the filtration membrane 6. Step of heating and baking the filtration molded membrane to obtain an inorganic porous material 7. impregnating the electrolyte material into the spherical pores of the inorganic porous material; Process of drying and sandwiching with electrodes to form ionic conductor

ここで、工程1〜6を経ることで、球状有機樹脂をテンプレートとして、球状孔が3次元規則配列された無機多孔体が得られる。   Here, an inorganic porous body in which spherical holes are three-dimensionally arranged using a spherical organic resin as a template is obtained by going through steps 1-6.

工程1及び工程2では、無機コロイドと球状有機樹脂を均質な状態に混合することができる。これにより、均等で規則的な細孔を有する無機多孔体を得ることができる。   In Step 1 and Step 2, the inorganic colloid and the spherical organic resin can be mixed in a homogeneous state. Thereby, an inorganic porous body having uniform and regular pores can be obtained.

また、工程3において、濾過は、球状有機樹脂をテンプレートとして、その隙間に無機ゾルを充填する方法として適している。濾過は、無機多孔体の球状孔の大きさ、細孔密度などから、適宜10〜60kPa程度減圧して行うことができる。
工程3で用いる球状有機樹脂としては、例えば20nm〜1500nm程度のポリエチレンを使用できる。
代表的には、ポリオレフィン樹脂、ポリスチレン樹脂、架橋アクリル樹脂、メチルメタクリレート樹脂、ポリアミド樹脂などが適宜選択できる。20nmより小さくなると電解質材料の均質な含浸が困難となり易い。また、1500nmより大きくなると無機多孔体を構成する支持構造の均質性に乱れが発生することがある。
In Step 3, filtration is suitable as a method of filling the gap with an inorganic sol using a spherical organic resin as a template. Filtration can be performed by appropriately reducing the pressure by about 10 to 60 kPa based on the size of the spherical pores of the inorganic porous material, the pore density, and the like.
As the spherical organic resin used in step 3, for example, polyethylene of about 20 nm to 1500 nm can be used.
Typically, polyolefin resin, polystyrene resin, cross-linked acrylic resin, methyl methacrylate resin, polyamide resin, and the like can be selected as appropriate. If it is smaller than 20 nm, homogeneous impregnation of the electrolyte material tends to be difficult. On the other hand, if it exceeds 1500 nm, the homogeneity of the support structure constituting the inorganic porous material may be disturbed.

更に、工程4では、濾過成形膜に含まれている溶剤を予め除去することで、次の乾燥工程における乾燥時間を短縮することができる。
更にまた、工程5では、濾過成形膜を室温にて予め乾燥させることで、焼成工程等での膜のハンドリングを容易にする。
Furthermore, in step 4, the drying time in the next drying step can be shortened by previously removing the solvent contained in the filtration membrane.
Furthermore, in step 5, the filtration molded membrane is previously dried at room temperature, thereby facilitating the handling of the membrane in the firing step or the like.

次いで、工程6では、濾過成形膜を加温焼成することで、無機材料を焼成形成すると共に、テンプレート樹脂を焼成除去することで無機多孔体を形成できる。
このとき、濾過膜中の球状有機樹脂を除去するための仮焼成を行い、その後に無機多孔体を焼結させることが良い。
仮焼成は、例えば、1〜10℃/min、望ましくは2〜5℃/minの昇温速度で400〜500℃、より望ましくは430〜470℃まで昇温させ、30分以上熱処理を行うことができる。
焼成は、例えば800〜900℃以上で30〜100分間程度の熱処理を行うことができる。なお、この本焼成は複数回繰り返して行っても良い。
Next, in step 6, the inorganic porous material can be formed by baking and heating the filtration molded membrane to heat and form the inorganic material and baking and removing the template resin.
At this time, it is preferable to perform temporary baking for removing the spherical organic resin in the filtration membrane and thereafter sinter the inorganic porous body.
Temporary baking is performed at a temperature increase rate of 1 to 10 ° C./min, preferably 2 to 5 ° C./min, 400 to 500 ° C., more preferably 430 to 470 ° C., and heat treatment is performed for 30 minutes or more. Can do.
Baking can be performed, for example, at a temperature of 800 to 900 ° C. or higher for about 30 to 100 minutes. This firing may be repeated a plurality of times.

更に、工程7及び8では、得られた多孔体へ電解質材料を含浸させ、電極材料で挟持することで、容易に目的とするイオン伝導体が得られる。   Further, in Steps 7 and 8, the obtained porous body is impregnated with an electrolyte material and sandwiched between electrode materials, whereby a desired ion conductor can be easily obtained.

次に、本発明のエネルギーデバイスについて説明する。
本発明のエネルギーデバイスは、上述のイオン伝導体を適用して構成される。このときは、他の制御手段と組合わせて適宜システム化することもできる。
代表的には、燃料電池(セル又はスタック)、水電解、ハロゲン化水素酸電解、食塩電解、酸素濃縮器、湿度センサー、ガスセンサーなどが挙げられる。
Next, the energy device of the present invention will be described.
The energy device of the present invention is configured by applying the above-described ion conductor. In this case, a system can be appropriately formed by combining with other control means.
Typically, a fuel cell (cell or stack), water electrolysis, hydrohalic acid electrolysis, salt electrolysis, oxygen concentrator, humidity sensor, gas sensor, and the like can be given.

以下、本発明を実施例及び比較例により更に詳述するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in full detail, this invention is not limited to these Examples.

(実施例1)
1.無機多孔体の作製
無機多孔体原料として直径70〜100nmのコロイダルシリカを用意した。
また、孔径制御を目的に平均直径約500nmのポリスチレン球状粒子を用意した。
Example 1
1. Preparation of inorganic porous material Colloidal silica having a diameter of 70 to 100 nm was prepared as an inorganic porous material.
Further, polystyrene spherical particles having an average diameter of about 500 nm were prepared for the purpose of controlling the pore diameter.

このコロイダルシリカ及びポリスチレン球状粒子を溶質体積が所定の膜厚になるよう混合してサスペンション溶液を調製した。
手順としては、まずポリスチレン球状粒子を10%秤量し、水に添加した。また、コロイダルシリカを40%秤量し、水に添加した。これら溶液を超音波攪拌し、粒子を均一に分散させた。
The colloidal silica and polystyrene spherical particles were mixed so that the solute volume had a predetermined film thickness to prepare a suspension solution.
As a procedure, first, 10% of polystyrene spherical particles were weighed and added to water. Further, 40% of colloidal silica was weighed and added to water. These solutions were ultrasonically stirred to uniformly disperse the particles.

次いで、メンブレンフィルターをフィルターホルダーにセットし、手動式真空ポンプを用いて大気圧に対して大きくても10kPa以下の圧力となるように減圧し、サスペンションを濾過した。   Next, the membrane filter was set in a filter holder, and the pressure was reduced to 10 kPa or less with respect to atmospheric pressure using a manual vacuum pump, and the suspension was filtered.

サスペンションがすべて濾過された後、濾過成形された膜に含まれる余剰水を、濾紙などの吸水材で除去した。室温で十分乾燥させた後にメンブレンフィルターから剥離することで、コロイダルシリカ及びポリスチレン球状粒子の混合物から成る膜が得られた。   After all of the suspension was filtered, excess water contained in the filter-formed membrane was removed with a water absorbing material such as filter paper. A film composed of a mixture of colloidal silica and polystyrene spherical particles was obtained by peeling off from the membrane filter after sufficiently drying at room temperature.

得られた膜に次のような熱処理を行った。
まず、仮焼成として、1〜10℃/minの昇温速度で400〜500℃まで昇温を行い、その温度にて30分以上熱処理を行い、ポリスチレン球状粒子を取り除いた。
更に、仮焼成後少なくとも800℃以上で約60分間熱処理を行い、コロイダルシリカを焼結させた。
更にまた、機械的強度を向上させるため、900℃以上の温度にて15分間熱処理を行い、ゆっくりと室温に戻すことで、目的とするシリカ多孔膜を得た。
The obtained film was subjected to the following heat treatment.
First, as preliminary calcination, the temperature was raised to 400 to 500 ° C. at a temperature raising rate of 1 to 10 ° C./min, and heat treatment was performed at that temperature for 30 minutes or more to remove polystyrene spherical particles.
Furthermore, after pre-baking, heat treatment was performed at at least 800 ° C. for about 60 minutes to sinter colloidal silica.
Furthermore, in order to improve mechanical strength, heat treatment was performed at a temperature of 900 ° C. or higher for 15 minutes, and the temperature was slowly returned to room temperature, thereby obtaining a target silica porous membrane.

2.電解質材料(イオン液体)の含浸
N−メチルイミダゾール50gとブロモエタン(EtBr)145gを、ジメチルホルムアミド(DMF)1.25Lに溶解し、氷浴中で3日間攪拌した。その後、減圧乾燥し、DMFを除去した。
次いで、アセトニトリルを250mL添加した。また、ジエチルエーテル(EtO)5Lを添加した。その後、沈殿物を濾過回収し、60℃で24時間真空乾燥した。
2. Impregnation with electrolyte material (ionic liquid) 50 g of N-methylimidazole and 145 g of bromoethane (EtBr) were dissolved in 1.25 L of dimethylformamide (DMF) and stirred in an ice bath for 3 days. Then, it dried under reduced pressure and removed DMF.
Then 250 mL of acetonitrile was added. Further, 5 L of diethyl ether (Et 2 O) was added. Thereafter, the precipitate was collected by filtration and dried in vacuo at 60 ° C. for 24 hours.

アンバーライトにてアニオン交換し、水酸化化合物を得た。これに硫酸116gを添加し、氷浴中で24時間攪拌した。その後、減圧乾燥し溶媒を除去した。
アセトニトリル500mLに溶解した後に、60℃で24時間乾燥してアセトニトリルを除去することにより、イオン液体(EMImHSO)を得た。
このイオン液体をシリカ多孔膜に含浸させ、イオン伝導体を作製した。
Anion exchange was performed with amberlite to obtain a hydroxide compound. To this was added 116 g of sulfuric acid, and the mixture was stirred for 24 hours in an ice bath. Thereafter, the solvent was removed by drying under reduced pressure.
After dissolving in 500 mL of acetonitrile, the ionic liquid (EMImHSO 4 ) was obtained by removing the acetonitrile by drying at 60 ° C. for 24 hours.
A porous silica membrane was impregnated with this ionic liquid to produce an ionic conductor.

3.イオン伝導性評価
得られたイオン伝導体について、10Hz〜100kHzの交流波をかけて計測したインピーダンスにてイオン伝導性を評価した。この結果を図3及び図4に示す。
なお、ここでのイオン導電率は多孔度を考慮せず、金電極と接触する面積を元に算出を行った。また、計測では、温度を変更してイオン伝導度を測定した。
3. Ion conductivity evaluation About the obtained ion conductor, ion conductivity was evaluated by the impedance measured by applying an AC wave of 10 Hz to 100 kHz. The results are shown in FIGS.
Here, the ionic conductivity was calculated based on the area in contact with the gold electrode without considering the porosity. In the measurement, the ion conductivity was measured by changing the temperature.

(比較例1)
シリカ多孔膜を使用せず、電解質材料をイオン液体のみとした以外は、実施例1と同様の操作を繰返して、イオン伝導体を作製した。また、イオン伝導性評価も同様に行った。この結果を図3及び図4に示す。
(Comparative Example 1)
An ion conductor was produced by repeating the same operation as in Example 1 except that the porous silica membrane was not used and the electrolyte material was only ionic liquid. Moreover, ion conductivity evaluation was performed similarly. The results are shown in FIGS.

(比較例2)
シリカ多孔膜と同等の構造(3DOM)を有するポリイミド膜を使用した以外は、実施例1と同様の操作を繰返して、イオン伝導体を作製した。また、イオン伝導性評価も同様に行った。この結果を図4に示す。
(Comparative Example 2)
An ion conductor was produced by repeating the same operation as in Example 1 except that a polyimide film having a structure equivalent to a porous silica film (3 DOM) was used. Moreover, ion conductivity evaluation was performed similarly. The result is shown in FIG.

図3に示すように、アニオン成分を含むイオン液体(EMImHSO)とシリカ多孔体の電解質膜では、液体状態のみに対し、イオン伝導度の大幅な向上が見られた。 As shown in FIG. 3, in the ionic liquid containing an anionic component (EMImHSO 4 ) and the porous silica electrolyte membrane, the ionic conductivity was significantly improved only in the liquid state.

また、イオン液体(EMImHSO)について、比較例1(液体状態)のイオン伝導度を1とし、実施例1及び比較例2のイオン伝導度と比較した。
図4に示すように、実施例1に係る、イオン液体をシリカ多孔膜とともに用いたイオン伝導体は、比較例1に係る、イオン液体のみを用いたイオン伝導体に対し、イオン伝導度が約3.5倍と大幅に向上していた。
これに対して、比較例2に係る、イオン液体をポリイミドとともに用いたコンポジット膜では、逆に比較例1よりもイオン伝導度が低下していた。
Further, for the ionic liquid (EMImHSO 4 ), the ionic conductivity of Comparative Example 1 (liquid state) was set to 1, and compared with the ionic conductivity of Example 1 and Comparative Example 2.
As shown in FIG. 4, the ionic conductor according to Example 1 using the ionic liquid together with the porous silica membrane has an ionic conductivity of about 1% compared to the ionic conductor according to Comparative Example 1 using only the ionic liquid. It was greatly improved by 3.5 times.
In contrast, in the composite film using the ionic liquid together with the polyimide according to Comparative Example 2, the ionic conductivity was lower than that of Comparative Example 1 on the contrary.

(実施例2)
図5に、イオン伝導体を適用したエネルギーデバイス(燃料電池)の基本的な構成を示す。
電解質材料を保持した無機多孔体7が、対峙する一対の電極材料3及びガス拡散層6で順に挟まれるように作製した。
無機多孔体7にはシリカ多孔膜を用い、電解質材料2にはEMImHSOを用いた。
電極材料3には白金担持カーボンを用い、ガス拡散層6にはカーボンペーパを用いた。
(Example 2)
FIG. 5 shows a basic configuration of an energy device (fuel cell) to which an ion conductor is applied.
It produced so that the inorganic porous body 7 holding | maintaining electrolyte material might be pinched | interposed in order by a pair of electrode material 3 and gas diffusion layer 6 which oppose.
A porous silica film was used for the inorganic porous body 7, and EMImHSO 4 was used for the electrolyte material 2.
The electrode material 3 was platinum-supported carbon, and the gas diffusion layer 6 was carbon paper.

また、各電極にはセパレータ4を用いてガス流路5を形成し、水素(又は水素を含有する燃料ガス)と、酸素(又は酸素を含有する酸化ガス)を供給できるようにした。
なお、電極は、燃料ガスを供給する側がアノード、酸化ガスを供給する側がカソードとなる。
In addition, a gas flow path 5 is formed in each electrode using a separator 4 so that hydrogen (or a fuel gas containing hydrogen) and oxygen (or an oxidizing gas containing oxygen) can be supplied.
In addition, as for an electrode, the side which supplies fuel gas becomes an anode, and the side which supplies oxidizing gas becomes a cathode.

この燃料電池で発電するときは、それぞれのガスがガス流路5からガス拡散層6を経て電極材料3に供給され、以下に示す電気化学反応が進行する。
→2H+2e …(1)
2H+2e+(1/2)O→HO …(2)
+(1/2)O→HO …(3)
When power is generated by this fuel cell, each gas is supplied from the gas flow path 5 to the electrode material 3 through the gas diffusion layer 6, and the following electrochemical reaction proceeds.
H 2 → 2H + + 2e (1)
2H + + 2e + (1/2) O 2 → H 2 O (2)
H 2 + (1/2) O 2 → H 2 O (3)

式(1)は、燃料電池の陰極側における反応を示している。
式(2)は、燃料電池の陽極側における反応を示している。
式(3)は、燃料電池全体で行なわれる反応となる。
このように、イオン伝導体を用いた燃料電池は、燃料が有する化学エネルギーを直接に電気エネルギーに変換することが可能であり、高いエネルギー変換効率が期待できる。
Equation (1) shows the reaction on the cathode side of the fuel cell.
Equation (2) shows the reaction on the anode side of the fuel cell.
Equation (3) is a reaction performed in the entire fuel cell.
Thus, the fuel cell using an ion conductor can directly convert the chemical energy of the fuel into electric energy, and can be expected to have high energy conversion efficiency.

イオン伝導体の一例を示す概略図及びSEM写真である。It is the schematic and SEM photograph which show an example of an ion conductor. イオン伝導体の作製手順の一例を示すフロー図である。It is a flowchart which shows an example of the preparation procedures of an ion conductor. イオン伝導性の評価結果を示すグラフである。It is a graph which shows the evaluation result of ion conductivity. イオン伝導性と温度の関係を示すグラフである。It is a graph which shows the relationship between ion conductivity and temperature. イオン伝導体を適用した燃料電池の一例を示す概略図である。It is the schematic which shows an example of the fuel cell to which the ion conductor is applied.

符号の説明Explanation of symbols

1 無機多孔体
2 電解質材料
3 電極材料
4 セパレータ
5 ガス流路
6 ガス拡散層
7 電解質材料を保持した無機多孔体
DESCRIPTION OF SYMBOLS 1 Inorganic porous body 2 Electrolyte material 3 Electrode material 4 Separator 5 Gas flow path 6 Gas diffusion layer 7 Inorganic porous body holding electrolyte material

Claims (4)

シリカによって形成される無機多孔体と電解質材料と一対の電極材料とから構成されるイオン伝導体であって、
上記無機多孔体は、複数の球状孔を有し、該球状孔は、内径がほぼ均一で、隣接する球状孔同士が連通しており、該球状孔内に上記電解質材料を備え、
上記電解質材料は、イオン液体であって、カチオン成分とアニオン成分を含み、該アニオン成分は少なくとも多価アニオンとしてSO 2− を含み、
上記電極材料は、該電解質材料を保持した無機多孔体を挟持する、ことを特徴とするイオン伝導体。
An ionic conductor composed of an inorganic porous body formed of silica, an electrolyte material, and a pair of electrode materials,
The inorganic porous body has a plurality of spherical holes, the inner diameter of the spherical holes is substantially uniform, and adjacent spherical holes communicate with each other, and the electrolyte material is provided in the spherical holes,
The electrolyte material is an ionic liquid and includes a cation component and an anion component, and the anion component includes at least SO 4 2- as a polyvalent anion ,
An ionic conductor characterized in that the electrode material sandwiches an inorganic porous body holding the electrolyte material.
上記複数の球状孔は六方最密充填構造に起因する配置構造を成し、The plurality of spherical holes form an arrangement structure resulting from a hexagonal close-packed structure,
更に隣接する当該球状孔どうしは連通口を介して連通することを特徴とする請求項1に記載のイオン伝導体。The ion conductor according to claim 1, wherein the adjacent spherical holes communicate with each other through a communication port.
上記無機多孔体の気孔率が70〜90%であることを特徴とする請求項1又は2に記載のイオン伝導体。   The ionic conductor according to claim 1 or 2, wherein the porosity of the inorganic porous body is 70 to 90%. 請求項1〜3のいずれか1つの項に記載のイオン伝導体を適用して成ることを特徴とする燃料電池セルOne of the fuel cells you characterized and by applying the ion conductor formed Turkey according to the preceding claims 1-3.
JP2005212692A 2005-07-22 2005-07-22 Ionic conductor and fuel cell using the same Expired - Fee Related JP4644759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005212692A JP4644759B2 (en) 2005-07-22 2005-07-22 Ionic conductor and fuel cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005212692A JP4644759B2 (en) 2005-07-22 2005-07-22 Ionic conductor and fuel cell using the same

Publications (2)

Publication Number Publication Date
JP2007035300A JP2007035300A (en) 2007-02-08
JP4644759B2 true JP4644759B2 (en) 2011-03-02

Family

ID=37794320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005212692A Expired - Fee Related JP4644759B2 (en) 2005-07-22 2005-07-22 Ionic conductor and fuel cell using the same

Country Status (1)

Country Link
JP (1) JP4644759B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016344A (en) * 2007-06-07 2009-01-22 Samsung Yokohama Research Institute Co Ltd Compound proton conductor, proton-conductive electrolyte membrane, and fuel cell
KR20110080799A (en) * 2010-01-07 2011-07-13 주식회사 이엠따블유에너지 Proton conducting membrane, method for manufacturing the same, and fuel cell comprising the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003123791A (en) * 2001-10-09 2003-04-25 Masayoshi Watanabe Proton conductor and fuel cell using the same
WO2004001771A1 (en) * 2002-06-19 2003-12-31 Ube Industries, Ltd. Polyelectrolyte membrane and production method therefor
JP2004515351A (en) * 2000-12-13 2004-05-27 クレアヴィス ゲゼルシャフト フュア テヒノロギー ウント イノヴェイション ミット ベシュレンクテル ハフツング Cation-conducting / proton-conducting ceramic membrane impregnated with ionic liquid, method for producing the same and use of the membrane
JP2005183017A (en) * 2003-12-16 2005-07-07 Konica Minolta Holdings Inc Manufacturing method of proton conductive electrolyte film, proton conductive electrolyte film, and fuel cell using proton conductive electrolyte film
JP2007035301A (en) * 2005-07-22 2007-02-08 Nissan Motor Co Ltd Ion conductor, energy device using the same, and fuel cell
JP2007115647A (en) * 2005-02-25 2007-05-10 Nissan Motor Co Ltd Proton conductive composite type electrolyte membrane and its manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004533A (en) * 2006-05-22 2008-01-10 Nissan Motor Co Ltd Ionic conductor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004515351A (en) * 2000-12-13 2004-05-27 クレアヴィス ゲゼルシャフト フュア テヒノロギー ウント イノヴェイション ミット ベシュレンクテル ハフツング Cation-conducting / proton-conducting ceramic membrane impregnated with ionic liquid, method for producing the same and use of the membrane
JP2003123791A (en) * 2001-10-09 2003-04-25 Masayoshi Watanabe Proton conductor and fuel cell using the same
WO2004001771A1 (en) * 2002-06-19 2003-12-31 Ube Industries, Ltd. Polyelectrolyte membrane and production method therefor
JP2005183017A (en) * 2003-12-16 2005-07-07 Konica Minolta Holdings Inc Manufacturing method of proton conductive electrolyte film, proton conductive electrolyte film, and fuel cell using proton conductive electrolyte film
JP2007115647A (en) * 2005-02-25 2007-05-10 Nissan Motor Co Ltd Proton conductive composite type electrolyte membrane and its manufacturing method
JP2007035301A (en) * 2005-07-22 2007-02-08 Nissan Motor Co Ltd Ion conductor, energy device using the same, and fuel cell

Also Published As

Publication number Publication date
JP2007035300A (en) 2007-02-08

Similar Documents

Publication Publication Date Title
JP5145602B2 (en) Conductor, energy device using the same, and fuel cell
JP5374500B2 (en) Method for activating boron nitride
JP6305348B2 (en) Use of mesoporous graphite particles for electrochemical applications
US6620320B1 (en) Ion-conducting composite which is permeable to matter, method for producing said composite, and use of the same
JP2008004533A (en) Ionic conductor
JP6811444B2 (en) Electrochemical hydrogen pump
JP2003263999A (en) Membrane electrode assembly and fuel cell and electrolytic cell having the same
JP2014209489A (en) Energy storage and generation system
JP2011517331A (en) Materials for electrochemical devices
JP4813254B2 (en) Production method of ion conductor
JP2008034212A (en) Ionic conductor, energy device, and fuel cell
CN104300101A (en) Difunctional composite porous membrane and preparation and application thereof
JP2013512336A (en) Fabrication of nano-structured electrodes on porous substrates
CN113140736A (en) Fuel cell gas diffusion layer structure, preparation method, membrane electrode assembly and fuel cell
JP4974324B2 (en) Ionic conductor and fuel cell using the same
JP4644759B2 (en) Ionic conductor and fuel cell using the same
Han et al. Zeolite proton conducting membrane for micro fuel cell applications
JP4925091B2 (en) PROTON CONDUCTIVE COMPOSITE ELECTROLYTE MEMBRANE AND METHOD FOR PRODUCING THE SAME
JP2007035281A (en) Electrode for fuel cell, manufacturing method of same, and fuel cell
JP4716706B2 (en) PROTON CONDUCTIVE COMPOSITE ELECTROLYTE MEMBRANE AND METHOD FOR PRODUCING THE SAME
JP4649094B2 (en) Manufacturing method of membrane electrode assembly for fuel cell
JP2004134134A (en) Porous gas diffusion body, and reversible cell using it
KR101263177B1 (en) electrolytic cell for a monolithic photovoltaic-electrolytic hydrogen generation system
WO2014101862A1 (en) Polyacid flow fuel battery system
JP5183886B2 (en) PROTON CONDUCTIVE COMPOSITE ELECTROLYTE MEMBRANE AND METHOD FOR PRODUCING THE SAME

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061211

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees