JP4637022B2 - Dielectric barrier discharge lamp - Google Patents

Dielectric barrier discharge lamp Download PDF

Info

Publication number
JP4637022B2
JP4637022B2 JP2006014051A JP2006014051A JP4637022B2 JP 4637022 B2 JP4637022 B2 JP 4637022B2 JP 2006014051 A JP2006014051 A JP 2006014051A JP 2006014051 A JP2006014051 A JP 2006014051A JP 4637022 B2 JP4637022 B2 JP 4637022B2
Authority
JP
Japan
Prior art keywords
glass tube
glass
tube
sealing
discharge lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006014051A
Other languages
Japanese (ja)
Other versions
JP2007200563A (en
Inventor
勝則 熊
光宏 井村
善久 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Harison Toshiba Lighting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harison Toshiba Lighting Corp filed Critical Harison Toshiba Lighting Corp
Priority to JP2006014051A priority Critical patent/JP4637022B2/en
Publication of JP2007200563A publication Critical patent/JP2007200563A/en
Application granted granted Critical
Publication of JP4637022B2 publication Critical patent/JP4637022B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)

Description

本発明は、ガラス管の両端部の外周に電極が形成されている誘電体バリア放電ランプに関する。   The present invention relates to a dielectric barrier discharge lamp in which electrodes are formed on the outer periphery of both ends of a glass tube.

ランプ外部に電極を備える、所謂、外部電極型の誘電体バリア放電ランプは、例えば、実開昭61−126559号公報(特許文献1)より知られている。図5、図6は、従来の誘電体バリア放電ランプの構造を示している。図5、図6において、ガラス管1の内壁に蛍光体層2が形成され、ガラス管1の内部放電空間には水銀とネオン、アルゴン、キセノン等の希ガスとを混合した放電ガス3が封入され、ガラス管1の両端が封止されている。ガラス管1の両端の外表面には金属導体層で成る外部電極4、5が形成されている。このような構成の誘電体バリア放電ランプを点灯させる場合、ガラス管1の両端の両極4、5間に高周波点灯装置(インバータ)6から高周波電圧を印加すると、外部電極4、5の内側のガラス部分のC成分を介してガラス管1内の放電空間に高周波電力が注入され、ガラス管1内で持続放電が生じてランプが発光する。   A so-called external electrode type dielectric barrier discharge lamp having an electrode outside the lamp is known from, for example, Japanese Utility Model Publication No. 61-126559 (Patent Document 1). 5 and 6 show the structure of a conventional dielectric barrier discharge lamp. 5 and 6, a phosphor layer 2 is formed on the inner wall of the glass tube 1, and a discharge gas 3 in which mercury and a rare gas such as neon, argon, or xenon are mixed is enclosed in the internal discharge space of the glass tube 1. The both ends of the glass tube 1 are sealed. External electrodes 4 and 5 made of metal conductor layers are formed on the outer surfaces of both ends of the glass tube 1. When the dielectric barrier discharge lamp having such a configuration is lit, when a high frequency voltage is applied from the high frequency lighting device (inverter) 6 between the electrodes 4 and 5 at both ends of the glass tube 1, the glass inside the external electrodes 4 and 5. High-frequency power is injected into the discharge space in the glass tube 1 through the C component, and a continuous discharge occurs in the glass tube 1 so that the lamp emits light.

このような構造の誘電体バリア放電ランプにおけるガラス管1の軸端部の封着部の構造は、図7、図8(a)、(b)に示すようなものである。図7は、ガラス管1の端部を大気中で高温に加熱して封着した場合の封止側の封着部10Aの構造を示している。図8(a)は、ガラス管1の開口端部に砲弾型のガラスビーズ11Aを仮止めした状態でガラス管1内を真空引きし、放電媒体3をガラス管1内に充填した後、この開口端部を加熱封着した場合の排気側の封着部10Bの構造を示している。そして、図8(b)は同じく球状ガラスビーズ11Bを用いた場合の封着部10Cの構造を示している。   The structure of the sealing portion of the shaft end portion of the glass tube 1 in the dielectric barrier discharge lamp having such a structure is as shown in FIGS. 7, 8A, and 8B. FIG. 7 shows the structure of the sealing portion 10A on the sealing side when the end of the glass tube 1 is heated and sealed at a high temperature in the atmosphere. FIG. 8A shows a state in which the inside of the glass tube 1 is evacuated in a state in which the shell-shaped glass beads 11A are temporarily fixed to the opening end of the glass tube 1 and the discharge medium 3 is filled in the glass tube 1. The structure of the sealing part 10B on the exhaust side when the opening end is heat sealed is shown. FIG. 8B shows the structure of the sealing portion 10C when the spherical glass beads 11B are used.

近年、ガラス管1の封止技術の進歩により、排気側でもビーズレス封止によって図9(a)〜(c)に示す構造の封着部10D,10E,10Fも見られるようになっている。すなわち、ガラス管1の一管端はビーズレスで加熱封着することで封止側には図7に示したものと同様の封着部10Aを形成し、ガラス管1の他端は予め排気穴を設けておいてビーズレスで加熱封着し、その排気穴を利用してガラス管1内を真空引きし、放電媒体3をガラス管1内に充填した後、このビーズレスで加熱封着することで、排気側には図9(a)〜(c)に示す構造の封着部10D,10Eあるいは10Fが形成されるのである。図9(a)は加熱が不足した場合の封着部10Dの構造を示し、同図(b)は十分に加熱した場合の封着部10Eの構造を示し、同図(c)は肉厚を薄めに成形した場合の封着部10Fの構造を示している。   In recent years, due to advances in sealing technology for the glass tube 1, sealing portions 10D, 10E, and 10F having a structure shown in FIGS. 9A to 9C can be seen on the exhaust side by beadless sealing. . That is, one end of the glass tube 1 is heat-sealed without beads, thereby forming a sealing portion 10A similar to that shown in FIG. 7 on the sealing side, and the other end of the glass tube 1 is previously evacuated. A hole is provided and heat-sealed without beads, the inside of the glass tube 1 is evacuated using the exhaust hole, and the discharge medium 3 is filled into the glass tube 1 and then heat-sealed without beads. As a result, the sealing portions 10D, 10E, or 10F having the structure shown in FIGS. 9A to 9C are formed on the exhaust side. FIG. 9 (a) shows the structure of the sealing part 10D when heating is insufficient, FIG. 9 (b) shows the structure of the sealing part 10E when fully heated, and FIG. 9 (c) shows the thickness. The structure of the sealing part 10F at the time of shape | molding thinly is shown.

上記のどちらの方法によってガラス管の管端を封着したとしても、例えば、図7に示した封着部10Aの構造、図8(a)、(b)に示した封着部10B,10Cの構造、図9(b)に示した封着部10Eの構造のように、ガラス管1の少なくとも一端の封着部は、ガラス管の内部を向く面(以下、封着部の「内側面」と称する)が軸中心部で凸となり、管壁側の周辺部で凹む凸形状となる構造であった。   Regardless of which method is used to seal the tube end of the glass tube, for example, the structure of the sealing portion 10A shown in FIG. 7, the sealing portions 10B and 10C shown in FIGS. As in the structure of the sealing portion 10E shown in FIG. 9B, the sealing portion at least one end of the glass tube 1 is a surface facing the inside of the glass tube (hereinafter referred to as “inside surface of the sealing portion”). ”) Is convex at the central portion of the shaft, and has a convex shape that is recessed at the peripheral portion on the tube wall side.

ところが、誘電体バリア放電ランプにおいてガラス管の管端の封着部の内側面が凸形状である場合、次のような問題点があった。誘電体バリア放電ランプを長時間点灯させていると、陽イオンのスパッタリングによって酸化水銀又はシリカと酸化水銀との化合物が生成され、これが外部電極4の管端側の端部に近い部分に集中して堆積する。そしてその堆積部分にイオン衝突がさらに集中する傾向があって、封着部の酸化水銀の堆積部分が内側から浸食されて窪みが発生する。そして、従来の誘電体バリア放電ランプの場合、ガラス管の少なくとも一端部の封着部の内側面が凸形状になることが避けられず、内側面が凸形状の場合、図10に示したように内側面の周囲の最凹み部分、したがって最も肉厚の薄い部分に酸化水銀の堆積部12が発生し、窪みが進むことでガラス管1の封着部が内側から破損に至ることがあった。
実開昭61−126559号公報
However, in the dielectric barrier discharge lamp, when the inner surface of the sealing portion at the tube end of the glass tube has a convex shape, there are the following problems. When the dielectric barrier discharge lamp is lit for a long time, mercury oxide or a compound of silica and mercury oxide is generated by sputtering of cations, and this is concentrated in a portion near the end of the external electrode 4 on the tube end side. And accumulate. Then, ion collision tends to concentrate further on the deposited portion, and the deposited portion of mercury oxide in the sealing portion is eroded from the inside, and a dent is generated. In the case of a conventional dielectric barrier discharge lamp, it is inevitable that the inner surface of the sealing portion at least one end of the glass tube has a convex shape, and when the inner surface has a convex shape, as shown in FIG. In this case, mercury oxide deposits 12 occur in the most recessed portion around the inner side surface, and hence the thinnest portion, and the sealing portion of the glass tube 1 may be damaged from the inside as the depression progresses. .
Japanese Utility Model Publication No. 61-126559

本発明は、このような従来の技術的課題に鑑みてなされたもので、イオン衝突による窪みが進行してもガラス管の破損に至ることを避けることができ、ランプを長寿命化できる誘電体バリア放電ランプを提供することを目的とする。   The present invention has been made in view of such a conventional technical problem, and can prevent a glass tube from being damaged even if a depression due to ion collision progresses, and can increase the life of a lamp. An object is to provide a barrier discharge lamp.

請求項1の発明は、ガラス管の内壁面に蛍光体膜が形成され、前記ガラス管内に水銀と希ガスとの混合ガスが封入され、前記ガラス管の両端が封止され、前記ガラス管の両端部の外面に電極が形成された誘電体バリア放電ランプにおいて、前記ガラス管の一端部又は両端部の封着部それぞれのガラス管内側の形状を、当該ガラス管内側から見て管壁側から管軸側に行くほどに凹む凹形状にし、前記封着部の凹形状の管軸中心に相当する部分にさらに深く凹む小凹部を形成し、前記ガラス管端部の封着部各部のガラスの肉厚を、当該ガラス管胴部のガラスの肉厚よりも大きくしたことを特徴とするものである。 In the invention of claim 1, a phosphor film is formed on the inner wall surface of the glass tube, a mixed gas of mercury and a rare gas is sealed in the glass tube, both ends of the glass tube are sealed, and the glass tube In a dielectric barrier discharge lamp in which electrodes are formed on the outer surfaces of both end portions, the shape of the inner side of the glass tube at one end portion or both end portions of the glass tube is viewed from the tube wall side when viewed from the inside of the glass tube. A concave shape that is recessed toward the tube axis side is formed, and a small recessed portion that is further deeply recessed is formed in a portion corresponding to the concave tube axis center of the sealing portion, and the glass of each part of the sealing portion at the end of the glass tube is formed. The wall thickness is made larger than the glass wall thickness of the glass tube body .

本発明によれば、ガラス管の封着部の内側面の形状を凹形状とすることでその管軸央部を最凹み部分とし、酸化水銀の堆積が発生しても肉厚の最も大きい中央部分に堆積させることでイオン衝突による窪みが進行してもガラス管の破損に至ることを避けることができ、ランプを長寿命化できる。   According to the present invention, the inner surface of the sealing portion of the glass tube has a concave shape, so that the central portion of the tube axis is the most recessed portion, and the center having the largest thickness even when mercury oxide is deposited. By depositing on the portion, it is possible to prevent the glass tube from being damaged even if the depression due to ion collision proceeds, and the life of the lamp can be extended.

以下、本発明の実施の形態を図に基づいて詳説する。図1(a)、(b)は本発明の1つの実施の形態の誘電体バリア放電ランプのガラス管1の一端の封着部20A,20Bの構造を示している。本実施の形態の誘電体バリア放電ランプの全体的な構成は、図5、図6に示した従来例のものと共通である。そして本実施の形態の特徴は、ガラス管1の一端の封止側封着部20A、他端の排気側封着部20Bを図1(a)、(b)それぞれに示す構造にしたことにある。すなわち、図5、図6に示すように、ガラス管1の内壁面に蛍光体膜2が形成され、ガラス管1内に水銀と希ガスとの混合ガス3が封入され、ガラス管1の両端が封止され、ガラス管1の両端部の外面に金属導体で成る電極4が形成された誘電体バリア放電ランプにおいて、ガラス管1の封止側端部の封着部20Aも排気側端部の封着部20Bも、それぞれのガラス管内側の形状、つまり、内側面21A,21Bの形状を、当該ガラス管1の内側から見て管壁側から管軸側に行くほどに凹む凹形状にしている。尚、製造工程上、排気側の端部の封着部20Bにはさらに深く凹む排気穴残留部22が残っていることがある。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. 1A and 1B show the structures of sealing portions 20A and 20B at one end of a glass tube 1 of a dielectric barrier discharge lamp according to one embodiment of the present invention. The overall configuration of the dielectric barrier discharge lamp of the present embodiment is the same as that of the conventional example shown in FIGS. And the feature of this embodiment is that the sealing side sealing part 20A at one end of the glass tube 1 and the exhaust side sealing part 20B at the other end are structured as shown in FIGS. 1 (a) and 1 (b), respectively. is there. That is, as shown in FIGS. 5 and 6, the phosphor film 2 is formed on the inner wall surface of the glass tube 1, and a mixed gas 3 of mercury and a rare gas is enclosed in the glass tube 1, and both ends of the glass tube 1 are sealed. In the dielectric barrier discharge lamp in which the electrode 4 made of a metal conductor is formed on the outer surface of both ends of the glass tube 1, the sealing portion 20A at the sealing side end of the glass tube 1 is also the exhaust side end. The sealing part 20B also has a concave shape in which the shape inside each glass tube, that is, the shape of the inner side surfaces 21A and 21B is recessed toward the tube axis side from the tube wall side when viewed from the inside of the glass tube 1. ing. In the manufacturing process, the exhaust hole remaining portion 22 that is further deeply recessed may remain in the sealing portion 20B at the end on the exhaust side.

このような構成の本実施の形態の誘電体バリア放電ランプでは、長時間点灯させた場合に、陽イオンのスパッタリングによって酸化水銀又はシリカと酸化水銀との化合物が生成され、これが外部電極4の管端側の端部に近い部分に集中して堆積するが、その酸化水銀は封着部20A,20Bの内側面21A,21Bの最凹み部分である軸心部に集中して堆積する。   In the dielectric barrier discharge lamp of the present embodiment having such a configuration, when lit for a long time, mercury oxide or a compound of silica and mercury oxide is generated by sputtering of cations, and this is the tube of the external electrode 4. The mercury oxide concentrates and accumulates in a portion near the end on the end side, but the mercury oxide concentrates and accumulates on the axial center portion which is the most recessed portion of the inner side surfaces 21A and 21B of the sealing portions 20A and 20B.

この酸化水銀の堆積により、陽イオンの衝突が酸化水銀の堆積部分に集中し、その部分のガラス管に窪みを発生させる。しかしながら、本実施の形態の場合、封着部20A,20Bの内側面21A,21Bを凹形状としたことで、酸化水銀が集中して堆積する部分が軸心部、つまり、ガラス肉厚が最も厚い部分になるため、酸化水銀の堆積箇所の電極としての負担を下げて陽イオンの衝突エネルギを下げることができ、ガラス管の窪みの進行を抑制することができ、その結果としてガラス管が破損に至るのを防止でき、ランプを長寿命化できる。   Due to the deposition of mercury oxide, the collision of cations concentrates on the deposited portion of mercury oxide, and a depression is generated in the glass tube at that portion. However, in the case of the present embodiment, the inner side surfaces 21A and 21B of the sealing portions 20A and 20B have a concave shape, so that the portion where mercury oxide concentrates and accumulates is the axial portion, that is, the glass thickness is the largest. Because it becomes a thick part, the burden on the mercury oxide deposition site can be reduced, the cation collision energy can be reduced, and the progress of the depression of the glass tube can be suppressed, resulting in breakage of the glass tube The lamp life can be extended.

図2に示した従来例と図1に示した本発明の実施例の誘電体バリア放電ランプに対して、排気側封着部10B,20Bにおける酸化水銀堆積箇所のガラス静電容量を比較した。静電容量の計算式は、図3のモデルによる。つまり、ガラス管の外半径r、肉厚d、管長lとし、さらにガラスの比誘電率ε、真空中の誘電率εとして、ガラス静電容量Cは、次の式により求める。

Figure 0004637022
For the dielectric barrier discharge lamp of the conventional example shown in FIG. 2 and the dielectric barrier discharge lamp of the embodiment of the present invention shown in FIG. 1, the glass capacitances at the mercury oxide deposition locations in the exhaust side sealing portions 10B and 20B were compared. The formula for calculating the capacitance is based on the model shown in FIG. That is, the glass capacitance C is obtained by the following equation, where the outer radius r, the wall thickness d, and the tube length l of the glass tube are set, and the relative permittivity ε s of the glass and the permittivity ε 0 in vacuum.
Figure 0004637022

そして、従来例、実施例のガラス管径2r=3.00mm、ガラス管肉厚d=0.5mmとし、ガラスの比誘電率ε=5.3、真空中の誘電率ε=8.854×10−12F/m、電極部ガラスにかかる電圧V=738Vrms、比較基準長1mmとする条件で、上記数1式を使用して従来例のランプと実施例のランプについて静電容量を比較すると、従来例では0.165pF、実施例では0.723pFとなり、蓄えられる電荷量は、従来例では5.7×10−10C、実施例では1.3×10−10Cとなる。つまり、本発明の実施例において酸化水銀堆積部25はガラス肉厚が厚いため、電極として22.8%の負担しか掛かっていないことになる。このため、本発明の実施例の場合、酸化水銀の堆積部25への陽イオンの衝突確率が下がり、ガラス窪みの発生を抑制することができることが確認できた。 Then, the glass tube diameter 2r = 3.00 mm and the glass tube thickness d = 0.5 mm of the conventional example and the example, the relative dielectric constant ε s = 5.3 of the glass, and the dielectric constant ε 0 = 8. Under the conditions of 854 × 10 −12 F / m, voltage applied to the electrode glass V = 738 Vrms, and comparative reference length 1 mm, the electrostatic capacity of the conventional lamp and the lamp of the embodiment is calculated using the above equation (1). In comparison, the conventional example is 0.165 pF and the example is 0.723 pF, and the amount of stored charge is 5.7 × 10 −10 C in the conventional example and 1.3 × 10 −10 C in the example. In other words, in the embodiment of the present invention, the mercury oxide deposition portion 25 has a large glass wall thickness, so that only a load of 22.8% is applied as an electrode. For this reason, in the case of the Example of this invention, it has confirmed that the collision probability of the cation to the deposit part 25 of mercury oxide fell, and generation | occurrence | production of a glass hollow could be suppressed.

上記の従来例と本発明の実施例とのガラス窪み量を測定したグラフが図4に示してある。本発明のように酸化水銀集中部のガラス肉厚が厚くなる形状にすることで、ガラスの窪みを抑制することができ、従来例の半分程度に抑制することができ、信頼性が高く、長寿命のランプが得られることが確認できた。   The graph which measured the amount of glass dents of said conventional example and the Example of this invention is shown in FIG. By making the glass thickness of the mercury oxide concentrated portion thicker as in the present invention, it is possible to suppress the depression of the glass, to suppress to about half of the conventional example, high reliability, long It was confirmed that a long-life lamp was obtained.

本発明の1つの実施の形態の誘電体バリア放電ランプにおけるガラス管の封止側封着部、排気側封着部それぞれの断面図。Sectional drawing of each of the sealing side sealing part and the exhaust side sealing part of the glass tube in the dielectric barrier discharge lamp of one embodiment of the present invention. 本発明の実施例と従来例との酸化水銀堆積部分それぞれを示す断面図。Sectional drawing which shows each mercury oxide deposition part of the Example of this invention, and a prior art example. 本発明の実施例と従来例とのガラス静電容量の計算に用いるガラス静電容量の計算モデルの説明図。Explanatory drawing of the calculation model of the glass capacitance used for calculation of the glass capacitance of the Example of this invention and a prior art example. 本発明の実施例と従来例との点灯時間とガラス窪み量との関係を示すグラフ。The graph which shows the relationship between the lighting time of the Example of this invention and a prior art example, and the amount of glass hollows. 従来例の誘電体バリア放電ランプの正面図。The front view of the dielectric barrier discharge lamp of a prior art example. 従来例の誘電体バリア放電ランプの断面図。Sectional drawing of the dielectric barrier discharge lamp of a prior art example. 従来例の誘電体バリア放電ランプにおけるガラス管の封止側封着部の断面図。Sectional drawing of the sealing side sealing part of the glass tube in the dielectric barrier discharge lamp of a prior art example. 従来例の誘電体バリア放電ランプにおけるガラス管の排気側封着部(ビーズ封着)の断面図。Sectional drawing of the exhaust-side sealing part (bead sealing) of the glass tube in the dielectric barrier discharge lamp of a prior art example. 他の従来例の誘電体バリア放電ランプにおけるガラス管の排気側封着部(ビーズレス封着)の断面図。Sectional drawing of the exhaust-side sealing part (beadless sealing) of the glass tube in the dielectric barrier discharge lamp of another conventional example. 従来例の誘電体バリア放電ランプにおけるガラス管の排気側封着部(ビーズ封着)のガラス窪み発生状態を示す断面図。Sectional drawing which shows the glass hollow generation | occurrence | production state of the exhaust-side sealing part (bead sealing) of the glass tube in the dielectric barrier discharge lamp of a prior art example.

符号の説明Explanation of symbols

1 ガラス管
2 蛍光体膜
3 混合ガス
4 外部電極
20A 封止側封着部
20B 排気側封着部
21A,21B 封着部の内側面
22 排気穴残留部
DESCRIPTION OF SYMBOLS 1 Glass tube 2 Phosphor film 3 Mixed gas 4 External electrode 20A Sealing side sealing part 20B Exhaust side sealing part 21A, 21B Inner side surface 22 of sealing part Exhaust hole residual part

Claims (1)

ガラス管の内壁面に蛍光体膜が形成され、前記ガラス管内に水銀と希ガスとの混合ガスが封入され、前記ガラス管の両端が封止され、前記ガラス管の両端部の外面に電極が形成された誘電体バリア放電ランプにおいて、
前記ガラス管の一端部又は両端部の封着部それぞれのガラス管内側の形状を、当該ガラス管内側から見て管壁側から管軸側に行くほどに凹む凹形状にし
前記封着部の凹形状の管軸中心に相当する部分にさらに深く凹む小凹部を形成し、
前記ガラス管端部の封着部各部のガラス肉厚を、当該ガラス管胴部のガラス肉厚よりも大きくしたことを特徴とする誘電体バリア放電ランプ。
A phosphor film is formed on the inner wall surface of the glass tube, a mixed gas of mercury and a rare gas is sealed in the glass tube, both ends of the glass tube are sealed, and electrodes are formed on outer surfaces of both ends of the glass tube. In the formed dielectric barrier discharge lamp,
The glass tube inner shape of each of the sealing portions at one end or both ends of the glass tube is a concave shape that is recessed toward the tube axis side from the tube wall side when viewed from the inside of the glass tube ,
Forming a small recess recessed further deeply in a portion corresponding to the concave tube axis center of the sealing portion,
A dielectric barrier discharge lamp characterized in that the glass thickness of each part of the sealing portion at the end of the glass tube is larger than the glass thickness of the glass tube body .
JP2006014051A 2006-01-23 2006-01-23 Dielectric barrier discharge lamp Expired - Fee Related JP4637022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006014051A JP4637022B2 (en) 2006-01-23 2006-01-23 Dielectric barrier discharge lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006014051A JP4637022B2 (en) 2006-01-23 2006-01-23 Dielectric barrier discharge lamp

Publications (2)

Publication Number Publication Date
JP2007200563A JP2007200563A (en) 2007-08-09
JP4637022B2 true JP4637022B2 (en) 2011-02-23

Family

ID=38454979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006014051A Expired - Fee Related JP4637022B2 (en) 2006-01-23 2006-01-23 Dielectric barrier discharge lamp

Country Status (1)

Country Link
JP (1) JP4637022B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1676790A (en) * 1922-04-18 1928-07-10 Cooper Hewitt Electric Co Electric lamp
JP2004079270A (en) * 2002-08-13 2004-03-11 Stanley Electric Co Ltd External electrode type fluorescent lamp
JP2004273432A (en) * 2003-02-19 2004-09-30 Nec Lighting Ltd External electrode type discharge lamp and manufacturing method of the same
WO2005071714A1 (en) * 2004-01-22 2005-08-04 Matsushita Electric Industrial Co., Ltd. External-electrode discharge lamp, external-electrode discharge lamp manufacturing method, and backlight unit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940001248A (en) * 1992-06-27 1994-01-11 최승재 Fluorescent lamp

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1676790A (en) * 1922-04-18 1928-07-10 Cooper Hewitt Electric Co Electric lamp
JP2004079270A (en) * 2002-08-13 2004-03-11 Stanley Electric Co Ltd External electrode type fluorescent lamp
JP2004273432A (en) * 2003-02-19 2004-09-30 Nec Lighting Ltd External electrode type discharge lamp and manufacturing method of the same
WO2005071714A1 (en) * 2004-01-22 2005-08-04 Matsushita Electric Industrial Co., Ltd. External-electrode discharge lamp, external-electrode discharge lamp manufacturing method, and backlight unit

Also Published As

Publication number Publication date
JP2007200563A (en) 2007-08-09

Similar Documents

Publication Publication Date Title
US8456087B2 (en) High-pressure sodium vapor discharge lamp with hybrid antenna
CN1221204A (en) Metal vapour discharge lamp
JP4961655B2 (en) Discharge lamp
EP1134781B1 (en) High-voltage discharge lamp
US6815892B2 (en) Discharge lamp with metal oxide coating
US6856091B2 (en) Seal for ceramic metal halide discharge lamp chamber
EP0579313B1 (en) Electric lamp
JP3461534B2 (en) High pressure discharge lamp
JP4278019B2 (en) External electrode drive discharge lamp
US4625149A (en) Metal vapor discharge lamp including an inner burner having tapered ends
JP4637022B2 (en) Dielectric barrier discharge lamp
US4204137A (en) Fluorescent lamp with refractory metal electrode supports and glass flare seal structure
US6759806B2 (en) High pressure discharge lamp and method for sealing a bulb thereof
US8664856B2 (en) Electrode for a discharge lamp and a discharge lamp and method for producing an electrode
US10056220B2 (en) Manufacturing method of high-pressure discharge lamp and sealed part structure for high-pressure discharge lamp
HU177366B (en) Electric lamp
CN202231297U (en) Novel glass cathode for laser gyroscope
JP7141692B2 (en) Sealing structure for discharge lamp, and discharge lamp provided with the structure
US20050179387A1 (en) Lamp and method for producing a lamp
US8552645B2 (en) Seal and leg design for ceramic induction lamp
TW201320147A (en) Plasma lamp with excellent light extraction efficiency
JPS6038821B2 (en) metal vapor discharge lamp
KR20220045890A (en) Lamp sealing structure, lamp, and method of lamp sealing
JPH0448630Y2 (en)
JP2002056811A (en) High pressure vapor discharge lamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees