JP4643579B2 - Pressure vessel assembly for an integrated pressurized fluid system - Google Patents

Pressure vessel assembly for an integrated pressurized fluid system Download PDF

Info

Publication number
JP4643579B2
JP4643579B2 JP2006528119A JP2006528119A JP4643579B2 JP 4643579 B2 JP4643579 B2 JP 4643579B2 JP 2006528119 A JP2006528119 A JP 2006528119A JP 2006528119 A JP2006528119 A JP 2006528119A JP 4643579 B2 JP4643579 B2 JP 4643579B2
Authority
JP
Japan
Prior art keywords
fluid
pressure vessel
vessel assembly
outer casing
accumulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006528119A
Other languages
Japanese (ja)
Other versions
JP2007506058A (en
Inventor
ロウズ,ケンリク,ビー
Original Assignee
デーナ、コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デーナ、コーポレイション filed Critical デーナ、コーポレイション
Publication of JP2007506058A publication Critical patent/JP2007506058A/en
Application granted granted Critical
Publication of JP4643579B2 publication Critical patent/JP4643579B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/024Installations or systems with accumulators used as a supplementary power source, e.g. to store energy in idle periods to balance pump load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/022Installations or systems with accumulators used as an emergency power source, e.g. in case of pump failure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/04Special measures taken in connection with the properties of the fluid
    • F15B21/042Controlling the temperature of the fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/04Special measures taken in connection with the properties of the fluid
    • F15B21/042Controlling the temperature of the fluid
    • F15B21/0423Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • F17C13/026Special adaptations of indicating, measuring, or monitoring equipment having the temperature as the parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/08Mounting arrangements for vessels
    • F17C13/084Mounting arrangements for vessels for small-sized storage vessels, e.g. compressed gas cylinders or bottles, disposable gas vessels, vessels adapted for automotive use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/03Orientation
    • F17C2201/032Orientation with substantially vertical main axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/058Size portable (<30 l)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0103Exterior arrangements
    • F17C2205/0111Boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0123Mounting arrangements characterised by number of vessels
    • F17C2205/013Two or more vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0341Heat exchange with the fluid by cooling using another fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0341Heat exchange with the fluid by cooling using another fluid
    • F17C2227/0344Air cooling
    • F17C2227/0346Air cooling by forced circulation, e.g. using a fan

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)

Abstract

Pressure vessel assembly for a pressurized fluid system, comprises an enclosed outer casing, at least one internal tube extending within the casing, at least one fluid accumulator disposed within the at least one internal tube, and at least one cooling passage provided within the at least one internal tube and defined by a clearance between the at least one hydraulic fluid accumulator and the at least one internal tube. The pressure vessel assembly further includes a fluid storage compartment formed between the outer casing and the at least one internal tube. The fluid storage compartment is at least partially filled with a working fluid. The pressurized fluid system also includes a cooling fan allowing forced airflow through the cooling passage for forced cooling of the at least one hydraulic fluid accumulator and the working fluid in the storage compartment of the pressure vessel assembly.

Description

本出願は米国特許法の第119条(e)項に基づき、Kenric Roseによる2003年9月22日出願の米国仮出願第60/504,188号の利益を請求する。   This application claims the benefit of US Provisional Application No. 60 / 504,188, filed Sep. 22, 2003, by Kenric Rose, based on Section 119 (e) of US Patent Law.

本発明は一般に、流体圧再生駆動システム(hydraulic regenerative drive system)用などの統合加圧流体システム(integrated pressurized fluid system)に関し、より詳細には、少なくとも1つの流体圧流体アキュムレータ(hydraulic fluid accumulator)を収納する圧力容器アセンブリを含む統合加圧流体システムに関する。   The present invention generally relates to an integrated pressurized fluidized system, such as for a hydraulic regenerative drive system, and more particularly to at least one hydraulic fluid accumulator (fluidic fluid accumulator). It relates to an integrated pressurized fluid system including a pressure vessel assembly for housing.

従来の統合加圧流体システムでは、再生エネルギーはフライホイール・アキュムレータ、電気化学電池、または流体圧流体アキュムレータに通常蓄積される。後者は、既知の技術であり、他の再生および蓄積装置に比べて、注目すべきことに、それらを連結した自動車の変速機に関連した使用においてより柔軟性がある。他方において、それらは質量および体積に関して効率的でないままであり、したがって自動車への取り付けに重大な問題がある。得られたエネルギーの節約を不利にすることに加えて、死荷重および死容積(dead weight and bulk)のこれらの問題は、流体圧流体アキュムレータ自体または主にアキュムレータを取り付けるために自動車に加えられなければならない変更に関連する高いコストにつながる。結果として、流体圧流体アキュムレータを備えた自動車は、どのような方法でも、もはや標準ではなくなり、したがって、製造および維持するのにより多く費用がかかり、さらにこの設置に使用された装置を別の車両に移したり、大きさを調節したりできず、このことはそのような設置の全体コストを増加させる。   In conventional integrated pressurized fluid systems, regenerative energy is typically stored in flywheel accumulators, electrochemical cells, or hydraulic fluid accumulators. The latter is a known technique and, notably, is more flexible in use in connection with automobile transmissions connecting them compared to other regeneration and storage devices. On the other hand, they remain inefficient with respect to mass and volume, and therefore have significant problems in mounting on automobiles. In addition to penalizing the resulting energy savings, these problems of dead weight and dead volume must be added to the vehicle to install the hydraulic fluid accumulator itself or primarily the accumulator. Leading to high costs associated with changes that must be made. As a result, automobiles with hydraulic fluid accumulators are no longer standard in any way and are therefore more expensive to manufacture and maintain, and the equipment used for this installation can be transferred to another vehicle. Cannot be moved or resized, which increases the overall cost of such installation.

したがって、本発明の目的は、すべての蓄積機能を組み合わせ、いかなる実質的な変更もなく、流体圧流体アキュムレータを充填、放出するように設計された流体圧再生駆動システムを備える標準の自動車を含めて様々なタイプの加圧流体システムに取り付けることができるコンパクトな圧力容器アセンブリを提供することによって、従来技術のこれらの欠点を克服することである。   Accordingly, the object of the present invention includes a standard vehicle with a fluid pressure regenerative drive system that combines all the storage functions and is designed to fill and discharge a fluid pressure fluid accumulator without any substantial change. It is to overcome these deficiencies of the prior art by providing a compact pressure vessel assembly that can be attached to various types of pressurized fluid systems.

本発明は流体圧再生駆動システム用などの統合加圧流体システムで使用するための圧力容器アセンブリを提供する。   The present invention provides a pressure vessel assembly for use in an integrated pressurized fluid system, such as for a fluid pressure regeneration drive system.

本発明の圧力容器アセンブリは、密封外部ケーシング(enclosed outercasing)と、このケーシングの内部に延びる少なくとも1つの内部管(internal tube)と、少なくとも1つの内部管の内部に配置された少なくとも1つの流体アキュムレータと、少なくとも1つの内部管の内部に設けられ、かつ少なくとも1つの流体圧流体アキュムレータと少なくとも1つの内部管との間のクリアランスによって画定される少なくとも1つの冷却通路(cooling passage)とを含む。圧力容器アセンブリは、少なくとも1つの内部管の外側の外部ケーシングの内部に形成された流体貯蔵区画をさらに含む。流体貯蔵区画(fluid storage compartment)は、油などの作動流体によって少なくとも部分的に満たされている。   The pressure vessel assembly of the present invention includes a sealed outer casing, at least one internal tube extending into the casing, and at least one fluid accumulator disposed within the at least one inner tube. And at least one cooling passage provided within the at least one inner tube and defined by a clearance between the at least one hydraulic fluid accumulator and the at least one inner tube. The pressure vessel assembly further includes a fluid storage compartment formed within the outer casing outside the at least one inner tube. The fluid storage compartment is at least partially filled with a working fluid such as oil.

本発明の加圧流体システムは、少なくとも1つの流体圧流体アキュムレータおよび圧力容器アセンブリの貯蔵区画内の作動流体の強制冷却用の冷却通路を通る強制空気流を可能にする冷却ファンを含む。   The pressurized fluid system of the present invention includes at least one hydraulic fluid accumulator and a cooling fan that allows forced air flow through a cooling passage for forced cooling of the working fluid in the storage compartment of the pressure vessel assembly.

本発明の加圧流体システムは、加圧ガス貯蔵庫(pressurized gas reservoir)が外部ケーシング内の区画の内部の作動流体を加圧するために外部ケーシングの内部の区画と流体連通するように、外部ケーシングの外側の加圧ガス貯蔵庫をさらに含む。   The pressurized fluid system of the present invention is configured so that a pressurized gas reservoir is in fluid communication with an internal compartment of the outer casing to pressurize working fluid within the compartment within the outer casing. It further includes an outer pressurized gas reservoir.

さらに、本発明の好ましい実施形態によれば、流体圧流体アキュムレータが、少なくとも1つのスパイラル・ラッピング(spiral wrapping)が流体圧流体アキュムレータの周りを囲んだ状態で、内部管の内部に間隔を置き中心に合わせて内部管の内部に置かれる。   Further in accordance with a preferred embodiment of the present invention, the hydraulic fluid accumulator is spaced and centered within the inner tube with at least one spiral wrapping surrounding the hydraulic fluid accumulator. To be placed inside the inner tube.

さらに、本発明の好ましい実施形態によれば、圧力容器の外部ケーシングは、ほぼ管状のハウジングと、ハウジングの反対側の末端(opposite distal ends)に固定された端部材とを含む。   Further in accordance with a preferred embodiment of the present invention, the outer casing of the pressure vessel includes a generally tubular housing and an end member secured to the opposite end of the housing.

本発明の他の目的および利点が、添付の図面を考慮して見るとき、以下の明細書の研究から明らかになるであろう。   Other objects and advantages of the present invention will become apparent from a study of the following specification when viewed in conjunction with the accompanying drawings.

次に、本発明の好ましい実施形態が添付の図面に関して説明される。   Preferred embodiments of the present invention will now be described with reference to the accompanying drawings.

図1は流体圧再生駆動システム用などの統合加圧流体システムを概略的に示す。しかし、本発明は流体圧再生駆動システムに関して記載されているが、本発明は任意の適切な加圧流体システムの使用に等しく適していることに留意されたい。   FIG. 1 schematically illustrates an integrated pressurized fluid system, such as for a fluid pressure regeneration drive system. However, although the present invention has been described with respect to a fluid pressure regeneration drive system, it should be noted that the present invention is equally suitable for use with any suitable pressurized fluid system.

図1に示されるように、本発明の好ましい実施形態による統合加圧流体システム1は、圧力容器アセンブリ10と、圧力容器アセンブリ10と流体連通するモータ/ポンプ2とを含む。運動エネルギーの外部電源(図示せず)は、駆動軸3を介してモータ/ポンプ2に駆動的に接続される。   As shown in FIG. 1, an integrated pressurized fluid system 1 according to a preferred embodiment of the present invention includes a pressure vessel assembly 10 and a motor / pump 2 in fluid communication with the pressure vessel assembly 10. An external power source (not shown) for kinetic energy is drivingly connected to the motor / pump 2 via the drive shaft 3.

好ましくは、モータ/ポンプ2は、流体圧ポンプとして、また逆にしたとき流体圧モータとして両方に機能する高圧流体圧ピストン機械などの容積形で可逆性の流体圧ユニット(positive displacement reversible hydraulic unit)である。あるいは、モータ/ポンプ2は可変容量形の流体圧ユニット(variable displacement hydraulic unit)である。任意の適切な流体圧モータ/ポンプ・ユニットが本発明の範囲の内部にあることが理解されるであろう。自動車の流体圧再生駆動システム(図示せず)の応用例では、モータ/ポンプ2は、駆動軸3を介して自動車の動力伝達系統(drive line)に連結される。   Preferably, the motor / pump 2 is a positive displacement reversible hydraulic unit such as a high pressure fluid pressure piston machine that functions both as a fluid pressure pump and as a fluid pressure motor when reversed. It is. Alternatively, the motor / pump 2 is a variable displacement fluidic unit. It will be understood that any suitable hydraulic motor / pump unit is within the scope of the present invention. In an application of an automotive fluid pressure regeneration drive system (not shown), the motor / pump 2 is connected via a drive shaft 3 to an automotive drive line.

図1にさらに示されるように、圧力容器アセンブリ10は、少なくとも1つ、好ましくは複数の流体圧流体アキュムレータ20を収納し、大気圧または低圧で、少なくとも部分的に油などの作動流体圧流体17で作動流体貯蔵区画11をその中に画定する。任意の適切なタイプの流体圧流体アキュムレータを使用できることが理解されるであろう。好ましくは、流体圧流体アキュムレータ20は、当技術分野で知られている流体圧−空気圧式アキュムレータである。各流体圧−空気圧式アキュムレータ20は、モータ/ポンプ2に連結された連絡ポート(communication port)21と、ガス充填ポート23とを含む。   As further shown in FIG. 1, the pressure vessel assembly 10 houses at least one, preferably a plurality of hydraulic fluid accumulators 20, and is at least partially at working pressure 17, such as oil, at atmospheric or low pressure. A working fluid storage compartment 11 is defined therein. It will be appreciated that any suitable type of hydraulic fluid accumulator can be used. Preferably, the fluid pressure fluid accumulator 20 is a fluid pressure-pneumatic accumulator as is known in the art. Each hydraulic-pneumatic accumulator 20 includes a communication port 21 connected to the motor / pump 2 and a gas filling port 23.

さらに好ましくは、圧力容器アセンブリ10の貯蔵区画11内の流体圧流体17は、図1に示されるように貯蔵区画11と流体連通された外部加圧ガス貯蔵庫6によってもたらされる低圧である。好ましくは、外部加圧ガス貯蔵庫6は、低圧ガス・アキュムレータまたは加圧下の適切なガスを収納するガス容器の形状である。したがって、圧力容器アセンブリ10の貯蔵区画11は、モータ/ポンプ2に連結された低圧アキュムレータを作る。さらに好ましくは、圧力容器アセンブリ10は、モータ/ポンプ2に流体連通された3つの流体圧流体アキュムレータ20を収納する。図1にさらに示されるように、モータ/ポンプ2は、分配ブロック7を介して流体圧流体アキュムレータ20と圧力容器アセンブリ10の貯蔵区画11の両方に流体連通される(fluidly connected)。   More preferably, the hydraulic fluid 17 in the storage compartment 11 of the pressure vessel assembly 10 is at a low pressure provided by an external pressurized gas reservoir 6 that is in fluid communication with the storage compartment 11 as shown in FIG. Preferably, the external pressurized gas reservoir 6 is in the form of a low pressure gas accumulator or a gas container that houses a suitable gas under pressure. Thus, the storage compartment 11 of the pressure vessel assembly 10 creates a low pressure accumulator coupled to the motor / pump 2. More preferably, the pressure vessel assembly 10 houses three hydraulic fluid accumulators 20 that are in fluid communication with the motor / pump 2. As further shown in FIG. 1, the motor / pump 2 is fluidly connected to both the hydraulic fluid accumulator 20 and the storage compartment 11 of the pressure vessel assembly 10 via the distribution block 7.

図2〜5に詳細に示された圧力容器アセンブリ10は、流体アキュムレータ20を収納する密封外部ケーシング12を含む。外部ケーシング12は、管状で、好ましくは、ほぼ円筒の、中心軸13をもつハウジング14と、対向する端部材15および16とを含む。あるいは、管状のハウジング14は、卵形、長方形、正方形または任意の適切な断面をもってもよい。好ましくは、端部材15および16は、図2、4および5に示すようにそれぞれフランジ15aおよび16aを備えるほぼ平らな板の形状であり、フランジ15aおよび16aは、圧力容器アセンブリ10の所望の圧力定格(pressure rating)に合わせて漏れ止めされる(leak tight)ように、ハウジング12の反対側の末端に溶接などで強固に固定される。圧力容器アセンブリ10は、ハウジング12の材料厚および溶接が、適切な安全係数を備えて圧力容器アセンブリ10の外部ケーシング12の内部の貯蔵区間11内の流体圧流体17の作動圧力を収納するのに十分なように設計される。   The pressure vessel assembly 10 shown in detail in FIGS. 2-5 includes a sealed outer casing 12 that houses a fluid accumulator 20. Outer casing 12 includes a tubular, preferably generally cylindrical, housing 14 having a central axis 13 and opposing end members 15 and 16. Alternatively, the tubular housing 14 may have an oval, rectangular, square or any suitable cross section. Preferably, end members 15 and 16 are in the form of generally flat plates with flanges 15a and 16a, respectively, as shown in FIGS. 2, 4 and 5, where flanges 15a and 16a are the desired pressure of pressure vessel assembly 10. It is firmly fixed to the opposite end of the housing 12 by welding or the like so as to be leak-tight in accordance with the rating (pressure rating). The pressure vessel assembly 10 allows the material thickness and welding of the housing 12 to accommodate the working pressure of the hydraulic fluid 17 in the storage section 11 inside the outer casing 12 of the pressure vessel assembly 10 with an appropriate safety factor. Designed to be sufficient.

圧力容器アセンブリ10の外部ケーシング12は、その内部に固定された複数のより小さい直径の、円筒内部管18をさらに備えている。各複数の円筒内部管18は円筒ハウジング14の中心軸13にほぼ平行な長手方向軸19をもち、公称クリアランス(nominal clearance)をもって内部管18の内部に適合する流体圧流体アキュムレータ20の1つを受けるように寸法決めされる。流体圧流体アキュムレータ20と内部管18との間のクリアランスは、空気などの適切な冷却流体の流れを受け、それを通って流体圧流体アキュムレータ20および圧力容器アセンブリ10の貯蔵区画11の内部の作動流体圧流体を冷却するための冷却通路を画定する。好ましくは、公称クリアランスは大体4分の1インチである。   The outer casing 12 of the pressure vessel assembly 10 further includes a plurality of smaller diameter cylindrical inner tubes 18 secured therein. Each of the plurality of cylindrical inner tubes 18 has a longitudinal axis 19 that is substantially parallel to the central axis 13 of the cylindrical housing 14, and includes one hydraulic accumulator 20 that fits inside the inner tube 18 with a nominal clearance. Sized to receive. The clearance between the hydraulic fluid accumulator 20 and the inner tube 18 receives a flow of a suitable cooling fluid, such as air, through which the internal operation of the hydraulic fluid accumulator 20 and the storage compartment 11 of the pressure vessel assembly 10 is performed. A cooling passage for cooling the hydraulic fluid is defined. Preferably, the nominal clearance is approximately a quarter inch.

さらに好ましくは、内部管18はハウジング12とほぼ同じ長さであり、平らな端部材15および16を通って延びる。すべての内部管18は、それらの端部が同一面になるように組み立てられる。これを実現するために、対応する丸い穴22が内部管18が適合するように圧力容器アセンブリ10の各端部材15および16に開けられる。したがって、作動流体貯蔵区画11が円筒ハウジング14の内部周辺表面14aと内部管18の外部周辺表面18aと端部材15および16との間の空間によって画定される。   More preferably, the inner tube 18 is approximately the same length as the housing 12 and extends through the flat end members 15 and 16. All inner tubes 18 are assembled so that their ends are flush. To accomplish this, a corresponding round hole 22 is drilled in each end member 15 and 16 of the pressure vessel assembly 10 so that the inner tube 18 fits. Thus, the working fluid storage compartment 11 is defined by the space between the inner peripheral surface 14 a of the cylindrical housing 14, the outer peripheral surface 18 a of the inner tube 18 and the end members 15 and 16.

流体圧流体アキュムレータ20が、当分野の技術者に知られている任意の適切な手段によって圧力容器アセンブリ10の内部管18の内部に固定される。例として、圧力容器アセンブリ10の内部の流体圧流体アキュムレータ20を強固に固定するように、内部管18の遠位端を、内部管18の反対側の末端にねじ付きファスナまたは溶接などで取り付けられた穴あき円形カバー部材25(図6および7に図示)で閉じることができる。図示されたように、各カバー部材25は冷却流が内部管18の内部の冷却通路を通ることを可能にする複数の冷却穴27を備えている。   A hydraulic fluid accumulator 20 is secured within the inner tube 18 of the pressure vessel assembly 10 by any suitable means known to those skilled in the art. As an example, the distal end of the inner tube 18 may be attached to the opposite end of the inner tube 18, such as with a threaded fastener or weld, so as to firmly secure the hydraulic fluid accumulator 20 within the pressure vessel assembly 10. It can be closed with a perforated circular cover member 25 (shown in FIGS. 6 and 7). As shown, each cover member 25 includes a plurality of cooling holes 27 that allow the cooling flow to pass through a cooling passage inside the inner tube 18.

組み立てられた状態で、端部材15および16は、円筒ハウジング14の中に挿入され、かつ互いに平行にまたハウジング14の中心軸13に垂直に位置合わせされる。十分な溶接材料を、端部板15および16それぞれの隆起したフランジ15aおよび16aと円筒ハウジング14の内部周辺表面14aの間に付けることができるように、端部材15および16は十分に引っ込めて作られる。端部板15および16を位置合わせするとき、内部管18を完全な円筒ハウジング14ならびに端部材15、16を貫通して通しハウジング14と同一面で位置合わせできるように、両方の端部材15および16の穿孔された円形の穴22を位置合わせしなければならない。内部管18が配置されると、圧力容器アセンブリ10の所望の圧力定格に合わせて漏れ止めされるように、十分な溶接が端部板15および16の隆起したフランジ15aおよび16aならびに円筒ハウジング14の遠位端に加えられる。圧力容器アセンブリ10は、材料厚および溶接が、適切な安全係数を備えてシステムの作動圧力を収納するのに十分なように設計されるべきである。   In the assembled state, the end members 15 and 16 are inserted into the cylindrical housing 14 and aligned parallel to each other and perpendicular to the central axis 13 of the housing 14. The end members 15 and 16 are made sufficiently retracted so that sufficient welding material can be applied between the raised flanges 15a and 16a of the end plates 15 and 16 and the inner peripheral surface 14a of the cylindrical housing 14, respectively. It is done. When aligning the end plates 15 and 16, both end members 15 and 16 are aligned so that the inner tube 18 can pass through the complete cylindrical housing 14 and the end members 15, 16 and flush with the housing 14. Sixteen perforated circular holes 22 must be aligned. Once the inner tube 18 is in place, sufficient welding will result in the raised flanges 15a and 16a of the end plates 15 and 16 and the cylindrical housing 14 being leak-tight to meet the desired pressure rating of the pressure vessel assembly 10. Applied to the distal end. The pressure vessel assembly 10 should be designed such that the material thickness and welds are sufficient to accommodate the operating pressure of the system with an appropriate safety factor.

本発明の好ましい実施形態による加圧流体システム1の圧力容器アセンブリ10は、圧力容器アセンブリ10を通る強制空気流によって、圧力容器アセンブリ10のハウジング12の効率的な冷却をさらに可能にする。この目的のために、図1に示されるように、加圧流体システム1は、内部管18の外部周辺表面18aを通る圧力容器アセンブリ10の流体圧流体アキュムレータ20、内部管18および貯蔵区画15の強制冷却のための流体圧流体アキュムレータ20と内部管18との間のクリアランスによって画定される冷却通路を通る空気流Fを可能にする冷却ファン4を含む。好ましくは、電子制御器(図示せず)によって選択的に動作される電気モータ5によって冷却ファン4は選択的に駆動される。したがって、冷却ファン4の空気流Fは、流体圧アキュムレータ20の外部周辺表面からの強制熱伝達をもたらす。   The pressure vessel assembly 10 of the pressurized fluid system 1 according to a preferred embodiment of the present invention further allows efficient cooling of the housing 12 of the pressure vessel assembly 10 by forced air flow through the pressure vessel assembly 10. For this purpose, as shown in FIG. 1, the pressurized fluid system 1 includes a hydraulic fluid accumulator 20, an inner tube 18 and a storage compartment 15 of the pressure vessel assembly 10 that passes through the outer peripheral surface 18 a of the inner tube 18. It includes a cooling fan 4 that allows an air flow F through the cooling passage defined by the clearance between the hydraulic accumulator 20 and the inner tube 18 for forced cooling. Preferably, the cooling fan 4 is selectively driven by an electric motor 5 that is selectively operated by an electronic controller (not shown). Accordingly, the air flow F of the cooling fan 4 provides forced heat transfer from the outer peripheral surface of the fluid pressure accumulator 20.

さらに、本発明の好ましい実施形態によれば、図2に示されるように、流体圧流体アキュムレータ20が、少なくとも1つ、好ましくは2つのスパイラル・ラッピング26が流体圧流体アキュムレータ20の周りを囲んだ状態で、内部管18の内部に中心に合わせて間隔を置き内部管18の内部に置かれる。これらのスパイラル・ラッピング26の性質が、流体圧流体アキュムレータ20を内部管18の内部に固定し、内部管18の内部周辺表面と流体圧流体アキュムレータ20の外部周辺表面の間の強制空気循環も可能にすることになる。したがって、強制空気流Fの乱流に寄与すること、ならびに強制空気流Fの経路を長くし、したがって強制空気流Fおよび内部管18およびアキュムレータ18が接触する時間を長くし、したがって熱伝達を増加させるのに役立つことの両方によって、スパイラル・ラッピング26は流体圧流体アキュムレータ20および圧力容器アセンブリ10の冷却貯蔵区画11内部の作動流体圧流体17の冷却効率を増加させる。好ましくは、スパイラル・ラッピング26は内部管18の内部の流体圧アキュムレータ20の減衰振動用のエラストマー材料製である。   Furthermore, in accordance with a preferred embodiment of the present invention, as shown in FIG. 2, the hydraulic fluid accumulator 20 has at least one, preferably two spiral wrappings 26 surrounding the hydraulic fluid accumulator 20. In the state, the inner tube 18 is placed inside the inner tube 18 at a distance from the center. Due to the nature of these spiral wrappings 26, the fluid pressure fluid accumulator 20 is fixed inside the inner tube 18, and forced air circulation between the inner peripheral surface of the inner tube 18 and the outer peripheral surface of the fluid pressure fluid accumulator 20 is also possible. Will be. Therefore, it contributes to the turbulent flow of the forced air flow F, and lengthens the path of the forced air flow F, thus increasing the time for which the forced air flow F and the inner pipe 18 and the accumulator 18 are in contact, thus increasing the heat transfer. By both helping to do so, the spiral wrapping 26 increases the cooling efficiency of the hydraulic fluid accumulator 20 and the working hydraulic fluid 17 within the cooling storage compartment 11 of the pressure vessel assembly 10. Preferably, the spiral wrapping 26 is made of an elastomeric material for damped vibration of the fluid pressure accumulator 20 inside the inner tube 18.

さらに、圧力容器アセンブリ10の貯蔵区画11の内部の作動流体圧流体17から内部管18への熱伝導速度を増加させ、貯蔵区画11の内部の流体圧流体運動量を低減させ、かつ圧力容器アセンブリ10を強化するために、外部ケーシング12の内部で多数の内部バッフル28が使用される。内部バッフル28の配置を、自動車の様々な傾斜角に適合するように変えることができることが当分野の技術者によって理解されるであろう。   Further, the rate of heat transfer from the working fluid pressure fluid 17 inside the storage compartment 11 of the pressure vessel assembly 10 to the inner tube 18 is increased, the fluid pressure fluid momentum inside the storage compartment 11 is reduced, and the pressure vessel assembly 10 A number of internal baffles 28 are used inside the outer casing 12 in order to strengthen. It will be appreciated by those skilled in the art that the arrangement of the internal baffle 28 can be varied to accommodate various vehicle tilt angles.

アキュムレータ20を流体で充填することを可能にするために、十分な作動流体圧流体17をハウジング14の内部周辺表面14aと内部管18の外部周辺表面18aと端部材15および16との間の圧力容器アセンブリ10の貯蔵区画11の内部に収納できるように加圧流体システム1全体が大きさを調整される。   In order to allow the accumulator 20 to be filled with fluid, sufficient working fluid pressure fluid 17 is applied to the pressure between the inner peripheral surface 14a of the housing 14, the outer peripheral surface 18a of the inner tube 18, and the end members 15 and 16. The entire pressurized fluid system 1 is sized so that it can be contained within the storage compartment 11 of the container assembly 10.

圧力容器アセンブリ10の圧力容量ならびに熱伝達容量の両方を最適化するために、圧力容器要素の材料および厚さの選択に配慮がされるべきである。   In order to optimize both the pressure capacity and the heat transfer capacity of the pressure vessel assembly 10, consideration should be given to the choice of material and thickness of the pressure vessel element.

圧力容器アセンブリ10の円筒の設計も、システム重量の関数として圧力容量を最適化する。円周の周りを囲む、それぞれ隆起したリップ15aおよび16aを備える平らな端部材15および16は、円筒ハウジング12への外部連結、ならびに内部管18への連結を強くする。   The cylinder design of the pressure vessel assembly 10 also optimizes the pressure capacity as a function of system weight. Flat end members 15 and 16 with raised lips 15a and 16a, respectively, surrounding the circumference provide a strong external connection to the cylindrical housing 12 and to the internal tube 18.

設計も流体圧流体アキュムレータ20の保護の増加を可能にする。この保護は円筒ハウジング14と作動流体圧流体17と内部管18ならびに分離距離とから構成される。設計は弾道の貫通から充填されたアキュムレータ20の保護を増すことが意図される。この保護に加えて、設計は穴を開けられたアキュムレータから放出された任意の流体の方向を変えることも可能にする。設計の性質が圧力容器アセンブリ10の端部からの任意の作動流体の流れを導く。完全なシステムの賢明な配置/方向付けが、任意の放出された流体の流れを安全な方向に導くことになる。   The design also allows for increased protection of the hydraulic fluid accumulator 20. This protection consists of a cylindrical housing 14, a working fluid pressure fluid 17, an inner tube 18 and a separation distance. The design is intended to increase the protection of the filled accumulator 20 from ballistic penetration. In addition to this protection, the design also allows the direction of any fluid discharged from the perforated accumulator. The nature of the design guides any working fluid flow from the end of the pressure vessel assembly 10. The judicious arrangement / orientation of the complete system will guide any discharged fluid flow in a safe direction.

したがって、本発明による統合加圧流体システムは、密封外部ケーシングと、ケーシングの内部に延びる少なくとも1つの内部管と、少なくとも1つの内部管の内部に配置された少なくとも1つの流体アキュムレータと、少なくとも1つの流体アキュムレータを冷却するために、その中を通る冷却流体の流れを受けるように少なくとも1つの流体アキュムレータに隣接した少なくとも1つの内部管の内部に設けられた少なくとも1つの冷却通路とを備える新規の圧力容器アセンブリを含む。   Accordingly, an integrated pressurized fluid system according to the present invention comprises a sealed outer casing, at least one inner tube extending into the casing, at least one fluid accumulator disposed within the at least one inner tube, and at least one Novel pressure comprising: at least one cooling passage provided within at least one internal tube adjacent to at least one fluid accumulator to receive a flow of cooling fluid therethrough for cooling the fluid accumulator Including a container assembly.

本発明の好ましい実施形態の前述の記載は特許法令の条項による説明の目的のために提示された。包括的なこと、あるいは本発明を開示された正確な形に限定することを意図するものではない。上述の教示の観点から明白な変更形態または変形形態が可能である。本発明およびその実用的な応用例の原理を最もよく示すため、それによって、本明細書で記載された原理に従う限り、当分野の技術者が本発明を様々な実施形態で、また、企図された具体的な使用に適すような様々な変更形態で最もよく利用できるために、本明細書で上で開示された実施形態が選ばれた。したがって、その目的および範囲を逸脱することなく、上述の本発明に変更を加えることができる。本発明の範囲がこれに添付された特許請求の範囲によって定義されることも意図される。   The foregoing description of the preferred embodiment of the present invention has been presented for purposes of illustration under the terms of patent law. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Obvious modifications or variations are possible in light of the above teaching. In order to best illustrate the principles of the present invention and its practical applications, it is thereby contemplated by those skilled in the art that the present invention may be embodied in various embodiments and as long as the principles described herein are followed. The embodiments disclosed hereinabove were chosen because they are best utilized in a variety of modifications suitable for specific use. Accordingly, modifications can be made to the above-described invention without departing from its purpose and scope. It is also intended that the scope of the invention be defined by the claims appended hereto.

本発明による統合加圧流体システムの概略図である。1 is a schematic diagram of an integrated pressurized fluid system according to the present invention. FIG. 本発明の好ましい実施形態による圧力容器アセンブリの断面図である。1 is a cross-sectional view of a pressure vessel assembly according to a preferred embodiment of the present invention. 本発明の好ましい実施形態による圧力容器アセンブリの背面図である。1 is a rear view of a pressure vessel assembly according to a preferred embodiment of the present invention. 本発明の好ましい実施形態による圧力容器アセンブリの前面からの斜視図である。1 is a perspective view from the front of a pressure vessel assembly according to a preferred embodiment of the present invention. 本発明の好ましい実施形態による圧力容器アセンブリの背面からの斜視図である。1 is a rear perspective view of a pressure vessel assembly according to a preferred embodiment of the present invention. FIG. 本発明の好ましい実施形態による油圧−空気圧式アキュムレータ(hydro−pneumatic accumulator))を含む内部管の断面図である。1 is a cross-sectional view of an inner tube including a hydro-pneumatic accumulator according to a preferred embodiment of the present invention. 本発明の好ましい実施形態による穴あきカバー部材をもつ内部管の前面からの斜視図である。FIG. 3 is a perspective view from the front of an inner tube having a perforated cover member according to a preferred embodiment of the present invention.

Claims (16)

加圧流体システム用の圧力容器アセンブリであって、
密封外部ケーシングと、
この密封外部ケーシング内に延び、この密封外部ケーシングに固定された少なくとも1つの内部管と、
前記少なくとも1つの内部管の内部にクリアランスを置いて配置された少なくとも1つの流体圧流体アキュムレータと、
少なくとも1つの冷却通路であって、前記少なくとも1つの流体圧流体アキュムレータ冷却用に前記冷却通路を通る冷却空気の付勢された流れを受けるために、前記少なくとも1つの流体圧流体アキュムレータに隣接して設けられた少なくとも1つの冷却通路と
を備え、
前記少なくとも1つの冷却通路が、前記少なくとも1つの内部管内に形成され、前記少なくとも1つの内部管と、前記少なくとも1つの流体圧流体アキュムレータとの間のクリアランスによって形成された圧力容器アセンブリ。
A pressure vessel assembly for a pressurized fluid system comprising:
A sealed outer casing;
At least one inner tube extending into the sealed outer casing and secured to the sealed outer casing;
At least one hydraulic fluid accumulator disposed with a clearance inside the at least one inner tube ;
And at least one cooling passage, in order to receive a flow biased cooling air the through at least said cooling passage into one of the hydraulic fluid accumulator for cooling, adjacent to the at least one hydraulic fluid accumulator At least one cooling passage provided ;
With
The pressure vessel assembly , wherein the at least one cooling passage is formed in the at least one inner tube and is formed by a clearance between the at least one inner tube and the at least one hydraulic fluid accumulator .
前記外部ケーシングがほぼ管状のハウジングと、前記ハウジングの反対側の末端に固定された端部材とを含む請求項に記載の圧力容器アセンブリ。The pressure vessel assembly of claim 1 , wherein the outer casing includes a generally tubular housing and an end member secured to an opposite end of the housing. 前記少なくとも1つの内部管が前記端部材の間に延びる請求項に記載の圧力容器アセンブリ。The pressure vessel assembly of claim 2 , wherein the at least one inner tube extends between the end members. 前記少なくとも1つの内部管が前記端部材を通って延びる請求項に記載の圧力容器アセンブリ。The pressure vessel assembly of claim 2 , wherein the at least one inner tube extends through the end member. 前記少なくとも1つの内部管と前記少なくとも1つの流体圧流体アキュムレータとの間に少なくとも1つのスパイラル・ラッピングをさらに含み、前記少なくとも1つのスパイラル・ラッピングが、前記圧力容器から前記冷却流体への熱伝達を増加させるために前記冷却通路を通って前記冷却流体の前記流れを導く請求項に記載の圧力容器アセンブリ。Further comprising at least one spiral wrapping between the at least one inner tube and the at least one hydraulic fluid accumulator, wherein the at least one spiral wrapping provides heat transfer from the pressure vessel to the cooling fluid. The pressure vessel assembly of claim 1 , wherein the flow of cooling fluid is directed through the cooling passage to increase. 前記少なくとも1つのスパイラル・ラッピングがエラストマー材料製である請求項に記載の圧力容器アセンブリ。The pressure vessel assembly of claim 5 , wherein the at least one spiral wrapping is made of an elastomeric material. 前記加圧流体システムが前記少なくとも1つの冷却通路を通る付勢された空気流を提供する冷却ファンを含む請求項1に記載の圧力容器アセンブリ。Pressure vessel assembly according to claim 1 including a cooling fan that provides the pressurized fluid system at least urging air flow through one of the cooling passages. 前記圧力容器アセンブリが前記外部ケーシングと前記少なくとも1つ内部管との間で、区画をその内部に画定し、前記区画が少なくとも部分的に流体圧流体で満たされる請求項に記載の圧力容器アセンブリにおいて
前記流体圧流体を、前記区画と、前記少なくとも1つの流体圧流体アキュムレータとの間で前記流体圧流体を選択的に伝達するように、前記区画を、前記少なくとも1つの流体圧流体アキュムレータと流体連通状態にする請求項1に記載の圧力容器アセンブリ
Between the pressure vessel assembly is the outer casing and the at least one internal tube, the pressure vessel according to claim 1 defining a compartment therein, said compartment being at least partially filled with fluid pressure fluid in the assembly,
The compartment is in fluid communication with the at least one hydraulic fluid accumulator so as to selectively transmit the hydraulic fluid between the compartment and the at least one hydraulic fluid accumulator. The pressure vessel assembly of claim 1, which is in a state .
前記管状ハウジングが形状においてほぼ円筒形である請求項に記載の圧力容器アセンブリ。The pressure vessel assembly of claim 2 , wherein the tubular housing is substantially cylindrical in shape. 前記外部ケーシングが少なくとも1つの内部バッフルを含む請求項に記載の圧力容器アセンブリ。The pressure vessel assembly of claim 8 , wherein the outer casing includes at least one inner baffle. 前記少なくとも1つの流体圧流体アキュムレータが流体圧−空気圧式アキュムレータである請求項に記載の圧力容器アセンブリ。The pressure vessel assembly of claim 1 , wherein the at least one hydraulic fluid accumulator is a hydraulic-pneumatic accumulator. 加圧流体システム用の圧力容器アセンブリであって、
密封外部ケーシングと、
前記密封外部ケーシングの内部に配置された少なくとも1つの流体圧流体アキュムレータと、
前記外部ケーシングと前記少なくとも1つの流体圧流体アキュムレータとの間の前記圧力容器アセンブリの内部の区画であって、少なくとも部分的に流体圧作動流体で満たされ、
前記区画が、前記区画と前記少なくとも1つの流体圧流体アキュムレータとの間で前記流体圧作動流体を選択的に伝達するように前記少なくとも1つの流体圧流体アキュムレータと流体連通する区画と、
前記外部ケーシングの外側の加圧ガス貯蔵庫であって、前記加圧ガス貯蔵庫が前記外部ケーシング内の前記区画の内部の前記流体圧作動流体を加圧するために前記外部ケーシングの内部の前記区画と流体連通する加圧ガス貯蔵庫と、
を含む圧力容器アセンブリ
A pressure vessel assembly for a pressurized fluid system comprising:
A sealed outer casing;
At least one hydraulic fluid accumulator disposed within the sealed outer casing;
Wherein an internal compartment of the pressure vessel assembly between said outer casing and said at least one hydraulic fluid accumulator, at least partially filled with a hydraulic working fluid,
Said compartment so as to selectively transmit the fluid pressure working fluid between said compartments at least one hydraulic fluid accumulator, and at least one hydraulic fluid accumulator and compartments in fluid communication,
A pressurized gas reservoir outside the outer casing, wherein the pressurized gas reservoir pressurizes the fluid pressure working fluid within the compartment within the outer casing and the compartment and fluid within the outer casing. A pressurized gas storage in communication;
Including pressure vessel assembly .
前記区画が少なくとも1つの内部バッフルを含む請求項12に記載の圧力容器アセンブリ。The pressure vessel assembly of claim 12 , wherein the compartment includes at least one internal baffle. 前記流体圧作動流体が油である請求項12に記載の圧力容器アセンブリ。The pressure vessel assembly of claim 12 , wherein the fluid pressure working fluid is oil. 前記加圧流体システムが、前記少なくとも1つの流体圧流体アキュムレータに流体連通された第1ポートと、前記区画内の作動流体に流体連通された第2ポートとをもつ流体圧機械を含む請求項12に記載の圧力容器アセンブリ。The pressurized fluid system, claim 12 including a first port fluidly connected to the at least one hydraulic fluid accumulator, the fluid pressure machine with a second port fluidly connected to the working fluid in the compartment A pressure vessel assembly as described in. 前記圧力容器アセンブリが、さらに前記外部ケーシングに外部の加圧ガス貯蔵庫を設け、The pressure vessel assembly further includes an external pressurized gas reservoir in the outer casing;
前記外部ケーシング内の前記区画内で前記流体圧流体を加圧するために、前記加圧ガス貯蔵庫を、前記外部ケーシング内の前記区画に流体連通状態にする請求項8に記載の圧力容器アセンブリ。9. The pressure vessel assembly of claim 8, wherein the pressurized gas reservoir is in fluid communication with the compartment in the outer casing to pressurize the fluid pressure fluid within the compartment in the outer casing.
JP2006528119A 2003-09-22 2004-09-22 Pressure vessel assembly for an integrated pressurized fluid system Expired - Fee Related JP4643579B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US50418803P 2003-09-22 2003-09-22
PCT/US2004/030968 WO2005061904A1 (en) 2003-09-22 2004-09-22 Pressure vessel assembly for integrated pressurized fluid system

Publications (2)

Publication Number Publication Date
JP2007506058A JP2007506058A (en) 2007-03-15
JP4643579B2 true JP4643579B2 (en) 2011-03-02

Family

ID=34710029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006528119A Expired - Fee Related JP4643579B2 (en) 2003-09-22 2004-09-22 Pressure vessel assembly for an integrated pressurized fluid system

Country Status (7)

Country Link
US (2) US8079408B2 (en)
JP (1) JP4643579B2 (en)
CN (1) CN1871439B (en)
AU (1) AU2004304240B2 (en)
DE (1) DE112004001761B4 (en)
GB (1) GB2420594B (en)
WO (1) WO2005061904A1 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7402027B2 (en) 2004-02-11 2008-07-22 Haldex Hydraulics Corporation Rotating group of a hydraulic machine
US7364409B2 (en) 2004-02-11 2008-04-29 Haldex Hydraulics Corporation Piston assembly for rotary hydraulic machines
US7380490B2 (en) 2004-02-11 2008-06-03 Haldex Hydraulics Corporation Housing for rotary hydraulic machines
US7086225B2 (en) 2004-02-11 2006-08-08 Haldex Hydraulics Corporation Control valve supply for rotary hydraulic machine
GB2445494B (en) * 2004-03-08 2008-09-03 Bosch Rexroth Corp Hydraulic service module
US7699188B2 (en) * 2004-04-23 2010-04-20 Amtrol Licensing Inc. Hybrid pressure vessel with separable jacket
US7516613B2 (en) 2004-12-01 2009-04-14 Haldex Hydraulics Corporation Hydraulic drive system
US7493916B2 (en) * 2005-12-12 2009-02-24 Bosch Rexroth Corporation Pressure vessel with accumulator isolation device
DE102006060078A1 (en) * 2006-12-19 2008-06-26 Robert Bosch Gmbh Piston accumulator for vehicles
FR2911176B1 (en) * 2007-01-10 2009-03-20 Air Liquide METHOD FOR IMPROVING THE SAFETY OF AN INSTALLATION CONTAINING AT LEAST ONE FUEL GAS TANK
US8438845B2 (en) * 2008-08-26 2013-05-14 Limo-Reid, Inc. Hoseless hydraulic system
WO2010117853A1 (en) * 2009-04-06 2010-10-14 Vanderbilt University High energy density elastic accumulator and method of use thereof
DE102009026605A1 (en) * 2009-05-29 2010-12-02 Metso Paper, Inc. Hydraulic system for a machine for producing a fibrous web
DE102009050214A1 (en) * 2009-10-22 2011-07-28 BAXI INNOTECH GmbH, 20539 Device for guiding at least one fluid and fuel cell heater
CN101943264A (en) * 2010-08-30 2011-01-12 布柯玛蓄能器(天津)有限公司 Capsule stainless steel welded pressure vessel for energy accumulation
EP2630399A2 (en) * 2010-09-22 2013-08-28 Limo-Reid, Inc. Ultra lightweight and compact accumulator
CA2826350A1 (en) 2011-02-03 2012-08-09 Vanderbilt University Multiple accumulator systems and methods of use thereof
DE102011015371A1 (en) * 2011-03-29 2012-10-04 Robert Bosch Gmbh Energy storage device, has hydraulic motor connected in direct fluid communication with working chamber, for conveying hydraulic fluid to working chamber or from working chamber, and heat exchanger arranged in working chamber
US9249847B2 (en) 2011-12-16 2016-02-02 Vanderbilt University Distributed piston elastomeric accumulator
US9875483B2 (en) * 2012-05-17 2018-01-23 Wal-Mart Stores, Inc. Conversational interfaces
CN102678686A (en) * 2012-06-14 2012-09-19 上海三一重机有限公司 Device, method and system for increasing efficiency of hydraulic pump
JP5825682B2 (en) * 2012-07-03 2015-12-02 キャタピラー エス エー アール エル Hydraulic circuit of work machine with accumulator
GB2506652A (en) * 2012-10-05 2014-04-09 Casu Vasu As An energy storage system and a method of storing energy
FR3016413B1 (en) * 2014-01-15 2018-06-15 Arianegroup Sas THERMAL PROTECTION SYSTEM FOR A CRYOGENIC RESERVOIR OF SPACE ENGINE
CN105715942A (en) * 2014-12-05 2016-06-29 刘建华 Glass reinforced plastic storage tank internally provided with CNG cylinders
CN105135910B (en) * 2015-08-14 2018-12-07 安徽蓝盾光电子股份有限公司 A kind of cooling device of high-temperature gas
GB2541734B (en) * 2015-08-28 2021-09-01 Intelligent Energy Ltd Dewar vessel storage apparatus
DE102016010996A1 (en) * 2016-09-10 2018-03-15 Andreas Hofer Hochdrucktechnik Gmbh cooler
CN111846543A (en) * 2020-07-20 2020-10-30 中国原子能科学研究院 Sample container assembly

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE553586C (en) * 1932-06-28 Bochumer Eisen Heintzmann Bottle cooler
US1692670A (en) * 1924-12-30 1928-11-20 Mesurier Louis John Le Apparatus for storing fluid under pressure
US2106263A (en) * 1936-08-24 1938-01-25 Anheuser Busch Cooling cabinet
US2492014A (en) * 1946-10-03 1949-12-20 Jack & Heintz Prec Ind Inc Combined reservoir and accumulator in a hydraulic pump and motor transmission system
US2595685A (en) * 1949-04-25 1952-05-06 Robert E Mallory Infant milk bottle and food warmer
US2822136A (en) * 1952-12-11 1958-02-04 Svenska Maskinverken Ab Combined hot air furnace and domestic water heater
US2847193A (en) * 1954-08-30 1958-08-12 Richard H Carter Heat exchanger
US2815036A (en) * 1956-10-29 1957-12-03 Farrel Birmicgham Company Inc Dual-pressure hydraulic system
US3230975A (en) * 1959-12-09 1966-01-25 Mercier Olaer Patent Corp Composite movable partition for pressure vessel
DE1280507B (en) * 1964-12-29 1968-10-17 Krupp Gmbh Hydraulic drive device for a stripper tongs or the like.
US3448792A (en) * 1966-11-07 1969-06-10 Hooker Chemical Corp Thermal convection condenser and method of use
US3492461A (en) * 1967-12-28 1970-01-27 Hooker Chemical Corp Apparatus for the protection of structures exposed to heat storage compositions
JPS4710902U (en) * 1971-02-27 1972-10-09
DE2222587A1 (en) 1972-05-09 1973-11-29 Bosch Gmbh Robert PRESSURE VESSEL
JPS5143496Y2 (en) * 1972-10-16 1976-10-22
IT993500B (en) 1972-10-18 1975-09-30 Rca Corp CORRECTION LENS WITH MULTIPLE ELEMENTS SEPARATED BY DISCONTINUITY
GB1505645A (en) * 1974-07-30 1978-03-30 Stothert & Pitt Ltd Apparatus for use in raising or lowering a load in a condition of relative motion
US4062356A (en) * 1974-12-04 1977-12-13 U.S. Divers Co. Underwater diving system
US4037650A (en) * 1975-05-23 1977-07-26 National Research Development Corporation Thermal storage apparatus
US4052852A (en) * 1976-11-22 1977-10-11 Caterpillar Tractor Co. Constant pressure sealed fluid storage tank for hydraulic systems
US4091897A (en) * 1977-06-24 1978-05-30 Chicago Bridge & Iron Company Hydraulic counterweight and shock-absorbing system
US4188787A (en) * 1978-06-05 1980-02-19 National Advanced Drilling Machines, Inc. Hydraulic control apparatus
CA1070216A (en) * 1979-02-22 1980-01-22 John C. Carlson Pump jack assembly for wells
DE2947258A1 (en) * 1979-11-23 1981-05-27 Daimler-Benz Ag, 7000 Stuttgart HYDROSTATIC BUBBLE STORAGE
EP0047336A1 (en) * 1980-09-09 1982-03-17 Olsson, Lars-Uno Hydraulic unit to operate one or more working and treating machines
US4385909A (en) * 1981-08-31 1983-05-31 Starr Hydraulic-Electro Controls Co. De-aerator for hydraulic power units
FR2530209A1 (en) * 1982-07-16 1984-01-20 Renault Vehicules Ind OLEOPNEUMATIC ENERGY TANK FOR ACCUMULATING THE BRAKE ENERGY RECOVERED ON A VEHICLE
DE3601773A1 (en) * 1985-01-28 1986-07-31 Fawcett Engineering Ltd., Bromborough, Wirral GASKET AND SEALING DEVICES
US5127441A (en) * 1985-12-16 1992-07-07 Rains Robert L Coaxial piping system
US4760697A (en) * 1986-08-13 1988-08-02 National Research Council Of Canada Mechanical power regeneration system
JPH0649447Y2 (en) * 1987-03-30 1994-12-14 トヨタ自動車株式会社 Circuit for vehicle air suspension
JPH0620837B2 (en) * 1988-10-27 1994-03-23 いすゞ自動車株式会社 Vehicle brake energy regeneration device
JPH0532974U (en) * 1991-03-11 1993-04-30 日本ピーマツク株式会社 Refrigerant recovery device
JPH0532974A (en) 1991-07-26 1993-02-09 Sumitomo Metal Ind Ltd Method for controlling dry distillation in coke oven
FR2689215B1 (en) * 1992-03-30 1994-07-01 Sari AIR TREATMENT INSTALLATION.
JPH06294566A (en) 1993-04-06 1994-10-21 Teisan Kk Gas cylinder cooler for production of semiconductor
JP3375178B2 (en) 1993-07-08 2003-02-10 日本エア・リキード株式会社 Gas supply device with cylinder
US5469701A (en) * 1993-09-10 1995-11-28 Arde, Inc. Fluid storage and expulsion system
US5494083A (en) * 1995-01-03 1996-02-27 Elmore; Rickey L. Utility air tank
JP3675978B2 (en) * 1996-08-27 2005-07-27 本田技研工業株式会社 Hydraulic power source device for vehicles
JPH1068402A (en) * 1996-08-27 1998-03-10 Honda Motor Co Ltd Hydraulic source device for vehicle
DE19627711A1 (en) * 1996-07-10 1998-01-15 Rexroth Mannesmann Gmbh Reservoir for hydraulic power circuit
SE510629C2 (en) * 1996-09-20 1999-06-07 Vickers International Hydraulvätskereservoar
DE19711841A1 (en) * 1997-03-21 1998-12-10 Peter Fick Internal gas pressure converter
US5893995A (en) * 1997-05-05 1999-04-13 Waters; Steve W. Refrigerant bottle warmer
US6503584B1 (en) * 1997-08-29 2003-01-07 Mcalister Roy E. Compact fluid storage system
JP3892958B2 (en) * 1997-12-02 2007-03-14 ジャパン・エア・ガシズ株式会社 Gas container heating device
US6035930A (en) * 1998-06-30 2000-03-14 Nelson Industries, Inc. Power steering reservoir and cooler
US6158234A (en) * 1999-02-23 2000-12-12 Szutu; Hui Jen Self-cooled refrigerant recovery system
DE10041131A1 (en) * 2000-08-21 2002-03-21 Geesthacht Gkss Forschung Hydrogen storage unit containing metal hydride includes system of fluid-filled tubes transferring heat reversibly between hydride and transition region
FR2815695B1 (en) * 2000-10-19 2003-01-31 Air Liquide PRESSURE GAS STORAGE DEVICE
US6463757B1 (en) * 2001-05-24 2002-10-15 Halla Climate Controls Canada, Inc. Internal heat exchanger accumulator
US6433316B1 (en) * 2001-07-09 2002-08-13 James Sigety Apparatus and method for heating a pressurized container
JP3818579B2 (en) * 2001-10-11 2006-09-06 本田技研工業株式会社 Hydrogen storage device

Also Published As

Publication number Publication date
WO2005061904A8 (en) 2005-10-13
WO2005061904A1 (en) 2005-07-07
CN1871439B (en) 2011-02-02
GB2420594A (en) 2006-05-31
DE112004001761B4 (en) 2016-01-07
US8726977B2 (en) 2014-05-20
AU2004304240B2 (en) 2011-01-06
CN1871439A (en) 2006-11-29
GB0605812D0 (en) 2006-05-03
US20120031911A1 (en) 2012-02-09
AU2004304240A1 (en) 2005-07-07
US20070084516A1 (en) 2007-04-19
US8079408B2 (en) 2011-12-20
JP2007506058A (en) 2007-03-15
DE112004001761T5 (en) 2007-01-18
GB2420594B (en) 2008-01-09

Similar Documents

Publication Publication Date Title
JP4643579B2 (en) Pressure vessel assembly for an integrated pressurized fluid system
CA2739578C (en) Hydropneumatic accumulator with a compressible regenerator
CN101537788B (en) In-wheel motor system
CN106663754B (en) Battery container comprising diaphragm-shaped side surfaces and method for producing same
RU2556947C2 (en) Energy accumulation system comprising expandable accumulator unit and tank
EP3062381A1 (en) Cooling circuit with cooling fluid for lithium batteries, and a vehicle comprising said cooling circuit
US11128136B2 (en) Integrated energy conversion, transfer and storage system
US6889751B1 (en) Latent heat storage device
CN101529193B (en) Thermal storage device
US20210095644A1 (en) Thermal hydraulic propulsion system
CN112105515B (en) High pressure tolerant liquid-to-refrigerant heat exchanger
JP2024531329A (en) Air conditioning pipe structure
US20220060022A1 (en) Integrated energy conversion, transfer and storage system
CN114448162A (en) Magnetic suspension energy storage flywheel with active heat dissipation function and energy storage equipment
CN110131250B (en) Energy storage hydraulic motor heat dissipation pipeline of self-adaptation load change
CN112360676A (en) Radial support plane flow distribution cycloid hydraulic motor
CN115574040B (en) Cooling system for electric vehicle
CN216691447U (en) Dual-power automotive scroll air-conditioning compressor
CN210686517U (en) Self-circulation cooler
CN216199005U (en) Rotary compressor and refrigeration equipment
CN216016589U (en) Motor structure and cleaning robot
CN117803635A (en) Vibration damper and rock drilling hydraulic system
WO2024110983A1 (en) A battery pack
CN117230911A (en) Integrated serial-type inertial damping and shock absorbing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100705

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees