JP4633438B2 - Mandrel-less elastic crawler and its manufacturing method - Google Patents

Mandrel-less elastic crawler and its manufacturing method Download PDF

Info

Publication number
JP4633438B2
JP4633438B2 JP2004307955A JP2004307955A JP4633438B2 JP 4633438 B2 JP4633438 B2 JP 4633438B2 JP 2004307955 A JP2004307955 A JP 2004307955A JP 2004307955 A JP2004307955 A JP 2004307955A JP 4633438 B2 JP4633438 B2 JP 4633438B2
Authority
JP
Japan
Prior art keywords
crawler
drive
reinforcing core
protrusion
positioning member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004307955A
Other languages
Japanese (ja)
Other versions
JP2006117134A (en
Inventor
康晴 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2004307955A priority Critical patent/JP4633438B2/en
Publication of JP2006117134A publication Critical patent/JP2006117134A/en
Application granted granted Critical
Publication of JP4633438B2 publication Critical patent/JP4633438B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Description

本発明は、各種のクローラ式走行装置に用いられる芯金レス弾性クローラとその製造方法に関する。   The present invention relates to a coreless elastic crawler used for various crawler type traveling devices and a method for manufacturing the same.

クローラ式走行装置は運搬車両や農業機械等に幅広く用いられており、これらのクローラ式走行装置には無端状の弾性クローラが装着されている。この弾性クローラは、弾性体からなるクローラ本体とこのクローラ本体の内周面に突設された駆動突起とクローラ本体の外周面に設けられた複数のラグとを備えている。このうち、駆動突起は、走行装置のスプロケットに係合して駆動力を弾性クローラに伝えることや、転輪の外れ防止としての機能を有しており、図7(a)に示すように駆動突起30の摩耗、変形等を防止する目的でその内部に補強芯材31を埋設することが行われている(例えば、特許文献1参照)。
特開平9−301229号公報
Crawler type traveling devices are widely used in transport vehicles, agricultural machines, and the like, and endless elastic crawlers are mounted on these crawler type traveling devices. The elastic crawler includes a crawler main body made of an elastic body, a drive protrusion protruding from the inner peripheral surface of the crawler main body, and a plurality of lugs provided on the outer peripheral surface of the crawler main body. Of these, the drive protrusion engages with the sprocket of the traveling device to transmit the drive force to the elastic crawler and has a function of preventing the wheel from coming off, as shown in FIG. 7 (a). In order to prevent the protrusions 30 from being worn, deformed, etc., a reinforcing core member 31 is embedded therein (see, for example, Patent Document 1).
JP-A-9-301229

しかしながら、上記特許文献1の弾性クローラでは、補強芯材31の両端部31aが駆動突起30のクローラ幅方向側面に露出しているため、車両側の転輪が当該側面に繰り返し擦れることで露出している補強芯材31の周りからゴムの剥がれが起こり、これが成長すると補強芯材31の脱落につながる。
また、図7(b)に示す他の弾性クローラ40では、金型に補強芯材41を接触させて位置決めを行うため、補強芯材41の一部41aが駆動突起42のクローラ周方向側面に露出する。車両側の駆動スプロケットが当該側面に繰り返し当たることで、上記弾性クローラと同様、露出している部分からゴムが剥がれていき補強芯材41が脱落するという問題が発生する。
そこで、本発明は、このような従来技術の問題点に鑑み、補強芯材の脱落が防止された芯金レス弾性クローラの製造方法を提供することを目的とする。
However, in the elastic crawler of Patent Document 1, both end portions 31a of the reinforcing core member 31 are exposed on the side surfaces of the drive protrusions 30 in the crawler width direction, so that the vehicle-side rolling wheels are exposed by repeatedly rubbing against the side surfaces. When the rubber peels off from around the reinforcing core member 31 and grows, the reinforcing core member 31 falls off.
Further, in the other elastic crawler 40 shown in FIG. 7B, since the reinforcing core material 41 is brought into contact with the mold for positioning, a part 41a of the reinforcing core material 41 is located on the crawler circumferential side surface of the drive protrusion 42. Exposed. When the driving sprocket on the vehicle side repeatedly hits the side surface, like the elastic crawler, the rubber is peeled off from the exposed portion, and the reinforcing core member 41 falls off.
In view of the above-described problems of the prior art, an object of the present invention is to provide a method for manufacturing a cored bar-less elastic crawler in which a reinforcing core material is prevented from falling off.

上記目的を達成するため、本発明は次の技術的手段を講じた。すなわち、成形型の内部空間で未加硫ゴムを加硫し、クローラ本体とこのクローラ本体の内周面に突設されると共に補強芯材が埋設された駆動突起と前記クローラ本体の外周面に設けられるラグとを成形する芯金レス弾性クローラの製造方法であって、前記内部空間内へ向かって延びる位置決め部材が、前記駆動突起を成形する上型及び下型からなる成形型の内、前記上型の内面に立設され、前記上型が、前記駆動突起の形状に対応して分割され当該駆動突起の外面に対してほぼ垂直な方向に移動可能な複数の分割型により構成されており、前記位置決め部材は、前記複数の分割型の内面それぞれにその移動方向に沿う方向に立設されており、前記位置決め部材の先端を、前記駆動突起の先端側及びクローラ周方向側面側のうち、少なくともいずれか一方側から前記補強芯材に当接させ、この補強芯材が前記駆動突起から露出しないような位置関係を決定した状態で前記未加硫ゴムを加硫し、加硫後、前記分割型を当該分割型の内面が接する駆動突起の外面に対してほぼ垂直な方向に移動させて前記位置決め部材を取り除くことを特徴とする。 In order to achieve the above object, the present invention takes the following technical means. That is, the unvulcanized rubber is vulcanized in the inner space of the mold, and the crawler body, the drive protrusions that are embedded on the inner peripheral surface of the crawler body and the reinforcing core material is embedded, and the outer peripheral surface of the crawler body. A method of manufacturing a cored bar-less elastic crawler for molding a lug to be provided, wherein a positioning member extending into the internal space is formed of an upper mold and a lower mold for molding the drive protrusion, The upper die is erected on the inner surface of the upper die, and the upper die is divided according to the shape of the drive protrusion, and is constituted by a plurality of divided dies that can move in a direction substantially perpendicular to the outer surface of the drive protrusion. The positioning member is erected on each of the inner surfaces of the plurality of split molds in a direction along the moving direction, and the front end of the positioning member is located on the front end side of the drive protrusion and the crawler circumferential side surface side. at least From the deviation or the other side is brought into contact with the reinforcing core, the unvulcanized rubber was vulcanized in a condition in which the reinforcing core material was determined positional relationship so as not to be exposed from the driving projection, after vulcanization, the divided The positioning member is removed by moving the mold in a direction substantially perpendicular to the outer surface of the driving projection with which the inner surface of the divided mold contacts .

上記芯金レス弾性クローラの製造方法によれば、成形型の内面に立設された位置決め部材の先端を補強芯材に当接させ、補強芯材が駆動突起から露出しないような位置関係を決定した状態で未加硫ゴムを加硫しているので、加硫成形後、補強芯材が駆動突起のゴム材料で完全に覆われた状態となる。従って、補強芯材が、クローラ幅方向側面やクローラ周方向側面に露出することがないので、車両側の転輪や駆動スプロケットが駆動突起に繰り返し当たってもゴムが剥がれるようなことがない。これにより、補強芯材の脱落を防止することができる。
また、位置決め部材を駆動突起のクローラ周方向側面側から当接させれば、補強芯材のクローラ周方向位置を簡易に決定することができ、さらに位置決め部材を先端側からも当接させることで、補強芯材をより安定させることができる。なお、位置決め部材の形状に関して、例えば円柱形状(ピン形状)やクローラ幅方向に延びる板形状とすることができる。
According to the manufacturing method of the coreless elastic crawler described above, the position of the positioning member standing on the inner surface of the mold is brought into contact with the reinforcing core material, and the positional relationship is determined so that the reinforcing core material is not exposed from the drive protrusion. Since the unvulcanized rubber is vulcanized in such a state, the reinforced core material is completely covered with the rubber material of the drive protrusion after vulcanization molding. Accordingly, the reinforcing core material is not exposed on the crawler width direction side surface or the crawler circumferential side surface, so that the rubber is not peeled off even when the vehicle-side wheel or the drive sprocket repeatedly hits the drive protrusion. Thereby, dropping of the reinforcing core material can be prevented.
Further, if the positioning member is brought into contact with the crawler circumferential side surface side of the drive projection, the crawler circumferential position of the reinforcing core can be easily determined, and further, the positioning member can be brought into contact with the tip side. The reinforcing core material can be made more stable. In addition, regarding the shape of the positioning member, for example, a cylindrical shape (pin shape) or a plate shape extending in the crawler width direction can be used.

また、上記位置決め部材の長さ寸法や本数、配置による構成を変更することで、駆動突起と補強芯材との位置関係を決定することができるが、位置決め部材は、駆動突起のクローラ周方向側面における補強芯材を覆う加硫後のゴム厚みが1mm以上となるように構成されていることが好ましい。この場合、駆動突起のクローラ周方向側面において1mm以上のゴム厚みが確保できるので、この部分で補強芯材が露出しないのは勿論、スプロケットによるゴムの剥がれが防止され、補強芯材の脱落防止効果を高めることができる。   In addition, the positional relationship between the drive protrusion and the reinforcing core can be determined by changing the length dimension, the number, and the arrangement of the positioning members, but the positioning member is the crawler circumferential side surface of the drive protrusion. It is preferable that the rubber thickness after vulcanization for covering the reinforcing core material is set to 1 mm or more. In this case, a rubber thickness of 1 mm or more can be secured on the crawler circumferential side surface of the drive protrusion, so that the reinforcing core material is not exposed at this portion, and the rubber is prevented from peeling off by the sprocket, and the reinforcing core material is prevented from falling off. Can be increased.

また、上記位置決め部材の先端を挿脱自在とする位置決め穴を補強芯材に設け、この位置決め穴に当該位置決め部材の先端を挿入して位置関係を決定すれば、補強芯材をより安定させた状態で加硫成形を行うことができる。   In addition, if the positioning core is provided with a positioning hole that allows the distal end of the positioning member to be inserted and removed, and the positional relationship is determined by inserting the distal end of the positioning member into the positioning hole, the reinforcing core material is further stabilized. Vulcanization molding can be performed in the state.

さらに、位置決め部材を駆動突起における車両側の駆動スプロケットが接触しない部分に対応する側から補強芯材に当接させてもよい。このようにすれば、加硫成形後の弾性クローラにおいて、駆動突起における車両側の駆動スプロケットが接触する部分に位置決め部材の成形孔がくることがない。このため、駆動スプロケットが駆動突起に係合した際に当該成形孔に接触することがなく、成形孔を起点とするクラック及びその成長を防ぐことができる。これにより、補強芯材の脱落を防止することができる。   Further, the positioning member may be brought into contact with the reinforcing core member from the side corresponding to the portion of the driving protrusion that does not contact the driving sprocket on the vehicle side. In this way, in the elastic crawler after vulcanization molding, the molding hole of the positioning member does not come in the portion of the drive projection where the drive sprocket on the vehicle side contacts. For this reason, when a drive sprocket engages with a drive protrusion, it does not contact the molding hole, and cracks starting from the molding hole and growth thereof can be prevented. Thereby, dropping of the reinforcing core material can be prevented.

また、本発明は、無端帯状のゴム様弾性体よりなるクローラ本体と、クローラ周方向に一定間隔おきに並んだ状態で前記クローラ本体の内周面から一体に突設された複数の駆動突起と、前記クローラ本体の外周面に所定のラグパターンで形成されたラグ群と、前記クローラ本体の内部にクローラ周方向に沿って埋設された抗張体とを備えており、前記各駆動突起の内部に補強芯材が埋設されている芯金レス弾性クローラにおいて、前記各駆動突起を前記クローラ本体と共に加硫成形する際に前記補強芯材を当該駆動突起の内部に位置決めするために、前記駆動突起を成形するための成形型の上型を構成する、前記駆動突起の形状に対応して分割され当該駆動突起の外面に対してほぼ垂直な方向に移動可能な複数の分割型それぞれの内面にその移動方向に沿う方向に立設されるとともに、前記駆動突起の先端側及びクローラ周方向側面側のうち、少なくともいずれか一方側から前記駆動突起に当接する位置決め部材の成形孔が、前記駆動突起における車両側の駆動スプロケットが接触しない部分に配置されていることを特徴としている。 The present invention also includes a crawler body made of an endless belt-like rubber-like elastic body, and a plurality of drive protrusions integrally projected from the inner peripheral surface of the crawler body in a state of being arranged at regular intervals in the crawler circumferential direction. , A lug group formed in a predetermined lug pattern on the outer peripheral surface of the crawler body, and a tensile body embedded in the crawler body along the circumferential direction of the crawler. to the metal core-less elastic crawler reinforcing core is embedded, the reinforcing core the respective drive projections when vulcanized with the crawler body to be positioned inside of the drive projection, said drive projection constituting the mold upper mold of for molding the, the multiple split each inner surface movable in a direction substantially perpendicular to the outer surface of the to be divided the drive projections corresponding to the shape of the driving projection While being erected in a direction along the moving direction, out of the distal end side and the crawler circumferential direction side surface side of the drive projection, the molded hole of the positioning member abuts the driving projection from at least either one side, in the driving projection It is characterized in that the drive sprocket on the vehicle side is arranged at a portion where it does not contact.

上記の本発明の芯金レス弾性クローラによれば、駆動突起に形成される位置決め部材の成形孔が、駆動突起における車両側の駆動スプロケットが接触しない部分に配置されているので、駆動スプロケットが駆動突起に係合した際に当該成形孔に接触することがなく、成形孔を起点とするクラック及びその成長を防ぐことができ、補強芯材の脱落を防止することができる。   According to the above-described coreless elastic crawler of the present invention, since the molding hole of the positioning member formed on the drive protrusion is disposed at a portion where the drive sprocket on the vehicle side does not contact with the drive protrusion, the drive sprocket is driven. When engaged with the protrusion, the molded hole is not contacted, cracks starting from the molded hole and its growth can be prevented, and the reinforcing core material can be prevented from falling off.

上記の通り、本発明によれば、補強芯材が駆動突起から露出しないような位置関係を決定した状態で未加硫ゴムを加硫しているので、補強芯材がゴム材料で完全に覆われ、その脱落を防止することができる。   As described above, according to the present invention, since the unvulcanized rubber is vulcanized in a state where the positional relationship is determined such that the reinforcing core material is not exposed from the drive protrusion, the reinforcing core material is completely covered with the rubber material. Can be prevented from falling off.

以下、図面を参照しつつ、本発明の実施形態を説明する。は、芯金レス弾性クローラ1が成形型を用いて加硫成形される際の一実施形態に係るクローラ周方向断面図であり、図2は、成形された芯金レス弾性クローラ1のクローラ幅方向断面図を示している。図2に示すように、芯金レス弾性クローラ1(以下、単に弾性クローラという)は、芯金が入っていない芯金レスとして構成されたものであり、クローラ周方向に一定間隔おきに複数の駆動突起2が突設されたクローラ本体3と、このクローラ本体3の外周面3aに所定のラグパターンで形成されたラグ群4と、同クローラ本体3の内部に周方向に沿って埋設された抗張体5とを備えており、さらに上記駆動突起2の内部には補強芯材6が埋設されている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 2 is a cross-sectional view in the crawler circumferential direction according to an embodiment when the coreless elastic crawler 1 is vulcanized using a mold, and FIG. 2 is a crawler width of the molded coreless elastic crawler 1 FIG. As shown in FIG. 2, the coreless elastic crawler 1 (hereinafter simply referred to as an elastic crawler) is configured as a coreless without a cored bar, and includes a plurality of cores at regular intervals in the crawler circumferential direction. The crawler main body 3 with the driving protrusions 2 provided thereon, the lug group 4 formed in a predetermined lug pattern on the outer peripheral surface 3a of the crawler main body 3, and the crawler main body 3 embedded in the circumferential direction. A tensile core 5 is provided, and a reinforcing core member 6 is embedded in the drive projection 2.

このうち、クローラ本体3は、ゴム製の弾性体によってほぼ一定厚さの無端帯状に形成されており、このクローラ本体3の内周面3bにおけるクローラ幅方向(図2の左右方向)中央部に、当該クローラ本体3と同じ材質のゴム製の弾性体からなる上記駆動突起2がクローラ本体3の全周に亘って突設されている。上記弾性クローラ1は、機体の前後に設けられた駆動スプロケットとアイドラと、これら駆動スプロケットとアイドラとの間に配置された複数個の転輪により主構成されるクローラ走行装置(図示せず)の外周に巻き掛けられて用いられるものである。駆動スプロケットには、回転駆動される一対の円板が左右方向対向状に配置されると共に、この円板間の外周側に左右方向の駆動ピン50(図1に仮想線で示す)が周方向に間隔をおいて設けられており、当該駆動ピン50が駆動突起2に係合することで弾性クローラ1が回転方向に沿って駆動する。   Among these, the crawler main body 3 is formed in an endless belt shape having a substantially constant thickness by a rubber elastic body, and the crawler main body 3 has an inner peripheral surface 3b at a central portion in the crawler width direction (left-right direction in FIG. 2). The driving protrusion 2 made of a rubber elastic body made of the same material as the crawler body 3 is provided so as to protrude over the entire circumference of the crawler body 3. The elastic crawler 1 is a crawler traveling device (not shown) mainly composed of drive sprockets and idlers provided before and after the airframe, and a plurality of wheels arranged between the drive sprockets and idlers. It is used by being wound around the outer periphery. In the drive sprocket, a pair of rotationally driven disks are arranged opposite to each other in the left-right direction, and left and right drive pins 50 (indicated by phantom lines in FIG. 1) are arranged in the circumferential direction on the outer peripheral side between the disks. The elastic crawler 1 is driven along the rotational direction when the drive pin 50 is engaged with the drive protrusion 2.

駆動突起2は、上述のように駆動力を弾性クローラ1に伝えることの他、クローラ本体3の内周面3bを転動する転輪の外れ防止としての機能を有している。抗張体5は、クローラ周方向に沿って延設されたスチールコード等を並設することによって構成されている。また、クローラ本体3の外周面3aに形成された複数のラグ4は、クローラ幅方向に延びる一文字状に形成されている。また、図1、図2に示すように駆動突起2の内部に埋設された補強芯材6は、円柱形状を呈しており、クローラ幅方向をその長手方向として配置されている。この補強芯材6は、駆動突起2の剛性を高めるために設けられているものであり、駆動突起2の内部でゴム材料との接着力を高めるために加硫接着されている。   The driving projection 2 has a function of preventing the falling of the rolling wheels that roll on the inner peripheral surface 3b of the crawler body 3 in addition to transmitting the driving force to the elastic crawler 1 as described above. The tensile body 5 is configured by juxtaposing steel cords and the like extending along the crawler circumferential direction. Further, the plurality of lugs 4 formed on the outer peripheral surface 3a of the crawler body 3 are formed in a single letter shape extending in the crawler width direction. Further, as shown in FIGS. 1 and 2, the reinforcing core member 6 embedded in the drive protrusion 2 has a cylindrical shape, and is arranged with the crawler width direction as the longitudinal direction. The reinforcing core member 6 is provided to increase the rigidity of the drive protrusion 2 and is vulcanized and bonded inside the drive protrusion 2 to increase the adhesive force with the rubber material.

これにより、駆動突起2がクローラ幅方向に倒れ難くなり、転輪の外れ防止機能が向上している。補強芯材6は、弾性クローラ1の加硫成型時に所定位置に配置されることで駆動突起2の内部に完全に埋まっており、その両端面6a、側面6bとも駆動突起2の外表面に露出していない。特に、駆動突起2のクローラ周方向側面(以下、単に周側面という)2aにおける補強芯材6を覆うゴム材料の厚みは1mm以上となっている。   As a result, the drive protrusion 2 is less likely to fall in the crawler width direction, and the function of preventing the wheel from coming off is improved. The reinforcing core member 6 is completely embedded in the driving projection 2 by being disposed at a predetermined position when the elastic crawler 1 is vulcanized, and both end surfaces 6a and side surfaces 6b thereof are exposed on the outer surface of the driving projection 2. Not done. In particular, the thickness of the rubber material covering the reinforcing core member 6 on the crawler circumferential side surface (hereinafter simply referred to as the circumferential side surface) 2a of the drive protrusion 2 is 1 mm or more.

本実施形態の製造方法は、有端で直線状の抗張体5の上下に駆動突起2等の内周面側、ラグ4等の外周面側を構成するゴム材料を加硫成形する前工程、抗張体5の有端部を重ね合せ、当該重ね合せ部の周囲に未加硫ゴムを充填し加圧、加熱して無端状に繋げる後工程よりなるものである。このうち前工程は、成形型の内部空間Nで未加硫ゴムを加硫し、クローラ本体3と補強芯材6が埋設された駆動突起2と複数のラグ4とを成形するものである。図1は加硫成型の終了後上型7を取り除いた状態を示しており、同図に示すように駆動突起2は二つの上型7A、7Bで加硫成形するようになっている。この上型7A、7Bと図示しない下型との間に抗張体5、補強芯材6、未加硫ゴムを配置して当該上下型を閉じた後、加圧、加温して未加硫ゴムを加硫し弾性クローラ1を製造する。なお、これら上下型はいずれもヒーター、熱電対等で所定温度に温度コントロールされている。   The manufacturing method according to the present embodiment is a pre-process for vulcanization molding of rubber materials constituting the inner peripheral surface side such as the driving projection 2 and the outer peripheral surface side such as the lug 4 on the upper and lower sides of the end and linear tensile body 5. The end portion of the tensile body 5 is overlapped, and the post-process includes filling the unvulcanized rubber around the overlapped portion, pressurizing and heating, and connecting them in an endless manner. Among these, the pre-process is to vulcanize the unvulcanized rubber in the inner space N of the mold, and to mold the drive protrusion 2 and the plurality of lugs 4 in which the crawler body 3 and the reinforcing core material 6 are embedded. FIG. 1 shows a state in which the upper die 7 is removed after the vulcanization molding is completed, and the drive projection 2 is vulcanized and molded with two upper dies 7A and 7B as shown in FIG. A tensile body 5, a reinforcing core member 6 and unvulcanized rubber are arranged between the upper molds 7A and 7B and a lower mold (not shown), and the upper and lower molds are closed. An elastic crawler 1 is manufactured by vulcanizing vulcanized rubber. Note that these upper and lower molds are temperature-controlled at a predetermined temperature by a heater, a thermocouple or the like.

二つの上型7A、7Bはそれぞれ駆動突起2に対してクローラ周方向斜め上方に移動できるようになっており、その内面8には位置決めピン9(位置決め部材)が立設されている。この位置決めピン9は、内部空間Nで補強芯材6を所定位置で支持するために設けられているものであり、クローラ幅方向に所要間隔を開けて配置された二つの位置決めピン9が、駆動突起2の前後各周側面2aに対応するようにそれぞれ各上型7A、7Bの内面8、8に垂直に立設されている。この位置決めピン9は、所要径を有すると共に1mm以上の長さ寸法を有する円柱形状を呈している。   The two upper molds 7A and 7B can move obliquely upward in the crawler circumferential direction with respect to the drive protrusion 2, and positioning pins 9 (positioning members) are provided upright on the inner surface 8 thereof. The positioning pins 9 are provided to support the reinforcing core member 6 at a predetermined position in the internal space N, and the two positioning pins 9 arranged at a predetermined interval in the crawler width direction are driven. The upper molds 7 </ b> A and 7 </ b> B are vertically erected vertically so as to correspond to the front and rear circumferential side surfaces 2 a of the protrusion 2. The positioning pin 9 has a cylindrical shape having a required diameter and a length dimension of 1 mm or more.

上型7の内面8は、駆動突起2の周側面形状に対応して上から先端平面8a、第1傾斜面8b、第2傾斜面8cで構成されており、このうち第1傾斜面8bの下端部近傍に位置決めピン9が取り付けられている。従って、位置決めピン9は、駆動突起2における車両側の駆動スプロケットが接触しない部分に対応する側から補強芯材に当接する。このようにすれば、加硫成形後の弾性クローラ1において、図1に示すように駆動ピン50(駆動スプロケット)が接触する部分に位置決めピン9の成形孔10がない。このため、駆動ピン50が駆動突起2に係合した際に当該成形孔10に接触することがなく、成形孔10を起点とするクラック及びその成長を防ぐことができる。そして、上記駆動突起2に対して四つの位置決めピン9が配置されることになり、加硫成形の際、当該各位置決めピン9により補強芯材6の位置が決められる。   The inner surface 8 of the upper mold 7 is composed of a top end flat surface 8a, a first inclined surface 8b, and a second inclined surface 8c from the top corresponding to the shape of the peripheral side surface of the drive protrusion 2, and of these, the first inclined surface 8b A positioning pin 9 is attached in the vicinity of the lower end. Therefore, the positioning pin 9 comes into contact with the reinforcing core member from the side corresponding to the portion of the driving protrusion 2 where the vehicle-side driving sprocket does not contact. If it does in this way, in the elastic crawler 1 after vulcanization molding, as shown in FIG. 1, the molding hole 10 of the positioning pin 9 does not exist in the part which the drive pin 50 (drive sprocket) contacts. For this reason, when the drive pin 50 is engaged with the drive protrusion 2, it does not come into contact with the molding hole 10, and a crack starting from the molding hole 10 and its growth can be prevented. Then, four positioning pins 9 are arranged with respect to the drive protrusion 2, and the position of the reinforcing core member 6 is determined by each positioning pin 9 during vulcanization molding.

加硫前の段階において、駆動突起2の一方の周側面2a側の二つの位置決めピン9の先端9a及び他方の周側面2a側の二つの位置決めピン9の先端9aが、それぞれ補強芯材6の側面6bにクローラ内周側斜め二方向から当接する。これにより、補強芯材6は、そのクローラ周方向の位置ずれ及びクローラ厚み方向の位置ずれが止められることで位置決めされ、補強芯材6と駆動突起2との相互の位置関係が決定された状態となる。上記四つの位置決めピン9は、補強芯材6への当接角度、その配置、長さ寸法の関係から当該補強芯材6が駆動突起2の周側面2aから露出せず、かつ、同周側面2aにおける補強芯材6を覆う加硫後のゴム厚みtが1mm以上となるような位置関係で構成されている。なお、位置決めピン9の長さ寸法や本数、配置による構成を変更することで、駆動突起2と補強芯材6との位置関係を決定することができる。これにより、駆動突起2の周側面2aにおいて1mm以上のゴム厚みが確保されている。また、加硫後は駆動突起2に各位置決めピン9が入り込んでいるため、上型7を上昇させた駆動突起2の前後各周側面2aには位置決めピン9の抜けた成形孔10が計四つ形成されている。   In the stage before vulcanization, the distal ends 9a of the two positioning pins 9 on the one peripheral side surface 2a side of the drive protrusion 2 and the distal ends 9a of the two positioning pins 9 on the other peripheral side surface 2a side of the reinforcing core member 6 are respectively connected. It contacts the side surface 6b from two diagonal directions on the crawler inner peripheral side. Accordingly, the reinforcing core member 6 is positioned by stopping the positional deviation in the crawler circumferential direction and the positional deviation in the crawler thickness direction, and the mutual positional relationship between the reinforcing core member 6 and the drive protrusion 2 is determined. It becomes. The four positioning pins 9 are not exposed from the peripheral side surface 2a of the drive protrusion 2 due to the relationship between the contact angle to the reinforcing core member 6, the arrangement thereof, and the length dimension, and the peripheral side surface of the same. The rubber thickness t after vulcanization covering the reinforcing core member 6 in 2a is configured so as to be 1 mm or more. In addition, the positional relationship between the drive protrusion 2 and the reinforcing core member 6 can be determined by changing the length dimension, the number of positioning pins 9 and the configuration depending on the arrangement. Thus, a rubber thickness of 1 mm or more is secured on the peripheral side surface 2a of the drive protrusion 2. Further, since the positioning pins 9 are inserted into the drive protrusions 2 after vulcanization, the molding holes 10 from which the positioning pins 9 have been removed are provided in total on the front and rear peripheral side surfaces 2a of the drive protrusions 2 where the upper mold 7 is raised. One is formed.

弾性クローラ1の成形手順を説明すると、まず、弾性クローラ1の構成部品である外周面側となるラグゴム、内周面側となる内周ゴム、補強芯材6、駆動突起を構成する駆動突起ゴム、抗張体5等を下型の内面上に載置する(図示せず)。そして、この下型と各上型7A、7Bによって成形素材を閉じこめると共に当該各上型7A、7Bを所定位置まで下降させる。この状態で成形素材を加圧すると共に所定温度まで加熱し未加硫ゴムを加硫する。加硫が終了した後、各上型7A、7Bをクローラ周方向斜め上方に離間させるように上昇させて離型する。その際、各上型7A、7Bと伴に位置決めピン9が駆動突起2から取り除かれる。その後、加硫成形された弾性クローラ1を取り出す。   The forming procedure of the elastic crawler 1 will be described. First, lug rubber on the outer peripheral surface side, which is a component of the elastic crawler 1, inner peripheral rubber on the inner peripheral surface side, reinforcing core member 6, and driving protrusion rubber constituting the driving protrusion. The tensile body 5 and the like are placed on the inner surface of the lower mold (not shown). Then, the molding material is confined by the lower mold and the upper molds 7A and 7B, and the upper molds 7A and 7B are lowered to a predetermined position. In this state, the molding material is pressurized and heated to a predetermined temperature to vulcanize the unvulcanized rubber. After the vulcanization is completed, the upper molds 7A and 7B are lifted and separated so as to be separated obliquely upward in the crawler circumferential direction. At that time, the positioning pins 9 are removed from the driving projections 2 together with the upper molds 7A and 7B. Thereafter, the vulcanized elastic crawler 1 is taken out.

上記芯金レス弾性クローラ1の製造方法によれば、成形型7の内面8に立設された位置決めピン9の先端9aを補強芯材6に当接させ、補強芯材6が駆動突起2から露出しないような位置関係を決定した状態で未加硫ゴムを加硫しているので、加硫成形後、補強芯材6が駆動突起2のゴム材料で完全に覆われた状態となる。従って、補強芯材6が、クローラ幅方向側面やクローラ周方向側面に露出することがないので、車両側の転輪や駆動スプロケットが駆動突起2に繰り返し当たってもゴムが剥がれるようなことがない。これにより、補強芯材6の脱落を防止することができる。また、補強芯材6の位置を確実に固定した状態で弾性クローラ1を成形することができ、補強芯材6の位置ずれが生じない。   According to the manufacturing method of the coreless elastic crawler 1, the tip 9 a of the positioning pin 9 erected on the inner surface 8 of the mold 7 is brought into contact with the reinforcing core member 6, and the reinforcing core member 6 is moved from the drive protrusion 2. Since the unvulcanized rubber is vulcanized in a state where the positional relationship is not exposed, the reinforcing core member 6 is completely covered with the rubber material of the drive protrusion 2 after vulcanization molding. Accordingly, since the reinforcing core member 6 is not exposed to the crawler width direction side surface or the crawler circumferential direction side surface, the rubber does not peel off even when the vehicle-side wheel and the drive sprocket repeatedly hit the drive protrusion 2. . Thereby, dropping of the reinforcing core member 6 can be prevented. Moreover, the elastic crawler 1 can be molded in a state where the position of the reinforcing core member 6 is securely fixed, and the reinforcing core member 6 is not displaced.

さらに、駆動突起2の周側面2aにおいて1mm以上のゴム厚みtが確保されているので、この部分で補強芯材6が露出しないのは勿論、駆動スプロケットによるゴムの剥がれが効果的に防止され補強芯材6の脱落防止効果を高めることができる。また、上記芯金レス弾性クローラ1によれば、駆動突起2に形成される位置決めピン9の成形孔10が駆動突起2における車両側の駆動スプロケットが接触しない部分に配置されているので、駆動ピン50(駆動スプロケット)が駆動突起2に係合した際に当該成形孔10に接触することがなく、成形孔10を起点とするクラック及びその成長を防ぐことができる。これにより、補強芯材の脱落を防止することができる。   Further, since the rubber thickness t of 1 mm or more is secured on the peripheral side surface 2a of the driving protrusion 2, the reinforcing core member 6 is not exposed at this portion, and the peeling of the rubber by the driving sprocket is effectively prevented and reinforced. The drop prevention effect of the core material 6 can be enhanced. In addition, according to the coreless elastic crawler 1, the molding hole 10 of the positioning pin 9 formed in the driving projection 2 is disposed in a portion where the driving sprocket on the vehicle side in the driving projection 2 does not contact. When 50 (driving sprocket) engages with the driving protrusion 2, it does not come into contact with the forming hole 10, and cracks starting from the forming hole 10 and growth thereof can be prevented. Thereby, dropping of the reinforcing core material can be prevented.

図3は、本発明に係る芯金レス弾性クローラ1の製造方法の第2実施形態を示す説明図である。本実施形態が、上記第1実施形態と異なる点は、位置決めピン11が三方向から補強芯材6に当接できるように構成されている点である。なお、第1実施形態と共通する部分の構成は同符号付してその説明を省略する(以下、第3〜第5実施形態も同様)。上型の内面において駆動突起2の前後各周側面2a側及び先端2b側に所要間隔をおいて各二つの位置決めピン11が立設されており、これら計六つの位置決めピン11をそれぞれ補強芯材6の側面6bに当接することによって当該補強芯材6が位置決めされている。従って、図1(a)、(b)に示すように加硫成形後の駆動突起2には、その先端2bに二つと前後各周側面2aにそれぞれ二つの成形孔12が形成されている。これにより、加硫前の段階において補強芯材6をより安定した状態で内部空間に配置することができる。   FIG. 3 is an explanatory view showing a second embodiment of the method for manufacturing the coreless elastic crawler 1 according to the present invention. The present embodiment is different from the first embodiment in that the positioning pin 11 is configured to be able to contact the reinforcing core member 6 from three directions. In addition, the structure of the part which is common in 1st Embodiment attaches | subjects the same code | symbol, and abbreviate | omits the description (Hereinafter, 3rd-5th embodiment is also the same.). Two positioning pins 11 are erected on the inner surface of the upper mold on the front and rear circumferential side surfaces 2a side and the front end 2b side of the driving projection 2 with a required interval, and these six positioning pins 11 are respectively used as reinforcing cores. The reinforcing core member 6 is positioned by contacting the side surface 6 b of the member 6. Accordingly, as shown in FIGS. 1 (a) and 1 (b), the drive projection 2 after vulcanization molding is formed with two molding holes 12 at the front end 2b and two molding holes 12 at each of the front and rear circumferential surfaces 2a. Thereby, the reinforcement core material 6 can be arrange | positioned in an internal space in the state stabilized before the vulcanization | cure.

図4は参考例に係る芯金レス弾性クローラ1の製造方法を示す説明図である。本参考例が上記第1実施形態と異なる点は、位置決めピン13がクローラ厚み方向(図4(b)上下方向)から補強芯材6に当接するように構成されている点である。上型18の内面18aに設けられた位置決めピン13の立設方向が、当該内面18aに垂直ではなくクローラ厚み方向となっている。従って、上型18には駆動突起2に対してクローラ厚み方向で上下動するものが採用されている。 Figure 4 is an explanatory view showing a manufacturing how the metal core-less elastic crawler 1 according to a reference example. This reference example is different from the first embodiment in that the positioning pin 13 is configured to contact the reinforcing core member 6 from the crawler thickness direction (the vertical direction in FIG. 4B). The erection direction of the positioning pin 13 provided on the inner surface 18a of the upper mold 18 is not perpendicular to the inner surface 18a but the crawler thickness direction. Accordingly, the upper mold 18 is one that moves up and down in the crawler thickness direction with respect to the drive protrusion 2.

図5は参考例に係る芯金レス弾性クローラ1の製造方法を示す説明図である。本参考例が上記参考例と異なる点は、上型19の内面19aに立設された位置決め部材14がクローラ幅方向に延びる板形状を呈している点である。この位置決め部材14は、駆動突起2の前後各周側面2aに対して一つずつ設けられており、図5(a)に示すように加硫成型された駆動突起2の前後各周側面2aにはクローラ幅方向に延びた成形孔15が形成されている。このような位置決め部材14を使用すれば、上型の製作費を低減でき位置決め部材14の耐久性も向上する。 Figure 5 is an explanatory view showing a manufacturing how the metal core-less elastic crawler 1 according to a reference example. The difference between this reference example and the above reference example is that the positioning member 14 erected on the inner surface 19a of the upper mold 19 has a plate shape extending in the crawler width direction. One positioning member 14 is provided for each of the front and rear circumferential side surfaces 2a of the drive projection 2, and as shown in FIG. 5A, the positioning member 14 is provided on each of the front and rear circumferential side surfaces 2a of the vulcanized drive projection 2. A forming hole 15 extending in the crawler width direction is formed. If such a positioning member 14 is used, the manufacturing cost of the upper mold can be reduced, and the durability of the positioning member 14 is improved.

上記各実施形態では、位置決め部材(ピン)の先端が円柱形状の補強芯材に当接することで補強芯材6の位置決めが行われるが、当該先端部は補強芯材6の側面6bに点接触しているだけなので成型素材のぶれ等に伴って補強芯材6の位置ずれが生じることがある。この場合、図6に示す本発明に係る芯金レス弾性クローラ1の製造方法の第実施形態のように、位置決め部材16の先端16aを挿脱自在とする位置決め穴17が補強芯材6に設けられたものとし、この位置決め穴17に当該先端16aを挿入して位置関係を決定すればよい。 In each of the above-described embodiments, the reinforcing core member 6 is positioned by the tip of the positioning member (pin) coming into contact with the cylindrical reinforcing core member, but the tip portion is in point contact with the side surface 6 b of the reinforcing core member 6. Therefore, the displacement of the reinforcing core material 6 may occur due to the fluctuation of the molding material. In this case, as in the third embodiment of the method for manufacturing the coreless elastic crawler 1 according to the present invention shown in FIG. 6, the positioning hole 17 that allows the distal end 16 a of the positioning member 16 to be inserted and removed is formed in the reinforcing core member 6. The positional relationship may be determined by inserting the tip 16a into the positioning hole 17.

本実施形態の位置決め部材16は、クローラ幅方向に延びる板形状を呈するものであり、上型20の内面20aにおいて駆動突起2の先端2b側に立設されている。また、位置決め部材16の先端16aが挿脱自在となるクローラ幅方向に延びた位置決め穴17が、補強芯材6の側面6bには形成されている。これにより、補強芯材6をより安定させた状態で加硫成形を行うことができる。なお、本発明は上記各実施形態に限定するものではない。例えば位置決め部材の数、形状、配置を変更してもよく、筒形状等各種形状を呈する補強芯材6を採用することや、補強芯材6の構成素材として各種樹脂、金属を採用することができる。   The positioning member 16 of the present embodiment has a plate shape extending in the crawler width direction, and is erected on the front end 2 b side of the drive protrusion 2 on the inner surface 20 a of the upper mold 20. A positioning hole 17 extending in the crawler width direction in which the tip 16 a of the positioning member 16 can be inserted and removed is formed in the side surface 6 b of the reinforcing core member 6. Thereby, vulcanization molding can be performed in a state where the reinforcing core member 6 is more stabilized. The present invention is not limited to the above embodiments. For example, the number, shape, and arrangement of the positioning members may be changed, and the reinforcing core member 6 having various shapes such as a cylindrical shape may be employed, and various resins and metals may be employed as the constituent material of the reinforcing core member 6. it can.

本発明に係る製造方法をクローラ周方向断面で表した説明図である。It is explanatory drawing which represented the manufacturing method which concerns on this invention in the crawler circumferential cross section. 加硫成形された弾性クローラのクローラ幅方向断面図である。It is a crawler width direction sectional view of a vulcanized elastic crawler. (a)は第2実施形態に係る製造方法をクローラ周方向断面で表した説明図であり、(b)は同駆動突起のクローラ幅方向断面図である。(A) is explanatory drawing showing the manufacturing method which concerns on 2nd Embodiment in the crawler circumferential cross section, (b) is the crawler width direction sectional drawing of the drive protrusion. (a)は参考例に係る製造方法で成形された弾性クローラの駆動突起のクローラ内周側平面図であり、(b)は同製造方法をA−A線断面で表した説明図である。(A) is the crawler inner peripheral side top view of the drive protrusion of the elastic crawler shape | molded with the manufacturing method which concerns on a reference example , (b) is explanatory drawing which represented the same manufacturing method in the AA sectional view. (a)は参考例に係る製造方法で成形された弾性クローラの駆動突起のクローラ内周側平面図であり、(b)は同製造方法をA−A線断面で表した説明図である。(A) is the crawler inner peripheral side top view of the drive protrusion of the elastic crawler shape | molded with the manufacturing method which concerns on a reference example , (b) is explanatory drawing which represented the same manufacturing method in the AA sectional view. (a)は第実施形態に係る製造方法で成形された弾性クローラの駆動突起のクローラ内周側平面図であり、(b)は同製造方法をA−A線断面で表した説明図である。(A) is the crawler inner peripheral side top view of the drive protrusion of the elastic crawler shape | molded with the manufacturing method which concerns on 3rd Embodiment, (b) is explanatory drawing showing the same manufacturing method in the AA sectional view. is there. (a)は従来技術の弾性クローラの駆動突起の斜視図であり、(b)は他の従来技術の弾性クローラの周方向断面図である。(A) is a perspective view of the drive protrusion of the elastic crawler of a prior art, (b) is a circumferential direction sectional view of the other conventional elastic crawler.

符号の説明Explanation of symbols

2 駆動突起
2a 周方向側面
6 補強芯材
7 上型
9、11,13, 位置決めピン
14,16 位置決め部材
2 Driving Protrusion 2a Circumferential Side 6 Reinforcement Core 7 Upper Mold 9, 11, 13, Positioning Pins 14, 16 Positioning Member

Claims (6)

成形型の内部空間で未加硫ゴムを加硫し、クローラ本体とこのクローラ本体の内周面に突設されると共に補強芯材が埋設された駆動突起と前記クローラ本体の外周面に設けられるラグとを成形する芯金レス弾性クローラの製造方法であって、
前記内部空間内へ向かって延びる位置決め部材が、前記駆動突起を成形する上型及び下型からなる成形型の内、前記上型の内面に立設され、
前記上型が、前記駆動突起の形状に対応して分割され当該駆動突起の外面に対してほぼ垂直な方向に移動可能な複数の分割型により構成されており、
前記位置決め部材は、前記複数の分割型の内面それぞれにその移動方向に沿う方向に立設されており、
前記位置決め部材の先端を、前記駆動突起の先端側及びクローラ周方向側面側のうち、少なくともいずれか一方側から前記補強芯材に当接させ、この補強芯材が前記駆動突起から露出しないような位置関係を決定した状態で前記未加硫ゴムを加硫し、加硫後、前記分割型を当該分割型の内面が接する駆動突起の外面に対してほぼ垂直な方向に移動させて前記位置決め部材を取り除くことを特徴とする芯金レス弾性クローラの製造方法。
Unvulcanized rubber is vulcanized in the inner space of the mold, and is provided on the crawler main body, the drive protrusion in which the reinforcing core material is embedded and the outer peripheral surface of the crawler main body. A manufacturing method of a coreless elastic crawler that molds a lug,
A positioning member extending into the inner space is erected on the inner surface of the upper mold among the upper mold and the lower mold for molding the drive protrusion,
The upper mold is constituted by a plurality of divided molds that are divided in accordance with the shape of the drive protrusion and are movable in a direction substantially perpendicular to the outer surface of the drive protrusion,
The positioning member is erected in a direction along the moving direction on each of the inner surfaces of the plurality of split molds,
The front end of the positioning member is brought into contact with the reinforcing core member from at least one of the front end side and the crawler circumferential side surface side of the driving protrusion, and the reinforcing core member is not exposed from the driving protrusion. The unvulcanized rubber is vulcanized in a state where the positional relationship is determined, and after vulcanization , the split mold is moved in a direction substantially perpendicular to the outer surface of the drive projection with which the inner face of the split mold contacts. A method of manufacturing a coreless elastic crawler, characterized by removing the core.
前記位置決め部材が、前記駆動突起のクローラ周方向側面における前記補強芯材を覆う加硫後のゴム厚みが1mm以上となるように構成されている請求項1に記載の芯金レス弾性クローラの製造方法。   2. The mandrel-less elastic crawler according to claim 1, wherein the positioning member is configured such that a rubber thickness after vulcanization covering the reinforcing core member on a crawler circumferential side surface of the driving protrusion is 1 mm or more. Method. 前記位置決め部材が、円柱形状又はクローラ幅方向に延びる板形状を呈している請求項1〜2のいずれかに記載の芯金レス弾性クローラの製造方法。   The method of manufacturing a cored bar-less elastic crawler according to claim 1, wherein the positioning member has a cylindrical shape or a plate shape extending in the crawler width direction. 前記位置決め部材の先端を挿脱自在とする位置決め穴が前記補強芯材に設けられ、この位置決め穴に当該位置決め部材の先端を挿入して前記位置関係を決定する請求項1〜3のいずれかに記載の芯金レス弾性クローラの製造方法。   A positioning hole for allowing the distal end of the positioning member to be inserted and removed is provided in the reinforcing core member, and the positional relationship is determined by inserting the distal end of the positioning member into the positioning hole. The manufacturing method of the core metal-less elastic crawler of description. 前記位置決め部材が、前記駆動突起における車両側の駆動スプロケットが接触しない部分に対応する側から前記補強芯材に当接している請求項1〜4のいずれかに記載の芯金レス弾性クローラの製造方法。   The mandrel-less elastic crawler according to any one of claims 1 to 4, wherein the positioning member is in contact with the reinforcing core member from a side corresponding to a portion of the drive projection that does not contact a drive sprocket on the vehicle side. Method. 無端帯状のゴム様弾性体よりなるクローラ本体と、クローラ周方向に一定間隔おきに並んだ状態で前記クローラ本体の内周面から一体に突設された複数の駆動突起と、前記クローラ本体の外周面に所定のラグパターンで形成されたラグ群と、前記クローラ本体の内部にクローラ周方向に沿って埋設された抗張体とを備えており、前記各駆動突起の内部に補強芯材が埋設されている芯金レス弾性クローラにおいて、
前記各駆動突起を前記クローラ本体と共に加硫成形する際に前記補強芯材を当該駆動突起の内部に位置決めするために、前記駆動突起を成形するための成形型の上型を構成する、前記駆動突起の形状に対応して分割され当該駆動突起の外面に対してほぼ垂直な方向に移動可能な複数の分割型それぞれの内面にその移動方向に沿う方向に立設されるとともに、前記駆動突起の先端側及びクローラ周方向側面側のうち、少なくともいずれか一方側から前記駆動突起に当接する位置決め部材の成形孔が、前記駆動突起における車両側の駆動スプロケットが接触しない部分に配置されていることを特徴とする芯金レス弾性クローラ。
A crawler body made of an endless belt-like rubber-like elastic body, a plurality of drive protrusions integrally projected from the inner peripheral surface of the crawler body in a state of being arranged at regular intervals in the crawler circumferential direction, and an outer periphery of the crawler body A lug group formed in a predetermined lug pattern on the surface, and a tensile body embedded in the crawler body along the circumferential direction of the crawler, and a reinforcing core material embedded in each drive projection In the coreless elastic crawler,
To position the reinforcing core material within the said drive projection of the respective drive projections when vulcanized with the crawler body, constituting the mold upper mold of for molding the driving projection, said drive A plurality of split molds that are divided in accordance with the shape of the protrusion and are movable in a direction substantially perpendicular to the outer surface of the drive protrusion, are erected on the inner surface of each of the divided molds in a direction along the movement direction, The molding hole of the positioning member that comes into contact with the drive projection from at least one of the front end side and the crawler circumferential side surface side is arranged in a portion where the drive sprocket on the vehicle side of the drive projection does not contact. A coreless elastic crawler.
JP2004307955A 2004-10-22 2004-10-22 Mandrel-less elastic crawler and its manufacturing method Expired - Fee Related JP4633438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004307955A JP4633438B2 (en) 2004-10-22 2004-10-22 Mandrel-less elastic crawler and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004307955A JP4633438B2 (en) 2004-10-22 2004-10-22 Mandrel-less elastic crawler and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2006117134A JP2006117134A (en) 2006-05-11
JP4633438B2 true JP4633438B2 (en) 2011-02-16

Family

ID=36535437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004307955A Expired - Fee Related JP4633438B2 (en) 2004-10-22 2004-10-22 Mandrel-less elastic crawler and its manufacturing method

Country Status (1)

Country Link
JP (1) JP4633438B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5010986B2 (en) * 2007-05-31 2012-08-29 株式会社ブリヂストン Rubber crawler manufacturing apparatus and rubber crawler manufacturing method
JP5643546B2 (en) * 2010-05-31 2014-12-17 株式会社ブリヂストン Crawler travel device
JP6053174B2 (en) * 2013-11-07 2016-12-27 株式会社クボタ Rubber crawler
JP6435148B2 (en) * 2014-09-29 2018-12-05 住友ゴム工業株式会社 Elastic crawler mold

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5579765A (en) * 1978-12-13 1980-06-16 Iseki & Co Ltd Manufacturing of crawler
JPS5894438A (en) * 1981-12-02 1983-06-04 Hayakawa Rubber Co Ltd Injection molding die for sphere having multilayered structure
JPH09301229A (en) * 1996-05-16 1997-11-25 Bridgestone Corp Rubber crawler
JP2002211455A (en) * 2001-01-19 2002-07-31 Ohtsu Tire & Rubber Co Ltd :The Elastic crawler
JP2004306651A (en) * 2003-04-02 2004-11-04 Bridgestone Corp Molding method of rubber crawler

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5579765A (en) * 1978-12-13 1980-06-16 Iseki & Co Ltd Manufacturing of crawler
JPS5894438A (en) * 1981-12-02 1983-06-04 Hayakawa Rubber Co Ltd Injection molding die for sphere having multilayered structure
JPH09301229A (en) * 1996-05-16 1997-11-25 Bridgestone Corp Rubber crawler
JP2002211455A (en) * 2001-01-19 2002-07-31 Ohtsu Tire & Rubber Co Ltd :The Elastic crawler
JP2004306651A (en) * 2003-04-02 2004-11-04 Bridgestone Corp Molding method of rubber crawler

Also Published As

Publication number Publication date
JP2006117134A (en) 2006-05-11

Similar Documents

Publication Publication Date Title
JP5137214B2 (en) Crawler equipment
US9216784B2 (en) Rubber crawler track
JPH078660B2 (en) Connection link type rubber crawler
JP4633438B2 (en) Mandrel-less elastic crawler and its manufacturing method
JP6505241B2 (en) Apparatus and method for manufacturing a rubber track with tension members
JP4159871B2 (en) Rubber crawler manufacturing method
JP5841711B2 (en) Coreless elastic crawler
JPH11245230A (en) Crawler molding method
JP4264172B2 (en) Rubber crawler manufacturing method
JP3837643B2 (en) Crawler molding equipment
JP4497655B2 (en) Elastic track and manufacturing method thereof
JP2006123841A (en) Method of manufacturing elastic crawler
JP4444800B2 (en) Manufacturing method of elastic crawler belt and vulcanization molding apparatus using the same
JP5010986B2 (en) Rubber crawler manufacturing apparatus and rubber crawler manufacturing method
JP4467332B2 (en) Raw tire molding method and pneumatic tire
JP4890149B2 (en) Method for producing elastic crawler
JP2000218625A (en) Method for integral vulcanization with variable perimeter
JP4338501B2 (en) Method for producing elastic crawler
JP4162581B2 (en) Crawler molding equipment
EP1270383B1 (en) Elastic crawler and method of producing the same
JP4517002B2 (en) Manufacturing method of elastic crawler belt and vulcanization molding apparatus using the same
JP4482390B2 (en) Elastic crawler and manufacturing method thereof
JP4246312B2 (en) Spiral cord molding method and molding apparatus
US3829055A (en) Mold for locating transverse reinforcements in endless track
JPH11278324A (en) Crawler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101117

R150 Certificate of patent or registration of utility model

Ref document number: 4633438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees