JP4636466B2 - Method of immobilizing molecules on a substrate - Google Patents

Method of immobilizing molecules on a substrate Download PDF

Info

Publication number
JP4636466B2
JP4636466B2 JP2004050964A JP2004050964A JP4636466B2 JP 4636466 B2 JP4636466 B2 JP 4636466B2 JP 2004050964 A JP2004050964 A JP 2004050964A JP 2004050964 A JP2004050964 A JP 2004050964A JP 4636466 B2 JP4636466 B2 JP 4636466B2
Authority
JP
Japan
Prior art keywords
substrate
chxn
molecules
bridged
quasi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004050964A
Other languages
Japanese (ja)
Other versions
JP2005238380A (en
Inventor
知秀 高見
正廣 山下
健一 杉浦
慎也 高石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2004050964A priority Critical patent/JP4636466B2/en
Publication of JP2005238380A publication Critical patent/JP2005238380A/en
Application granted granted Critical
Publication of JP4636466B2 publication Critical patent/JP4636466B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、分子の配列をナノメートルスケールで制御して固定するための基板として、擬一次元ハロゲン架橋金属錯体結晶を用いる方法に関し、ナノテクノロジーにおいて基板上に分子を配列させるための技術として応用されるものであり、分子デバイス構築のための基盤技術となる。   The present invention relates to a method using a quasi-one-dimensional halogen-bridged metal complex crystal as a substrate for controlling and fixing a molecular arrangement on a nanometer scale, and is applied as a technique for arranging molecules on a substrate in nanotechnology. It becomes a fundamental technology for building molecular devices.

近年ナノメートルスケールで基板上に分子配列を制御する技術(ナノテクノロジー)が注目されている。現在、基板として用いられている化合物に高配向焼結グラファイト(HOPG)、二硫化モリブデン(MoS2)などがある(例えば非特許文献1、2参照)。これらの技術は基盤と分子の間に働く分子間力(ファンデルワールス力)を利用して分子を基板上に固定している。 In recent years, a technology (nanotechnology) for controlling molecular arrangement on a substrate on a nanometer scale has attracted attention. Currently, compounds used as substrates include highly oriented sintered graphite (HOPG), molybdenum disulfide (MoS 2 ), and the like (see, for example, Non-Patent Documents 1 and 2). These technologies fix molecules on the substrate using intermolecular forces (van der Waals forces) acting between the substrate and the molecules.

また、金結晶薄膜上にアルカンチオールを吸着させることにより自己組織化単分子膜を作製することが可能になっている(例えば非特許文献3、4参照)。この方法はアルカンチオールと金との間の結合力(20-50 kcal mol-1)を利用して、吸着したチオール分子が脱着することなく、表面を移動することができるという化学的性質を利用している。 In addition, it is possible to produce a self-assembled monomolecular film by adsorbing alkanethiol on a gold crystal thin film (for example, see Non-Patent Documents 3 and 4). This method uses the chemical property that the adsorbed thiol molecule can move on the surface without desorption using the bonding force (20-50 kcal mol -1 ) between alkanethiol and gold. is doing.

しかしこれらの基板では、表面の化学的性質や格子間隔を自由に制御する事は困難である。   However, with these substrates, it is difficult to freely control the surface chemical properties and lattice spacing.

本出願に関連する先行技術文献情報としては次のものがある。
ギュンタロッド、ヴィーゼンダンガー(H.-J. Guntherodt and R. Wiesendanger)編,「走査トンネル顕微鏡I: 清浄表面と吸着物被覆表面への一般原理と応用(Scanning Tunneling Microscopy I: General Principles and Applications to Clean and Adsorbate- Covered Surfaces)」,(ドイツ),表面科学シュプリンガーシリーズ第20巻(Springer Series in Surface Sciences, Vol. 20),シュプリンガー社(Springer),平成6年(第2版改訂版),p.25−205,258−267 ヴィーゼンダンガー、ギュンタロッド(R. Wiesendanger and H.-J. Guntherodt)編,「走査トンネル顕微鏡II: 更なる応用と関連する走査手法(Scanning Tunneling Microscopy II: Further Applications and Related Scanning Techniques)」,(ドイツ),表面科学シュプリンガーシリーズ第28巻(Springer Series in Surface Sciences, Vol. 28),シュプリンガー社(Springer),平成5年(第2版改訂版),p.70−84,314−317 アブラハム ウルマン(Abraham Ulman)著,「有機薄膜序説:ラングミュア-ブロジェットから自己組織化まで(An Introduction to Thin Organic Films: From Langmuir-Blodgett to Self-Assembly)」,(米国),アカデミック プレス社(Academic Press, Inc.),平成3年,p.237−304 アブラハム ウルマン(Abraham Ulman),「自己組織化単分子膜の作製と構造(Formation and Structure of Self-Assembled Monolayers)」,(米国),化学総説(Chemical Review),アメリカ化学会(American Chemical Society),平成8年6月,第96巻,第4号,p.1533−1554 山下正廣(Masahiro Yamashita)、他9名,「疑似一次元臭素架橋ニッケル-パラジウム混合金属-ハロゲン鎖状化合物Ni1-xPdx(chxn)2Br3における,パラジウムII価とIV価の混合価電子状態の電子-フォノン相互作用と,ニッケルIII価状態の電子相関との間の競合による電荷密度波の強度の制御(Tuning of Charge Density Wave Strengths by Competition between Electron-Phonon Interaction of PdII-PdIV Mixed-Valence States and Electron Correlation of NiIII States in Quasi-One-Dimensional Bromo-Bridged Ni-Pd Mixed-Metal MX Chain Compounds Ni1-xPdx(chxn)2Br3)」,(米国),無機化学(Inorganic Chemistry),アメリカ化学会(American Chemical Society),平成11年10月14日(電子出版),第38巻,第22号,p.5124−5130 山下正廣(Masahiro Yamashita)、他18名,「コバルトIII価イオンのドーピングによる強電子相関を持つ疑似一次元臭素架橋ニッケルIII価錯体の電子構造の制御,[Ni1-xCox(Chxn)2Br]Br2(Tuning of Electronic Structures of Quasi-One-Dimensional Bromo-Bridged Ni(III) Complexes with Strong Electron-Correlation by Doping of Co(III) Ions, [Ni1-xCox(Chxn)2Br]Br2)」,(米国),無機化学(Inorganic Chemistry),アメリカ化学会(American Chemical Society),平成14年3月22日(電子出版),第41巻,第8号,p.1998−2000 松本章一(Akikazu Matsumoto)、他4名,「アルキルアミン分子の有機高分子結晶への(Intercalation of alkylamines into an organic polymer crystal)」,(英国),ネイチャー(Nature),ネイチャー出版グループ(Nature Publishing Group)平成12年5月18日号,第405巻,p.328−330 リー(S. H. Lee)、他3名,「ガリウムとアンモニアの直接反応で成長した,マグネシウムをドープした窒化ガリウム微結晶の同定(Characterization of Mg-Doped GaN Micro-Crystals Grown by Direct Reaction of Gallium and Ammonia)」,(ドイツ),固体状態物理(b):基礎研究(physica status Solidi (b): basic research),ジョンワイリー アンド サンズ社(John Wiley & Sons, Inc.),平成13年11月13日(電子出版),第228巻,第2号,p.371−373 リ(Jianye Li)、他4名,「窒化ガリウムのナノ-リボン環(gallium nitride nano-ribbon rings)」,(英国),物理学雑誌:凝集体(Journal of Physics: Condensed Matter),英国物理学会(Institute of Physics),平成13年4月9日,第13巻,第14号,p.L285−L289
Prior art document information related to the present application includes the following.
Gunterrod, edited by H.-J. Guntherodt and R. Wiesendanger, “Scanning Tunneling Microscopy I: General Principles and Applications to Clean and Adsorbate-Covered Surfaces ”, (Germany), Springer Series in Surface Sciences, Vol. 20, Springer, 1994 (2nd edition revised edition), p. . 25-205, 258-267 Wiesendanger and H.-J. Guntherodt, “Scanning Tunneling Microscopy II: Further Applications and Related Scanning Techniques”, ( Germany), Springer Series in Surface Sciences, Vol. 28, Springer, 1993 (2nd revised edition), p. 70-84, 314-317 Abraham Ulman, “An Introduction to Thin Organic Films: From Langmuir-Blodgett to Self-Assembly”, (USA), Academic Press Press, Inc.), 1991, p. 237-304 Abraham Ulman, “Formation and Structure of Self-Assembled Monolayers,” (USA), Chemical Review, American Chemical Society, June 1996, Vol. 96, No. 4, p. 1533-1554 Masahiro Yamashita and 9 others, "Pseudo-one-dimensional bromine-bridged nickel-palladium mixed metal-electron in the mixed valence electronic state of palladium II and IV valences in the halogen chain compound Ni1-xPdx (chxn) 2Br3- Tuning of Charge Density Wave Strengths by Competition between Electron-Phonon Interaction of PdII-PdIV Mixed-Valence States and Electron Correlation of NiIII States in Quasi-One-Dimensional Bromo-Bridged Ni-Pd Mixed-Metal MX Chain Compounds Ni1-xPdx (chxn) 2Br3), (USA), Inorganic Chemistry, American Chemical Society October 14, 1999 (Electronic Publishing), Vol. 38, No. 22, p. 5124-5130 Masahiro Yamashita and 18 others, “Controlling the electronic structure of quasi-one-dimensional bromine-bridged nickel III-valent complexes with strong electron correlation by doping with cobalt III-valent ions, [Ni1-xCox (Chxn) 2Br] Br2 ( Tuning of Electronic Structures of Quasi-One-Dimensional Bromo-Bridged Ni (III) Complexes with Strong Electron-Correlation by Doping of Co (III) Ions, [Ni1-xCox (Chxn) 2Br] Br2) ", (US), inorganic Inorganic Chemistry, American Chemical Society, March 22, 2002 (Electronic Publishing), Vol. 41, No. 8, p. 1998-2000 Shokichi Matsumoto, 4 others, “Intercalation of alkylamines into an organic polymer crystal” (UK), Nature, Nature Publishing Group (Nature Publishing) Group) May 18, 2000, Vol. 405, p. 328-330 SH Lee and three others, “Characterization of Mg-Doped GaN Micro-Crystals Grown by Direct Reaction of Gallium and Ammonia” ”, (Germany), solid state physics (b): physica status Solidi (b): basic research, John Wiley & Sons, Inc., November 13, 2001 ( Electronic Publishing), Vol. 228, No. 2, p. 371-373 Jianye Li, 4 others, “gallium nitride nano-ribbon rings”, (UK), Journal of Physics: Journal of Physics: Condensed Matter, British Physical Society (Institute of Physics), April 9, 2001, Vol. 13, No. 14, p. L285-L289

従来の基板を用いて分子を固定する場合、基板表面が不活性なため、分子の配列を制御することは非常に困難である。我々は本発明において、基板と分子との親水的、あるいは疎水的相互作用を利用することにより、分子の配列を制御すること、および配列した分子を走査トンネル顕微鏡によって観測することを課題としている。このような課題を解決するための必要条件は(1)基板の清浄表面がえられること、(2)基板の電気抵抗がある程度小さい(106 Ω cm以下)こと、(3)基板分子において親水性官能基と疎水性官能基とが規則的に配列していることが挙げられるが、現在までこれらの条件を満たす基板は皆無であった。 When molecules are immobilized using a conventional substrate, it is very difficult to control the molecular arrangement because the substrate surface is inactive. In the present invention, an object is to control the arrangement of molecules by utilizing the hydrophilic or hydrophobic interaction between the substrate and the molecules, and to observe the arranged molecules with a scanning tunneling microscope. Necessary conditions for solving such problems are (1) that a clean surface of the substrate is obtained, (2) that the electrical resistance of the substrate is somewhat small (10 6 Ωcm or less), and (3) that the substrate molecule is hydrophilic. The functional functional group and the hydrophobic functional group are regularly arranged, but until now there has been no substrate that satisfies these conditions.

我々はハロゲン架橋Ni,Pd錯体において初めてこれらの条件を解決することができ、基板として用いることにより分子を規則的に配列させ、それを走査トンネル顕微鏡によって観測することが可能であることを見出した。   We have found that these conditions can be solved for the first time in a halogen-bridged Ni, Pd complex, and that the molecules can be regularly arranged and observed with a scanning tunneling microscope when used as a substrate. .

我々は最近、ハロゲン架橋Ni,Pd錯体を走査トンネル顕微鏡により観測することに成功した。これらの錯体はNiとBrがなす疎水的部分とNH-Brがなす親水的部分からなる。   We recently succeeded in observing halogen-bridged Ni and Pd complexes with a scanning tunneling microscope. These complexes consist of a hydrophobic part formed by Ni and Br and a hydrophilic part formed by NH-Br.

これらの錯体の疎水的、親水的相互作用および格子間隔を用いることによって、特定の分子を規則的に配列させることが可能となる。   By using the hydrophobic and hydrophilic interactions and lattice spacing of these complexes, it is possible to arrange specific molecules regularly.

請求項1に係る発明は、分子の周期間隔を制御して固定するための基板として擬一次元ハロゲン架橋金属錯体結晶を利用する、基板に分子を固定する方法であって、[M(chxn) 2 Br]Br 2 を劈開して得たbc軸表面を基板表面とし、当該基板表面の結晶構造の周期を利用することによって、前記基板に固定される分子の周期間隔が制御される、基板に分子を固定する方法である。 The invention according to claim 1 is a method for immobilizing a molecule on a substrate using a quasi-one-dimensional halogen-bridged metal complex crystal as a substrate for controlling and immobilizing the periodic period of the molecule, wherein [M (chxn) The surface of the bc axis obtained by cleaving 2 Br] Br 2 is used as the substrate surface, and the periodic interval of molecules fixed to the substrate is controlled by using the period of the crystal structure of the substrate surface. It is a method of immobilizing molecules .

請求項に係る発明は、請求項1において、擬一次元ハロゲン架橋Ni錯体およびPd錯体を基板として用いる、基板に分子を固定する方法である。 The invention according to claim 2 is a method of immobilizing molecules on a substrate according to claim 1, wherein the pseudo-one-dimensional halogen-bridged Ni complex and Pd complex are used as the substrate.

請求項に係る発明は、請求項において、擬一次元ハロゲン架橋金属錯体[Ni(chxn)2Br]Br2、[Pd(chxn)2Br]Br2、または[Ni1-xPdx(chxn)2Br]Br2(0<x<1) (chxn: 1R, 2R- diaminocyclohexane) を基板として用いる、基板に分子を固定する方法である。 The invention according to claim 3, in claim 2, quasi-one-dimensional halogen-bridged metal complex [Ni (chxn) 2 Br] Br 2, [Pd (chxn) 2 Br] Br 2 or [Ni 1-x Pd x, In this method, molecules are immobilized on a substrate using (chxn) 2 Br] Br 2 (0 <x <1) (chxn: 1R, 2R-diaminocyclohexane) as the substrate.

請求項に係る発明は、請求項において、擬一次元ハロゲン架橋混合金属錯体[Ni1-xCox(chxn)2Br]Br2(chxn: 1R, 2R- diaminocyclohexane) を基板として用いる、基板に分子を固定する方法である。 The invention according to claim 4, in claim 2, quasi-one-dimensional halogen-bridged mixed-metal complex [Ni 1-x Co x ( chxn) 2 Br] Br 2: using (chxn 1R, 2R- diaminocyclohexane) as a substrate, This is a method of immobilizing molecules on a substrate.

これらの発明により、前述した課題を解決しようとするものである。   These inventions are intended to solve the aforementioned problems.

擬一次元ハロゲン架橋金属錯体の疎水的、親水的相互作用および格子間隔を用いることによって、特定の分子を規則的に配列させることが可能となる。   By using the hydrophobic and hydrophilic interactions and lattice spacing of the quasi-one-dimensional halogen-bridged metal complex, it becomes possible to regularly arrange specific molecules.

図1にハロゲン架橋錯体結晶の代表例として、[M(chxn)2Br]Br2 (M = Ni, Pd, Co, chxn: 1R, 2R- diaminocyclohexane)の結晶構造の模式図を示す。図1における(a)はハロゲン架橋錯体[M(chxn)2Br]Br2 (M = Ni, Pd, Co, chxn: 1R, 2R- diaminocyclohexane)のユニットとなる分子の構造式である。そして図1における(b)は、(a)に示した分子をハロゲン架橋して得られる結晶の立体構造模式図である。この結晶は、Ni原子1個にdiaminocyclohexane分子が上下に2個配位結合したものをユニットとして、このユニットがBr(臭素)などのハロゲン原子によってb軸方向に一次元的に架橋されており、またc軸方向にはその一次元的に架橋されて形成された鎖間の相互作用による結合が形成されている。これに対してa軸方向は弱い分子間力相互作用によって繋がっている。このため、この結晶を劈開することによって、bc面の清浄表面が容易に得られる。図1における(c)は、(b)に示した結晶の劈開によって得られるbc面の清浄表面の構造模式図である。 FIG. 1 shows a schematic diagram of the crystal structure of [M (chxn) 2 Br] Br 2 (M = Ni, Pd, Co, chxn: 1R, 2R-diaminocyclohexane) as a representative example of a halogen-bridged complex crystal. (A) in FIG. 1 is a structural formula of a molecule serving as a unit of a halogen-bridged complex [M (chxn) 2 Br] Br 2 (M = Ni, Pd, Co, chxn: 1R, 2R-diaminocyclohexane). FIG. 1B is a schematic diagram of a three-dimensional structure of a crystal obtained by halogen-crosslinking the molecule shown in FIG. This crystal is a unit in which two diaminocyclohexane molecules are coordinated to the top and bottom of one Ni atom, and this unit is one-dimensionally crosslinked in the b-axis direction by a halogen atom such as Br (bromine). In the c-axis direction, a bond is formed by the interaction between the chains formed by one-dimensional crosslinking. On the other hand, the a-axis direction is connected by weak intermolecular force interaction. For this reason, a cleaved surface of the bc plane can be easily obtained by cleaving the crystal. (C) in FIG. 1 is a structural schematic diagram of the clean surface of the bc plane obtained by cleaving the crystal shown in (b).

擬一次元ハロゲン架橋Ni錯体 [Ni(chxn)2Br]Br2の場合には金属間距離はb軸(鎖内)で約0.52 nm、c軸(鎖間)で0.71 nmである。これらの距離はNiの代わりに一部を他の金属、例えばPdやCoに置き換えることによって変化させることが可能となる。具体的には[Ni1-xPdx(chxn)2Br]Br2擬一次元ハロゲン架橋Ni錯体において組成比xを0から1の間で変化させることにより、b軸を0.517 nmから0.528 nmまで、またc軸を0.712 nmから0.707 nmまで変化させることができる(例えば非特許文献5参照)。 In the case of the quasi-one-dimensional halogen-bridged Ni complex [Ni (chxn) 2 Br] Br 2 , the distance between metals is about 0.52 nm on the b-axis (intrachain) and 0.71 nm on the c-axis (interchain). These distances can be changed by replacing part of the distance with another metal such as Pd or Co instead of Ni. Specifically, by changing the composition ratio x between 0 and 1 in a [Ni 1-x Pd x (chxn) 2 Br] Br 2 quasi-one-dimensional halogen-bridged Ni complex, the b-axis is changed from 0.517 nm to 0.528 nm. And the c-axis can be changed from 0.712 nm to 0.707 nm (for example, see Non-Patent Document 5).

従って、図2に示すように、擬一次元ハロゲン架橋錯体結晶を劈開して得られたbc軸表面を基板としてその表面上に様々な分子や材料を基板表面に並べることによって、これらの分子や材料の周期間隔を制御することができる。すなわち、本発明により、新物質や新規機能性材料を創製するために有効な基板が提供される事となる。   Therefore, as shown in FIG. 2, by arranging the bc-axis surface obtained by cleaving the quasi-one-dimensional halogen-bridged complex crystal as a substrate, and arranging various molecules and materials on the surface, these molecules and The period interval of the material can be controlled. That is, according to the present invention, an effective substrate for creating a new substance or a new functional material is provided.

擬一次元ハロゲン架橋金属錯体[Ni(chxn)2Br]Br2結晶は、Ni錯体[Ni(chxn)2]Br2を無水メタノールに溶かして作製した溶液にTetra-n-butylammonium bromideを支持電解質として加え、電解酸化することによって電極に析出させることによって得られる。数mmの結晶を得るためには、1週間から2ヶ月程度の時間をかけて電解酸化を行っている。図3に、擬一次元ハロゲン架橋金属錯体[Ni(chxn)2Br]Br2を劈開して得たbc軸表面を走査トンネル顕微鏡で観察した像を示す。b軸の周期0.517 nmとc軸の周期0.712 nmに対応する周期構造が観察されている。このように劈開によって原子スケールで平坦かつ清浄な基板表面を得ることができることが実証された。 The quasi-one-dimensional halogen-bridged metal complex [Ni (chxn) 2 Br] Br 2 crystal is supported by Tetra-n-butylammonium bromide in a solution prepared by dissolving the Ni complex [Ni (chxn) 2 ] Br 2 in anhydrous methanol. In addition, it is obtained by depositing on an electrode by electrolytic oxidation. In order to obtain a crystal of several mm, electrolytic oxidation is performed over a period of about 1 week to 2 months. FIG. 3 shows an image obtained by observing the bc-axis surface obtained by cleaving the quasi-one-dimensional halogen-bridged metal complex [Ni (chxn) 2 Br] Br 2 with a scanning tunneling microscope. Periodic structures corresponding to a b-axis period of 0.517 nm and a c-axis period of 0.712 nm have been observed. Thus, it was proved that a flat and clean substrate surface on an atomic scale can be obtained by cleavage.

次に、擬一次元ハロゲン架橋金属錯体[Pd(chxn)2Br]Br2結晶は、Pd錯体[Pdchxn)2]Br2を、上記のNi錯体のときと同様な方法によって得られる。図4に擬一次元ハロゲン架橋金属錯体[Pd(chxn)2Br]Br2を劈開して得たbc軸表面を走査トンネル顕微鏡で観察した像を示す。b軸の周期0.528 nmとc軸の周期0.707 nmに対応する周期構造が観察されている。このようにPd錯体の場合においてもNi錯体のときと同様に、劈開によって原子スケールで平坦かつ清浄な基板表面を得ることができることが実証された。 Next, the quasi-one-dimensional halogen-bridged metal complex [Pd (chxn) 2 Br] Br 2 crystal is obtained from the Pd complex [Pdchxn) 2 ] Br 2 by the same method as in the case of the Ni complex. FIG. 4 shows an image obtained by observing the bc-axis surface obtained by cleaving the quasi-one-dimensional halogen-bridged metal complex [Pd (chxn) 2 Br] Br 2 with a scanning tunneling microscope. Periodic structures corresponding to a b-axis period of 0.528 nm and a c-axis period of 0.707 nm have been observed. Thus, in the case of the Pd complex as well as in the case of the Ni complex, it was demonstrated that a flat and clean substrate surface on the atomic scale can be obtained by cleavage.

最後に、混合擬一次元ハロゲン架橋金属錯体[Ni1-xPdx(chxn)2Br]Br2 (0<x<1)の結晶は、Ni錯体[Ni(chxn)2]Br2とPd錯体[Pd(chxn)2]Br2を混ぜて無水メタノールに溶かして作製した混合溶液を上記と電解酸化によって得られる。図5における(a)は、組成比が0.08のときの結晶を劈開して得たbc軸表面を走査トンネル顕微鏡で観察した像である。図5における(b)は、組成比が0.40のときの結晶を劈開して得たbc軸表面を走査トンネル顕微鏡で観察した像である。図5における(c)は、組成比が0.76のときの結晶を劈開して得たbc軸表面を走査トンネル顕微鏡で観察した像である。このようにNiとPdの混合錯体の場合においても、NiやPdの錯体のときと同様に、劈開によって原子スケールで平坦かつ清浄な基板表面を得ることができることが実証された。 Finally, the crystals of the mixed quasi-one-dimensional halogen-bridged metal complex [Ni 1-x Pd x (chxn) 2 Br] Br 2 (0 <x <1) are converted to the Ni complex [Ni (chxn) 2 ] Br 2 and Pd A mixed solution prepared by mixing the complex [Pd (chxn) 2 ] Br 2 and dissolving in anhydrous methanol is obtained by the above and electrolytic oxidation. (A) in FIG. 5 is an image obtained by observing the bc-axis surface obtained by cleaving the crystal when the composition ratio is 0.08 with a scanning tunneling microscope. (B) in FIG. 5 is an image obtained by observing the bc-axis surface obtained by cleaving the crystal when the composition ratio is 0.40 with a scanning tunneling microscope. (C) in FIG. 5 is an image obtained by observing the bc-axis surface obtained by cleaving the crystal when the composition ratio is 0.76 with a scanning tunneling microscope. Thus, in the case of a mixed complex of Ni and Pd, it was proved that a flat and clean substrate surface on the atomic scale can be obtained by cleavage, as in the case of a complex of Ni or Pd.

また、Coを用いた混合擬一次元ハロゲン架橋金属錯体[Ni1-xCox(chxn)2Br]Br2 (0<x<1) (例えば非特許文献6参照)の場合についても、ここでは像を示さないが上記と同様な方法で基板表面を得ることが可能である。 Further, the case of a mixed quasi-one-dimensional halogen-bridged metal complex [Ni 1-x Co x (chxn) 2 Br] Br 2 (0 <x <1) (for example, see Non-Patent Document 6) using Co is also used here. Then, although no image is shown, it is possible to obtain the substrate surface by the same method as described above.

本発明で、擬一次元ハロゲン架橋錯体結晶基板のb軸において得られる約0.5 nmの周期は、有機分子を並べるときに生じる共通周期であることが知られており(例えば非特許文献7参照)、この周期を利用することによって様々な分子の周期間隔を制御して並べることが可能となる。   In the present invention, it is known that the period of about 0.5 nm obtained on the b-axis of the quasi-one-dimensional halogen-bridged complex crystal substrate is a common period that occurs when organic molecules are arranged (see, for example, Non-Patent Document 7). By using this period, it is possible to control and arrange the periodic intervals of various molecules.

また、新規機能性材料として期待されているカーボンナノチューブの直径は代表的なもので0.5 nmであり、本発明における基板のb軸において得られる約0.5 nmの周期とほぼ一致する。このことを利用して、カーボンナノチューブを本発明の基板表面に揃えて並べることにより、新規材料への応用も考えられる。   The diameter of carbon nanotubes expected as a new functional material is typically 0.5 nm, which is almost the same as the period of about 0.5 nm obtained on the b-axis of the substrate in the present invention. Utilizing this fact, the carbon nanotubes are aligned on the surface of the substrate of the present invention, so that application to new materials is also conceivable.

さらに他の例を挙げると、青色発光ダイオードの材料として知られているGaNの結晶のc軸周期は0.517 nmであるが(例えば非特許文献8参照)、GaNのナノリボンになるとこの周期が0.518 nmになることが報告されている(例えば非特許文献9参照)。つまり、GaNのc軸周期間隔の制御により、GaNの構造や性質を制御することも可能である。   As another example, the c-axis period of a GaN crystal known as a blue light emitting diode material is 0.517 nm (see, for example, Non-Patent Document 8). (For example, refer nonpatent literature 9). That is, the structure and properties of GaN can be controlled by controlling the c-axis periodic interval of GaN.

従って、図2に示すように、本発明で示した擬一次元ハロゲン架橋錯体を基板として様々な分子や材料を基板表面に並べることによって、これらの分子や材料の周期間隔を制御することができる。すなわち、本発明により、新物質や新規機能性材料を創製するために有効な基板が提供される事となる。   Therefore, as shown in FIG. 2, by arranging various molecules and materials on the substrate surface using the quasi-one-dimensional halogen bridge complex shown in the present invention as a substrate, the periodic interval of these molecules and materials can be controlled. . That is, according to the present invention, an effective substrate for creating a new substance or a new functional material is provided.

ハロゲン架橋錯体結晶の代表例として、[M(chxn)2Br]Br2 (M = Ni, Pd, Co, chxn: 1R, 2R- diaminocyclohexane)の結晶構造の模式図である。FIG. 3 is a schematic diagram of a crystal structure of [M (chxn) 2 Br] Br 2 (M = Ni, Pd, Co, chxn: 1R, 2R-diaminocyclohexane) as a representative example of a halogen-bridged complex crystal. 擬一次元ハロゲン架橋錯体を基板として様々な分子や材料を基板表面に並べた状態の概念図である。It is a conceptual diagram of the state which arranged various molecules and materials on the substrate surface using a quasi-one-dimensional halogen bridge complex as a substrate. 擬一次元ハロゲン架橋金属錯体[Ni(chxn)2Br]Br2を劈開して得たbc軸表面を走査トンネル顕微鏡で観察した像を表した図である。It is a diagram showing an image obtained by observing the quasi-one-dimensional halogen-bridged metal complex [Ni (chxn) 2 Br] bc shaft surface obtained by cleaving the Br 2 in a scanning tunneling microscope. 擬一次元ハロゲン架橋金属錯体[Pd(chxn)2Br]Br2を劈開して得たbc軸表面を走査トンネル顕微鏡で観察した像を表した図である。It is a diagram showing an image obtained by observing the quasi-one-dimensional halogen-bridged metal complex [Pd (chxn) 2 Br] bc shaft surface obtained by cleaving the Br 2 in a scanning tunneling microscope. NiとPdの混合錯体の場合における、組成比xがそれぞれ0.08,0.40,0.76のときの結晶を劈開して得たbc軸表面を走査トンネル顕微鏡で観察した像を表した図である。It is a figure showing the image which observed the bc axis | shaft surface obtained by cleaving the crystal | crystallization when the composition ratio x is 0.08, 0.40, and 0.76 in the case of the mixed complex of Ni and Pd with the scanning tunneling microscope, respectively.

符号の説明Explanation of symbols

1 擬一次元ハロゲン架橋錯体基板
2 基板上に配列した分子
1 Quasi-one-dimensional halogen-bridged complex substrate 2 Molecules arranged on the substrate

Claims (4)

分子の周期間隔を制御して固定するための基板として擬一次元ハロゲン架橋金属錯体結晶を利用する、基板に分子を固定する方法であって、
[M(chxn)2Br]Br2を劈開して得たbc軸表面を基板表面とし、当該基板表面の結晶構造の周期を利用することによって、前記基板に固定される分子の周期間隔が制御される、基板に分子を固定する方法。
A method of immobilizing molecules on a substrate using a quasi-one-dimensional halogen-bridged metal complex crystal as a substrate for immobilizing by controlling the periodic interval of molecules,
By using the bc-axis surface obtained by cleaving [M (chxn) 2 Br] Br 2 as the substrate surface and utilizing the period of the crystal structure of the substrate surface, the periodic interval of molecules immobilized on the substrate is controlled. A method of immobilizing molecules on a substrate.
請求項1において、擬一次元ハロゲン架橋Ni錯体およびPd錯体を基板として用いる、基板に分子を固定する方法。 2. The method for immobilizing molecules on a substrate according to claim 1, wherein a quasi-one-dimensional halogen-bridged Ni complex and a Pd complex are used as the substrate. 請求項2において、擬一次元ハロゲン架橋金属錯体[Ni(chxn)2Br]Br2、[Pd(chxn)2Br]Br2、または[Ni1-xPdx(chxn)2Br]Br2(0<x<1) (chxn: 1R, 2R- diaminocyclohexane) を基板として用いる、基板に分子を固定する方法。 3. The quasi-one-dimensional halogen-bridged metal complex [Ni (chxn) 2 Br] Br 2 , [Pd (chxn) 2 Br] Br 2 , or [Ni 1-x Pd x (chxn) 2 Br] Br 2 (0 <x <1) (chxn: 1R, 2R-diaminocyclohexane) is used as a substrate, and a method of immobilizing molecules on the substrate. 請求項2において、擬一次元ハロゲン架橋混合金属錯体[Ni1-xCox(chxn)2Br]Br2(chxn: 1R, 2R- diaminocyclohexane) を基板として用いる、基板に分子を固定する方法。 According to claim 2, quasi-one-dimensional halogen-bridged mixed-metal complex [Ni 1-x Co x ( chxn) 2 Br] Br 2 (chxn: 1R, 2R- diaminocyclohexane) used as a substrate, a method of fixing the molecules to the substrate.
JP2004050964A 2004-02-26 2004-02-26 Method of immobilizing molecules on a substrate Expired - Fee Related JP4636466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004050964A JP4636466B2 (en) 2004-02-26 2004-02-26 Method of immobilizing molecules on a substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004050964A JP4636466B2 (en) 2004-02-26 2004-02-26 Method of immobilizing molecules on a substrate

Publications (2)

Publication Number Publication Date
JP2005238380A JP2005238380A (en) 2005-09-08
JP4636466B2 true JP4636466B2 (en) 2011-02-23

Family

ID=35020654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004050964A Expired - Fee Related JP4636466B2 (en) 2004-02-26 2004-02-26 Method of immobilizing molecules on a substrate

Country Status (1)

Country Link
JP (1) JP4636466B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01224383A (en) * 1988-03-03 1989-09-07 Matsushita Electric Ind Co Ltd Hetero-ligand complex having mixed atomic valence
JPH01265096A (en) * 1988-04-14 1989-10-23 Matsushita Electric Ind Co Ltd Mixed valence complex of optically active ligand
JPH10228681A (en) * 1997-02-17 1998-08-25 Canon Inc Manufacture of recording medium and recording medium as well as information processing method and information processing device using this recording medium
JP2001181842A (en) * 1999-12-21 2001-07-03 Matsushita Electric Ind Co Ltd Carbon nanotube
JP2001194383A (en) * 2000-01-12 2001-07-19 Toyota Central Res & Dev Lab Inc Acceleration recording device
JP2001277200A (en) * 2000-03-30 2001-10-09 Toshiba Corp Micro working device
JP2002220300A (en) * 2001-01-18 2002-08-09 Vision Arts Kk Nanofiber and method of producing the same
JP2003086829A (en) * 2001-09-13 2003-03-20 National Institute Of Advanced Industrial & Technology Ultra-high speed photoelectric signal transducer element
WO2003026017A1 (en) * 2001-09-14 2003-03-27 The New Industry Research Organization Silicon cluster superlattice, method for preparing silicon cluster superlattice, method for preparing silicon cluster, silicon cluster superlattice structure, method for preparing silicon cluster superlattice structure, semiconductor device and quantum device
JP2003243745A (en) * 2002-02-20 2003-08-29 Japan Science & Technology Corp Ultrahigh density information storage device based on monomolecular switching
WO2003078384A1 (en) * 2002-03-15 2003-09-25 Fujitsu Limited Multidentate ligand, multi-nucleus metal complex, metal complex chain, metal complex integrated structure, and preparation method thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01224383A (en) * 1988-03-03 1989-09-07 Matsushita Electric Ind Co Ltd Hetero-ligand complex having mixed atomic valence
JPH01265096A (en) * 1988-04-14 1989-10-23 Matsushita Electric Ind Co Ltd Mixed valence complex of optically active ligand
JPH10228681A (en) * 1997-02-17 1998-08-25 Canon Inc Manufacture of recording medium and recording medium as well as information processing method and information processing device using this recording medium
JP2001181842A (en) * 1999-12-21 2001-07-03 Matsushita Electric Ind Co Ltd Carbon nanotube
JP2001194383A (en) * 2000-01-12 2001-07-19 Toyota Central Res & Dev Lab Inc Acceleration recording device
JP2001277200A (en) * 2000-03-30 2001-10-09 Toshiba Corp Micro working device
JP2002220300A (en) * 2001-01-18 2002-08-09 Vision Arts Kk Nanofiber and method of producing the same
JP2003086829A (en) * 2001-09-13 2003-03-20 National Institute Of Advanced Industrial & Technology Ultra-high speed photoelectric signal transducer element
WO2003026017A1 (en) * 2001-09-14 2003-03-27 The New Industry Research Organization Silicon cluster superlattice, method for preparing silicon cluster superlattice, method for preparing silicon cluster, silicon cluster superlattice structure, method for preparing silicon cluster superlattice structure, semiconductor device and quantum device
JP2003243745A (en) * 2002-02-20 2003-08-29 Japan Science & Technology Corp Ultrahigh density information storage device based on monomolecular switching
WO2003078384A1 (en) * 2002-03-15 2003-09-25 Fujitsu Limited Multidentate ligand, multi-nucleus metal complex, metal complex chain, metal complex integrated structure, and preparation method thereof

Also Published As

Publication number Publication date
JP2005238380A (en) 2005-09-08

Similar Documents

Publication Publication Date Title
Zeng et al. Exploring two-dimensional materials toward the next-generation circuits: from monomer design to assembly control
Houtsma et al. Atomically precise graphene nanoribbons: interplay of structural and electronic properties
Fu et al. One-step synthesis of metal/semiconductor heterostructure NbS2/MoS2
Tang et al. Molecular charge transfer: a simple and effective route to engineer the band structures of BN nanosheets and nanoribbons
Gao et al. Synthesis and development of graphene–inorganic semiconductor nanocomposites
Patel et al. Large and uniform single crystals of MoS2 monolayers for ppb-level NO2 sensing
US8951609B2 (en) CNT devices, low-temperature fabrication of CNT and CNT photo-resists
Zhang et al. Shape-dependent defect structures of monolayer MoS2 crystals grown by chemical vapor deposition
KR100861522B1 (en) Rectifying device and electronic circuit employing same, and process for producing rectifying device
Rodríguez González et al. Multicomponent covalent chemical patterning of graphene
Ma et al. Immobilized precursor particle driven growth of centimeter-sized MoTe2 monolayer
US9102694B1 (en) Method for bottom-up graphene sheet preparation and bandgap engineering
Yin et al. Step-assisted on-surface synthesis of graphene nanoribbons embedded with periodic divacancies
Liu et al. Building pentagons into graphenic structures by on-surface polymerization and aromatic cyclodehydrogenation of phenyl-substituted polycyclic aromatic hydrocarbons
Zhang et al. Synthesis, properties, and stacking of two-dimensional transition metal dichalcogenides
Liu et al. Thermally induced transformation of nonhexagonal carbon rings in graphene-like nanoribbons
Li et al. Self-assembled borophene/graphene nanoribbon mixed-dimensional heterostructures
Cheng et al. Stepwise on-surface synthesis of porous carbon nanoribbons with notched zigzag edges
KR20070002111A (en) Semiconductor nano-element
JP4834950B2 (en) Method for manufacturing field effect semiconductor device
JP4636466B2 (en) Method of immobilizing molecules on a substrate
Sepulveda-Guzman et al. Room-temperature deposition of crystalline patterned ZnO films by confined dewetting lithography
Yomogida et al. Semiconducting Transition Metal Dichalcogenide Heteronanotubes with Controlled Outer-Wall Structures
Lin et al. Direct band gap in multilayer transition metal dichalcogenide nanoscrolls with enhanced photoluminescence
Lee et al. CVD Growth of a Horizontally Aligned One-Dimensional Van der Waals Material, Nb2Se9

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101021

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101116

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4636466

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees