JP4636747B2 - Equipment for measuring Young's modulus of wood such as veneer veneer - Google Patents

Equipment for measuring Young's modulus of wood such as veneer veneer Download PDF

Info

Publication number
JP4636747B2
JP4636747B2 JP2001251668A JP2001251668A JP4636747B2 JP 4636747 B2 JP4636747 B2 JP 4636747B2 JP 2001251668 A JP2001251668 A JP 2001251668A JP 2001251668 A JP2001251668 A JP 2001251668A JP 4636747 B2 JP4636747 B2 JP 4636747B2
Authority
JP
Japan
Prior art keywords
veneer
moving body
wood
force
modulus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001251668A
Other languages
Japanese (ja)
Other versions
JP2003065929A (en
Inventor
哲也 中尾
箭波 黄
勇一 鈴木
輝幸 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meinan Machinery Works Inc
Original Assignee
Meinan Machinery Works Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meinan Machinery Works Inc filed Critical Meinan Machinery Works Inc
Priority to JP2001251668A priority Critical patent/JP4636747B2/en
Publication of JP2003065929A publication Critical patent/JP2003065929A/en
Application granted granted Critical
Publication of JP4636747B2 publication Critical patent/JP4636747B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ベニヤ単板(以下、単板という)等木材のヤング率を測定する際に使用するヤング率測定装置に関する。
【0002】
【従来の技術】
例えば合板を製造する際に使用する単板にあっては、単板が削成される原木が多種多様にわたり、仮に同一樹種であっても原木の辺材と芯材とでは単板の材質が一様でなく、大きく異なる場合があり、目的に応じた材質の単板を使用するのが望ましい。
【0003】
この単板の性質を判断する要素としての一つとしてヤング率が挙げられる。単板のヤング率を測定する装置としては、例えば特公平6−78974号公報に示すヤング率自動測定器や米国特許第5,097,881号公報に示す超音波を使用した試験装置等が知られている。
【0004】
【発明が解決すべき課題】
しかし、上記した前者にあっては、木材を打撃した際の基本振動周期と木材の性質とからヤング率を測定しているが、この装置では板状の被検査物を搬送しながら複数箇所のヤング率を測定することが困難であった。
【0005】
また後者においては、被検査物である丸太の全体での欠点を検出することは可能であるが、発信側及び受信側に多数のトランスジューサを必要とし、装置として高価になる問題を有していた。
【0006】
本発明は、上記した従来の欠点を解決するために発明されたものであり、その課題とする処は、第1移動体から単板等木材に対して縦振動を確実に与えると同時に第1加速度検出器により第1移動体が該縦振動を与えたことを検出して単板等木材における縦振動の伝播速さを正確に求めてヤング率を高精度に測定することができる単板等木材のヤング率測定装置を提供することにある。
【0007】
また本発明は、第2移動体が単板等木材に当接された状態でも該木材から遠ざかる方向に自由に移動して単板等木材からの縦振動を良好に受振してヤング率を高精度に測定することができる単板等木材のヤング率測定装置を提供することにある。
【0008】
更に本発明は、単板等木材のヤング率を搬送状態のまま効率的に、かつ高精度に測定することができる単板等木材のヤング率測定装置を提供することにある。
【0009】
【課題を解決するための手段】
本発明は、ベニヤ単板等木材に対して振動を加える加振機及びベニヤ単板等木材を伝播した振動を受振する受振機を備え、ベニヤ単板等木材における振動の伝播時間に基づいてベニヤ単板等木材のヤング率を測定するヤング率測定装置において、上記加振機は、ベニヤ単板等木材に当接した状態でベニヤ単板等木材に向かって往復動する第1移動体と、該第1移動体に設けられて往復移動時の加速度を検出する第1加速度検出器と、第1移動体に対してベニヤ単板等木材に向かう方向の力を加える作動部材とからなることを特徴とする。
【0011】
【発明の実施の形態】
次に、本発明を、実施形態を単板のヤング率を測定する測定装置に実施した実施例により説明する。
【0012】
実施例装置の平面説明図である図1、図1の加振機Aの拡大平面説明図である図2、図2の一点鎖線X−Xより矢印の方向を見た側面説明図である図3、図1の受振機Bの拡大平面説明図である図4、図4の一点鎖線Y−Yより矢印の方向を見た側面説明図である図5において、1は加振機Aと受振機Bとの間に配置され、ヤング率が測定される測定対象物としての単板3を支持して繊維方向と直交する方向である矢印方向へ、例えば毎分20mの速さで搬送するコンベアであり、5はコンベア1の上方に配置され、該コンベヤ1と同速で走行してコンベア1に支持された単板3を挟持して搬送する挟持コンベアである。
【0013】
6はコンベア1により単板3が所定位置まで搬送されたことを検知する拡散反射式光センサ(以下、光センサという)であり、光センサ6からの検知信号は後述する制御器Sに送られる。
【0014】
8は単板3の密度を測定する、例えば放射線法による密度計であり、該密度計8はコンベア1により搬送される単板3における搬送方向の複数箇所の密度を測定し、夫々の密度測定値を制御器Sに送る。
【0015】
Aは単板3に縦振動を与えるための加振機であり、以下の様に構成されている。
【0016】
図2及び図3に示す様に、7は基台9に対し、下端側が軸受(図示せず)を介して矢印で示す軸中心線回りに回転自在に設けられた軸であり、軸7の上端には第1支持板11が固定される。
【0017】
第1支持板11の上面には、先端面が円弧状に形成された当接部13aと、これに続く本体部13b及び本体部13bにボルト(図示せず)により固定された取付部13cからなる第1移動体13が、第1支持板11に対して図2及び図3に示す左右方向へ後述する微小ストロークで移動自在に設けられる。
【0018】
即ち、第1移動体13の本体部13b及び第1支持板11には貫通孔13e・11aがそれぞれ設けられると共にこれら本体部13bと第1支持板11の間に座金17を配置する。そしてこれら貫通孔13e・11a及び座金17に対して第1規制体としての六角穴付きボルト15(以下ボルト15という)のねじ部15cを挿通して後述するようにナット19を締め付け装着する。この時、第1移動体13に設けられた貫通孔13eの直径はボルト15の直径より、例えば具体的には0.5mm程度大きく、また第1支持板11に設けられた貫通孔11aと座金17の孔の直径はボルト15の直径とほぼ等しくする。
【0019】
また、第1支持板11から下方に突出したボルト15のねじ部15c先端側にはナット19が装着されるが、ボルト15の頭部15aの下端面15bと本体部13bの上面13dとの間隔が、例えば0.2mm程度となるように位置決めしてナット19を締め付け装着する。これにより第1移動体13は、座金17上を図3でボルト15に対し左右方向に、例えば0.5mm程度の範囲で往復動自在となっている。
【0020】
第1移動体13の取付部13cには第1加速度検出器14が固定され、該第1加速度検出器14は第1移動体13の移動時に検出される加速度検出信号をコード14aを介して縦振動波形を表示するためのモニタ装置(図示せず)を備えた制御器Sに送る。
【0021】
図3に示す第1移動体13右側奥に位置する第1支持板11には第1移動体13へ縦振動を与える後述する作動部材の一部を構成する打撃体21等を保持する上下に長い保持台23が設けられる。
【0022】
該保持台23には、図3に示す様に上下に延びるアーム部21aのほぼ中間部が回動可能に支持され、該アーム部21aの下端部には左右に伸びる打撃部21bを有する打撃体21が設けられる。
【0023】
即ち、図1の加振機Aの拡大平面説明図である図2に実線で、また図2の一点鎖線X−Xより矢印の方向を見た側面説明図である図3に破線で示す様に、アーム部21aの上下方向のほぼ中央部の裏面には軸25が固定され、該軸25は保持台23に軸受(図示せず)を介して回動可能に支持される。
【0024】
打撃体21の打撃部21bと第1移動体13の取付部13cとには水平方向に雌ねじ(図示せず)が形成され、これら雌ねじには各々ボルト27a・29aをねじ部の一部がねじ込まれてナット27b・29bにより固定される。
【0025】
更に、ボルト27a・29aの各ねじ部には引き伸ばされた引張コイルばね(以下、引張ばねという)31の両端がそれぞれ掛止されて取り付けられる。
【0026】
一方、アーム部21aの上端部には、カム従動子としての軸受33が、挿通されるボルト35をナット37によりねじ止めして回動可能に取り付けられる。
【0027】
また、保持台23に対して打撃体21と反対側の上部にはモータ39が第1支持板11上に固定して取り付けられ、モータ35の軸41は保持台23に設けられた軸受(図示せず)を挿通して打撃体21側へ突出している。
【0028】
軸41の先端部には、図3に示す円弧状の周面を有する突出部43aを2個備えたカム43が取り付けられ、モータ39により軸41が矢印方向へ回転させられると、軸受33に対する突出部43aの断続的な当接により打撃体21を後述する様に往復回動させる。
【0029】
尚、モータ39の容量は、後述する様にモータ39の回転によるカム43の回転で突出部43aが軸受33に当接された際、引張ばね31の引張力に抗してカム43を回転し続けることができるように選択する。
【0030】
一方、第1支持板11の下面には、図3に示す様に下方に突出する平板状の継手45が固定され、該継手45は終端部が第1支持板11から離れた位置に設けた取付部(図示せず)にピン連結されたエアシリンダ47のピストンロッド49の先端部に同じくピン連結される。これによりエアシリンダ47の作動によりピストンロッド49を前後動させることにより、第1支持板11を図2に矢印で示す様に軸7の軸中心線回りに往復回転させる。
【0031】
また、エアシリンダ47へ供給する圧縮空気の圧力は、予め、後述する様にエアシリンダ47の力により第1支持板11が図1に示す時計回りに回動し、搬送される単板3の木口側端縁に第1移動体13の当接部13aが当接した状態で適宜変更して打撃部21bが第1移動体13に衝突することにより縦振動が良好に単板3に伝播されているか否かを、モニタ装置により確認して設定する。
【0032】
実施例装置の平面説明図である図1のBは加振機Aに相対して配置され、単板3に与えられた縦振動を受振する受振機で、以下の様に構成されている。
【0033】
図1の受振機Bの拡大平面説明図である図4及び図4の一点鎖線Y−Yより矢印の方向を見た側面説明図である図5に示す様に、51は基台53に対して下端側が軸受(図示せず)を介して矢印で示す軸中心線回りに回転自在に設けられた軸で、軸51の上部には第2支持板55が固定される。
【0034】
第2支持板55の上面には第2移動体57が第2支持板55に対して図4の左右方向に移動自在に設けられている。該第2移動体57は、第1移動体13と形状は同じであるが、質量を小とするため、例えばポリアミド樹脂材(具体的な商品名としては日本ポリペンコ社製のMCナイロン)により、先端側が円弧状の当接部57aと、これに続く本体部57b及び本体部57bにボルト(図示せず)により固定された取付部57cを一体に形成してなる。
【0035】
即ち、図4の一点鎖線Y−Yより矢印の方向を見た側面説明図である図5に示す様に本体部57b及び第2支持板55に各貫通孔57e・55aをそれぞれ設け、かつ本体部57bと第2支持板55との間に座金61を配置し、第2規制体としての六角穴付きボルト59(以下ボルト59という)のねじ部59cをこれら貫通孔57e・55a及び座金61に挿通する。この時、第1移動体と同様に、第2移動体57に設ける貫通孔57eの直径はボルト59の直径より、例えば0.5mm程度大きく、また第2支持板55に設ける貫通孔55aと座金61の孔の直径はボルト59の直径とほぼ等しくする。
【0036】
また、第2支持板55から下方に突出したボルト59のねじ部59c先端側にナット63を装着するが、ボルト59における頭部59aの下端面59bと本体部57bの上面57dとの間隔を、例えば0.2mm程度となるように位置決めしてナット63を締め付け装着する。これにより第2移動体57は、座金61上を図4で左右方向に、例えば0.5mm程度の範囲で往復動自在になる。
【0037】
第2移動体57の取付部57cの上部には制御器Sへ信号を伝播するためのコード58aを備えた第2加速度検出器58が固定され、また取付部57cの下部には左右方向に雌ねじ(図示せず)を形成し、後述する圧縮コイルばね79(以下、圧縮ばねという)の内径より若干小さい外径のリング状部材65を、ボルト67を取付部57cの雌ねじボルト67をねじ込んで固定する。
【0038】
第2移動体57の左方には図4においてL字状に見えるばね取付部69aを有し、かつ左右方向に連続して厚さ方向(図5では上下方向)に貫通する長孔69bが形成されたばね取付台69が、長孔69bに挿通したボルト71・73を第2支持板55の上面に形成された2個の雌ねじ(図示せず)にねじ込んで固定する。
【0039】
ばね取付部69aには図4の左右方向に貫通する孔(図示せず)が形成され、該孔内に挿通されたボルト75をナット77で固定する。
【0040】
更に、第2移動体57とばね取付台69との間には両端部がリング状部材65とボルト75の頭部間に装着された圧縮ばね79が取り付けられる。この時、第2移動体57が圧縮ばね79によりボルト59に圧接する力は、ボルト71・73を緩めた状態でばね取付台69を第2移動体57に対し、接近または遠ざける方向へ移動し、所望の力となった時点でボルト71・73を再びねじ込んで第2移動体57を固定することにより調整して設定する。
【0041】
上記設定の結果、ボルト59に対する第2移動体57の位置は、図4において第2移動体57の箇所を拡大し、かつボルト59の頭部59aを省略した説明図である図6に示す様に、ねじ部59cの左側に対して第2移動体57に設けた貫通孔57eの左側が圧接した位置になっている。
【0042】
一方、第2支持板55の下面には、図5に示す様に下方に突出する平板状の継手81が固定され、該継手81には、終端部が第2支持板55から離れた位置に設けた取付部(図示せず)にピン連結されたエアシリンダ83のピストンロッド85の先端部が同じくピン連結される。
【0043】
これによりエアシリンダ83の作動によりピストンロッド85が前後動されると、第2支持板55を図4に矢印で示す軸51の回りに往復回転させる。
【0044】
また、エアシリンダ83の作動により第2支持板55を、図1に示す様に軸51を中心として反時計回りに回転させて、後述する様に搬送される単板3の木口側端縁に第2移動体57の当接部57aを当接させた際に、第2移動体57が単板3から押し返される力を受けても、ボルト59に対する第2移動体57の位置が図6に示す状態を保つようにエアシリンダ83に供給される圧縮空気の圧力を調整する。
【0045】
また、制御器Sは伝播される各種信号に基づいて各部材を下記の様に作動制御すると共にヤング率を求める演算処理を行う。該制御器Sには、単板3の搬送方向と直交する方向の長さの値が予め入力されている。
【0046】
(1).制御器Sは、コンベア1で搬送される単板3の搬送方向下手側端部が光センサ6の位置に到達して該光センサ6からの検知信号を受けると、単板3の該下手側端部より若干上手側の両木口側端縁に第1移動体13と及び第2移動体57を各々当接させるタイミングで、エアシリンダ47・83のピストンロッド49・85を前進作動させる作動信号を出力する。
【0047】
また、制御器Sは、単板3の搬送方向上手側端部が光センサ6の位置を通過して光センサ6からの信号が非検知に遷移すると、単板3の該上手側端部が単板3の両木口端縁に当接している第1移動体13及び第2移動体57を通過する直前のタイミングでエアシリンダ47・83を復動してピストンロッド49・85を後退作動させる信号を出力して第1移動体13及び第2移動体57を単板3から離間させる。
【0048】
(2).制御器Sは、打撃体21の打撃部21bが第1移動体13に衝突した際に、第1加速度検出器14からの加速度信号が入力されたタイミングと、該衝突による縦振動が後述するように単板3を経て伝播されることで第2加速度検出器58から発せられる加速度信号が入力されたタイミングとに基づいて単板3における縦振動の伝播時間を計測する。また、上記伝播時間の計測は単板3における複数ポイントで行い、光センサ6の位置を単板3の搬送方向上手側端部が通過して光センサ6からの信号が非検知に遷移すると、該複数のポイントでの各伝播時間から1枚の単板3における縦振動の平均伝播時間Tを演算する。
【0049】
(3).制御器Sは、予め入力されている単板3の搬送方向と直交する方向の長さLの値と平均伝播時間Tとにより単板3における縦振動の平均伝播速さv1を演算する。
【0050】
(4).制御器Sは、1枚の単板3における複数ポイントで密度計8により計測された複数の密度値から平均密度ρ1を演算し、該平均密度ρ1と上記(3)により求められた平均伝播速さv1を、ヤング率E=ρ×V×V(但し、E:ヤング率、ρ:物体の密度、V:物体中を縦振動が伝わる速さ)に当て嵌めて単板3の平均ヤング率E1を演算する。
【0051】
(5).制御器Sは、演算された平均ヤング率E1をモニタ装置の画面上に表示する。
【0052】
次に、単板3のヤング率測定作用を説明すると、装置の初期状態を以下のように設定する。
【0053】
即ち、両エアシリンダ47・83の各ピストンロッド49・85を後退作動して図1に実線で示す状態から第1支持板11を、軸7を中心に反時計回りに、また第2支持板55を、軸51を中心として時計回りに夫々回転させて第1支持板11に設けた第1移動体13と第2支持板55に設けた第2移動体57とを図1に破線で示す位置に回動して各々コンベア1から遠ざけた位置に待機させておく。
【0054】
また、モータ39は常時駆動してカム43を常時回転させておく。これにより矢印方向に回転するカム43により軸受33に対して突出部43aを断続的に当接させる。
【0055】
その際、軸受33と突出部43aとの非当接時には、打撃体21と第1移動体13とは引張ばね31により図3において互いに接近する方向の力を受け、打撃部21bと取付部13cとが当接している。尚、この段階では第1支持板11上の定位置にあるボルト15に対する第1移動体13の位置は、図2で第1移動体の箇所を、ボルトの頭部を省略して拡大した平面説明図である図7に示す様に第1移動体13の貫通孔13e内面の左側箇所がボルト15のねじ部15cの左側箇所に当接した状態、図2で第1移動体の箇所を、ボルトの頭部を省略して拡大した平面説明図である図8に示す様に第1移動体13の貫通孔13e内面の右側箇所がボルト15のねじ部15cの右側箇所に当接した状態、または両位置の中間の何れかとなっているかは定まらない。
【0056】
この状態から回転するカム43の突出部43aが軸受33に当接すると、突出部43aの円弧状の周面に対する摺接により軸受33が左方へ押しやられて打撃体21を、図3で示す様に軸25を回転中心として反時計回りに回動して打撃部21bを右方向に回動させる。
【0057】
この打撃体21の回動により第1移動体13も引張ばね31の引張力を受けるが、ボルト15に対する第1移動体13の位置が図7に示す状態であれば、第1移動体13はねじ部15cによりその移動が阻止される。また、同じく第1移動体13の位置が図8に示す状態又は前記両位置の中間の位置であれば、前記引張ばね31の引張力により第1移動体13は右方向に移動し、図7に示す様に第1移動体13の貫通孔13e内面の左側箇所がボルト15のねじ部15cの左側箇所に当接してその移動が阻止される。
【0058】
それ故、突出部43aが軸受33に当接して打撃体21を前記反時計回りに回動させると、ボルト15に対する第1移動体13の位置は必ず図7の状態となり、該状態から第1移動体13が右方向へ移動することはない。
【0059】
一方、カム43は引張ばね31の引張力に抗して引張ばね31を伸ばしつつ回転し続けるため、打撃体21は更に反時計回りに回動し、その結果、取付部13cと打撃体21bとの間に間隔ができる。
【0060】
また、カム43が更に回転し続けることで突出部43aが軸受33から離れると、打撃体21に作用する力は伸ばされた引張ばね31の引張力だけとなり、この引張力により打撃体21は図3で示す様に急激に時計回りに回動して打撃部21bを第1移動体13の取付部13cに衝突させる。これにより、図7の位置にある第1移動体13は打撃部21bにより左方向への力を受け、図8に示す位置である左方向へ約0.5mmの幅で急激に移動することになる。
【0061】
前記衝突により第1移動体13が急激に移動した後にあっては、引張ばね31の引張力により打撃部21bと取付部13cの当接状態が維持されるが、ボルト15に対する第1移動体13の位置は前記と同様に一定ではない。
【0062】
この状態から、次にカム43の前記と反対側の突出部43aが軸受33に当接された後に離れると、前記最初に突出部43aが当接した場合と同様の動作が繰り返され、第1移動体13の位置が図7に示す状態となった後、打撃部21bが第1移動体13の取付部13cに衝突して第1移動体13を図8に示す状態となるまで急激に移動させ、以下カム43が回転し続けることで同様の動作を繰り返す。尚、モータ39の回転数は、例えばカム43が1秒間で5回転する様に設定する。
【0063】
以上のように初期状態が設定された装置により単板3のヤング率を下記の様にして測定する。
【0064】
図1に示す様にコンベア1により単板3を、繊維方向と直交する矢印の方向に搬送する。搬送される単板3は、最初に密度計8の箇所を通過した際にその密度が計測される。密度計8による密度計測値は制御器Sへ送られる。
【0065】
次に、単板3の該下手側端部が光センサ6により検知されると、光センサ6からの該検知信号を受けた制御器Sはエアシリンダ47・83の各ピストンロッド49・85をそれぞれ前進作動させて第1移動体13を、軸7を中心として時計回りに、また第2支持板55を、軸51を中心として反時計回りにそれぞれ回動して単板3の搬送方向下手側端部より若干上手側の両木口側端縁にそれぞれ当接させる。
【0066】
単板3に当接した第1移動体13は上記したようにその取付部13cに対する打撃部21bの衝突が断続的に行われることにより断続的に振動して縦振動を単板3に伝播させる。そして単板3に伝播された縦振動第2移動体57に受振される。
【0067】
この縦振動の伝播において、制御器Sは、打撃体21の打撃部21bが第1移動体13に衝突する毎に、該衝突時に第1加速度検出器14から発せられる信号を受けたタイミングと、該衝突した縦振動が後述するように単板3を経て第2移動体57に伝播された際に第2加速度検出器58から発せられる信号を受けたタイミングとに基づいて単板3における縦振動の伝播時間を計測し、単板3の搬送方向上手側端部が光センサ6の箇所を通過すると、単板3の複数のポイントで計測された各伝播時間から単板3の平均伝播時間Tを求め、平均伝播時間Tと予め入力された単板3の搬送直交方向の長さの値とにより単板3における縦振動の平均伝播速さv1を演算する。
【0068】
制御器Sは、密度計8により計測された複数の密度計測値による平均密度ρ1を演算し、これら平均伝播速さv1と平均密度ρ1から単板3の平均ヤング率E1を演算してモニタ画面上に表示する。尚、上記設定では単板3に対し、単板3の搬送方向において約33mm間隔毎のポイントで伝播時間が求められる。
【0069】
上記実施例装置では、第1加速度検出器14を設けた第1移動体13を単板3に当接させることにより以下のような効果がある。
【0070】
即ち、比較例の説明図である図9に矢印で示す様に単板91の搬送方向に沿って単板91に縦振動を加える加振体93と、加速度検出器95を有して単板91に当接され続ける縦振動検出体97とを別体に並べて設けてヤング率を測定する場合には、次のような問題がある。
【0071】
例えば単板91に割れ91aがあると、加振体93によって単板91に与えられた縦振動は割れ91aの箇所では伝播されず、縦振動検出体97へ伝播されるまでに通過する単板91の長さが、割れ91aが無い場合に比べて長くなる。しかも割れ91aの形状が一定で無いため、縦振動が縦振動検出体97に伝播されるまでの時間が異なることになる。その結果、前記伝播速さv1が本来の値より小さくなり、正確なヤング率が求められない。
【0072】
これに対して上記実施例装置では、単板3に割れがあっても、打撃部21bを第1移動体13に衝突させて単板3に縦振動を与えると同時に第1加速度検出器14により該打撃部21bの衝突が検出されるため、上記伝播速さv1の値を正確に求めることができ、ヤング率をより正確に測定することができる。
【0073】
また、ボルト15に対する第1移動体13の位置が図8に示す状態となっていると、打撃部21bが第1移動体13に衝突しても第1移動体13はねじ部15cにより左方向への移動が阻止されるため、第1移動体13から単板3へ縦振動が殆ど伝播されず、ヤング率を測定することが困難となる。
【0074】
これに対して上記実施例装置では、第1移動体13をボルト15に対し、ほぼ0.5mmの範囲で移動自在にする共に打撃体21を、軸25を中心として回動自在にして両者を引張ばね31により連結したので、カム43の回転により打撃部21bが第1移動体13に衝突する前に前記の様にボルト15に対する第1移動体13の位置が図7に示す状態となる。これにより衝突後に第1移動体13を左方向へほぼ0.5mmの幅で急激に移動させることができ、単板3に対する縦振動の伝播を確実に行うことができ、ヤング率を正確に測定することができる。
【0075】
また、前記実施例において引張ばね31の代わりに、ボルト15に対する第1移動体13の位置を図7に示す状態とするために一端を第1支持板11に固定して他端を第1移動体13に固定した1個の引張ばねとは別に、打撃体21の打撃部21bを第1移動体13に衝突させるために一端を第1支持板11に固定して他端を打撃部21bに固定した引張ばねを設けても良い。
【0076】
しかるに、上記のように第1移動体13と打撃体21とを引張ばね31により連結する構成とすることにより、引張ばね31を、打撃部21bが第1移動体13に衝突する前に前記の様にボルト15に対する第1移動体13の位置を図7に示す状態とするために力を出すことと、打撃部21bを第1移動体13に衝突させるために力を出すこととに兼用することができる。
【0077】
第2移動体57をボルト59に対して、例えばほぼ0.5mmの範囲で移動自在とし、かつ圧縮ばね79により図6に示す状態で第2移動体57の貫通孔57eがボルト59のねじ部59cに圧接させるように構成したので、以下の効果がある。
【0078】
上記のように第1移動体13が単板3に衝突した際に生じる縦振動によって単板3に当接した第2移動体57の当接部57aが図6に示す左側に移動しても、次に第1移動体13が単板3へ衝突するまでに圧縮ばね79の力により図6において左側へ復帰させることができる。
【0079】
これにより単板3の縦振動が伝播される時は常にボルト59に対する第2移動体57の位置が図6に示す状態となって左方向に自由に移動でき、縦振動を良好に受振することができる。
【0080】
変更例
(1).単板3の密度は、密度計を用いずに樹種により予め想定される平均的な密度値を制御器Sに入力しておいても良い。
【0081】
(2).第1移動体13と第2移動体57とは、各々軸受を備えて単板3の搬送移動に伴って従動回転する構成としても良い。
【0082】
(3).求めたヤング率E1はモニタ画面上に表示せず、ヤング率が測定された単板3に対してインクを噴射するインクジェット方式やインクを熱転写する熱転写方式の印字装置により測定されたヤング率E1を直接印字しても良い。
【0083】
(4).単板等の木材を走行させることなく停止している状態で、前記第1移動体13と第2移動体57を各々相対する状態で該木材に当接させ、ヤング率を測定する様にしても良い。
【0084】
(5).第1移動体13を単板3に衝突させるための部材としてクランク機構を用いても良い。
【0085】
(6).第1移動体13を打撃する作動部材としては、電磁ソレノイド装置としてもよい。即ち、内蔵された電磁石を所定デューティのパルスにより励磁駆動して内蔵された圧縮ばねにより第1移動体13から遠ざかる方向へ付勢されたプランジャーを反対方向へ磁気駆動して第1移動体13を打撃し、単板3に縦振動を与える。
【0086】
(7).上記説明は、単板3のヤング率を測定する場合を例に説明したが、本発明は板材や柱材等の木材のヤング率を測定する場合にも適用できることは勿論である。
【0087】
【発明の効果】
本発明は、第1移動体から単板等木材に対して縦振動を与えると同時に第1加速度検出器により第1移動体が該縦振動を与えたことを検出して単板等木材における縦振動の伝播速さを正確に求めることにより高精度にヤング率を測定することができる。また本発明は、第2移動体が単板等木材に当接した状態でも該木材から遠ざかる方向に自由に移動することができ、単板等木材から縦振動を良好に受振して高精度にヤング率を測定することができる。さらに本発明は、単板等木材のヤング率を搬送状態のまま効率的に、かつ高精度に測定することができる。
【図面の簡単な説明】
【図1】実施例装置の平面説明図である。
【図2】図1の加振機Aの拡大平面説明図である。
【図3】図2の一点鎖線X−Xより矢印の方向を見た側面説明図である。
【図4】図1の受振機Bの拡大平面説明図である。
【図5】図4の一点鎖線Y−Yより矢印の方向を見た側面説明図である。
【図6】図4で第2移動体の箇所を、ボルトの頭部を省略して拡大した平面説明図である。
【図7】図2で第1移動体の箇所を、ボルトの頭部を省略して拡大した平面説明図である。
【図8】図2で第1移動体の箇所を、ボルトの頭部を省略して拡大した平面説明図である。
【図9】比較例の説明図である。
【符号の説明】
3−単板等木材としての単板、11−第1支持板、13−第1移動体、13c−取付部、14−第1加速度検出器、21−作動部材の一部を構成する打撃体、21b−打撃部、43−カム、55−第2支持板、57−第2移動体
[0001]
BACKGROUND OF THE INVENTION
The present invention is used when measuring the Young's modulus of wood such as a veneer veneer (hereinafter referred to as veneer). Young's modulus measurement equipment Related to the position.
[0002]
[Prior art]
For example, in the veneer used when manufacturing plywood, there are a wide variety of logs from which the veneer is cut. It is not uniform and may vary greatly, and it is desirable to use a single plate of a material suitable for the purpose.
[0003]
One factor for determining the properties of the veneer is Young's modulus. As an apparatus for measuring the Young's modulus of a single plate, for example, a Young's modulus automatic measuring instrument shown in Japanese Patent Publication No. 6-78974 and a test apparatus using ultrasonic waves shown in US Pat. No. 5,097,881 are known. It has been.
[0004]
[Problems to be Solved by the Invention]
However, in the former described above, Young's modulus is measured from the basic vibration period and the nature of the wood when the wood is hit. It was difficult to measure the Young's modulus.
[0005]
In the latter case, it is possible to detect a defect in the whole log as an object to be inspected, but a large number of transducers are required on the transmitting side and the receiving side, and there is a problem that the apparatus becomes expensive. .
[0006]
The present invention has been invented in order to solve the above-described conventional drawbacks, and the problem to be solved is that the first moving body reliably applies longitudinal vibration to the wood such as a single plate and at the same time, the first. A single plate or the like that can detect the first vibration by the acceleration detector and accurately determine the propagation speed of the longitudinal vibration in the wood such as a single plate and measure the Young's modulus with high accuracy. Wood Young's modulus measuring device Is to provide.
[0007]
The present invention also enables the second moving body to move freely in a direction away from the wood even when the second moving body is in contact with the wood such as a veneer, and to receive the longitudinal vibration from the wood such as the veneer well to increase the Young's modulus. Of wood such as veneer that can be measured accurately Young's modulus measuring device Is to provide.
[0008]
Furthermore, this invention is providing the Young's modulus of wood, such as a single board, which can measure the Young's modulus of wood, such as a single board, efficiently and with high precision in a conveyance state.
[0009]
[Means for Solving the Problems]
The present invention A veneer veneer, such as a veneer veneer, is equipped with a vibration exciter that applies vibration to the veneer veneer, etc., and a vibration receiving device that receives vibrations propagated through the veneer, veneer, veneer, etc. In the Young's modulus measuring apparatus for measuring the Young's modulus of A first moving body that reciprocates toward a veneer veneer, such as a veneer veneer, and a first acceleration detector that is provided on the first moving body and detects acceleration during the reciprocating movement. And an actuating member that applies a force in a direction toward the wood, such as a veneer veneer, to the first moving body.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described with reference to an example in which the embodiment is applied to a measuring apparatus for measuring the Young's modulus of a single plate.
[0012]
FIG. 1 is a plan explanatory view of the embodiment device, FIG. 2 is an enlarged plan explanatory view of the vibrator A of FIG. 1, and FIG. 2 is a side explanatory view of the direction of the arrow as viewed from the one-dot chain line XX of FIG. 3, FIG. 4, which is an enlarged plan view of the geophone B in FIG. 1, and FIG. 5, which is a side view as seen in the direction of the arrow from the alternate long and short dash line YY in FIG. 4. A conveyor that is arranged between the machine B and supports the veneer 3 as an object to be measured for Young's modulus and conveys the sheet in the direction of the arrow perpendicular to the fiber direction, for example, at a speed of 20 m / min. Reference numeral 5 denotes a sandwiching conveyor that is disposed above the conveyor 1, travels at the same speed as the conveyor 1, and sandwiches and conveys the single plate 3 supported by the conveyor 1.
[0013]
Reference numeral 6 denotes a diffuse reflection type optical sensor (hereinafter referred to as an optical sensor) that detects that the veneer 3 is conveyed to a predetermined position by the conveyor 1, and a detection signal from the optical sensor 6 is sent to a controller S described later. .
[0014]
8 is a density meter by a radiation method, for example, which measures the density of the veneer 3. The density meter 8 measures the density at a plurality of locations in the conveyance direction of the veneer 3 conveyed by the conveyor 1, and measures each density. Send value to controller S.
[0015]
A is a vibration exciter for applying longitudinal vibration to the single plate 3 and is configured as follows.
[0016]
As shown in FIGS. 2 and 3, reference numeral 7 denotes a shaft whose lower end side is provided to the base 9 so as to be rotatable around an axis center line indicated by an arrow through a bearing (not shown). The first support plate 11 is fixed to the upper end.
[0017]
On the upper surface of the first support plate 11, there are a contact portion 13a having a tip surface formed in an arc shape, and a main body portion 13b and a mounting portion 13c fixed to the main body portion 13b by bolts (not shown). The first moving body 13 is provided so as to be movable with respect to the first support plate 11 in the left-right direction shown in FIGS.
[0018]
That is, the main body portion 13 b and the first support plate 11 of the first moving body 13 are provided with through holes 13 e and 11 a, and the washer 17 is disposed between the main body portion 13 b and the first support plate 11. Then, a threaded portion 15c of a hexagon socket head bolt 15 (hereinafter referred to as a bolt 15) as a first restricting body is inserted into the through holes 13e and 11a and the washer 17, and a nut 19 is tightened and attached as will be described later. At this time, the diameter of the through hole 13e provided in the first moving body 13 is larger than the diameter of the bolt 15, for example, specifically about 0.5 mm, and the through hole 11a provided in the first support plate 11 and the washer. The diameter of the 17 holes is approximately equal to the diameter of the bolt 15.
[0019]
A nut 19 is attached to the tip of the threaded portion 15c of the bolt 15 projecting downward from the first support plate 11. The distance between the lower end surface 15b of the head portion 15a of the bolt 15 and the upper surface 13d of the main body portion 13b. However, for example, the nut 19 is tightened and mounted so as to be about 0.2 mm. Thus, the first moving body 13 can reciprocate on the washer 17 in the left-right direction with respect to the bolt 15 in FIG.
[0020]
A first acceleration detector 14 is fixed to the attachment portion 13c of the first moving body 13, and the first acceleration detector 14 transmits an acceleration detection signal detected when the first moving body 13 is moved vertically via a cord 14a. It sends to the controller S provided with the monitor apparatus (not shown) for displaying a vibration waveform.
[0021]
The first support plate 11 located at the back right side of the first moving body 13 shown in FIG. 3 is provided above and below to hold an impacting body 21 that constitutes a part of an operating member (described later) that applies longitudinal vibration to the first moving body 13. A long holding table 23 is provided.
[0022]
As shown in FIG. 3, a substantially intermediate portion of the arm portion 21a extending vertically is rotatably supported on the holding base 23, and a striking body having a striking portion 21b extending left and right at the lower end portion of the arm portion 21a. 21 is provided.
[0023]
That is, as shown by a solid line in FIG. 2, which is an enlarged plan view of the vibrator A in FIG. 1, and as shown by a broken line in FIG. 3, which is a side view as viewed from the direction of the arrow from the one-dot chain line XX in FIG. Further, a shaft 25 is fixed to the back surface of the substantially central portion in the vertical direction of the arm portion 21a, and the shaft 25 is rotatably supported by the holding base 23 via a bearing (not shown).
[0024]
A female screw (not shown) is formed in the horizontal direction in the striking part 21b of the striking body 21 and the mounting part 13c of the first moving body 13, and bolts 27a and 29a are respectively screwed into these female screws. And fixed by nuts 27b and 29b.
[0025]
In addition, both ends of a stretched coil spring (hereinafter referred to as a tension spring) 31 are hooked and attached to each screw portion of the bolts 27a and 29a.
[0026]
On the other hand, a bearing 33 as a cam follower is rotatably attached to the upper end portion of the arm portion 21a by screwing a bolt 35 to be inserted with a nut 37.
[0027]
A motor 39 is fixedly mounted on the first support plate 11 on the upper side of the holding base 23 opposite to the impacting body 21, and the shaft 41 of the motor 35 is a bearing (see FIG. (Not shown) is inserted and protrudes toward the impacting body 21 side.
[0028]
A cam 43 provided with two protrusions 43a having an arcuate circumferential surface shown in FIG. 3 is attached to the tip of the shaft 41. When the shaft 41 is rotated in the direction of the arrow by the motor 39, The impacting body 21 is reciprocally rotated by the intermittent contact of the protrusion 43a as will be described later.
[0029]
The capacity of the motor 39 is such that the cam 43 rotates against the tensile force of the tension spring 31 when the protrusion 43a comes into contact with the bearing 33 by the rotation of the cam 43 due to the rotation of the motor 39, as will be described later. Choose to be able to continue.
[0030]
On the other hand, a flat joint 45 protruding downward is fixed to the lower surface of the first support plate 11 as shown in FIG. 3, and the joint 45 is provided at a position away from the first support plate 11. It is also pin-coupled to the tip of the piston rod 49 of the air cylinder 47 that is pin-coupled to a mounting portion (not shown). As a result, the piston rod 49 is moved back and forth by the operation of the air cylinder 47, thereby causing the first support plate 11 to reciprocate around the axis center line of the shaft 7 as indicated by an arrow in FIG.
[0031]
Further, the pressure of the compressed air supplied to the air cylinder 47 is preliminarily determined by the force of the air cylinder 47 as described later, so that the first support plate 11 rotates clockwise as shown in FIG. When the striking portion 21b collides with the first moving body 13 in a state where the abutting portion 13a of the first moving body 13 is in contact with the end edge of the butt end, the longitudinal vibration is well transmitted to the single plate 3. Whether or not it is checked is set by the monitor device.
[0032]
FIG. 1B, which is an explanatory plan view of the apparatus of the embodiment, is a vibration receiving device that is arranged relative to the vibration exciting device A and receives the vertical vibration applied to the single plate 3, and is configured as follows.
[0033]
As shown in FIG. 4 which is an enlarged plane explanatory view of the geophone B of FIG. 1 and FIG. 5 which is a side explanatory view of the direction of the arrow from the one-dot chain line YY of FIG. A second support plate 55 is fixed to the upper portion of the shaft 51 with the lower end side being a shaft that is rotatably provided around an axis center line indicated by an arrow via a bearing (not shown).
[0034]
A second moving body 57 is provided on the upper surface of the second support plate 55 so as to be movable in the left-right direction in FIG. 4 with respect to the second support plate 55. The second moving body 57 has the same shape as the first moving body 13, but in order to reduce the mass, for example, a polyamide resin material (as a specific product name, MC nylon manufactured by Nippon Polypenco), A contact portion 57a having an arcuate tip end, and a main body portion 57b and a mounting portion 57c fixed to the main body portion 57b by bolts (not shown) are integrally formed.
[0035]
That is, as shown in FIG. 5 which is a side explanatory view when viewed in the direction of the arrow from the alternate long and short dash line YY of FIG. 4, the main body portion 57b and the second support plate 55 are provided with through holes 57e and 55a, respectively. A washer 61 is disposed between the portion 57 b and the second support plate 55, and a screw portion 59 c of a hexagon socket head bolt 59 (hereinafter referred to as a bolt 59) as a second restricting body is attached to the through-holes 57 e and 55 a and the washer 61. Insert. At this time, similarly to the first moving body, the diameter of the through hole 57e provided in the second moving body 57 is, for example, about 0.5 mm larger than the diameter of the bolt 59, and the through hole 55a provided in the second support plate 55 and the washer. The diameter of the hole 61 is approximately equal to the diameter of the bolt 59.
[0036]
Further, a nut 63 is attached to the front end side of the threaded portion 59c of the bolt 59 protruding downward from the second support plate 55. The distance between the lower end surface 59b of the head portion 59a and the upper surface 57d of the main body portion 57b of the bolt 59 is For example, the nut 63 is tightened and mounted so as to be about 0.2 mm. As a result, the second moving body 57 can reciprocate on the washer 61 in the left-right direction in FIG. 4, for example, in a range of about 0.5 mm.
[0037]
A second acceleration detector 58 having a cord 58a for propagating a signal to the controller S is fixed to the upper part of the attachment part 57c of the second moving body 57, and a female screw is provided in the left and right direction at the lower part of the attachment part 57c. (Not shown) is formed, and a ring-shaped member 65 having an outer diameter slightly smaller than the inner diameter of a compression coil spring 79 (hereinafter referred to as a compression spring), which will be described later, is fixed by screwing a bolt 67 with a female screw bolt 67 of a mounting portion 57c. To do.
[0038]
On the left side of the second moving body 57, there is a spring mounting portion 69a that looks like an L shape in FIG. 4, and a long hole 69b that passes through in the thickness direction (vertical direction in FIG. 5) continuously in the left-right direction. The formed spring mounting base 69 screws the bolts 71 and 73 inserted through the long hole 69b into two female screws (not shown) formed on the upper surface of the second support plate 55 and fixes them.
[0039]
A hole (not shown) penetrating in the left-right direction in FIG. 4 is formed in the spring mounting portion 69 a, and a bolt 75 inserted into the hole is fixed with a nut 77.
[0040]
Further, between the second moving body 57 and the spring mounting base 69, a compression spring 79 having both ends mounted between the ring-shaped member 65 and the head of the bolt 75 is attached. At this time, the force with which the second moving body 57 comes into pressure contact with the bolt 59 by the compression spring 79 moves the spring mounting base 69 toward or away from the second moving body 57 with the bolts 71 and 73 loosened. When the desired force is reached, the bolts 71 and 73 are screwed in again to fix the second moving body 57 to adjust and set.
[0041]
As a result of the above setting, the position of the second moving body 57 with respect to the bolt 59 is as shown in FIG. 6 which is an explanatory view in which the portion of the second moving body 57 is enlarged in FIG. 4 and the head 59a of the bolt 59 is omitted. In addition, the left side of the through hole 57e provided in the second moving body 57 is in a pressure contact position with the left side of the screw part 59c.
[0042]
On the other hand, a flat joint 81 protruding downward is fixed to the lower surface of the second support plate 55 as shown in FIG. 5, and the end of the joint 81 is located away from the second support plate 55. The tip of the piston rod 85 of the air cylinder 83 that is pin-connected to the provided mounting portion (not shown) is similarly pin-connected.
[0043]
Thus, when the piston rod 85 is moved back and forth by the operation of the air cylinder 83, the second support plate 55 is reciprocated around the shaft 51 indicated by the arrow in FIG.
[0044]
Further, the air cylinder 83 is operated to rotate the second support plate 55 counterclockwise about the shaft 51 as shown in FIG. Even when the second moving body 57 receives a force pushed back from the single plate 3 when the contact portion 57a of the second moving body 57 is brought into contact, the position of the second moving body 57 with respect to the bolt 59 is as shown in FIG. The pressure of the compressed air supplied to the air cylinder 83 is adjusted so as to maintain the state shown in FIG.
[0045]
Further, the controller S controls the operation of each member as described below based on various propagated signals and performs a calculation process for obtaining the Young's modulus. A length value in a direction orthogonal to the conveyance direction of the veneer 3 is input to the controller S in advance.
[0046]
(1). When the lower end of the conveyance direction of the single plate 3 conveyed by the conveyor 1 reaches the position of the optical sensor 6 and receives a detection signal from the optical sensor 6, the controller S An operation signal for causing the piston rods 49 and 85 of the air cylinders 47 and 83 to move forward at the timing when the first moving body 13 and the second moving body 57 are brought into contact with the ends of the both mouth ends slightly above the ends, respectively. Is output.
[0047]
Further, when the upper end of the single plate 3 in the transport direction passes through the position of the optical sensor 6 and the signal from the optical sensor 6 transitions to non-detection, the controller S moves the upper end of the single plate 3 to the upper side. The air cylinders 47 and 83 are moved backward at the timing immediately before passing through the first moving body 13 and the second moving body 57 that are in contact with both ends of the single plate 3, and the piston rods 49 and 85 are moved backward. A signal is output to separate the first moving body 13 and the second moving body 57 from the single plate 3.
[0048]
(2). When the striking part 21b of the striking body 21 collides with the first moving body 13, the controller S will be described later with respect to the timing at which the acceleration signal from the first acceleration detector 14 is input and the longitudinal vibration due to the collision. The propagation time of the longitudinal vibration in the single plate 3 is measured based on the timing at which the acceleration signal emitted from the second acceleration detector 58 is input by being propagated through the single plate 3. In addition, the propagation time is measured at a plurality of points on the single plate 3, and when the upper end of the single plate 3 in the transport direction passes through the position of the single plate 3, and the signal from the optical sensor 6 transitions to non-detection, An average propagation time T of longitudinal vibration in one single plate 3 is calculated from each propagation time at the plurality of points.
[0049]
(3). The controller S calculates the average propagation speed v1 of the longitudinal vibration in the single plate 3 based on the length L in the direction orthogonal to the conveyance direction of the single plate 3 and the average propagation time T inputted in advance.
[0050]
(Four). The controller S calculates an average density ρ1 from a plurality of density values measured by the density meter 8 at a plurality of points on one single plate 3, and calculates the average density ρ1 and the average propagation speed obtained by the above (3). V1 is applied to Young's modulus E = ρ × V × V (where E: Young's modulus, ρ: density of the object, V: speed at which longitudinal vibration is transmitted through the object), and the average Young's modulus of the veneer 3 E1 is calculated.
[0051]
(Five). The controller S displays the calculated average Young's modulus E1 on the screen of the monitor device.
[0052]
Next, the operation of measuring the Young's modulus of the single plate 3 will be described. The initial state of the apparatus is set as follows.
[0053]
That is, the piston rods 49 and 85 of both air cylinders 47 and 83 are moved backward to move the first support plate 11 counterclockwise from the state shown by the solid line in FIG. The first moving body 13 provided on the first support plate 11 and the second moving body 57 provided on the second support plate 55 are respectively shown by broken lines in FIG. Rotate to a position and stand by at a position away from the conveyor 1.
[0054]
The motor 39 is always driven to keep the cam 43 rotating at all times. Accordingly, the protrusion 43a is intermittently brought into contact with the bearing 33 by the cam 43 rotating in the direction of the arrow.
[0055]
At that time, when the bearing 33 and the projecting portion 43a are not in contact with each other, the striking body 21 and the first moving body 13 receive a force in a direction approaching each other in FIG. 3 by the tension spring 31, and the striking portion 21b and the mounting portion 13c. And abut. At this stage, the position of the first moving body 13 with respect to the bolt 15 at a fixed position on the first support plate 11 is a plane obtained by expanding the location of the first moving body in FIG. As shown in FIG. 7 which is an explanatory view, the left side portion of the inner surface of the through hole 13e of the first moving body 13 is in contact with the left side portion of the screw portion 15c of the bolt 15, and the position of the first moving body in FIG. The state where the right side portion of the inner surface of the through hole 13e of the first moving body 13 is in contact with the right side portion of the screw portion 15c of the bolt 15, as shown in FIG. Or it is not determined whether it is in the middle of both positions.
[0056]
When the protrusion 43a of the cam 43 rotating from this state contacts the bearing 33, the bearing 33 is pushed leftward by sliding contact with the arc-shaped peripheral surface of the protrusion 43a, and the impacting body 21 is shown in FIG. In the same manner, the striking portion 21b is rotated to the right by rotating counterclockwise about the shaft 25 as a rotation center.
[0057]
The first moving body 13 receives the tensile force of the tension spring 31 by the rotation of the impacting body 21, but if the position of the first moving body 13 with respect to the bolt 15 is in the state shown in FIG. The movement is blocked by the screw portion 15c. Similarly, if the position of the first moving body 13 is the state shown in FIG. 8 or an intermediate position between the two positions, the first moving body 13 moves rightward by the tensile force of the tension spring 31, and FIG. As shown, the left side portion of the inner surface of the through hole 13e of the first moving body 13 abuts on the left side portion of the threaded portion 15c of the bolt 15, and the movement is prevented.
[0058]
Therefore, when the projecting portion 43a contacts the bearing 33 and rotates the impacting body 21 in the counterclockwise direction, the position of the first moving body 13 with respect to the bolt 15 is always in the state shown in FIG. The moving body 13 does not move in the right direction.
[0059]
On the other hand, since the cam 43 continues to rotate while extending the tension spring 31 against the tensile force of the tension spring 31, the impacting body 21 further rotates counterclockwise. As a result, the mounting portion 13c and the impacting body 21b There is an interval between
[0060]
Further, when the protrusion 43a is separated from the bearing 33 due to further rotation of the cam 43, the force acting on the impacting body 21 becomes only the tensile force of the stretched tension spring 31, and the impacting body 21 is shown in FIG. As shown by 3, the striking portion 21 b is caused to collide with the mounting portion 13 c of the first moving body 13 by suddenly rotating clockwise. Accordingly, the first moving body 13 at the position of FIG. 7 receives a force in the left direction by the striking portion 21b, and moves rapidly with a width of about 0.5 mm in the left direction, which is the position shown in FIG. Become.
[0061]
After the first moving body 13 suddenly moves due to the collision, the abutting state of the striking portion 21b and the mounting portion 13c is maintained by the tensile force of the tension spring 31, but the first moving body 13 with respect to the bolt 15 is maintained. The position of is not constant as described above.
[0062]
From this state, when the protruding portion 43a on the opposite side of the cam 43 is separated after contacting the bearing 33, the same operation as when the protruding portion 43a is first contacted is repeated, and the first After the position of the moving body 13 is in the state shown in FIG. 7, the striking portion 21b suddenly moves until it hits the mounting portion 13c of the first moving body 13 and the first moving body 13 is in the state shown in FIG. Thereafter, the same operation is repeated as the cam 43 continues to rotate. The number of rotations of the motor 39 is set so that the cam 43 rotates 5 times per second, for example.
[0063]
As described above, the Young's modulus of the single plate 3 is measured by the apparatus in which the initial state is set as follows.
[0064]
As shown in FIG. 1, the veneer 3 is conveyed by the conveyor 1 in the direction of the arrow perpendicular to the fiber direction. The density of the conveyed veneer 3 is measured when it first passes through the location of the density meter 8. The density measurement value by the density meter 8 is sent to the controller S.
[0065]
Next, when the lower end of the single plate 3 is detected by the optical sensor 6, the controller S receiving the detection signal from the optical sensor 6 moves the piston rods 49 and 85 of the air cylinders 47 and 83. Each of the first moving bodies 13 is rotated forward about the axis 7 and the second support plate 55 is rotated counterclockwise about the axis 51 to move the first moving body 13 downward in the conveying direction of the single plate 3. It is made to contact | abut to the both edge side edge of a slightly upper side from a side edge part, respectively.
[0066]
As described above, the first moving body 13 in contact with the single plate 3 is intermittently vibrated by the collision of the hitting portion 21b against the mounting portion 13c as described above, and propagates the vertical vibration to the single plate 3. . Then, the vibration is received by the longitudinal vibration second moving body 57 transmitted to the single plate 3.
[0067]
In the propagation of the longitudinal vibration, the controller S receives the signal generated from the first acceleration detector 14 at the time of collision every time the striking part 21b of the striking body 21 collides with the first moving body 13, and The vertical vibration in the single plate 3 is based on the timing of receiving the signal generated from the second acceleration detector 58 when the collided vertical vibration is propagated to the second moving body 57 through the single plate 3 as will be described later. When the upper end of the veneer 3 in the transport direction passes through the position of the optical sensor 6, the average propagation time T of the veneer 3 is calculated from the propagation times measured at a plurality of points on the veneer 3. And the average propagation speed v1 of the longitudinal vibration in the single plate 3 is calculated from the average propagation time T and the value of the length of the single plate 3 in the conveyance orthogonal direction inputted in advance.
[0068]
The controller S calculates the average density ρ1 based on the plurality of density measurement values measured by the density meter 8, calculates the average Young's modulus E1 of the single plate 3 from the average propagation speed v1 and the average density ρ1, and displays the monitor screen. Display above. In the above setting, the propagation time is determined for each single plate 3 at points at intervals of about 33 mm in the conveyance direction of the single plate 3.
[0069]
In the above-described embodiment apparatus, the following effects can be obtained by bringing the first moving body 13 provided with the first acceleration detector 14 into contact with the single plate 3.
[0070]
That is, as shown by an arrow in FIG. 9, which is an explanatory diagram of the comparative example, a single plate having a vibration body 93 that applies longitudinal vibration to the single plate 91 along the conveyance direction of the single plate 91 and an acceleration detector 95. When the Young's modulus is measured by arranging the longitudinal vibration detectors 97 kept in contact with 91 separately from each other, there are the following problems.
[0071]
For example, if there is a crack 91 a in the single plate 91, the longitudinal vibration applied to the single plate 91 by the vibrating body 93 is not propagated at the location of the crack 91 a, but passes through until it is propagated to the longitudinal vibration detection body 97. The length of 91 becomes longer than the case where there is no crack 91a. Moreover, since the shape of the crack 91a is not constant, the time until the longitudinal vibration is propagated to the longitudinal vibration detecting body 97 is different. As a result, the propagation speed v1 becomes smaller than the original value, and an accurate Young's modulus cannot be obtained.
[0072]
On the other hand, in the above-described embodiment device, even if the single plate 3 is cracked, the striking portion 21b is made to collide with the first moving body 13 to give longitudinal vibration to the single plate 3 and at the same time by the first acceleration detector 14. Since the collision of the striking portion 21b is detected, the value of the propagation speed v1 can be obtained accurately, and the Young's modulus can be measured more accurately.
[0073]
Further, when the position of the first moving body 13 with respect to the bolt 15 is in the state shown in FIG. 8, even if the striking portion 21b collides with the first moving body 13, the first moving body 13 is moved leftward by the screw portion 15c. Therefore, the vertical vibration is hardly propagated from the first moving body 13 to the single plate 3, and it is difficult to measure the Young's modulus.
[0074]
On the other hand, in the above-described embodiment apparatus, the first moving body 13 is movable with respect to the bolt 15 within a range of about 0.5 mm, the striking body 21 is rotatable about the shaft 25, and both are moved. Since they are connected by the tension spring 31, the position of the first moving body 13 with respect to the bolt 15 is in the state shown in FIG. 7 before the striking portion 21 b collides with the first moving body 13 due to the rotation of the cam 43. As a result, the first moving body 13 can be suddenly moved to the left with a width of about 0.5 mm after the collision, the propagation of the longitudinal vibration to the single plate 3 can be surely performed, and the Young's modulus is accurately measured. can do.
[0075]
In the embodiment, instead of the tension spring 31, one end is fixed to the first support plate 11 and the other end is moved to the first position so that the position of the first moving body 13 with respect to the bolt 15 is in the state shown in FIG. Apart from one tension spring fixed to the body 13, one end is fixed to the first support plate 11 and the other end is connected to the striking part 21b in order to cause the striking part 21b of the striking body 21 to collide with the first moving body 13. A fixed tension spring may be provided.
[0076]
However, by setting the first moving body 13 and the impacting body 21 to be connected by the tension spring 31 as described above, the tension spring 31 is moved before the impacting portion 21b collides with the first moving body 13. As described above, the first moving body 13 is positioned with respect to the bolt 15 so that the position shown in FIG. 7 is applied, and the striking portion 21b is applied with the first moving body 13 so that the force is applied. be able to.
[0077]
The second moving body 57 is movable with respect to the bolt 59 within a range of, for example, approximately 0.5 mm, and the through hole 57e of the second moving body 57 is threaded on the bolt 59 in the state shown in FIG. Since it is configured to be brought into pressure contact with 59c, the following effects are obtained.
[0078]
As described above, even if the contact portion 57a of the second moving body 57 that is in contact with the single plate 3 is moved to the left side shown in FIG. 6 due to the longitudinal vibration generated when the first moving body 13 collides with the single plate 3. Then, until the first moving body 13 collides with the single plate 3, it can be returned to the left side in FIG. 6 by the force of the compression spring 79.
[0079]
Thereby, whenever the longitudinal vibration of the single plate 3 is propagated, the position of the second moving body 57 with respect to the bolt 59 is in the state shown in FIG. 6 and can move freely in the left direction, and the longitudinal vibration can be received well. Can do.
[0080]
Example of change
(1). The density of the single plate 3 may be input to the controller S as an average density value assumed in advance by the tree species without using a density meter.
[0081]
(2). The 1st moving body 13 and the 2nd moving body 57 are good also as a structure which each is provided with a bearing and rotates following with the conveyance movement of the single plate 3. As shown in FIG.
[0082]
(3). The obtained Young's modulus E1 is not displayed on the monitor screen, and the Young's modulus E1 measured by a printing apparatus of an ink jet system that ejects ink to the single plate 3 whose Young's modulus is measured or a thermal transfer system that thermally transfers ink is used. You may print directly.
[0083]
(Four). In a state where the wood such as a single plate is stopped without running, the first moving body 13 and the second moving body 57 are brought into contact with each other in a state of facing each other, and the Young's modulus is measured. Also good.
[0084]
(Five). A crank mechanism may be used as a member for causing the first moving body 13 to collide with the single plate 3.
[0085]
(6). The actuating member that strikes the first moving body 13 may be an electromagnetic solenoid device. That is, the built-in electromagnet is excited and driven by a pulse of a predetermined duty, and the plunger that is biased in the direction away from the first moving body 13 by the built-in compression spring is magnetically driven in the opposite direction to move the first moving body 13. To apply longitudinal vibration to the veneer 3.
[0086]
(7). In the above description, the case where the Young's modulus of the single plate 3 is measured has been described as an example. However, the present invention can also be applied to the case where the Young's modulus of wood such as a plate material or a column material is measured.
[0087]
【The invention's effect】
The present invention The longitudinal vibration is transmitted from the first moving body to the wood such as a single plate by simultaneously detecting that the first moving body has applied the longitudinal vibration by the first acceleration detector. By determining the speed accurately, the Young's modulus can be measured with high accuracy. Also The present invention Even when the second moving body is in contact with wood such as a veneer, it can move freely in the direction away from the wood, and it can receive longitudinal vibration from the wood such as veneer well and measure the Young's modulus with high accuracy. can do. further The present invention Can measure the Young's modulus of wood such as a single plate efficiently and with high accuracy while being conveyed.
[Brief description of the drawings]
FIG. 1 is an explanatory plan view of an apparatus according to an embodiment.
FIG. 2 is an enlarged plan view of the vibrator A of FIG.
3 is an explanatory side view of the direction of the arrow as viewed from the alternate long and short dash line XX in FIG. 2. FIG.
FIG. 4 is an enlarged plan view of the geophone B of FIG.
5 is an explanatory side view of the direction of the arrow as viewed from the alternate long and short dash line YY in FIG. 4;
6 is an explanatory plan view of the second moving body in FIG. 4 with the bolt head omitted and enlarged. FIG.
7 is an explanatory plan view showing an enlarged view of the location of the first moving body in FIG. 2 by omitting the bolt heads. FIG.
FIG. 8 is an explanatory plan view showing the location of the first moving body in FIG. 2 with the bolt head omitted and enlarged.
FIG. 9 is an explanatory diagram of a comparative example.
[Explanation of symbols]
3-Single plate as wood such as single plate, 11-First support plate, 13-First moving body, 13 c-Mounting portion, 14-First acceleration detector, 21-Impacting body constituting a part of operating member , 21 b-striking part, 43-cam, 55-second support plate, 57-second moving body

Claims (6)

ベニヤ単板等木材に対して振動を加える加振機及びベニヤ単板等木材を伝播した振動を受振する受振機を備え、ベニヤ単板等木材における振動の伝播時間に基づいてベニヤ単板等木材のヤング率を測定するヤング率測定装置において、
上記加振機は、ベニヤ単板等木材に当接した状態でベニヤ単板等木材に向かって往復動する第1移動体と、該第1移動体に設けられて往復移動時の加速度を検出する第1加速度検出器と、第1移動体に対してベニヤ単板等木材に向かう方向の力を加える作動部材とからなるベニヤ単板等木材のヤング率測定装置
A veneer veneer, such as a veneer veneer, is equipped with a vibrator that vibrates the veneer, veneer veneer, etc., and a vibration receiving device that receives vibration transmitted through the veneer, veneer, etc. In the Young's modulus measuring device that measures the Young's modulus of
The vibration exciter includes a first moving body that reciprocates toward a veneer veneer such as a veneer veneer, and an acceleration that is provided on the first moving body when the reciprocating movement is detected. An apparatus for measuring the Young's modulus of wood, such as veneer veneer, comprising a first acceleration detector that performs the above and a working member that applies a force in a direction toward the wood, such as veneer veneer, to the first moving body.
請求項1において、第1移動体は、ベニヤ単板等木材から遠ざかる方向で第1の規制体に対して第1の力により圧接した状態で前記ベニヤ単板等木材に当接した状態で備えると共に、
作動部材は、第1移動体に対して第1の力と逆向きで第1の力より大きな力を断続的に加えるように構成したベニヤ単板等木材のヤング率測定装置
The first moving body according to claim 1, wherein the first moving body is in contact with the wood such as the veneer veneer in a state in which the first moving body is pressed against the first regulating body by the first force in a direction away from the wood such as the veneer veneer. And
The operating member is a Young's modulus measuring device for wood such as a veneer veneer configured to intermittently apply a force greater than the first force in a direction opposite to the first force to the first moving body.
請求項1において、第1移動体は、該第1移動体がベニヤ単板等木材に当接する位置と該ベニヤ単板等木材から離れた位置間にて往復動する第1往復移動部材に連結された第1支持台に設けられ、第1支持台の前記往復動により第1移動体が前記当接する位置にある時に、第1支持台に対してベニヤ単板等木材に向かって往復動自在で、かつベニヤ単板等木材から遠ざかる方向の第1規制体に対して第1の力により圧接する状態で備えると共に
作動部材は、第1の力と逆向きで第1の力より大きな力を第1移動体に断続的に加えるように構成したベニヤ単板等木材のヤング率測定装置
In claim 1, the first movable body, the first reciprocating member that reciprocates in between a position away from the position and the veneer or the like timber in which the first moving member comes into contact with the veneer or the like timber provided in the first supporting stand connected, when by the reciprocating motion of the first support member is the first moving member is in the position where the abutting reciprocating toward the veneer or the like timber relative to the first support member While being prepared in a state of being pressed by a first force against a first restricting body that is free and is away from wood such as a veneer veneer ,
The actuating member is a Young's modulus measuring device for wood such as a veneer veneer configured to intermittently apply a force greater than the first force to the first moving body in a direction opposite to the first force.
請求項1において、第1移動体は、該第1移動体がベニヤ単板等木材に当接する位置と該木材から離れた位置の間で往復動する第1往復移動部材に連結された第1支持台に設けられ、第1支持台の前記往復動により第1移動体が前記当接する位置にある時にベニヤ単板等木材に接離する方向へ往復動自在に備え、第1規制体によりベニヤ単板等木材から遠ざかる方向への移動が規制されと共に、
作動部材は、第1移動体に当る位置と第1の移動体から離れた位置との間で往復動する打撃部を有し、該打撃部は、第1移動体との間に掛け渡された引張ばねのばね力により常には第1移動体から離れた位置に移動されるように構成したベニヤ単板等木材のヤング率測定装置
2. The first moving body according to claim 1, wherein the first moving body is connected to a first reciprocating member that reciprocates between a position where the first moving body abuts on wood such as a veneer veneer and a position away from the wood. A veneer is provided on a support base so as to be able to reciprocate in a direction in which the first moving body is in contact with or separated from wood such as a veneer veneer when the first moving body is in the contact position by the reciprocation of the first support base. Movement in the direction away from wood such as veneer is regulated,
The actuating member has a striking portion that reciprocates between a position that contacts the first moving body and a position that is distant from the first moving body, and the striking portion is spanned between the first moving body and the striking portion. An apparatus for measuring the Young's modulus of wood such as a veneer veneer that is always moved to a position away from the first moving body by the spring force of the tension spring .
請求項1〜4のいずれかにおいて、上記受振機は、ベニヤ単板等木材に第2の力で当接した状態でベニヤ単板等木材に向かって往復動可能に設けられ第2加速度検出器を有する第2移動体と、第2移動体の、ベニヤ単板等木材に向かう方向の位置を規制する第2規制体と、第2移動体を、前記向かう方向で第2規制体に対して第2の力より大きい力を加えて圧接させる圧接体とを備えたベニヤ単板等木材のヤング率測定装置 5. The second acceleration detector according to any one of claims 1 to 4, wherein the geophone is provided so as to be capable of reciprocating toward a veneer veneer such as a veneer veneer while being in contact with the veneer veneer such as a veneer. A second restricting body that restricts the position of the second moving body in the direction toward the wood, such as a veneer veneer, and the second moving body in the direction toward the second restricting body. An apparatus for measuring the Young's modulus of wood such as a veneer veneer comprising a pressure contact body that is pressed by applying a force larger than a second force . 請求項5において、第2移動体は、該第2移動体をベニヤ単板等木材に当接する位置と該木材から離れた位置との間で往復動させる第2往復移動部材に連結された第2支持台に設けられ、第2支持台の前記往復動により第2移動体が前記当接する位置にある時に第2規制体に対してベニヤ単板等木材に向かう方向の第2の力により圧接した状態で備えると共に、
圧接体は、第2移動体がベニヤ単板等木材に当接した時に第2移動体によりベニヤ単板等木材に圧接する力を第2の力により小となるように構成したベニヤ単板等木材のヤング率測定装置
6. The second moving body according to claim 5, wherein the second moving body is connected to a second reciprocating member that reciprocates between the position where the second moving body abuts on wood such as a veneer veneer and the position away from the wood. 2 provided on the support base, and pressed by the second force in the direction toward the wood such as a veneer veneer when the second moving body is in the contact position by the reciprocation of the second support base. While preparing
The pressure contact body is a veneer veneer configured such that when the second moving body comes into contact with wood such as a veneer veneer, the force that presses against the veneer veneer wood such as the veneer veneer is reduced by the second force. Equipment for measuring Young's modulus of wood .
JP2001251668A 2001-08-22 2001-08-22 Equipment for measuring Young's modulus of wood such as veneer veneer Expired - Fee Related JP4636747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001251668A JP4636747B2 (en) 2001-08-22 2001-08-22 Equipment for measuring Young's modulus of wood such as veneer veneer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001251668A JP4636747B2 (en) 2001-08-22 2001-08-22 Equipment for measuring Young's modulus of wood such as veneer veneer

Publications (2)

Publication Number Publication Date
JP2003065929A JP2003065929A (en) 2003-03-05
JP4636747B2 true JP4636747B2 (en) 2011-02-23

Family

ID=19080275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001251668A Expired - Fee Related JP4636747B2 (en) 2001-08-22 2001-08-22 Equipment for measuring Young's modulus of wood such as veneer veneer

Country Status (1)

Country Link
JP (1) JP4636747B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005078435A1 (en) * 2004-02-13 2005-08-25 Institute Of Geological & Nuclear Sciences Limited Method and system for determining the modulus of elasticity of green lumber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01158346A (en) * 1987-09-04 1989-06-21 Micro Motion Inc Method and apparatus for determining electric modulus of pipe
JPH03111735A (en) * 1989-09-27 1991-05-13 Univ Nagoya Automatic young's modulus measuring apparatus
JPH04113256A (en) * 1990-09-04 1992-04-14 Mitsui Eng & Shipbuild Co Ltd Impact type apparatus for detecting change in structure
JPH0618388A (en) * 1992-07-03 1994-01-25 Ichijiyou Komuten:Kk Lumber classifying apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01158346A (en) * 1987-09-04 1989-06-21 Micro Motion Inc Method and apparatus for determining electric modulus of pipe
JPH03111735A (en) * 1989-09-27 1991-05-13 Univ Nagoya Automatic young's modulus measuring apparatus
JPH04113256A (en) * 1990-09-04 1992-04-14 Mitsui Eng & Shipbuild Co Ltd Impact type apparatus for detecting change in structure
JPH0618388A (en) * 1992-07-03 1994-01-25 Ichijiyou Komuten:Kk Lumber classifying apparatus

Also Published As

Publication number Publication date
JP2003065929A (en) 2003-03-05

Similar Documents

Publication Publication Date Title
US4470293A (en) Impacting device for testing insulation
CN1281951C (en) Detection system for storting apparatus
AU2013285625B2 (en) System and method for determining a property of an object, and a valve
CA2595886A1 (en) Method and device for determining defects on a constructional element of a turbine
AU2015232085B2 (en) Mobile ultrasonic rail inspection system and method
JP2606885B2 (en) Egg inspection method and apparatus for determining the presence of cracks or damage in an eggshell through inspection of eggshell elasticity
US5811680A (en) Method and apparatus for testing the quality of fruit
JP4636747B2 (en) Equipment for measuring Young's modulus of wood such as veneer veneer
US6722201B2 (en) Method and device for determining vibration characteristics of vibrated articles such as eggs
KR102504936B1 (en) Concrete compressive strength tester that can share measured values in real time
JP2007147512A (en) Quality inspection device
US5251487A (en) Apparatus for acoustically coupling an ultrasonic transducer with a body
JPH0392758A (en) Product inspection
KR20150078630A (en) Ultrasonic detecting device
WO2000073774A1 (en) Apparatus for the concurrent inspection of partially completed welds
US6615663B2 (en) Method and apparatus for acoustic sensing
EP2161558A1 (en) Device and method for measuring spoke tensions
EP1238582B1 (en) Method and device for determining vibration characteristics of vibrated articles such as eggs
JP3614323B2 (en) Blowing device for quality inspection of agricultural products
EP0605369A1 (en) Method and device for checking the tension of a stretched elastic element, particularly a transmission belt
WO1994029715A1 (en) Method and apparatus for testing the quality of fruit
JPH0733990B2 (en) Impact inspection device
RU2775513C1 (en) Apparatus and method for determining the mechanical properties of a prototype
SU1601575A1 (en) Ultrasonic method of inspection of quality of rolled stock moving on roller table
US5056367A (en) Ultrasonic linear measurement system

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080704

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees