JP4641960B2 - Coated small diameter straight neck end mill - Google Patents

Coated small diameter straight neck end mill Download PDF

Info

Publication number
JP4641960B2
JP4641960B2 JP2006090436A JP2006090436A JP4641960B2 JP 4641960 B2 JP4641960 B2 JP 4641960B2 JP 2006090436 A JP2006090436 A JP 2006090436A JP 2006090436 A JP2006090436 A JP 2006090436A JP 4641960 B2 JP4641960 B2 JP 4641960B2
Authority
JP
Japan
Prior art keywords
neck
blade
end mill
tool
deflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006090436A
Other languages
Japanese (ja)
Other versions
JP2007260856A (en
Inventor
猛史 赤松
剛史 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2006090436A priority Critical patent/JP4641960B2/en
Publication of JP2007260856A publication Critical patent/JP2007260856A/en
Application granted granted Critical
Publication of JP4641960B2 publication Critical patent/JP4641960B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本願発明は、金型等の切削加工、特に深彫り加工に使用する被覆小径ストレートネックエンドミルに関する。   The present invention relates to a coated small-diameter straight neck end mill for use in cutting of a die or the like, in particular, deep engraving.

近年、家電製品や機械製品の小型精密化は目を見張るものがあり、電子部品関係や半導体関連の部品も精密かつ複雑化している。これに伴い、成形する金型の高精度化も同時に要求されている。このような加工に切削工具を用いることが行われている。しかし、特に深い部分や隅部を加工する深彫り加工の場合には、切削工具のたわみなどにより不安定な切削を強いられるために高精度な加工が困難である。その理由としては、次のようなことが考えられる。先ず、切削中にエンドミルがたわみやすく、加工精度の低下、ビビリ振動が発生し、これらによる形状誤差が発生する。加工が不安定となるため、仕上げ面性状の悪化や、工具の欠損、折損といった問題も起こりやすい。よって、切削工具による深彫り切削加工を高精度で安定して行うためには、切削工具のたわみを低減することが重要である。上記問題を解決するために、本件出願人は、先に金型の深部加工等に用いる小径エンドミルであって、首部のたわみを抑制するために首部にコーティングを施したエンドミルを提案した(特許文献1)。特許文献1は、テーパネックエンドミルの刃部から首部に渡り、首下長さの50%以上の長さの部位まで、残留圧縮応力を有する硬質皮膜を被覆することによってエンドミルにかかる曲げの力に耐えることができ、エンドミルの全体的なたわみを抑制することが開示されている。一般的に、工具に硬質皮膜を被覆する理由は、刃部の耐摩耗性を向上させることが目的であり、刃部と首部に被覆される硬質皮膜は、膜厚は均一、若しくは、刃部の硬質皮膜の方が厚く被覆され、同一皮膜である。首部よりも刃部の硬質皮膜が厚く被覆される理由としては、工具先端に位置する刃部の方が被覆時におけるプラズマ密度が高く、イオンが集中し易くなるためである。
特開2002−011611号公報
In recent years, miniaturization of home appliances and machine products has been remarkable, and electronic parts and semiconductor-related parts have become more precise and complicated. Along with this, high precision of the mold to be molded is also required at the same time. A cutting tool is used for such processing. However, particularly in the case of deep engraving that processes deep portions and corners, it is difficult to perform high-precision processing because unstable cutting is forced by bending of the cutting tool. The reason is considered as follows. First, the end mill is easily deflected during cutting, the processing accuracy is lowered, chatter vibration is generated, and shape errors due to these occur. Since machining becomes unstable, problems such as deterioration of finished surface properties, tool breakage, and breakage are likely to occur. Therefore, it is important to reduce the deflection of the cutting tool in order to stably perform the deep cutting with the cutting tool with high accuracy. In order to solve the above problem, the present applicant has previously proposed a small-diameter end mill used for deep machining of a mold, etc., in which a neck is coated in order to suppress neck deflection (patent document) 1). In Patent Document 1, the bending force applied to the end mill is covered by coating a hard film having a residual compressive stress from the blade portion of the tapered neck end mill to the neck portion and covering a portion having a length of 50% or more of the length under the neck. It is disclosed to be able to withstand and suppress the overall deflection of the end mill. Generally, the reason for coating a hard film on a tool is to improve the wear resistance of the blade part, and the hard film coated on the blade part and the neck part has a uniform film thickness or the blade part. The hard coating is thicker and the same coating. The reason why the hard film of the blade part is coated thicker than the neck part is that the blade part located at the tip of the tool has a higher plasma density at the time of coating and ions tend to concentrate.
JP 2002-011611 A

小径エンドミルを用いた深彫り切削を行う場合、首部の外径が先端からシャンク側に向かって略一定であるストレートネックエンドミルや、先端からシャンク側に向かって拡径するテーパ状の長い首部を有するテーパネックエンドミルが用いられている。ここで、工具剛性面を考慮すると、ストレートネックエンドミルの首部よりも、テーパネックエンドミルの首部が優れており、上記特許文献1に記載のものはテーパネックエンドミルの首部に硬質皮膜を施して更に工具剛性を向上させ、たわみを低減させたものである。ここで、テーパネックエンドミルで加工した場合、加工する壁面はエンドミルの首部に接触しないように傾斜面である必要があるが、微細な加工になるほど加工する壁面が垂直、若しくは垂直に近いことが多く、微細な加工には、ストレートネックエンドミルを使用せざるを得ない。しかしながら、ストレートネックエンドミルでは、工具剛性面で不十分であり、首部とシャンク部との接続部に段差が必然的に生じてしまい、耐折損性に劣っていた。本願発明は、かかる従来の事情に鑑み、ストレートネックエンドミルを用いた深彫り加工で、テーパネックエンドミルに硬質皮膜を施したものと同等以上に工具のたわみを抑制し、形状精度の向上並びに耐折損性改善を可能にする被覆小径ストレートネックエンドミルを提供することを課題とする。   When performing deep engraving using a small-diameter end mill, it has a straight neck end mill in which the outer diameter of the neck is substantially constant from the tip toward the shank, and a long tapered neck that expands from the tip toward the shank. A taper neck end mill is used. Here, considering the rigidity of the tool, the neck of the taper neck end mill is superior to the neck of the straight neck end mill, and the one described in Patent Document 1 further applies a hard film to the neck of the taper neck end mill. The rigidity is improved and the deflection is reduced. Here, when machining with a taper neck end mill, the wall surface to be machined needs to be an inclined surface so as not to contact the neck of the end mill. However, the finer the machining, the more often the wall surface to be machined is vertical or near vertical. For fine processing, a straight neck end mill must be used. However, in the straight neck end mill, the tool rigidity is insufficient, and a step is inevitably generated at the connection portion between the neck portion and the shank portion, resulting in poor breakage resistance. In view of such conventional circumstances, the present invention is a deep engraving process using a straight neck end mill, which suppresses the deflection of the tool at least as much as a taper neck end mill with a hard coating, improves shape accuracy, and is resistant to breakage. It is an object of the present invention to provide a coated small-diameter straight neck end mill that can improve the performance.

上記目的を達成するため、第1の発明は、刃径が2mm以下であり、刃部と首部とでは硬質皮膜の膜厚が異なるようにした被覆小径ストレートネックエンドミルであり、前記刃部の硬質皮膜の膜厚T1と前記首部の硬質皮膜の膜厚T2との膜厚比T2/T1は、1<T2/T1<20であることを特徴とする被覆小径ストレートネックエンドミルである。これにより、最も工具のたわみ量に影響する首部を補強して形状精度を向上させる。   In order to achieve the above object, the first invention is a coated small-diameter straight neck end mill having a blade diameter of 2 mm or less, wherein the film thickness of the hard film is different between the blade part and the neck part. A film thickness ratio T2 / T1 between the film thickness T1 of the film and the film thickness T2 of the hard film at the neck is 1 <T2 / T1 <20. This reinforces the neck that most affects the amount of deflection of the tool and improves the shape accuracy.

本願発明を適用することにより、深彫り加工において、工具のたわみを抑制することができ、高精度な形状加工、並びに、工具の耐折損性の向上が可能である被覆小径ストレートネックエンドミルを提供できた。   By applying the invention of the present application, it is possible to provide a coated small-diameter straight neck end mill that can suppress tool deflection in deep engraving processing, and that can improve high-precision shape processing and breakage resistance of the tool. It was.

本願第1の発明は、刃部の硬質皮膜の膜厚をT1、上記首部の硬質皮膜の膜厚T2としたときの膜厚比T2/T1が、1<T2/T1<20であることを特徴とする。これにより、刃部の硬質皮膜の膜厚よりも首部の硬質皮膜の膜厚を厚く設定し、首部の剛性を向上して工具のたわみ量を抑制できる点が本願発明の重要な改良点である。首部の方が刃部に比べて工具軸方向の長さが長いため、工具全体のたわみ量への影響が大きいが、第1の発明では、切削中に切削抵抗が刃部に作用しても、工具全体のたわみ量に影響を及ぼしやすい首部の剛性を向上するので、工具のたわみ量が抑制できる。刃部と首部の硬質皮膜の膜厚に差があるので、刃部と首部の曲げの力に対するたわみ方に差が出て、曲げの力を緩和・分散して折損を防ぐと考えられる。ここで、膜厚比T2/T1の値が1以下であると前述したように、刃部と首部の膜厚が均一、若しくは、刃部の硬質皮膜が厚く被覆され、首部のたわみを抑制することができず、工具全体のたわみ量が増加し、高精度な形状加工ができない。首部は曲げの力に対して一様にたわみ、曲げの力を緩和・分散することができず、首部とシャンク部の境界で折損しやすくなる。膜厚比T2/T1の値が20以上であると、首部の硬質皮膜が脆くなり、首部のたわみ量を抑制することが困難となる。硬質皮膜が脆いため、切削時、硬質皮膜に亀裂が生じ、折損の起因となる可能性がある。更に、刃部と首部の硬質皮膜の膜厚に大きな差を設けるために、製造コストが掛かるため現実的でない。これらより、膜厚比T2/T1の値を1<T2/T1<20とした。膜厚比T2/T1の値の更に好ましい範囲として、3.5<T2/T1<18が工具のたわみ量を抑制し、より高精度な形状加工が可能である。刃部の硬質皮膜の膜厚は2μm以下であるのが好ましく、刃部の刃先をシャープに保ち、切削抵抗の増加を抑制して工具のたわみ量を抑制し、高精度な形状加工が可能である。2μmを超えると刃先に硬質皮膜が厚く付き、刃先が丸まって切れ味が低下するため、切削抵抗が増加する可能性がある。   According to the first invention of the present application, the film thickness ratio T2 / T1 is 1 <T2 / T1 <20, where T1 is the thickness of the hard coating on the blade and T2 is the thickness of the hard coating on the neck. Features. This is an important improvement of the present invention in that the thickness of the hard coating on the neck is set to be thicker than the thickness of the hard coating on the blade, and the deflection of the tool can be suppressed by improving the rigidity of the neck. . Since the neck portion is longer in the tool axis direction than the blade portion, the influence on the deflection amount of the entire tool is greater. In the first invention, even if cutting resistance acts on the blade portion during cutting, Since the rigidity of the neck that easily affects the deflection amount of the entire tool is improved, the deflection amount of the tool can be suppressed. Since there is a difference in the film thickness of the hard coating between the blade part and the neck part, it is considered that there is a difference in how the blade part and the neck are bent with respect to the bending force, and the bending force is relaxed and dispersed to prevent breakage. Here, as described above that the film thickness ratio T2 / T1 is 1 or less, the film thickness of the blade part and the neck part is uniform, or the hard film of the blade part is coated thickly to suppress the deflection of the neck part. The amount of deflection of the entire tool increases, and high-precision shape machining cannot be performed. The neck bends uniformly with respect to the bending force, and the bending force cannot be relaxed / dispersed, and breakage easily occurs at the boundary between the neck and the shank. When the value of the film thickness ratio T2 / T1 is 20 or more, the hard coating on the neck becomes brittle, and it becomes difficult to suppress the amount of deflection of the neck. Since the hard coating is brittle, cracks may occur in the hard coating during cutting, which may cause breakage. Furthermore, since a large difference is provided between the film thicknesses of the hard film on the blade part and the neck part, the manufacturing cost is increased, which is not realistic. Accordingly, the value of the film thickness ratio T2 / T1 was set to 1 <T2 / T1 <20. As a more preferable range of the film thickness ratio T2 / T1, 3.5 <T2 / T1 <18 suppresses the amount of deflection of the tool, and more accurate shape processing is possible. The film thickness of the hard coating on the blade is preferably 2 μm or less, and the cutting edge of the blade is kept sharp, the increase in cutting resistance is suppressed, the amount of tool deflection is suppressed, and highly accurate shape processing is possible. is there. If the thickness exceeds 2 μm, the cutting edge may be increased due to a thick hard coating on the cutting edge, and the cutting edge may be rounded to reduce the cutting performance.

第1の発明の更に好ましい形態として、上記首部に被覆される内部硬質皮膜の残留圧縮応力Sを2GPa≦S≦8GPaに設定することが好ましい。これらの構成を満足する場合、首部のたわみ量を更に抑制することができる。ここで、残留圧縮応力Sが2GPa未満であると、工具のたわみ量が増加する傾向にあり、高精度な形状加工ができない。残留圧縮応力Sが8GPaを越えると、首部の内部硬質皮膜が脆くなりすぎ、切削中の振動等により首部の硬質皮膜に亀裂が生じて工具のたわみ量を抑制する効果が低下する。好ましい残留圧縮応力Sの範囲としては、2.5GPa≦S≦5.5GPaである。更に、内部硬質皮膜だけでなく、首部の内部硬質皮膜の外周側に被覆する外部硬質皮膜の残留圧縮応力Sも上記数値範囲を満足しても良く、更に首部の補強を行うことができる。   As a further preferred form of the first invention, it is preferable to set the residual compressive stress S of the internal hard coating coated on the neck to 2 GPa ≦ S ≦ 8 GPa. When these configurations are satisfied, the amount of deflection of the neck can be further suppressed. Here, if the residual compressive stress S is less than 2 GPa, the amount of deflection of the tool tends to increase, and high-precision shape processing cannot be performed. When the residual compressive stress S exceeds 8 GPa, the internal hard coating of the neck becomes too brittle, and the effect of suppressing the deflection of the tool is reduced due to cracks in the hard coating of the neck caused by vibration during cutting. A preferable range of residual compressive stress S is 2.5 GPa ≦ S ≦ 5.5 GPa. Furthermore, not only the internal hard film but also the residual compressive stress S of the external hard film coated on the outer peripheral side of the internal hard film at the neck may satisfy the above numerical range, and the neck can be further reinforced.

工具における残留圧縮応力を測定する方法としては、硬質皮膜組成、結晶構造、組織構造、皮膜硬度、刃先先端の硬質皮膜状態から定性的に判断できるが、微小部薄膜X線回折から定量的に判断することができる。最も高精度で定量的に硬質皮膜の残留圧縮応力を測定する方法としては、同一皮膜を別の試験片に被覆し、被覆前後の薄板の変形量から算出することが好ましい。変形量から算出する測定方法について説明する。例えば、試験片としては、縦8mm×横25mm×厚み0.7mm〜0.9mmの超硬合金製であって、弾性係数Eが517.54GPa、ポアソン比vが0.238の両面鏡面加工した薄板を準備し、この薄板の被覆処理前の変形量を事前に測定しておき、その後、薄板の片面に硬質皮膜を被覆し、被覆後の変形量から被覆処理におけるたわみ量δ、膜厚d、試験片厚さD、測定長さlを測定し、化1式から残留圧縮応力Sを算出することができる。   As a method of measuring the residual compressive stress in the tool, it can be qualitatively determined from the hard film composition, crystal structure, structure, film hardness, and hard film state at the tip of the blade, but quantitatively determined from micro thin film X-ray diffraction. can do. As a method for measuring the residual compressive stress of a hard coating quantitatively with the highest accuracy, it is preferable to coat the same coating on another test piece and calculate from the deformation amount of the thin plate before and after coating. A measurement method calculated from the deformation amount will be described. For example, the test piece was made of cemented carbide having a length of 8 mm, a width of 25 mm, a thickness of 0.7 mm to 0.9 mm, and was subjected to double-sided mirror finishing with an elastic modulus E of 517.54 GPa and a Poisson's ratio v of 0.238. A thin plate is prepared, and the amount of deformation of the thin plate before the coating treatment is measured in advance. Thereafter, a hard film is coated on one surface of the thin plate, and the deflection amount δ and the film thickness d in the coating treatment are determined from the deformation amount after coating. Then, the test piece thickness D and the measurement length l are measured, and the residual compressive stress S can be calculated from the formula (1).

Figure 0004641960
Figure 0004641960

第1の発明の更に好ましい形態として、上記首部に被覆される内部硬質皮膜、及び、外部硬質皮膜のうち、少なくとも1つのX線回折における半価幅Hが、0.8°<H<2.4°であることである。これらを満足することにより、更に首部のたわみ量を低減させることができ、高精度な形状加工ができ、安定した切削加工が可能である。Hの値が、0.8°以下であると、工具のたわみ量の抑制が十分ではない場合があり、形状加工の精度が十分でない。2.4°以上であると、首部の硬質皮膜が脆化する傾向にあり、切削中の振動等により首部の硬質皮膜に亀裂が生じて工具のたわみ量を抑制する効果が低下する。これらの理由より、半価幅Hの値を上記範囲に規定することが好ましい。X線回折において、B1構造の結晶構造を有する場合、(200)面の半価幅とすることが好ましい。更に、第1の発明は、首部の内部硬質皮膜の膜厚を首部の刃部側からシャンク部側にかけて変化させても良く、特に、前記内部硬質皮膜の刃部側の膜厚よりシャンク側の膜厚を厚くするのが良い。これにより、たわみの節となる首部とシャンク部の繋ぎ部分である首部テーパ部付近を重点的に補強することができ、工具全体のたわみ量を抑制することができる。刃部の硬質皮膜と首部の刃部側の内部硬質皮膜の膜厚の差を抑制しつつ首部の補強が可能であるので、刃部と首部の境界部の硬質皮膜に亀裂が生じにくく、首部に安定して硬質皮膜を被覆することができる。前記内部硬質皮膜の膜厚を段階的に変化させた場合、膜厚が変わる位置を境に首部のたわみ方が変化し、工具全体に掛かる曲げの力を緩和・分散し、ビビリ振動を抑制し、仕上げ面性状が向上する。折損を防止することができると考えられる。これらの改善により、工具のたわみを大幅に抑制することができ、ビビリ振動を低減せしめ、より安定して仕上げ加工が可能となり、形状誤差の少ない高精度な加工が実現できる。
上記首部の硬質皮膜の被覆は、一般的な被覆処理では成しえず、意図的に首部の硬質皮膜を厚く被覆したものである。
As a more preferable form of the first invention, the half width H in at least one X-ray diffraction among the internal hard film and the external hard film coated on the neck is 0.8 ° <H <2. It is 4 °. By satisfying these requirements, the amount of deflection of the neck can be further reduced, high-precision shape processing can be performed, and stable cutting can be performed. If the value of H is 0.8 ° or less, the amount of deflection of the tool may not be sufficiently suppressed, and the shape processing accuracy is not sufficient. When the angle is 2.4 ° or more, the hard coating on the neck tends to become brittle, and cracks occur in the hard coating on the neck due to vibration during cutting or the like, and the effect of suppressing the amount of deflection of the tool decreases. For these reasons, it is preferable to define the value of the half width H in the above range. In X-ray diffraction, when it has a crystal structure of B1 structure, it is preferable to make it a half width of (200) plane. Further, in the first invention, the film thickness of the internal hard film of the neck may be changed from the blade part side of the neck part to the shank part side. It is better to increase the film thickness. Thereby, the neck part taper part vicinity which is a connection part of the neck part used as a bending node and a shank part can be reinforced, and the deflection amount of the whole tool can be suppressed. It is possible to reinforce the neck while suppressing the difference in film thickness between the hard coating on the blade and the internal hard coating on the blade side of the neck, so the hard coating at the boundary between the blade and the neck is less likely to crack, and the neck It is possible to coat the hard film stably. When the thickness of the internal hard coating is changed in stages, the way the neck bends changes at the position where the thickness changes, and the bending force applied to the entire tool is relaxed and dispersed to suppress chatter vibration. , Finished surface properties are improved. It is thought that breakage can be prevented. With these improvements, tool deflection can be greatly suppressed, chatter vibration can be reduced, finishing can be performed more stably, and high-precision machining with less shape error can be realized.
The above-described coating of the hard film on the neck cannot be achieved by a general coating process, and is intentionally coated with a thick hard film on the neck.

刃部と首部とで異なる膜厚の硬質皮膜を被覆した被覆小径ストレートネックエンドミルを製造する方法として、第1回目の被覆工程の前に、前記ストレートネックエンドミルの材料となる工具部材に首部、シャンク部を形成し、その工具部材のシャンク部に対して首部を挟んで反対に位置する先端側と首部へ内部硬質皮膜を被覆し、続いて、工具部材の先端に切れ刃を形成し、刃部、首部、シャンク部を有する工具形状が完成する。第2回目の被覆工程は、刃部の硬質皮膜と首部の外部硬質皮膜を被覆し、前記刃部の硬質皮膜の膜厚T1、前記首部の硬質皮膜の膜厚T2との膜厚比T2/T1が、1<T2/T1<20とした被覆小径ストレートネックエンドミルを得ることができ、工具のたわみ量、折損を抑制して高精度な形状精度が可能な被覆小径ストレートネックエンドミルを提供できる。ここで、第1回目の被覆工程にて、異なる組成の硬質皮膜を複数回積層しても良く、第2回目の被覆工程にて、異なる組成の硬質皮膜を複数回積層しても良く、第1回目の被覆工程、第2回目の被覆工程の硬質皮膜は異なる組成であっても良い。第1回目の被覆工程で首部のシャンク部側の内部硬質皮膜の膜厚を厚くするには、首部の刃部側をマスキングする方法が考えられる。上記製造方法により、第1回目の被覆工程で、首部の剛性を向上させてたわみ量を抑制するための硬質皮膜、例えば、TiSiNを付与することができ、刃部には切削抵抗を低減して工具のたわみ量を抑制するための潤滑皮膜、例えばCrSiNを付与する等、目的に応じた硬質皮膜を被覆することができる。
As a method of manufacturing a coated small-diameter straight neck end mill coated with a hard film having different film thicknesses at the blade part and the neck part, before the first coating process, the neck part, the shank is attached to the tool member which is the material of the straight neck end mill. And forming a cutting edge at the tip of the tool member, and then coating the inner hard film on the tip and the neck located opposite to the shank of the tool member. A tool shape having a neck portion and a shank portion is completed. In the second coating step, the hard film of the blade part and the external hard film of the neck part are coated, and the film thickness ratio T2 / the film thickness T1 of the hard film of the blade part and the film thickness T2 of the hard film of the neck part. A coated small-diameter straight neck end mill with a T1 of 1 <T2 / T1 <20 can be obtained, and a coated small-diameter straight neck end mill capable of suppressing the amount of bending and breakage of the tool and achieving high-precision shape accuracy can be provided. Here, in the first coating step, hard coatings with different compositions may be laminated a plurality of times, and in the second coating step, hard coatings with different compositions may be laminated a plurality of times, The hard coating in the first coating step and the second coating step may have different compositions. In order to increase the film thickness of the internal hard film on the shank part side of the neck part in the first coating step, a method of masking the blade part side of the neck part can be considered. By the above manufacturing method, in the first coating step, a hard film for improving the rigidity of the neck and suppressing the amount of deflection, for example, TiSiN can be applied, and the cutting force is reduced on the blade. It is possible to coat a hard film according to the purpose, such as applying a lubricating film for suppressing the amount of deflection of the tool, such as CrSiN.

本願発明の被覆小径ストレートネックエンドミルの刃部のすくい角は正が好ましく、切削抵抗を低減して更に工具全体のたわみ量を抑制することができる。特に工具のたわみ量は工具直角方向からの切削抵抗に影響を受けやすいので、外周刃のすくい角を正にすることがより効果的である。同様の理由で、被覆小径ストレートネックエンドミルがボールエンドミルの場合、ボール刃の外周側の法線方向すくい角が正であるのが好ましい。刃部自体のたわみ量を抑制するため、心厚は刃径に対して70%〜80%の範囲とするのが好ましく、刃部の剛性を上げて工具のたわみ量を抑制できる。本願発明の更に好ましい形態として、硬質皮膜を被覆した被覆小径ストレートネックエンドミルにおいて、首部に被覆される硬質皮膜のうち少なくとも1層は、Al、Si、Ti、Cr、Nbから選択される少なくとも一種以上の窒化物、炭化物、酸化物、硼化物、若しくはこれらの一種以上の固溶体であることが好ましい。特に好ましくは、被覆する硬質皮膜の少なくとも1層に、Al、Si、Ti、Cr、Nbのから選択される2種以上若しくは3種以上の窒化物が効果的である。特に、首部の内部硬質皮膜として、TiSiの窒化物を少なくとも1層以上被覆することにより、著しく工具のたわみ量が抑制される。本願発明は、ストレートネックエンドミルの刃径が2mm以下、つまり、首部が2mm未満の剛性の低い被覆小径ストレートネックエンドミルに特に効果を発揮する。首部の内部硬質皮膜は首部とシャンク部の間にある首テーパ部に被覆しても良く、工具全体のたわみ量を抑制できる。本願発明は、上記工具の刃径Dに対する、工具先端からシャンクの把持位置前面までの工具突き出し長さLの工具突きだし比率L/Dが3以上の深彫り切削加工に使用するのが好ましく、前記工具突きだし比率L/Dが10以上で本願発明の効果がより顕著に表れる。以下、本願発明を実施例に基づいて説明する。The rake angle of the blade portion of the coated small-diameter straight neck end mill of the present invention is preferably positive, and the cutting resistance can be reduced to further suppress the deflection amount of the entire tool. In particular, since the deflection amount of the tool is easily affected by the cutting resistance from the direction perpendicular to the tool, it is more effective to make the rake angle of the outer peripheral edge positive. For the same reason, when the coated small-diameter straight neck end mill is a ball end mill, the normal direction rake angle on the outer peripheral side of the ball blade is preferably positive. In order to suppress the amount of deflection of the blade portion itself, the core thickness is preferably in the range of 70% to 80% with respect to the blade diameter, and the amount of deflection of the tool can be suppressed by increasing the rigidity of the blade portion. As a further preferred form of the present invention, in the coating small diameter straight neck end mill coated with a hard film, at least one layer of the hard coating to be coated on the neck is, Al, Si, Ti, Cr, at least one or more selected from Nb Nitrides, carbides, oxides, borides, or one or more solid solutions thereof are preferred. Particularly preferably, at least one layer of a hard film to be coated is effective with two or more nitrides selected from Al, Si, Ti, Cr, and Nb. In particular, by coating at least one layer of TiSi nitride as the internal hard coating on the neck, the amount of deflection of the tool is remarkably suppressed. The present invention is particularly effective for a coated small-diameter straight neck end mill having a low rigidity of a straight neck end mill having a blade diameter of 2 mm or less, that is, a neck portion of less than 2 mm. The internal hard coating of the neck may be coated on the neck taper portion between the neck and the shank, and the amount of deflection of the entire tool can be suppressed. It is preferable that the present invention is used for deep cutting with a tool protrusion ratio L / D of a tool protrusion length L from the tip of the tool to the front surface of the shank gripping position with respect to the blade diameter D of the tool being 3 or more, When the tool sticking ratio L / D is 10 or more, the effect of the present invention appears more remarkably. Hereinafter, the present invention will be described based on examples.

(実施例1)
本発明例1は、基材としてCo含有量が8重量パーセント、WC平均粒径が0.4〜0.6μmからなる超微粒超硬合金を用いたものである。図1に示すように、刃部1にボール刃と外周刃を設け、刃数は2枚刃、刃径は2mm、つまり、ボール刃半径が1mmとし、ボール刃の法線方向すくい角は先端付近で0°、外周側で5°に設定し、外周刃のすくい角は5°、ねじれ角は20°、心厚は刃径の75%に当たる1.5mm、有効刃長3mmとする。刃部1には首部2、首テーパ部3が連なり、首部直径は1.92mmと刃径より若干小さい径を有する首逃がしを設けた。エンドミル先端から首部2と首テーパ部3の境界までのエンドミル軸方向距離である首下長さは10mm、シャンク部4の直径は4mmである。本発明例1は、硬質皮膜として、刃部1にTiAlNを膜厚を2μmで被覆し、首部2の内部硬質皮膜にTiAlNを膜厚が4μm、前記内部硬質皮膜の外周に刃部1に被覆した硬質皮膜と同じTiAlNを2μm、よって首部の硬質皮膜の膜厚が合計で6μmとなるように被覆した。本発明例1の膜厚比T2/T1は3である。
硬質皮膜の被覆方法として、先ず、刃部形状が形成される予定の部位である加工前刃部と首部2とシャンク部4が連なった形状を有する工具部材を製作した後に、1回目の被覆工程にて、首部に内部硬質皮膜としてTiAlNを膜厚4μmで被覆した。その後、前記加工前刃部に刃部形状を形成するための研削加工を行い、前記加工前刃部に被覆されたTiAlNを削り落とし、前記工具部材をエンドミル形状に仕上げる。そして、2回目の被覆工程として前記刃部と首部にTiAlNを膜厚2μmで被覆した。以上のような被覆方法で硬質皮膜を被覆することで、刃部の硬質皮膜の膜厚を2μm、首部の硬質皮膜の膜厚を6μmに設定した。
比較のため、比較例2として、本発明例1と同様の仕様で、刃部のみにTiAlNを膜厚2μmで被覆したエンドミル、つまり、膜厚比T2/T1が0であるもの、比較例3として、本発明例1と同様の仕様で刃部の硬質皮膜の膜厚が2μm、首部の硬質皮膜の膜厚が1μmのTiAlNを被覆した、つまり、膜厚比T2/T1が0.5であるものを製作した。刃部と首部の硬質皮膜の膜厚の測定は、本発明例1、比較例2、3をそれぞれ2本づつ作成し、そのうちの1本をエンドミル先端から2mmと5.5mmの箇所でエンドミル軸に直角に切断し、その切断面にて刃部の外周刃逃げ面の硬質皮膜の膜厚と首部の硬質皮膜の膜厚をそれぞれ測定した。首部の内部硬質皮膜の膜厚は、首部の硬質皮膜全体の膜厚から刃部の硬質皮膜の膜厚を引いた値とした。切削試験は、被削材に硬さがHRC52のSUS420J2を用い、前記被削材にエンドミル軸方向に対して傾斜角0.5°を有する基準面を設け、前記被削材の上面から下面に向かって等高線切削によって基準面と同様の傾斜を有する仕上げ面を創成する。切削条件は、回転数が10000min−1、エンドミル径方向の送り速度1m/min、仕上げ加工代として工作機械のエンドミル径方向切り込み量の指令を0.1mmに設定し、1回あたりのエンドミル軸方向切り込み量を0.1mmとして、乾式切削を行った。評価方法としては、切削長200m時の前記基準面と前記切削試験にて創成した仕上げ面との加工段差を基準面直角断面視で接触式形状測定器を用いて測定し、仕上げ加工代である0.1mmから加工段差の値を差し引いた形状誤差を評価した。その結果を表1に示す。
Example 1
Invention Example 1 uses an ultrafine cemented carbide having a Co content of 8 weight percent and a WC average particle size of 0.4 to 0.6 μm as a base material. As shown in FIG. 1, the blade portion 1 is provided with a ball blade and an outer peripheral blade, the number of blades is two blades, the blade diameter is 2 mm, that is, the ball blade radius is 1 mm, and the normal rake angle of the ball blade is the tip. The angle is set to 0 ° in the vicinity, 5 ° on the outer peripheral side, the rake angle of the outer peripheral blade is 5 °, the twist angle is 20 °, the core thickness is 1.5 mm corresponding to 75% of the blade diameter, and the effective blade length is 3 mm. A neck portion 2 and a neck taper portion 3 are connected to the blade portion 1, and a neck relief having a neck portion diameter of 1.92 mm, which is slightly smaller than the blade diameter, is provided. The length under the neck, which is the end mill axial direction distance from the end mill tip to the boundary between the neck 2 and the neck taper portion 3, is 10 mm, and the diameter of the shank portion 4 is 4 mm. Invention Example 1 is a hard film in which the blade part 1 is coated with TiAlN with a film thickness of 2 μm, the inner hard film of the neck part 2 is coated with TiAlN with a film thickness of 4 μm, and the outer periphery of the internal hard film is coated on the blade part 1. The same TiAlN as that of the hard film was coated to 2 μm, so that the thickness of the hard film at the neck was 6 μm in total. The film thickness ratio T2 / T1 of Example 1 of the present invention is 3.
As a coating method of the hard coating, first, after manufacturing a tool member having a shape in which the pre-processing blade portion, the neck portion 2 and the shank portion 4 are the portions where the blade portion shape is to be formed, the first coating step Then, TiAlN was coated on the neck as an internal hard film with a film thickness of 4 μm. Then, the grinding process for forming a blade part shape in the said front blade part is performed, TiAlN coat | covered by the said front blade part is scraped off, and the said tool member is finished in an end mill shape. Then, as the second coating step, TiAlN was coated with a film thickness of 2 μm on the blade and neck. By coating the hard film by the above coating method, the film thickness of the hard film at the blade portion was set to 2 μm, and the film thickness of the hard film at the neck portion was set to 6 μm.
For comparison, as Comparative Example 2, an end mill having the same specifications as Example 1 of the present invention, in which only the blade portion was coated with TiAlN with a film thickness of 2 μm, that is, the film thickness ratio T2 / T1 was 0, Comparative Example 3 As described above, TiAlN with the same specifications as Example 1 of the present invention and with a hard film thickness of the blade portion of 2 μm and a hard film thickness of the neck portion of 1 μm, that is, the film thickness ratio T2 / T1 is 0.5. I made something. Measurement of the film thickness of the hard coating on the blade part and the neck part was made for each of Example 1 and Comparative Examples 2, 3 each, one of which was an end mill shaft at 2 mm and 5.5 mm from the end mill tip. The thickness of the hard coating on the outer peripheral flank face of the blade and the thickness of the hard coating on the neck were measured at the cut surface. The film thickness of the internal hard film at the neck was a value obtained by subtracting the film thickness of the hard film at the blade from the film thickness of the entire hard film at the neck. In the cutting test, SUS420J2 having a hardness of HRC52 was used for the work material, a reference surface having an inclination angle of 0.5 ° with respect to the end mill axis direction was provided on the work material, and the work material was formed from the upper surface to the lower surface. A finished surface having the same inclination as the reference surface is created by contour cutting toward the surface. Cutting conditions are as follows: the rotational speed is 10,000 min-1, the feed speed in the end mill radial direction is 1 m / min, the finishing mill allowance is set to 0.1 mm for the end mill radial cutting depth of the machine tool, and the end mill axial direction per run Dry cutting was performed with a cut amount of 0.1 mm. As an evaluation method, a machining step between the reference surface at a cutting length of 200 m and a finished surface created by the cutting test is measured using a contact-type shape measuring device in a cross-sectional view perpendicular to the reference surface, and is a finishing machining allowance. The shape error obtained by subtracting the value of the processing step from 0.1 mm was evaluated. The results are shown in Table 1.

Figure 0004641960
Figure 0004641960

表1に示すように、本発明例1は、形状誤差を0.01mmに抑えることができた。更に仕上げ面は、ビビリ面もほとんどなく良好な仕上げ面性状を示し、工具のたわみ量を抑制し、高精度な形状加工が可能であった。それに対して、比較例2は形状誤差が0.025mmと大きく、仕上げ面もビビリ面が観察された。比較例3は、形状誤差が0.022mmと比較例2と比べると僅かに小さくなったが、仕上げ面はビビリ面が観察された。この結果より、膜厚比T2/T1が本願発明の範囲外の比較例2、3は、工具のたわみ量が抑えられず、形状精度が得られなかった。   As shown in Table 1, Example 1 of the present invention was able to suppress the shape error to 0.01 mm. Further, the finished surface has almost no chatter surface and exhibits a good finished surface property, which suppresses the amount of deflection of the tool and enables highly accurate shape processing. On the other hand, Comparative Example 2 had a large shape error of 0.025 mm, and a chatter surface was observed as a finished surface. In Comparative Example 3, the shape error was 0.022 mm, which was slightly smaller than that in Comparative Example 2, but a chatter surface was observed on the finished surface. From these results, in Comparative Examples 2 and 3 where the film thickness ratio T2 / T1 is outside the scope of the present invention, the deflection amount of the tool was not suppressed, and the shape accuracy was not obtained.

(実施例2)
次に、本発明例1と同様の仕様で、本発明例4〜9として首部の膜厚を3〜36μm、つまりT2/T1の値が1.5〜18の範囲のものと、比較例10として42μm、つまりT2/T1の値が21のものを実施例1と同様の試験に供した。その試験結果を表2に示す。
(Example 2)
Next, with the same specifications as Example 1 of the present invention, as Examples 4 to 9, the film thickness of the neck is 3 to 36 μm, that is, the value of T2 / T1 is in the range of 1.5 to 18, and Comparative Example 10 And 42 μm, that is, a T2 / T1 value of 21 was subjected to the same test as in Example 1. The test results are shown in Table 2.

Figure 0004641960
Figure 0004641960

表2に示すように、本発明例4〜9では形状誤差が0.004mm〜0.012mmと、形状誤差が小さく良好であった。その中でも膜厚比T2/T1が6である本発明例7が特に形状誤差が0.005mm未満と小さく、仕上げ面の状態もビビリ面がなく優れていた。これは、より首部のたわみが抑制されたためと考えられる。しかし、刃部と首部の硬質皮膜の膜厚比が大きい本発明例8、9は本発明例7と比較して若干形状誤差が増加した。これは、首部の硬質皮膜の占める割合が大きく、首部表面が脆いため切削中に首部の内部硬質皮膜に微小な亀裂が生じ、工具のたわみ抑制効果が少なくなったと考えられる。一方、膜厚比T2/T1が22である比較例10は、形状誤差が0.02mm以上と形状精度が得られず、切削開始時からすでに首部の内部硬質皮膜に亀裂が生じており、首部の補強がされなかったためと考えられる。図2は実施例1の本発明例1と比較例2〜3、実施例2の本発明例4〜9と比較例10の試験結果を元に作成したT2/T1の値と形状誤差の関係図であり、T2/T1が1〜20の範囲のものは形状誤差が0.015mm以下と良好であるのが分かる。また図2に示すように、T2/T1が3.5〜18の範囲では、形状誤差が0.010mm以下と更に好ましい形状精度で加工できることが分かる。   As shown in Table 2, in the inventive examples 4 to 9, the shape error was 0.004 mm to 0.012 mm, and the shape error was small and good. Among them, Example 7 of the present invention having a film thickness ratio T2 / T1 of 6 was particularly excellent with a small shape error of less than 0.005 mm and a finished surface with no chatter surface. This is considered to be because the deflection of the neck was further suppressed. However, the inventive examples 8 and 9 having a large thickness ratio of the hard coating on the blade part and the neck part slightly increased in shape error as compared with the inventive example 7. This is presumably because the neck hard coating occupies a large proportion and the neck surface is brittle, so that micro cracks occur in the neck internal hard coating during cutting, and the tool deflection suppressing effect is reduced. On the other hand, in Comparative Example 10 in which the film thickness ratio T2 / T1 is 22, the shape error is 0.02 mm or more and the shape accuracy is not obtained, and the internal hard film of the neck has already cracked since the start of cutting. This is thought to be due to the lack of reinforcement. FIG. 2 shows the relationship between the value of T2 / T1 and the shape error created based on the test results of Example 1 of the present invention and Comparative Examples 2 to 3 of Example 1, and Examples 4 to 9 of Example 2 and Comparative Example 10 of Example 2. It can be seen that the shape error in the range of T2 / T1 in the range of 1 to 20 is as good as 0.015 mm or less. In addition, as shown in FIG. 2, it can be seen that when T2 / T1 is in the range of 3.5 to 18, the shape error is 0.010 mm or less and processing can be performed with more preferable shape accuracy.

(実施例3)
本発明例11〜16として、本発明例1と同様の仕様で、首部の内部硬質皮膜の残留圧縮応力Sが1.5GPa〜9.1GPaとしたものを作成し、実施例1と同様の試験を行った。ここで、それぞれの残留圧縮応力Sの値は、第1回目被覆工程の被覆前後の薄板の変形量から算出した値である。試験結果を表3に示す。
(Example 3)
As Examples 11-16 of the present invention, those having a residual compression stress S of 1.5 GPa to 9.1 GPa of the internal hard coating of the neck with the same specifications as those of Example 1 of the present invention were prepared. Went. Here, the value of each residual compressive stress S is a value calculated from the deformation amount of the thin plate before and after coating in the first coating step. The test results are shown in Table 3.

Figure 0004641960
Figure 0004641960

表3に示すように、本発明例11〜16はいずれも形状誤差が0.015mm以下と小さく、工具のたわみ量を抑制し、高精度な形状加工ができた。特に、本発明例12〜14は、形状誤差が0.01mm以下と極めて優れた結果となった。これは、首部に高い残留圧縮応力を付与し、硬質皮膜が切削中に首部に発生する曲げの力に抗い、工具のたわみ量が抑えられたと考えられる。本発明例11〜16の仕上げ面はいずれも良好な結果を示したが、特に、本発明例13、14が非常にビビリ面のないきれいな面性状であった。図3は本発明例11〜16の残留圧縮応力Sと形状誤差との関係を示した図であり、残留圧縮応力Sが2GPa〜8GPaの範囲にあるものは形状誤差が0.01mm以下と良好であることが分かる。更に図3に示すように、3GPa〜6.5GPaの範囲で形状誤差が0.006mm以下と良好であることが分かる。   As shown in Table 3, all of Examples 11 to 16 of the present invention had a small shape error of 0.015 mm or less, suppressed the amount of tool deflection, and were able to perform highly accurate shape processing. In particular, Examples 12 to 14 of the present invention showed extremely excellent results with a shape error of 0.01 mm or less. This is presumably because high residual compressive stress was applied to the neck, the hard coating resisted the bending force generated at the neck during cutting, and the amount of deflection of the tool was suppressed. The finished surfaces of Invention Examples 11 to 16 all showed good results, but in particular, Invention Examples 13 and 14 were clean surface properties having no chatter surface. FIG. 3 is a diagram showing the relationship between the residual compressive stress S and the shape error of Examples 11 to 16 of the present invention. When the residual compressive stress S is in the range of 2 GPa to 8 GPa, the shape error is as good as 0.01 mm or less. It turns out that it is. Furthermore, as shown in FIG. 3, it can be seen that the shape error is as good as 0.006 mm or less in the range of 3 GPa to 6.5 GPa.

(実施例4)
本発明例1と同様の仕様で、本発明例17〜20として首部の内部硬質皮膜と、刃部と首部外部硬質皮膜の組成を変えたもの、比較例21、22として首部の内部硬質皮膜と、刃部と首部外部硬質皮膜の組成を同一にしたものを作成し、実施例1と同様の試験を行った。本発明例17〜20、比較例21、22の仕様と試験結果を表4に示す。
Example 4
With the same specifications as Example 1 of the present invention, the composition of the neck internal hard film and the blade part and the neck external hard film were changed as Invention Examples 17 to 20, and the internal hard film of the neck as Comparative Examples 21 and 22. The same composition of the blade part and the neck external hard film was prepared, and the same test as in Example 1 was performed. Table 4 shows the specifications and test results of Examples 17 to 20 of the present invention and Comparative Examples 21 and 22.

Figure 0004641960
Figure 0004641960

表4に示すように、本発明例17〜20は形状誤差が0.01mm以下と小さく、精度良く加工することができた。仕上げ面性状はビビリ面も観察されず、良好であった。これは、首部の内部硬質皮膜により首部の剛性を上げて工具のたわみ量を抑制しつつ、刃部の硬質皮膜の膜厚を2μm以下に抑えることができ、切削抵抗が増加せず、工具のたわみ量が抑制できたためと考えられる。特に、刃部にCrを含有する硬質皮膜を被覆した本発明例19、20は形状誤差が0.005mm以下と更に小さく、より工具のたわみ量を抑制できた。これは、首部の補強に加えて工具刃先にかかる切削抵抗を硬質皮膜の潤滑作用で低減できたためと考えられる。比較例21、22は形状誤差が0.015mm以上と大きく、形状精度が悪化した。これは、刃部の硬質皮膜の膜厚が首部の硬質皮膜の膜厚と同等であり、工具の刃先が厚い硬質皮膜により丸まり、切削抵抗が増加し、首部のたわみ量が増加したためであると考えられる。   As shown in Table 4, Examples 17 to 20 of the present invention had a small shape error of 0.01 mm or less and could be processed with high accuracy. The finished surface property was good with no chatter surface observed. This increases the rigidity of the neck by the internal hard coating of the neck and suppresses the amount of deflection of the tool, while the film thickness of the hard coating of the blade can be suppressed to 2 μm or less, the cutting resistance does not increase, This is thought to be because the amount of deflection could be suppressed. Particularly, Examples 19 and 20 of the present invention in which the blade portion was coated with a hard film containing Cr had a smaller shape error of 0.005 mm or less, and the deflection amount of the tool could be further suppressed. This is thought to be because the cutting resistance applied to the tool blade edge in addition to the neck reinforcement could be reduced by the lubricating action of the hard coating. In Comparative Examples 21 and 22, the shape error was as large as 0.015 mm or more, and the shape accuracy deteriorated. This is because the film thickness of the hard coating on the blade is equivalent to the film thickness of the hard coating on the neck, and the cutting edge of the tool is rounded by a thick hard coating, the cutting resistance increases, and the deflection of the neck increases. Conceivable.

(実施例5)
本発明例1と同様の仕様で、本発明例23〜28として首部の硬質皮膜の半価幅Hが異なる硬質皮膜を被覆し、実施例1と同様の試験を行った。本発明例23〜28の各仕様と、試験の結果を表5に示す。
(Example 5)
With the same specifications as in Invention Example 1, hard films having different half-value widths H of the hard film on the neck were coated as Invention Examples 23 to 28, and the same tests as in Example 1 were performed. Table 5 shows the specifications of the inventive examples 23 to 28 and the test results.

Figure 0004641960
Figure 0004641960

表6に示すように、本発明例23〜28において、形状誤差が0.015mm未満と少なく良好な結果となった。特に本発明例24〜27において形状誤差が0.01mm以下と良好であり、工具のたわみ量を抑制し、高精度な形状加工が可能となった。図4は本発明例23〜28の試験結果を元に作成した半価幅Hと形状誤差の関係図であり、図4より半価幅Hが0.8°<H<2.4°の範囲のとき形状誤差が0.01mm以下と良好になることが分かる。   As shown in Table 6, in Inventive Examples 23 to 28, the shape error was less than 0.015 mm, and good results were obtained. Particularly, in Examples 24-27 of the present invention, the shape error was as good as 0.01 mm or less, the amount of tool deflection was suppressed, and highly accurate shape processing became possible. FIG. 4 is a diagram showing the relationship between the half width H created based on the test results of the inventive examples 23 to 28 and the shape error. From FIG. 4, the half width H is 0.8 ° <H <2.4 °. It can be seen that the shape error is as good as 0.01 mm or less in the range.

(実施例6)
本発明例1と同様の仕様で、本発明例29〜38として組成が異なる各種硬質皮膜を被覆し、実施例1と同様の試験を行った。本発明例29〜38の仕様と試験結果を表6に示す。
(Example 6)
With the same specifications as Example 1 of the present invention, various hard coatings having different compositions as Invention Examples 29 to 38 were coated, and the same test as in Example 1 was performed. Table 6 shows the specifications and test results of Examples 29 to 38 of the present invention.

Figure 0004641960
Figure 0004641960

その結果、本発明例29〜38において、形状誤差が0.015mm未満と少なく良好な結果となった。特に、Al、Si、Ti、Cr、Nbから選択した二種以上の窒化物を被覆した本発明例29〜35は形状誤差が0.01mm以下と更に小さく、工具のたわみ量の抑制に効果的であった。   As a result, in Inventive Examples 29 to 38, the shape error was less than 0.015 mm, and good results were obtained. In particular, the inventive examples 29 to 35 coated with two or more nitrides selected from Al, Si, Ti, Cr, and Nb have a smaller shape error of 0.01 mm or less, and are effective in suppressing the amount of deflection of the tool. Met.

(実施例7)
実施例7として、本発明例1と同様の仕様で、首部の内部硬質皮膜の膜厚を変化させたものを比較した。膜厚の測定は、首部において、エンドミル軸方向に沿って刃先から5.5mm部、7mm部、8.5mm部、つまり、それぞれ首部の長さに対して25%、50%、75%の位置で行った。本発明例39〜41として首部の内部硬質皮膜の膜厚を2段階で変化させたもの、本発明例42〜44として首部の内部硬質皮膜の膜厚を3段階で変化させたものをそれぞれ製作し、実施例1と同様の試験を行った。本発明例39〜44の仕様と試験結果を表7に示す。
(Example 7)
As Example 7, the same specifications as in Example 1 of the present invention were compared, but the thickness of the internal hard film at the neck was changed. The film thickness is measured at the neck by 5.5 mm, 7 mm, and 8.5 mm from the cutting edge along the end mill axis direction, that is, 25%, 50%, and 75% of the length of the neck, respectively. I went there. Inventive Examples 39 to 41 are produced by changing the thickness of the internal hard coating on the neck in two stages, and Inventive Examples 42 to 44 are produced by changing the thickness of the internal hard coating on the neck in three stages. Then, the same test as in Example 1 was performed. Table 7 shows the specifications and test results of Examples 39 to 44 of the present invention.

Figure 0004641960
Figure 0004641960

表7に示すように、本発明例39〜44は実施例1の比較例2、3と比較して形状誤差が0.02mm未満と少なく良好な結果となった。特に、首部の長さの全体に内部硬質皮膜を被覆した本発明例39〜40、本発明例42〜43が形状誤差が0.01mm以下と良好であり、工具のたわみ量を抑え、高精度な形状精度が得られる。更に、首部の内部硬質皮膜の膜厚が厚く被覆された割合が多いほど形状誤差は小さく、本発明例39より本発明例40の方が形状精度が良好であることが分かる。首部の内部硬質皮膜の膜厚がシャンク部側へ向かうに従って増加する割合が大きいほど形状誤差は小さく、本発明例42より本発明例43の方が形状精度が良好であることが分かる。首部の内部硬質皮膜の膜厚を2段階で変化させた本発明例39〜41より3段階で変化させた本発明例42〜44の方が形状誤差が小さく、工具のたわみ量が抑制できたことがわかる。   As shown in Table 7, Examples 39 to 44 of the present invention had good results with less shape error of less than 0.02 mm compared to Comparative Examples 2 and 3 of Example 1. In particular, the present invention examples 39 to 40 and the present invention examples 42 to 43 in which the entire length of the neck is covered with an internal hard film is good with a shape error of 0.01 mm or less, suppressing the amount of tool deflection, and high accuracy. Accurate shape accuracy is obtained. Furthermore, it can be seen that the shape error is smaller as the ratio of the thick inner hard coating on the neck is increased, and the shape accuracy of the present invention example 40 is better than that of the present invention example 39. It can be seen that the larger the rate of increase in the thickness of the internal hard coating at the neck portion as it goes toward the shank portion, the smaller the shape error and the better the shape accuracy of Invention Example 43 than Invention Example 42. Inventive Examples 42 to 44 in which the thickness of the internal hard coating of the neck portion was changed in three stages from Inventive Examples 39 to 41 were smaller in shape error, and the amount of deflection of the tool could be suppressed. I understand that.

図1は、本願発明に係る被覆小径ボールエンドミルの概略図である。FIG. 1 is a schematic view of a coated small-diameter ball end mill according to the present invention. 図2は、膜厚比T2/T1と形状誤差との関係図である。FIG. 2 is a relationship diagram between the film thickness ratio T2 / T1 and the shape error. 図3は、残留圧縮応力Sと形状誤差との関係図である。FIG. 3 is a relationship diagram between the residual compressive stress S and the shape error. 図4は、半価幅Hと形状誤差の関係図である。FIG. 4 is a relationship diagram between the half width H and the shape error.

符号の説明Explanation of symbols

1:刃部
2:首部
3:首テーパ部
4:シャンク部
1: Blade part 2: Neck part 3: Neck taper part 4: Shank part

Claims (2)

刃径が2mm以下であり、刃部と首部とでは硬質皮膜の膜厚が異なるようにした被覆小径ストレートネックエンドミルであり、前記刃部の硬質皮膜の膜厚T1と前記首部の硬質皮膜の膜厚T2との膜厚比T2/T1は、1<T2/T1<20であることを特徴とする被覆小径ストレートネックエンドミル。   It is a coated small-diameter straight neck end mill having a blade diameter of 2 mm or less and having a hard film thickness different between the blade part and the neck part, and the hard film thickness T1 of the blade part and the hard film film of the neck part The coated small-diameter straight neck end mill, wherein the film thickness ratio T2 / T1 to the thickness T2 is 1 <T2 / T1 <20. 請求項1に記載の被覆小径ストレートネックエンドミルにおいて、前記首部の内部硬質皮膜の膜厚は、前記首部の刃部側より前記首部のシャンク部側の方が厚いことを特徴とする被覆小径ストレートネックエンドミル。   The coated small-diameter straight neck end mill according to claim 1, wherein the inner hard coating on the neck is thicker on the shank side of the neck than on the blade side of the neck. End mill.
JP2006090436A 2006-03-29 2006-03-29 Coated small diameter straight neck end mill Expired - Fee Related JP4641960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006090436A JP4641960B2 (en) 2006-03-29 2006-03-29 Coated small diameter straight neck end mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006090436A JP4641960B2 (en) 2006-03-29 2006-03-29 Coated small diameter straight neck end mill

Publications (2)

Publication Number Publication Date
JP2007260856A JP2007260856A (en) 2007-10-11
JP4641960B2 true JP4641960B2 (en) 2011-03-02

Family

ID=38634356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006090436A Expired - Fee Related JP4641960B2 (en) 2006-03-29 2006-03-29 Coated small diameter straight neck end mill

Country Status (1)

Country Link
JP (1) JP4641960B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021141116A1 (en) * 2020-01-09 2021-07-15 株式会社Moldino Ball end mill

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0825112A (en) * 1994-07-08 1996-01-30 Toshiba Tungaloy Co Ltd High temperature conductive coated tool
JP2002011611A (en) * 2000-06-29 2002-01-15 Hitachi Tool Engineering Ltd Taper neck end mill
JP2004160581A (en) * 2002-11-12 2004-06-10 Mitsubishi Materials Kobe Tools Corp Manufacturing method for diamond coated tool, and diamond coated tool
JP2004337988A (en) * 2003-05-13 2004-12-02 Hitachi Tool Engineering Ltd Coated rough-machining end mill
JP2005342835A (en) * 2004-06-03 2005-12-15 Hitachi Tool Engineering Ltd Small diameter ball end mill

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0825112A (en) * 1994-07-08 1996-01-30 Toshiba Tungaloy Co Ltd High temperature conductive coated tool
JP2002011611A (en) * 2000-06-29 2002-01-15 Hitachi Tool Engineering Ltd Taper neck end mill
JP2004160581A (en) * 2002-11-12 2004-06-10 Mitsubishi Materials Kobe Tools Corp Manufacturing method for diamond coated tool, and diamond coated tool
JP2004337988A (en) * 2003-05-13 2004-12-02 Hitachi Tool Engineering Ltd Coated rough-machining end mill
JP2005342835A (en) * 2004-06-03 2005-12-15 Hitachi Tool Engineering Ltd Small diameter ball end mill

Also Published As

Publication number Publication date
JP2007260856A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
JP4855395B2 (en) End mill with torsional rigidity
EP2177295B1 (en) Surface-coated cutting tool
JP5642215B2 (en) Spiral groove tap
EP3444059A1 (en) Small-diameter drill bit
JP6828824B2 (en) Manufacturing method of small diameter drill and small diameter drill
JP6420239B2 (en) Cutting insert, cutting tool, and method of manufacturing cut workpiece
JPH06218613A (en) Solid ball nose tool
JP5601464B2 (en) Thread milling machine for hardened materials
JP5301454B2 (en) Chip type ball end mill chip material
KR102362495B1 (en) Cutting tool and manufacturing method thereof
WO2017138170A1 (en) Replaceable tool edge rotary cutting tool and insert
JP5403480B2 (en) Small diameter CBN end mill
JP4787533B2 (en) Tap
KR101802161B1 (en) Ball endmill and method for manufacturing the same
JP4641960B2 (en) Coated small diameter straight neck end mill
JP7274090B2 (en) hard coating drill
JPWO2017138170A1 (en) Replaceable blade cutting tool and insert
JP5906838B2 (en) Square end mill
JP4794163B2 (en) Method for manufacturing throw-away tip
JP6627618B2 (en) Ball end mill
JP4448386B2 (en) Small-diameter ball end mill
JP2005052957A (en) Ball end mill
JP2003334715A (en) Taper end mill for machining rib groove
JP6089965B2 (en) Broach tool
KR102449187B1 (en) Cutting tool having hard coating layer and manufacturing method therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101130

R150 Certificate of patent or registration of utility model

Ref document number: 4641960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees