JP4640996B2 - Method for producing reduced glutathione - Google Patents

Method for producing reduced glutathione Download PDF

Info

Publication number
JP4640996B2
JP4640996B2 JP2006079258A JP2006079258A JP4640996B2 JP 4640996 B2 JP4640996 B2 JP 4640996B2 JP 2006079258 A JP2006079258 A JP 2006079258A JP 2006079258 A JP2006079258 A JP 2006079258A JP 4640996 B2 JP4640996 B2 JP 4640996B2
Authority
JP
Japan
Prior art keywords
reaction
glutathione
reduced glutathione
oxidized glutathione
hydrogen sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006079258A
Other languages
Japanese (ja)
Other versions
JP2007254324A (en
Inventor
正徳 内田
昌弘 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kohjin Holdings Co Ltd
Original Assignee
Kohjin Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kohjin Holdings Co Ltd filed Critical Kohjin Holdings Co Ltd
Priority to JP2006079258A priority Critical patent/JP4640996B2/en
Publication of JP2007254324A publication Critical patent/JP2007254324A/en
Application granted granted Critical
Publication of JP4640996B2 publication Critical patent/JP4640996B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Peptides Or Proteins (AREA)

Description

本発明は、酸化型グルタチオンを還元する還元型グルタチオンの製造方法に関する。   The present invention relates to a method for producing reduced glutathione that reduces oxidized glutathione.

還元型グルタチオンの製造方法として、従来より、酸化型グルタチオンを還元する方法が行われている。一般に、ジスルフィド結合を還元してチオール基とする反応は種々知られており、代表的なものとして、メルカプトエタノールなどのチオール性還元剤を用いる方法、電解還元する方法、ナトリウムボロハイドライドなどの還元剤を用いる方法、グルタチオンレダクターゼなどの酵素を用いる方法、等が知られている。
酸化型グルタチオンの還元についても、これらの方法について、ペプチドである特性、光学活性等、を考慮した適用が検討され、例えば、メルカプト低級アルコール及び二価の水溶性鉛塩を反応させる方法、液体アンモニア中でナトリウムと反応させる方法、亜鉛などの金属と鉱酸による方法、硫化ナトリウム、シアン化ナトリウム、ヨウ化ホスホニウムあるいは水素化ホウ素アルカリ金属塩などによる方法、接触還元方法、電解還元方法、水素貯蔵合金による還元方法(特許文献1、非特許文献1)、などが報告されている。
As a method for producing reduced glutathione, a method of reducing oxidized glutathione has been conventionally performed. In general, various reactions for reducing a disulfide bond to form a thiol group are known. Typical examples include a method using a thiol reducing agent such as mercaptoethanol, a method of electrolytic reduction, a reducing agent such as sodium borohydride. And a method using an enzyme such as glutathione reductase are known.
Regarding the reduction of oxidized glutathione, application of these methods in consideration of the characteristics of peptides, optical activity, etc. has been studied. For example, a method of reacting a mercapto lower alcohol and a divalent water-soluble lead salt, liquid ammonia Method of reacting with sodium, method using metal such as zinc and mineral acid, method using sodium sulfide, sodium cyanide, phosphonium iodide or alkali metal borohydride, catalytic reduction method, electrolytic reduction method, hydrogen storage alloy The reduction method by the method (Patent Document 1, Non-Patent Document 1) and the like have been reported.

しかしながら、これら方法を食品や医薬品に応用する場合は、試薬が高価であったり、反応装置に多額に費用を要したり、水溶液中での反応が十分に進行しなかったり、反応中に生成する副生物の除去が困難であったりする、という問題点を有しており、更にすぐれた方法の開発が望まれていた。
特公昭40−16529号公報、同46−33938号公報、同46−33939号公報、同47−8053号公報、同57−16196号公報、特開平4−154730号公報 J.Biol.Chem. 1946 116 469、Biochem.J. 1921 15 292、Biochem.J. 1935 29 1622、Biochem.Z. 1931 230 353、J.Org.Chem. 1957 22 805
However, when these methods are applied to foods and pharmaceuticals, the reagents are expensive, the reactor is expensive, the reaction in the aqueous solution does not proceed sufficiently, or it is generated during the reaction. There is a problem that removal of by-products is difficult, and the development of a better method has been desired.
Japanese Patent Publication Nos. 40-16529, 46-33938, 46-33939, 47-8053, 57-16196, and Japanese Patent Laid-Open No. 4-154730. J. Biol. Chem. 1946 116 469, Biochem. J. 1921 15 292, Biochem. J. 1935 29 1622, Biochem. Z. 1931 230 353, J. Org. Chem. 1957 22 805

本発明は、特殊な設備を必要とすることなく、水溶液中でも収率よく反応が進行する、簡便で工業的に有利な酸化型グルタチオンの還元方法を提供することを課題とする。   An object of the present invention is to provide a simple and industrially advantageous method for reducing oxidized glutathione, in which the reaction proceeds in a high yield even in an aqueous solution without requiring special equipment.

本発明者らは、かかる課題を解決すべく研究の結果、銅化合物、鉄化合物及び硫化水素を用いることで課題を解決できることを見いだし、本発明に到達した。
すなわち本発明は、
(1)酸化型グルタチオンを、銅化合物、鉄化合物及び硫化水素存在下、還元することを特徴とする、還元型グルタチオンの製造方法、
を提供するものである。
As a result of research to solve such problems, the present inventors have found that the problems can be solved by using a copper compound, an iron compound and hydrogen sulfide, and have reached the present invention.
That is, the present invention
(1) A method for producing reduced glutathione, which comprises reducing oxidized glutathione in the presence of a copper compound, an iron compound and hydrogen sulfide,
Is to provide.

本発明は、高価な試薬、特殊な設備等を使用することなく、副生物がほとんどなく高収率で、簡便で、工業的に有利な製造方法である。   The present invention is a simple and industrially advantageous production method with high yield and almost no by-products without using expensive reagents, special equipment, and the like.

以下、本発明を詳細に説明する。
本発明の出発物質である酸化型グルタチオンは、その由来は特に限定されず、また、精製品でも粗精製品でも用いることが出来る。更に、本反応は水溶液中で好適に進行するため、酸化型グルタチオンを含む水溶液もそのまま用いることができる。
Hereinafter, the present invention will be described in detail.
The origin of the oxidized glutathione which is the starting material of the present invention is not particularly limited, and it can be used in either a purified product or a crude product. Furthermore, since this reaction suitably proceeds in an aqueous solution, an aqueous solution containing oxidized glutathione can be used as it is.

還元は、銅化合物、鉄化合物及び硫化水素存在下実施される。
用いられる銅化合物としては、亜酸化銅、硫酸銅等を例示することができるが、一価の銅が好ましい。
銅化合物は、酸化型グルタチオンに対して、0.5〜10倍モル程度、好ましくは当モルから5倍モル程度使用することが好ましい。これ未満であると反応が十分に進行せず、また、これを越えて用いても収率の向上には寄与しない。
The reduction is carried out in the presence of a copper compound, an iron compound and hydrogen sulfide.
Examples of the copper compound to be used include cuprous oxide and copper sulfate, and monovalent copper is preferable.
The copper compound is used in an amount of about 0.5 to 10 times mol, preferably about equimolar to 5 times mol with respect to oxidized glutathione. If it is less than this, the reaction does not proceed sufficiently, and even if it is used beyond this, it does not contribute to the improvement of the yield.

用いられる鉄化合物としては、鉄の二価、三価の無機化合物が好適に用いられる。例えば、酸化第一鉄、水酸化第一鉄、硫酸第一鉄、酸化第二鉄、水酸化第二鉄、硫酸第二鉄、等を例示することができる。
鉄化合物は、酸化型グルタチオン100重量部に対して、5〜200重量部、好ましくは10〜100重量部程度用いることが好ましい。これ未満であると反応が十分に進行せず、また、これを越えて用いても収率の向上には寄与しない。
As the iron compound used, iron divalent and trivalent inorganic compounds are preferably used. For example, ferrous oxide, ferrous hydroxide, ferrous sulfate, ferric oxide, ferric hydroxide, ferric sulfate, etc. can be exemplified.
The iron compound is preferably used in an amount of 5 to 200 parts by weight, preferably 10 to 100 parts by weight, per 100 parts by weight of oxidized glutathione. If it is less than this, the reaction does not proceed sufficiently, and even if it is used beyond this, it does not contribute to the improvement of the yield.

反応は、酸化型グルタチオン、銅化合物、鉄化合物及び硫化水素を、溶媒存在下、撹拌することにより実施される。
硫化水素の導入は、硫化水素の飽和溶液を用いることにより、あるいは溶液中に、直接、硫化水素ガスを導入しながら反応させることもできる。
用いられる溶媒としては、反応を阻害しないものであれば制限はないが、特に水が好ましい。
反応温度は室温から若干高められた温度、具体的には10〜50℃程度、反応時間は、反応条件にもよるが、30分から10時間程度で十分である。反応時間が長くなる場合、副生物の生成は認められないものの、生成した還元型グルタチオンが酸化され、酸化型グルタチオンに変換される場合があり、好ましくない。
The reaction is carried out by stirring oxidized glutathione, a copper compound, an iron compound and hydrogen sulfide in the presence of a solvent.
Hydrogen sulfide can be reacted by using a saturated solution of hydrogen sulfide or by directly introducing hydrogen sulfide gas into the solution.
The solvent used is not limited as long as it does not inhibit the reaction, but water is particularly preferable.
The reaction temperature is slightly elevated from room temperature, specifically about 10 to 50 ° C., and the reaction time is about 30 minutes to 10 hours, although depending on the reaction conditions. When the reaction time is long, the formation of by-products is not observed, but the produced reduced glutathione is oxidized and converted to oxidized glutathione, which is not preferable.

反応終了後、目的物の単離は、公知の方法、例えば、沈殿物を慮去し、濾液を脱気後、銅塩にすることにより、容易に単離・精製することができる。   After completion of the reaction, the target product can be easily isolated and purified by a known method, for example, by removing the precipitate and degassing the filtrate to obtain a copper salt.

以下実施例を挙げて、本発明を詳細に説明する。
実施例1
水400mlに、亜酸化銅4.66g、酸化第一鉄2.0g及び酸化型グルタチオン4gを添加し、35℃、撹拌下、硫化水素を徐々に吹き込んだ。
そのまま硫化水素を吹き込みながら2時間反応し、高速液体クロマトグラフィーで分析を行ったところ、還元型グルタチオン9.04mg/ml、酸化型グルタチオン0.79g/mlであった(転換率88.6%)。なお、高速液体クロマトグラフィーで、他のピークは観察されなかった。
反応終了後、反応液を濾過し、得られた濾液を撹拌し残存している硫化水素を脱気した。本溶液に亜酸化銅を添加し、還元型グルタチオンを銅塩として単離し、以下、常法により還元型グルタチオンを得た。
融点:184℃ 旋光度:[α]=−16.42°(C=4、HO)
本化合物は、標品との赤外線吸収スペクトルの比較により、その構造を同定した。
Hereinafter, the present invention will be described in detail with reference to examples.
Example 1
To 400 ml of water, 4.66 g of cuprous oxide, 2.0 g of ferrous oxide and 4 g of oxidized glutathione were added, and hydrogen sulfide was gradually blown in at 35 ° C. with stirring.
The reaction was carried out for 2 hours while blowing hydrogen sulfide as it was, and analysis by high performance liquid chromatography revealed that the reduced glutathione was 9.04 mg / ml and the oxidized glutathione was 0.79 g / ml (conversion rate: 88.6%). . In addition, other peaks were not observed by high performance liquid chromatography.
After completion of the reaction, the reaction solution was filtered, and the resulting filtrate was stirred to degas the remaining hydrogen sulfide. Cuprous oxide was added to this solution, and reduced glutathione was isolated as a copper salt. Hereinafter, reduced glutathione was obtained by a conventional method.
Melting point: 184 ° C. Optical rotation: [α] D = -16.42 ° (C = 4, H 2 O)
The structure of this compound was identified by comparing the infrared absorption spectrum with that of a standard product.

実施例2
実施例1において、酸化第一鉄にかえて水酸化第二鉄2.0gを用いた以外は実施例1と同様に実施した。
1時間反応し、高速液体クロマトグラフィーで分析を行ったところ、還元型グルタチオン7.26mg/ml、酸化型グルタチオン1.94g/mlであった(転換率79.3%)。なお、高速液体クロマトグラフィーで、他のピークは観察されなかった。
Example 2
In Example 1, it implemented like Example 1 except having used ferric hydroxide 2.0g instead of the ferrous oxide.
When reacted for 1 hour and analyzed by high performance liquid chromatography, it was 7.26 mg / ml reduced glutathione and 1.94 g / ml oxidized glutathione (conversion rate 79.3%). In addition, other peaks were not observed by high performance liquid chromatography.

実施例3
実施例1において、酸化第一鉄にかえて硫酸第二鉄2.2gを用いた以外は実施例1と同様に実施した。
2時間反応し、高速液体クロマトグラフィーで分析を行ったところ、還元型グルタチオン6.14mg/ml、酸化型グルタチオン2.92g/mlであった(転換率68.5%)。なお、高速液体クロマトグラフィーで、他のピークは観察されなかった。
Example 3
In Example 1, it carried out like Example 1 except having used ferric sulfate 2.2g instead of ferrous oxide.
When reacted for 2 hours and analyzed by high performance liquid chromatography, it was 6.14 mg / ml reduced glutathione and 2.92 g / ml oxidized glutathione (conversion rate 68.5%). In addition, other peaks were not observed by high performance liquid chromatography.

比較例1
実施例1において、亜酸化銅を加えることなく、他は実施例1と同様に反応を実施した。
2時間反応し、高速液体クロマトグラフィーで分析を行ったところ、酸化型グルタチオンが減少していることが観察されたが、還元型グルタチオンへの変換ではなく、構造未確認の化合物への分解が生じていた。
Comparative Example 1
In Example 1, the reaction was carried out in the same manner as in Example 1 except that no cuprous oxide was added.
When the reaction was carried out for 2 hours and analyzed by high performance liquid chromatography, it was observed that the oxidized glutathione decreased, but it was not converted to reduced glutathione but decomposed into an unidentified compound. It was.

以上説明してきたように、本発明は、特殊な設備を必要とすることなく、水溶液中でも収率よく反応が進行する、簡便で工業的に有利な酸化型グルタチオンの還元方法であり、食品、医薬品、化粧品等に使用される還元型グルタチオンを有利に製造することができる。   As described above, the present invention is a simple and industrially advantageous method for reducing oxidized glutathione, in which the reaction proceeds with good yield even in an aqueous solution without the need for special equipment. In addition, reduced glutathione used in cosmetics and the like can be advantageously produced.

Claims (1)

酸化型グルタチオンを、銅化合物、鉄化合物及び硫化水素存在下、還元することを特徴とする、還元型グルタチオンの製造方法。   A method for producing reduced glutathione, which comprises reducing oxidized glutathione in the presence of a copper compound, an iron compound and hydrogen sulfide.
JP2006079258A 2006-03-22 2006-03-22 Method for producing reduced glutathione Expired - Fee Related JP4640996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006079258A JP4640996B2 (en) 2006-03-22 2006-03-22 Method for producing reduced glutathione

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006079258A JP4640996B2 (en) 2006-03-22 2006-03-22 Method for producing reduced glutathione

Publications (2)

Publication Number Publication Date
JP2007254324A JP2007254324A (en) 2007-10-04
JP4640996B2 true JP4640996B2 (en) 2011-03-02

Family

ID=38628926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006079258A Expired - Fee Related JP4640996B2 (en) 2006-03-22 2006-03-22 Method for producing reduced glutathione

Country Status (1)

Country Link
JP (1) JP4640996B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2695890B1 (en) 2011-04-06 2016-05-18 Kyowa Hakko Bio Co., Ltd. Process for producing reduced glutathione

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5716196B2 (en) * 1976-04-28 1982-04-03
JP2002538079A (en) * 1998-11-23 2002-11-12 ノヴェロス セラピューティクス, インコーポレイテッド Hexapeptides with stabilized disulfide bonds and derivatives thereof that regulate metabolism, proliferation, differentiation and apoptosis
JP4154730B2 (en) * 2003-11-14 2008-09-24 株式会社村田製作所 Directional coupler

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4633939B1 (en) * 1969-05-20 1971-10-05

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5716196B2 (en) * 1976-04-28 1982-04-03
JP2002538079A (en) * 1998-11-23 2002-11-12 ノヴェロス セラピューティクス, インコーポレイテッド Hexapeptides with stabilized disulfide bonds and derivatives thereof that regulate metabolism, proliferation, differentiation and apoptosis
JP4154730B2 (en) * 2003-11-14 2008-09-24 株式会社村田製作所 Directional coupler

Also Published As

Publication number Publication date
JP2007254324A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
EP3544954B1 (en) Solvent-free alkane sulfonation
EP3235801A1 (en) Carboxylic acid ester production method
JP2008514695A (en) Method for producing pyruvic acid
JP4640997B2 (en) Method for producing reduced glutathione
JP4640996B2 (en) Method for producing reduced glutathione
WO2007034972A1 (en) Method for recovering tungsten
JP4407062B2 (en) Method for producing diphenyl disulfide derivative
US20130012737A1 (en) Process for producing sulfur-containing amino acid or salt thereof
JPWO2019187534A1 (en) Manufacturing method of reduced glutathione
JP2001187778A (en) METHOD FOR PRODUCING beta-MERCAPTOPROPIONIC ACID
US20070027211A1 (en) Process for production of bicalutamide
JPS6340424B2 (en)
JP2007277109A (en) Method for producing reduced type glutathion
EP1678129B1 (en) Improved process for preparing benzhydrylthioacetamide
JP4617667B2 (en) Method for producing thiol compound
JP4465674B2 (en) Method for producing benzyl (difluoromethyl) sulfide compound
TW200738717A (en) Manufacturing method of carbapenem derivative by continuous reaction
JP2010018531A (en) Method for producing 3-benzyloxybenzenethiol
WO2004039769A1 (en) A process for the production of highly pure n-(4-cyano-3­trifluoromethylphenyl)-3-(4-fluorophenylthio)-2-hydroxy-2­methylpropanamide
JP4271924B2 (en) Method for producing 4-mercaptophenols
JP2005060371A (en) Method for producing pyridylethylthio compound, method for producing modified ion-exchanger and bisphenol comound
JP2007077038A (en) Method for producing crystalline n-nitroso-n-phenylhydroxylamine aluminum salt
JP4743060B2 (en) Tungsten recovery method
JP4420430B2 (en) Method for producing 4-mercaptophenols
JP2007326786A (en) Method for producing disulfide compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101125

R150 Certificate of patent or registration of utility model

Ref document number: 4640996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees