JP4637049B2 - Method and apparatus for cooling and solidifying fluid food - Google Patents

Method and apparatus for cooling and solidifying fluid food Download PDF

Info

Publication number
JP4637049B2
JP4637049B2 JP2006124651A JP2006124651A JP4637049B2 JP 4637049 B2 JP4637049 B2 JP 4637049B2 JP 2006124651 A JP2006124651 A JP 2006124651A JP 2006124651 A JP2006124651 A JP 2006124651A JP 4637049 B2 JP4637049 B2 JP 4637049B2
Authority
JP
Japan
Prior art keywords
cooling
gas flow
fluid food
belt
conveyor belt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006124651A
Other languages
Japanese (ja)
Other versions
JP2007295813A (en
Inventor
雅幸 佐藤
正典 小林
寿重 新田
健夫 小阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP2006124651A priority Critical patent/JP4637049B2/en
Publication of JP2007295813A publication Critical patent/JP2007295813A/en
Application granted granted Critical
Publication of JP4637049B2 publication Critical patent/JP4637049B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Formation And Processing Of Food Products (AREA)
  • Freezing, Cooling And Drying Of Foods (AREA)
  • Seeds, Soups, And Other Foods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for cooling and solidifying fluid food free from liquid leakage without complicating production work: and to provide a device for cooling and solidifying fluid food. <P>SOLUTION: The method for cooling and solidifying fluid food comprises charging fluid food containing oil and fat, or starch and wheat flour to a conveying belt through a fluid food-charging part formed at the approach of the conveying belt followed by cooling and solidifying the fluid food (hereinafter referred to 'workpiece') conveyed via the belt due to coldness given via the conveying belt, wherein the work is cooled and solidified until the workpiece loses fluidity due to the coldness given to the work starting from at least the approach of the conveying belt while a gas flow dam formed of gas flow along both of the right and left sides of the conveying belt prevents the workpiece from protruding to the side faces of the conveying belt. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、カレールーやシチュールーやジュース凍結等の液状のものより帯状ないし板状固化部材を得る流動性食品冷却固化方法及びその装置に関する。   The present invention relates to a fluid food cooling and solidifying method and apparatus for obtaining a band-like or plate-like solidified member from a liquid such as curry roux, stew roux or frozen juice.

従来、例えばカレールーを得るには、動物性油脂、小麦粉、調味料、香辛料等をそれぞれ適量調合加熱処理して液状としたものを型に流し込み冷却固化して帯状ないし板状に整形固化している。
また、ジュース凍結等の場合は、抽出液ないし濃縮した液状のものを凍結工程に移し粉砕乾燥するが、前記乾燥工程の前工程では移動するステンレス製スチールベルト上で数mm厚さに急速凍結を行っている。
Conventionally, for example, to obtain a carrero, animal fats and oils, wheat flour, seasonings, spices, etc. are mixed and heat-treated in appropriate amounts to form a liquid, poured into a mold, cooled and solidified, and shaped into a belt or plate .
In the case of freezing juice, etc., the extract or concentrated liquid is transferred to the freezing step and pulverized and dried, but in the previous step of the drying step, it is rapidly frozen to a thickness of several mm on the moving stainless steel belt. Is going.

このような型流し込み方式のものは、バッチ式であるため、型容器への液状ワークの充填に時間がかかり、固化後の次工程への移行に手数が掛かるばかりでなく原料歩留まりが悪くコスト高の原因を形成する。   Since such a mold casting method is a batch type, it takes a long time to fill the mold container with the liquid work, and not only does it take time to move to the next process after solidification, but also the raw material yield is poor and the cost is high. Form the cause of.

また、流動性食品の連続冷却固化方法及びその装置として、特許文献1に開示されている帯状ゲル状物の連続製造装置及び帯状ゲル状物の製法が挙げられる。上記先行技術は、整型用パッキングベルトを使用した帯状ゲル状物の連続整型をなし、それを冷却固化する方法及び装置に関するもので、ワークの搬送コンベアと、該搬送コンベアの上部に適当間隔をあけて対向面が同一方向にかつ同一速度で走行する対向コンベアとを夫々水平に設け、上記搬送コンベアと対向コンベアとの間に挟まり搬送コンベアと同調して回動する一対のパッキングベルトを設け、その間隔をワークの幅に対応する寸法に設定したもので、上記搬送コンベアと対向コンベアとパッキングベルトでコンベアの始めより終わりまで同一の空間寸法を持つ空間を形成させ、該空間に注入されたゾル状液を運搬しつつ冷却によるゲル化整型をして一定寸法の幅を持つ帯状固化部材が形成させるようにしたものである。   Moreover, as a continuous cooling solidification method and apparatus of a fluid food, the continuous production apparatus of the strip | belt-shaped gel-like material currently disclosed by patent document 1 and the manufacturing method of a strip | belt-shaped gel-like material are mentioned. The above prior art relates to a method and apparatus for continuously forming a band-like gel using a packing belt for shaping, and cooling and solidifying it. A pair of packing belts that are sandwiched between the transport conveyor and the counter conveyor and rotated in synchronization with the transport conveyor are provided horizontally, with the opposing surfaces running in the same direction and at the same speed. The spacing is set to a dimension corresponding to the width of the workpiece, and the above-described conveyor, counter conveyor, and packing belt form a space having the same spatial dimension from the beginning to the end of the conveyor, and are injected into the space. A belt-shaped solidified member having a certain width is formed by gelling and shaping by cooling while carrying a sol-like liquid.

ところで、液状ワークを搬送コンベア上での冷却により整型して一定幅の帯状固化部材を得るためには、
a、液状ワーク注入部材が前記幅規制をするパッキングベルトと搬送コンベアとの接触面よりの液漏れがないこと、
b、ワークの幅寸法を規制する前記パッキングベルトの間隔が寸法規制の始めより終わりまで常に一定であること、
が要求されるが、上記特許文献1に開示された方法及び装置では、隙間の発生が特にコンベアの中間部では顕著になりがちの構造的欠陥を持ち、これを避ける為にはベルトを強く張るとか、搬送コンベア面への接触の度合いを強くすると言う手段を必要とするため、押圧の度合いを高めることも考えられるがそのため、逆に上記ベルトの左右蛇行を起こし、液状ワークの注入される前記矩形状空間の位置のずれや規制幅の変動を起こす問題がある。
このように、特許文献1に開示された方法及び装置では液漏れの問題を十分に解決しているとは言えない状態にある。
By the way, in order to obtain a belt-shaped solidified member having a certain width by shaping the liquid work by cooling on the conveyor,
a, the liquid workpiece injection member has no liquid leakage from the contact surface between the packing belt and the conveyor, which regulates the width;
b, the interval between the packing belts regulating the width dimension of the workpiece is always constant from the beginning to the end of the dimension regulation;
However, in the method and apparatus disclosed in Patent Document 1, the occurrence of a gap has a structural defect that tends to be noticeable especially in the middle part of the conveyor, and in order to avoid this, the belt is stretched strongly. However, since a means to increase the degree of contact with the conveyor surface is required, it is conceivable to increase the degree of pressing, but conversely, the belt causes left and right meandering, and the liquid workpiece is injected. There is a problem that the position of the rectangular space is displaced and the regulation width is changed.
As described above, the method and apparatus disclosed in Patent Document 1 cannot be said to sufficiently solve the problem of liquid leakage.

そこで、流動性食品の連続冷却固化装置として、特許文献2には、液状ワークの連続整型冷却固化装置が開示されている。上記先行技術は、スチールベルトの左右のワーク搭載面を走行側面とする一対の平行する堰コンベアによって油脂含有若しくは澱粉及び小麦粉含有の流動性食品をスチールベルトで搬送しながら凍結する際のスチールベルトよりのはみ出し及びたれ防止をしているものである。   Therefore, as a continuous cooling and solidifying device for fluid food, Patent Document 2 discloses a continuous shaped cooling and solidifying device for a liquid workpiece. The above-mentioned prior art is a steel belt when freezing fluid food containing fats and oils or starch and wheat flour while being conveyed by a steel belt by a pair of parallel weir conveyors with the left and right workpiece mounting surfaces of the steel belt as the running side. This prevents protrusion and sagging.

特公平4−57316号公報Japanese Patent Publication No. 4-57316 特開平11−155541号公報JP 11-155541 A

しかしながら、特許文献2に開示された装置においては、堰コンベアではスチールベルトと面する側が、常に堰コンベアに接触し、毎日のバッチ生産毎に堰コンベアの駆動メカニカル部分を洗浄しなければならず、生産作業が煩雑化する。
従って、本発明はかかる従来技術の問題に鑑み、生産作業が煩雑化することなく、液漏れのない流動性食品冷却固化方法及びその装置を提供することを目的とする。
However, in the apparatus disclosed in Patent Document 2, the side facing the steel belt in the dam conveyor is always in contact with the dam conveyor, and the driving mechanical part of the dam conveyor has to be washed for every daily batch production, Production work becomes complicated.
Therefore, in view of the problems of the prior art, an object of the present invention is to provide a fluidized food cooling and solidifying method and an apparatus therefor which do not leak liquid without complicating production work.

上記課題を解決するため本発明においては、
油脂含有若しくは澱粉及び小麦粉含有の流動性食品を搬送ベルトの入り口に設けた流動性食品投入部より搬送ベルトに投入した後、該ベルトにより搬送されている流動性食品(以下ワークという)に、該搬送ベルトを介して付与した冷熱により冷却固化する流動性食品冷却固化方法において、
前記搬送ベルトの少なくとも入り口側から、前記ワークへの冷熱付加によりワークの流動性がなくなるまでの間、搬送ベルトの左右両側に沿って正圧気体流により生成される気体流堰によりワークの搬送ベルト側面へのはみ出しを防止しながら冷却固化するとともに、
前記気体流堰の正圧気体流の圧力をワーク搬送方向前段側より後段側に向けて複数段階に異ならせ、ワーク搬送方向前段側の圧力を後段側の圧力より大きくしたことを特徴とする。
In order to solve the above problems, in the present invention,
After the fluid food containing fats and oils or starch and flour is introduced into the conveyor belt from the fluid food input part provided at the entrance of the conveyor belt, the fluid food (hereinafter referred to as workpiece) conveyed by the belt In the liquid food cooling and solidifying method, which is cooled and solidified by cold heat applied via a conveyor belt,
From at least the inlet side of the conveyor belt, between the cold addition to the work to the fluidity of the workpiece is eliminated, the conveyor belt of the workpiece by a gas weir generated by positive pressure gas flow along the lateral sides of the conveyor belt While cooling and solidifying while preventing protrusion to the side ,
The pressure of the positive pressure gas flow of the gas flow weir is varied in a plurality of stages from the front side in the workpiece conveyance direction to the rear side, and the pressure in the front side in the workpiece conveyance direction is made larger than the pressure in the rear side .

このように、搬送ベルトの少なくとも入り口側から冷熱付加によりワークの流動性がなくなるまでの間、搬送ベルトの左右両側に沿って気体流により生成される気体流堰を設けることによって、ワークの搬送ベルト側面へのはみ出し防止をすることができ、液漏れを防止することができる。この際、ワークの流動性がなくなるまでは、堰が無い場合に、ワークの側面へのはみ出し、液漏れの可能性があるため、堰は搬送ベルトの少なくとも入り口側から冷熱付加によりワークの流動性がなくなるまでの間は必要である。
また、ワークの搬送ベルト側面へのはみ出し防止の堰を気体流堰とすることで、堰の洗浄の必要がなくなるため、生産作業が煩雑化することがない。
In this way, by providing the gas flow weirs generated by the gas flow along the left and right sides of the conveyor belt until the fluidity of the workpiece is lost due to the addition of cold heat from at least the entrance side of the conveyor belt, the workpiece conveyor belt is provided. The protrusion to the side surface can be prevented and liquid leakage can be prevented. At this time, until there is no weir, there is a possibility that the weir may protrude to the side of the work and cause liquid leakage if there is no weir. It is necessary until there is no more.
Moreover, since the weir for preventing the workpiece from protruding to the side of the conveyor belt is a gas flow weir, there is no need to clean the weir, so that the production work is not complicated.

また、前記気体流が搬送ベルト搬送方向と平行に実質的にカーテン状に生成される正圧気体流であることを特徴とする。
ここで、実質的にカーテン状とは、気体流のうち、ワークと接する部分に気体流の隙間がない状態であればよい。気体流を作り出すための噴出し口には例えば、ノズルにスリットを入れてスリットから出た気体で気体流をつくる、ノズルに多数孔を設けて孔から出た気体で気体流をつくるという形態をとることができる。
このように気体流を搬送方向と平行に実質カーテン状に生成される正圧気体流とすることにより、ワークの側面へのはみ出し、液漏れする可能性のある箇所を確実に防ぐことができるため、ワークの側面へのはみ出し、液漏れをより確実に防ぐことができる。
Further, the gas flow is a positive pressure gas flow generated substantially in a curtain shape in parallel with the conveyance belt conveyance direction.
Here, the substantially curtain shape may be a state in which there is no gap in the gas flow in the portion in contact with the workpiece in the gas flow. For example, the nozzle for creating a gas flow has a form in which a slit is formed in the nozzle and a gas flow is generated by the gas emitted from the slit, and a gas flow is generated by the gas discharged from the hole by providing a plurality of holes in the nozzle. Can take.
In this way, by making the gas flow a positive pressure gas flow generated in a substantially curtain shape in parallel with the conveying direction, it is possible to reliably prevent a portion that may overflow to the side surface of the workpiece and cause liquid leakage. , It can be prevented more reliably from protruding to the side of the workpiece and liquid leakage.

さらに、前記正圧気体流が搬送ベルト上の左右両側に位置する一対の平行カーテン流であり、該一対の平行カーテン流の幅が搬送ベルト幅より小であることを特徴とする。
まず、正圧気体流を搬送ベルト上の左右両側に位置する一対の平行カーテン流とすることにより、搬送ベルト上のワークの偏りを無くすことができる。そして、該一対の平行カーテン流の幅が搬送ベルト幅より小とすることで、搬送ベルト端部にも隙間ができずワークの側面へのはみ出し、液漏れをさらに確実に防ぐことができる。
Further, the positive pressure gas flow is a pair of parallel curtain flows located on the left and right sides on the conveying belt, and the width of the pair of parallel curtain flows is smaller than the width of the conveying belt.
First, by making the positive pressure gas flow a pair of parallel curtain flows located on the left and right sides on the conveyor belt, it is possible to eliminate the bias of the workpiece on the conveyor belt. And since the width | variety of this pair of parallel curtain flow is made smaller than a conveyance belt width, a clearance gap is not made also in the conveyance belt edge part but the protrusion to the side surface of a workpiece | work and a liquid leak can be prevented more reliably.

さらにまた、前記搬送ベルト上の雰囲気温度を前記流動性食品(ワーク)の投入温度と同等かそれ以下に設定し、さらに前記正圧気体流を該流動性食品(ワーク)の投入温度と同等かそれ以下に設定したことを特徴とする。
このことによって、ワークの側面へのはみ出し、液漏れの起こりやすい搬送ベルト上のカーテン流付近のワークが他の部分よりも先に冷却固化されて、ワークの側面へのはみ出し、液漏れの防止をさらに効率的に行うことができる。
Moreover, the ambient temperature on the conveyor belt is set to input temperature equal to or less than the fluid food (work), or further the equivalent input temperature of the positive pressure gas flow to the flowable food (work) It is characterized by being set below that.
As a result, the work in the vicinity of the curtain flow on the conveyor belt, which is prone to overflowing and leaking from the workpiece, is cooled and solidified before the other parts, preventing protrusion to the side of the workpiece and prevention of liquid leakage. Furthermore, it can be performed efficiently.

請求項5は本発明を好適に実施する装置に関する発明で、油脂含有若しくは澱粉及び小麦粉含有の流動性食品を搬送ベルトの入り口に投入する流動性食品投入部と、搬送ベルトにより流動性食品(以下ワークという)を搬送しながらそのワーク上部及びベルト背面側に位置する冷熱体によりワークの冷却固化を行う流動性食品冷却固化装置において、
前記搬送ベルトの左右両側に沿ってワーク上方より搬送ベルトに向けて正圧気体流を生成する手段を設け、該正圧気体流を搬送ベルトの少なくとも入り口側から、前記ワークへの冷熱付加によりワークの流動性がなくなるまでの間、正圧気体流が存在するように、前記正圧気体流を生成する正圧気体流生成手段を搬送ベルトのワーク搭載面を挟んでベルト側端両側に位置させるとともに、
前記正圧気体流生成手段の圧力をワーク搬送方向前段側より後段側に向けて複数段階に異ならせ、ワーク搬送方向前段側の圧力を、ワーク搬送方向後段側の圧力より大きくしたことを特徴とする。
Claim 5 is an invention relating to an apparatus for suitably carrying out the present invention. A fluid food input part for introducing fluid food containing fats and oils or starch and flour into the entrance of the conveyor belt, In a fluid food cooling and solidifying device that cools and solidifies a workpiece by a cooling body located on the upper part of the workpiece and on the back side of the belt while conveying the workpiece)
From at least the inlet side of the along the right and left sides of the conveyor belt provided with means for generating a positive pressure gas flow towards the conveyor belt from the work above, the conveyor belt the positive pressure gas flow, work by cold addition to the work The positive pressure gas flow generating means for generating the positive pressure gas flow is positioned on both sides of the belt side end across the work mounting surface of the conveyor belt so that the positive pressure gas flow exists until the fluidity of the belt is lost. With
The pressure of the positive pressure gas flow generating means is varied in a plurality of stages from the front side to the rear side in the workpiece conveyance direction, and the pressure on the front side in the workpiece conveyance direction is made larger than the pressure on the rear side in the workpiece conveyance direction. To do.

また、前記正圧気体流生成手段が圧縮気体を噴出するノズル体であり、該ノズル体はノズル孔を列状に配列するか若しくは搬送ベルト搬送方向と平行に形成されたスリットであることを特徴とする。 Further, the positive pressure gas flow generating means is a nozzle body for ejecting compressed gas, and the nozzle body is a slit in which nozzle holes are arranged in a line or formed in parallel with the conveying belt conveying direction. And

また、前記ノズルが搬送ベルト左右両側に平行に延在する一対のノズル体であり、該一対のノズル体の配置幅が搬送ベルト幅より小であることを特徴とする。 Further, the nozzle body is a pair of nozzle bodies extending in parallel on the left and right sides of the conveyance belt, and the arrangement width of the pair of nozzle bodies is smaller than the width of the conveyance belt.

さらに、前記冷熱体は搬送ベルトのワーク上部及び搭載面の背面を冷却する冷却部であって、前記正圧気体流生成手段の搬送方向後流で搬送ベルトのワーク上部及び搭載面を冷却する噴流状冷却手段が存在することを特徴とする。 Further, the cooling body is a cooling unit that cools the work upper part of the transport belt and the back surface of the mounting surface, and a jet that cools the work upper part and the mounting surface of the transport belt by the downstream flow in the transport direction of the positive pressure gas flow generating means. It is characterized in that there is a state cooling means.

以上記載のごとく本発明によれば、ワークの搬送ベルト側面へのはみ出し防止をすることができ、液漏れを防止することができ、さらにワークの搬送ベルト側面へのはみ出し防止の堰を気体流堰とすることで、堰の洗浄の必要がなくなるため、生産作業が煩雑化することがない。
したがって、生産作業が煩雑化することなく、液漏れのない流動性食品冷却固化方法及びその装置を提供することができる。
As described above, according to the present invention, it is possible to prevent the workpiece from protruding to the side of the conveyor belt, to prevent liquid leakage, and to prevent the workpiece from protruding to the side of the conveyor belt. By doing so, there is no need to clean the weir, so that the production work is not complicated.
Therefore, it is possible to provide a fluid food cooling and solidification method and apparatus without leaking without complicating production work.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.

図1は、本実施例1に係る流動性食品冷却固化を行う流動性食品冷却固化装置の概略図である。本実施例1においては、ワークとして粘度が5000cP〜15000cPであるカレールーを用いた。
図1に示したように、流動性食品冷却固化装置は、ワークの搬送コンベア10と、エアノズル15と、ワーク(カレールー)注入部13と、断熱構造の筐体20より構成され、該筐体20内は前室21、冷却室A22、及び冷却室B23に分割されている。
エアノズル15は筐体20の入口側より、前室21までの範囲に亘って設けられている。
前記ワークの搬送コンベア10は、駆動源18で作動する駆動ローラ11と従動ローラ12とステンレス部材等よりなるスチールベルト10aとベルトの張力を調整する弾性部材付き調整機構17とからなる。且つスチールベルトの従動側下部にはベルト洗浄ユニット19を設け、汚染の起こりやすいスチールベルトを常に清浄に維持するようにしてある。
なお、本実施例においては、一例としてスチールベルトを用いたがこれに限定されるものではない。
FIG. 1 is a schematic view of a fluid food cooling and solidifying apparatus that performs fluid food cooling and solidification according to the first embodiment. In the present Example 1, a curry having a viscosity of 5000 cP to 15000 cP was used as a workpiece.
As shown in FIG. 1, the fluid food cooling and solidifying device includes a workpiece conveyor 10, an air nozzle 15, a workpiece (carreous) injection unit 13, and a heat-insulating housing 20. The interior is divided into a front chamber 21, a cooling chamber A22, and a cooling chamber B23.
The air nozzle 15 is provided over a range from the entrance side of the housing 20 to the front chamber 21.
The workpiece conveyor 10 includes a driving roller 11 driven by a driving source 18, a driven roller 12, a steel belt 10a made of a stainless steel member and the like, and an adjusting mechanism 17 with an elastic member for adjusting the belt tension. Further, a belt cleaning unit 19 is provided at the lower part of the driven side of the steel belt so that the steel belt which is easily contaminated is always kept clean.
In this embodiment, a steel belt is used as an example, but the present invention is not limited to this.

ここで、前室21では、前記搬送コンベア10上の雰囲気温度を前記ワークの投入温度と同等かそれ以下に設定し、さらに前記エアノズル15によって形成される気体流を該流動性食品(ワーク)の投入温度と同等かそれ以下に設定して、ワーク注入部13より注入されたワークを表面固化させるための室であり、室上部には前室21を低温雰囲気に保つために上部冷却部26が設けられている。 Here, in the front chamber 21, the ambient temperature on the conveyor 10 is set to be equal to or lower than the input temperature of the workpiece, and further, the gas flow formed by the air nozzle 15 is changed to the fluid food (work). or input temperature equal it is set to less than a chamber for surface hardening a workpiece that has been injected from the work injector 13, the chamber upper upper cooling unit 26 in order to keep the front chamber 21 to the low-temperature atmosphere Is provided.

冷却室A22は、前室21で表面固化されたワークを冷却固化させるための室であり、搬送コンベア10のスチールベルト10aのワーク搭載面の上下両面を冷風噴流により冷却するようにしたもので、スチールベルトの上下に設けた複数の冷風源27a、27bを設け、冷風源27aは冷風噴流28aによりスチールベルト10aを介してワークの下面より冷熱を与え、冷風源27bは冷風噴流28bにより直接液状ワークの表面に冷熱を与え、固化するようにしてある。このような冷却方法は高速冷却固化を必要とする場合に最適と考えられる。 The cooling chamber A22 is a chamber for cooling and solidifying the workpiece solidified in the front chamber 21, and the upper and lower surfaces of the workpiece mounting surface of the steel belt 10a of the conveyor 10 are cooled by a cold air jet, A plurality of cold air sources 27a and 27b provided above and below the steel belt are provided, the cold air source 27a applies cold heat from the lower surface of the work through the steel belt 10a by the cold air jet 28a, and the cold air source 27b directly receives the liquid work by the cold air jet 28b. The surface is solidified by applying cold heat. Such a cooling method is considered optimal when high-speed cooling and solidification is required.

冷却室B23は、温度調整のための室であり、ワークの温度を外気温もしくはそれ以上に調整する。冷却室B23内の温度は、外部と熱交換できるようにして外気温に保ってもよく、また、外気温もしくはそれ以上の温度に保つことのできる恒温装置29を設けて温度を保ってもよい。このようにワークの温度を外気温もしくはそれ以上に調整することによって、ワークを内部まで固化させるとともに、後工程でワークをパッキングしたときに、パッキング内に結露ができることを防ぐことができる。 The cooling chamber B23 is a chamber for adjusting the temperature, and adjusts the temperature of the workpiece to the outside air temperature or higher. The temperature in the cooling chamber B23 may be kept at the outside temperature so that heat can be exchanged with the outside, or the temperature may be kept by providing a thermostatic device 29 that can keep the outside temperature or higher. . Thus, by adjusting the temperature of the workpiece to the outside air temperature or higher, the workpiece can be solidified to the inside, and when the workpiece is packed in a subsequent process, it is possible to prevent condensation from forming in the packing.

図2は、図1の前室21内の上からみた正面図である。図2に示すように、エアノズル15は、断熱構造の筐体20の入口側より筐体20の内部に向け搬送コンベア10の左右両側の外端10bよりも内側に一対設けられている。エアノズル下部は、エアノズル中のエアーを噴霧できる構成となっており、例えばノズル孔を列状に配列したり搬送コンベア10の搬送方向と平行に形成されたスリットとすることができる。   FIG. 2 is a front view of the front chamber 21 shown in FIG. As shown in FIG. 2, a pair of air nozzles 15 are provided on the inner side of the outer ends 10 b on both the left and right sides of the transfer conveyor 10 from the entrance side of the heat-insulated housing 20 toward the inside of the housing 20. The lower part of the air nozzle is configured to spray the air in the air nozzle. For example, the nozzle holes may be arranged in a line or may be a slit formed in parallel with the transport direction of the transport conveyor 10.

エアノズル15から噴霧されるエアーの風速、風量はエアノズル全体に亘って均一としてもよいが、ワーク31は前室21内を搬送されるに従って、徐々に表面が固化されていくため、ワークの表面固化の進んでいないエアノズル15の前半部15bで噴霧されるエアーの風速、風量を後半部15cで噴霧されるエアーの風速、風量よりも大きくなるように前半部15bと後半部15cへ導入するエアーの圧力を異なるものとしている。 Although the air velocity and air volume of the air sprayed from the air nozzle 15 may be uniform over the entire air nozzle, the surface of the work 31 is gradually solidified as it is transported through the front chamber 21, so that the work surface is solidified. Of the air sprayed in the first half portion 15b of the air nozzle 15 where the air flow is not advanced, the air velocity introduced into the first half portion 15b and the second half portion 15c so that the air velocity and air volume of the air sprayed in the second half portion 15c are larger than the air velocity and air volume. The pressure is different.

図3は、エアノズル15へのエアー導入のフロー図である。圧力制御装置41は、外部ないしは筐体内より導入されたエアーの一部をエアノズルの前半部15b入口の圧力が一定となるように圧力調節弁41bの開度を調整して、一定圧力のエアーとしてエアノズル前半部15bへ導入し、また他のエアーの一部をエアノズルの後半部15c入口の圧力が前記前半部15b入口の圧力よりも低い一定の圧力となるように圧力調節弁41bの開度を調整して、一定圧力のエアーとしてエアノズル後半部15cへ導入する。
本実施例においては、図3に示したように、エアノズルを前半部及び後半部の2段階に分割したが、流動性の大きいワークを用いる場合にはエアーの圧力を前半部、後半部の2段階で変化させるだけでなく、3段階以上に分けて最前段に近い箇所ほどエアーの圧力を大きくするとよい。
FIG. 3 is a flowchart for introducing air into the air nozzle 15. The pressure control device 41 adjusts the degree of opening of the pressure control valve 41b so that the pressure at the inlet of the front half 15b of the air nozzle is constant for a part of the air introduced from the outside or inside the casing to obtain constant pressure air. The opening of the pressure control valve 41b is introduced so that the pressure at the inlet of the rear half 15c of the air nozzle is constant and lower than the pressure at the inlet of the front half 15b. It adjusts and introduces into the air nozzle latter half part 15c as air of fixed pressure.
In the present embodiment, as shown in FIG. 3, the air nozzle is divided into two stages of the first half and the second half. However, when a work having high fluidity is used, the air pressure is set to 2 in the first half and the second half. In addition to changing in stages, it is better to increase the air pressure in the three or more stages and closer to the front stage.

図4は図2におけるA−A断面図である。前記エアノズル15にエアーを導入することで、エアノズル15下部に設けた増幅機構付きのスリットよりエアーを帯状噴射させ、エアカーテン15aが形成させた。また、エアノズル15の断面は図4に示したように、ティアドロップ形状としている。
このようなエアノズル15を用いることによって、圧力損失が少なく、大きな風速が得られ、またエアーを効率的に整流化し、高速なエアーを膜状に噴出することができる。さらにスリットから噴出したエアーは、増幅機構により周囲の空気を巻き込み、効果的なエアーブローを実現することができる。
4 is a cross-sectional view taken along line AA in FIG. By introducing air into the air nozzle 15, air was ejected in a band form from a slit with an amplifying mechanism provided at the lower part of the air nozzle 15 to form an air curtain 15 a. The cross section of the air nozzle 15 has a teardrop shape as shown in FIG.
By using such an air nozzle 15, there is little pressure loss, a large wind speed can be obtained, air can be efficiently rectified, and high-speed air can be ejected into a film. Furthermore, the air blown out from the slits can entrain the surrounding air by the amplifying mechanism, thereby realizing an effective air blow.

また、エアノズル15に導入するエアーは、エアフィルター16aで塵等の不純物を取り除き、ブロワー16bでエアノズル15へ導入する構成となっている。   The air introduced into the air nozzle 15 is configured to remove impurities such as dust by the air filter 16a and to be introduced to the air nozzle 15 by the blower 16b.

図5は図2におけるA−A断面図の別の例を示した。なお、図5においてはエアフィルター、ブロワー、及びその附属配管の図示を省略したが、図5のいずれにおいても図3及び図4で示した場合と同様にしてエアノズルへエアーが供給されている。
図5(A)は図4に示したエアノズルと同じノズルを用い、スリットの向きを搬送ベルト10内側に傾けた際の断面図である。このように、スリットの向きはノズルの真下ではなくてもよい。
また、図5(B)は断面が円形であり、下部にスリットを入れたエアノズルを用いた際の断面図である。このような形状のエアノズルを用いてもよく、エアノズルの形状は特に制限されるものではない。
FIG. 5 shows another example of the AA cross-sectional view in FIG. Although the illustration of the air filter, the blower, and the associated piping is omitted in FIG. 5, air is supplied to the air nozzle in any of FIG. 5 as in the case shown in FIGS. 3 and 4.
FIG. 5A is a cross-sectional view when the same nozzle as the air nozzle shown in FIG. 4 is used and the direction of the slit is inclined toward the inside of the conveyor belt 10. Thus, the direction of the slit may not be directly below the nozzle.
FIG. 5B is a cross-sectional view when an air nozzle having a circular cross section and having a slit in the lower part is used. An air nozzle having such a shape may be used, and the shape of the air nozzle is not particularly limited.

前記図1に概略図を示した流動性食品冷却固化装置を稼動させた。
流動性を有する50〜65℃の温度のワーク(カレールー)31は、ワーク供給装置13aに送られ、ワーク供給装置13aの複数の供給管であるワーク注入部13から自動的に制御されて前室21内であり、走行中の搬送コンベア10のスチールベルト10a上に供給された。搬送コンベアは1.4m/sで走行させた。供給されたワーク31はスチールベルト10a上を四方に分散し適当厚さを形成しつつ上部冷却部26によって0℃以下(本実施例においては−5℃)の雰囲気温度である前室21で冷却され、表面固化され冷却室A22に搬送された。その間、注入直後の表面固化前の前記分散したワークは、スチールベルト10aの左右両側に設けられた一対のエアノズル15により形成されたエアカーテン15aにより、エアカーテン15a外へ移動することができなくなった。即ちエアカーテン15aの外側へのワークのはみ出し、液漏れを略完全に防止することができた。なお、エアノズルに導入したエアーの圧力は前半部を20kPaとし、後半部を10kPaとした。エアカーテン15aの空気の風速は10m/s〜30m/sとした。
このように、前室21内では、ワーク31のスチールベルト10a外側へのはみ出し、液漏れを防ぎながら、ワークの表面固化が実現され、全体として流動性がなくなった状態となった。
The fluid food cooling and solidifying apparatus schematically shown in FIG. 1 was operated.
A work (carreaux) 31 having a fluidity and temperature of 50 to 65 ° C. is sent to the work supply device 13a and automatically controlled from the work injection unit 13 which is a plurality of supply pipes of the work supply device 13a. 21 and supplied on the steel belt 10a of the transporting conveyor 10 that is running. The conveyor was run at 1.4 m / s. The supplied workpiece 31 is cooled in the front chamber 21 having an ambient temperature of 0 ° C. or lower (−5 ° C. in the present embodiment) by the upper cooling section 26 while dispersing the steel belt 10a in all directions to form an appropriate thickness. The surface was solidified and transferred to the cooling chamber A22. In the meantime, the dispersed workpiece immediately before the surface solidification immediately after injection cannot be moved out of the air curtain 15a by the air curtain 15a formed by the pair of air nozzles 15 provided on the left and right sides of the steel belt 10a. . In other words, it was possible to almost completely prevent the work from protruding to the outside of the air curtain 15a and the liquid leakage. The pressure of the air introduced into the air nozzle was 20 kPa in the first half and 10 kPa in the second half. The air velocity of the air curtain 15a was set to 10 m / s to 30 m / s.
In this way, in the front chamber 21, the work 31 was solidified while preventing the work 31 from protruding to the outside of the steel belt 10a and preventing liquid leakage, and the fluidity was lost as a whole.

そして、前記表面固化され冷却室A22に搬送されたワーク31は、冷却室A22内で冷風噴流28a、28bによってさらに低温、例えば−20℃に冷却されて固化され、冷却室B23へ搬送された。ここで、冷却室A22で冷却固化されたワーク31は、表面は固化されて流動性はないものであるが、その中心部は例えば約35〜40℃であり、未だ溶融状態あるいは半溶融状態にあるが、その表面近傍は半固体状となった。 The work 31 solidified and transported to the cooling chamber A22 was further cooled and solidified at a low temperature, for example, −20 ° C. by the cold air jets 28a and 28b in the cooling chamber A22, and transported to the cooling chamber B23. Here, the work 31 cooled and solidified in the cooling chamber A22 has a solidified surface and no fluidity, but its central portion is, for example, about 35 to 40 ° C. and is still in a molten state or a semi-molten state. However, the vicinity of the surface became semi-solid.

さらに、前記冷却固化され冷却室B23に搬送されたワーク31は、冷却室B23内で恒温装置29によって外気温に等しい温度(例えば20〜30℃)に調整され、外部に排出された。
ここで、ワーク31は冷却室B23中で20〜30℃に所定時間保持されると、溶融状態あるいは半溶融状態にある前記中心部及び表面及び表面近傍の油脂の結晶化が進められ、全体として十分にかつ良好に固化し、固化したワーク(カレールー)となる。
ここで、冷却室B23内にもエアノズル15及びエアカーテン15aを設けなかったが、冷却室A22でワーク31は固化されて流動性をもたないため、スチールベルト10aの外側へはみ出したり、液漏れすることはなかった。
Further, the workpiece 31 cooled and solidified and transferred to the cooling chamber B23 was adjusted to a temperature (for example, 20 to 30 ° C.) equal to the outside air temperature by the thermostatic device 29 in the cooling chamber B23 and discharged to the outside.
Here, when the work 31 is held in the cooling chamber B23 at 20 to 30 ° C. for a predetermined time, the crystallization of the fat and oil in the center portion and the surface in the molten state or in the semi-molten state and the vicinity of the surface proceeds. It is solidified sufficiently and satisfactorily and becomes a solidified work (carreaux).
Here, the air nozzle 15 and the air curtain 15a are not provided in the cooling chamber B23, but the work 31 is solidified and does not have fluidity in the cooling chamber A22, so that it protrudes outside the steel belt 10a or leaks. I never did.

生産作業が煩雑化することなく、また液漏れすることのない流動性食品冷却固化方法及びその装置として利用することができる。   The present invention can be used as a fluid food cooling and solidifying method and apparatus without complicating production work and without causing liquid leakage.

本実施例1に係る流動性食品冷却固化を行う流動性食品冷却固化装置の概略図である。It is the schematic of the fluid food cooling solidification apparatus which performs fluid food cooling solidification which concerns on the present Example 1. FIG. 図1の前室21内の上からみた正面図である。It is the front view seen from the inside of the front chamber 21 of FIG. エアノズルへのエアー導入のフロー図であるIt is a flowchart of the air introduction to an air nozzle. 図2におけるA−A断面図である。It is AA sectional drawing in FIG. 図2におけるA−A断面図の別の例である。It is another example of AA sectional drawing in FIG.

10 搬送コンベア
10a スチールベルト
13 ワーク注入部
15 エアノズル
15a エアカーテン
20 筐体
21 前室
22 冷却室A
23 冷却室B
26 上部冷却部
27a、27b 冷風源
28a、28b 冷風噴流
31 ワーク
DESCRIPTION OF SYMBOLS 10 Conveyor 10a Steel belt 13 Work injection part 15 Air nozzle 15a Air curtain 20 Case 21 Front chamber 22 Cooling chamber A
23 Cooling chamber B
26 Upper cooling part 27a, 27b Cold air source 28a, 28b Cold air jet 31 Workpiece

Claims (8)

油脂含有若しくは澱粉及び小麦粉含有の流動性食品を搬送ベルトの入り口に設けた流動性食品投入部より搬送ベルトに投入した後、該ベルトにより搬送されている流動性食品(以下ワークという)に、該搬送ベルトを介して付与した冷熱により冷却固化する流動性食品冷却固化方法において、
前記搬送ベルトの少なくとも入り口側から、前記ワークへの冷熱付加によりワークの流動性がなくなるまでの間、搬送ベルトの左右両側に沿って正圧気体流により生成される気体流堰によりワークの搬送ベルト側面へのはみ出しを防止しながら冷却固化するとともに、
前記気体流堰の正圧気体流の圧力をワーク搬送方向前段側より後段側に向けて複数段階に異ならせ、ワーク搬送方向前段側の圧力を後段側の圧力より大きくしたことを特徴とする流動性食品冷却固化方法。
After the fluid food containing fats and oils or starch and flour is introduced into the conveyor belt from the fluid food input part provided at the entrance of the conveyor belt, the fluid food (hereinafter referred to as workpiece) conveyed by the belt In the liquid food cooling and solidifying method, which is cooled and solidified by cold heat applied via a conveyor belt,
Between at least the entrance side of the conveyor belt and until the fluidity of the workpiece disappears due to the addition of cold heat to the workpiece, the workpiece conveyor belt is conveyed by the gas flow weir generated by the positive pressure gas flow along the left and right sides of the conveyor belt. While cooling and solidifying while preventing protrusion to the side,
The flow is characterized in that the pressure of the positive pressure gas flow of the gas flow weir is varied in a plurality of stages from the front side to the rear side in the workpiece conveyance direction, and the pressure on the front side in the workpiece conveyance direction is made larger than the pressure on the rear side. Food cooling and solidification method.
前記正圧気体流が搬送ベルト搬送方向と平行に実質的にカーテン状に生成される正圧気体流であることを特徴とする請求項1記載の流動性食品冷却固化方法。   2. The fluid food cooling and solidifying method according to claim 1, wherein the positive pressure gas flow is a positive pressure gas flow generated substantially in a curtain shape parallel to the conveyance belt conveyance direction. 前記正圧気体流が搬送ベルト上の左右両側に位置する一対の平行カーテン流であり、該一対の平行カーテン流の幅が搬送ベルト幅より小であることを特徴とする請求項2記載の流動性食品冷却固化方法。   3. The flow according to claim 2, wherein the positive pressure gas flow is a pair of parallel curtain flows located on both the left and right sides of the conveyor belt, and the width of the pair of parallel curtain streams is smaller than the conveyor belt width. Food cooling and solidification method. 前記搬送ベルト上の雰囲気温度を前記流動性食品(ワーク)の投入温度と同等かそれ以下に設定し、さらに前記正圧気体流を該流動性食品(ワーク)の投入温度と同等かそれ以下に設定したことを特徴とする請求項1記載の流動性食品冷却固化方法。 The transfer temperature of the atmosphere on the belt is set lower than or equal the input temperature of the fluid food (work), further the positive pressure gas stream input temperature equal to or below the flowable food (work) The fluid food cooling and solidifying method according to claim 1, which is set. 油脂含有若しくは澱粉及び小麦粉含有の流動性食品を搬送ベルトの入り口に投入する流動性食品投入部と、搬送ベルトにより流動性食品(以下ワークという)を搬送しながらそのワーク上部及びベルト背面側に位置する冷熱体によりワークの冷却固化を行う流動性食品冷却固化装置において、
前記搬送ベルトの左右両側に沿ってワーク上方より搬送ベルトに向けて正圧気体流を生成する手段を設け、該正圧気体流を搬送ベルトの少なくとも入り口側から、前記ワークへの冷熱付加によりワークの流動性がなくなるまでの間、正圧気体流が存在するように、前記正圧気体流を生成する正圧気体流生成手段を搬送ベルトのワーク搭載面を挟んでベルト側端両側に位置させるとともに、
前記正圧気体流生成手段の圧力をワーク搬送方向前段側より後段側に向けて複数段階に異ならせ、ワーク搬送方向前段側の圧力を、ワーク搬送方向後段側の圧力より大きくしたことを特徴とする流動性食品冷却固化装置。
A fluid food input part that feeds fluid food containing fats and oils or starch and flour into the entrance of the transport belt, and a fluid food (hereinafter referred to as a work) is transported by the transport belt and positioned on the upper part of the work and on the back side of the belt In a fluid food cooling and solidifying device that cools and solidifies a workpiece with a cold body that
From at least the inlet side of the along the right and left sides of the conveyor belt provided with means for generating a positive pressure gas flow towards the conveyor belt from the work above, the conveyor belt the positive pressure gas flow, work by cold addition to the work The positive pressure gas flow generating means for generating the positive pressure gas flow is positioned on both sides of the belt side end across the work mounting surface of the conveyor belt so that the positive pressure gas flow exists until the fluidity of the belt is lost. With
The pressure of the positive pressure gas flow generating means is varied in a plurality of stages from the front side to the rear side in the workpiece conveyance direction, and the pressure on the front side in the workpiece conveyance direction is made larger than the pressure on the rear side in the workpiece conveyance direction. A fluid food cooling and solidifying device.
前記正圧気体流生成手段が圧縮気体を噴出するノズル体であり、該ノズル体はノズル孔を列状に配列するか若しくは搬送ベルト搬送方向と平行に形成されたスリットであることを特徴とする請求項5記載の流動性食品冷却固化装置。 The positive pressure gas flow generating means is a nozzle body that ejects compressed gas, and the nozzle body is a slit in which nozzle holes are arranged in a line or formed in parallel with the conveying belt conveying direction. The fluid food cooling and solidifying apparatus according to claim 5. 前記ノズル体が搬送ベルト左右両側に平行に延在する一対のノズル体であり、該一対のノズル体の配置幅が搬送ベルト幅より小であることを特徴とする請求項6記載の流動性食品冷却固化装置。   7. The fluid food according to claim 6, wherein the nozzle body is a pair of nozzle bodies extending in parallel on the left and right sides of the conveyor belt, and the arrangement width of the pair of nozzle bodies is smaller than the conveyor belt width. Cooling and solidifying device. 前記冷熱体は搬送ベルトのワーク上部及び搭載面の背面を冷却する冷却部であって、前記正圧気体流生成手段の搬送方向後流で搬送ベルトのワーク上部及び搭載面を冷却する噴流状冷却手段が存在することを特徴とする請求項5記載の流動性食品冷却固化装置。 The cooling body is a cooling unit that cools the work upper part of the conveyor belt and the back surface of the mounting surface, and jet-like cooling that cools the work upper part and the mounting surface of the conveyor belt by the downstream flow in the transport direction of the positive pressure gas flow generating means. 6. A fluid food cooling and solidifying device according to claim 5, wherein means are present.
JP2006124651A 2006-04-28 2006-04-28 Method and apparatus for cooling and solidifying fluid food Active JP4637049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006124651A JP4637049B2 (en) 2006-04-28 2006-04-28 Method and apparatus for cooling and solidifying fluid food

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006124651A JP4637049B2 (en) 2006-04-28 2006-04-28 Method and apparatus for cooling and solidifying fluid food

Publications (2)

Publication Number Publication Date
JP2007295813A JP2007295813A (en) 2007-11-15
JP4637049B2 true JP4637049B2 (en) 2011-02-23

Family

ID=38765863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006124651A Active JP4637049B2 (en) 2006-04-28 2006-04-28 Method and apparatus for cooling and solidifying fluid food

Country Status (1)

Country Link
JP (1) JP4637049B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11155541A (en) * 1997-11-28 1999-06-15 Mayekawa Mfg Co Ltd Continuous forming type cooling and solidifying apparatus of liquid work
JP2002218899A (en) * 2001-01-22 2002-08-06 Mayekawa Mfg Co Ltd Powder sprinkling apparatus in food processing machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11155541A (en) * 1997-11-28 1999-06-15 Mayekawa Mfg Co Ltd Continuous forming type cooling and solidifying apparatus of liquid work
JP2002218899A (en) * 2001-01-22 2002-08-06 Mayekawa Mfg Co Ltd Powder sprinkling apparatus in food processing machine

Also Published As

Publication number Publication date
JP2007295813A (en) 2007-11-15

Similar Documents

Publication Publication Date Title
EP1667830B1 (en) Externally cooled moving mold
JP4637049B2 (en) Method and apparatus for cooling and solidifying fluid food
PL1635630T3 (en) Moulding and cooling device
KR100295950B1 (en) Method and apparatus for cooling molten steel
SE8404184L (en) DEVICE AND SET FOR CONTINUOUS CASTING OF METAL
JP2007186732A (en) Cooling apparatus and cooling method
CN100396464C (en) Heat treating apparatus and heat treating method for sheet-like article
US3718450A (en) Float process for manufacture of glass ribbon
US7794227B2 (en) Injection mold having an air channel
JP5579410B2 (en) Glass molded body manufacturing apparatus and manufacturing method
US7524177B2 (en) Pipe molding system with vacuum and temperature controls of cooling plugs
CN104439132A (en) Cooling roller for producing noncrystalloid flimsy alloy line
JP5392023B2 (en) Non-contact sealing device and continuous heat treatment furnace
JP3641772B2 (en) Continuously shaped cooling and solidification equipment for liquid work
KR20040088298A (en) Strip floating device in apron of table roller
US20110265970A1 (en) Caster
EP3285031B1 (en) Apparatus for cooling or freezing
JPH032154Y2 (en)
JPH0387238A (en) Method of transverse-orientating plastic film
US20200262734A1 (en) Method and apparatus for processing glass tube ends
JP2004169960A (en) Carrying type cooling device
JPH0797615A (en) Continuous heat treatment equipment having crown changable roll
JPS61180653A (en) Casting method of metal by twin belt caster
JPH0629658A (en) Heating equipment
US20170165746A1 (en) Inert gas shielding for rapid solidification apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100521

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4637049

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250