JP4632948B2 - Microencapsulated fire extinguishing agent having dibromomethane as core material and fire extinguishing material containing the extinguishing agent - Google Patents
Microencapsulated fire extinguishing agent having dibromomethane as core material and fire extinguishing material containing the extinguishing agent Download PDFInfo
- Publication number
- JP4632948B2 JP4632948B2 JP2005380918A JP2005380918A JP4632948B2 JP 4632948 B2 JP4632948 B2 JP 4632948B2 JP 2005380918 A JP2005380918 A JP 2005380918A JP 2005380918 A JP2005380918 A JP 2005380918A JP 4632948 B2 JP4632948 B2 JP 4632948B2
- Authority
- JP
- Japan
- Prior art keywords
- dibromomethane
- microencapsulated
- fire extinguishing
- fire
- extinguishing material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Fire-Extinguishing Compositions (AREA)
Description
本発明は、消火のために高性能を発揮する消火剤とこれを含有した消火材料に関する。さらに詳しくは、ジブロモメタンを芯材とするマイクロカプセル化消火剤と該マイクロカプセル化消火剤を含有した樹脂組成物からなる消火材料に関する。 The present invention relates to a fire extinguishing agent that exhibits high performance for fire extinguishing and a fire extinguishing material containing the fire extinguishing agent. More specifically, the present invention relates to a fire extinguishing material comprising a microencapsulated fire extinguishing agent having dibromomethane as a core material and a resin composition containing the microencapsulated fire extinguishing agent.
従来から、消火剤として用いるハロゲン化炭化水素化合物には、モノブロモトリフルオロメタン(ハロン1301、CBrF3)、モノブロモジフルオロモノクロルメタン(ハロン1211、CF2BrCl)、ジブロモテトラフルオロエタン(ハロン2402、CF2BrCF2Br)等が知られており、これらは優れた消炎作用と酸素遮断効果を持っているので、消火剤として広く利用されてきた。 Conventionally, halogenated hydrocarbon compounds used as fire extinguishing agents include monobromotrifluoromethane (Halon 1301, CBrF3), monobromodifluoromonochloromethane (Halon 1211, CF2BrCl), dibromotetrafluoroethane (Halon 2402, CF2BrCF2Br) and the like. They are known and have been widely used as fire extinguishing agents because of their excellent flame-retardant and oxygen barrier effects.
そして、液体系消火剤を芯材とするマイクロカプセル化消火剤も利用されてきた。消火剤のひとつの形態として、常温で液状であるハロンを芯材とするマイクロカプセル化消火剤が特開昭55−108336において提案されている。 A microencapsulated fire extinguisher having a liquid fire extinguisher as a core material has also been used. As one form of the fire extinguishing agent, a microencapsulated fire extinguishing agent having halon as a core material at room temperature is proposed in Japanese Patent Laid-Open No. 55-108336.
特開昭5−108336においては、沸点−5℃から80℃の不燃性化合物、例えば、ジブロモテトラフルオロエタンやモノブロモジフルオロモノクロルメタンを芯剤とし、熱可塑性樹脂でマイクロカプセル化消火剤が提案された。 In JP-A-5-108336, a non-flammable compound having a boiling point of -5 ° C to 80 ° C, for example, dibromotetrafluoroethane or monobromodifluoromonochloromethane as a core agent, and a microencapsulated fire extinguisher with a thermoplastic resin is proposed. It was.
しかしながら、地球環境問題の対策としてオゾン層を保護するために、特定のフロンやハロンが規制物質として廃止となり、上記ハロゲン化炭化水素化合物も規制の全廃対象物質となった。 However, in order to protect the ozone layer as a countermeasure against global environmental problems, certain chlorofluorocarbons and halons have been abolished as regulated substances, and the above-mentioned halogenated hydrocarbon compounds have also been abolished as regulated substances.
したがって、オゾン層保護を目的とし、かつ、消火剤としての上記規制対象であるハロゲン化炭化水素化合物と同等以上の消火性能をもつ代替品が求められている。 Therefore, there is a demand for an alternative product that has an extinguishing performance equivalent to or higher than that of the above-mentioned halogenated hydrocarbon compound, which is intended to protect the ozone layer and that is the subject of regulation as an extinguishing agent.
その代替品の例として、WO99/56830A1には、液体を芯剤とするマイクロカプセル化消火剤で、該液体がC3F7I,CnF2n+2,(C2F5)2N(CmF2m+1)、ここで、N=5−7,m=1−2 であるマイクロカプセル化消火剤が記載されており、さらに、これらのマイクロカプセル消火剤と高分子バインダとの混合物からなる消火材料も開示されている。 As an example of the substitute, WO99 / 56830A1 is a microencapsulated fire extinguishing agent with a liquid as a core, and the liquid is C3F7I, CnF2n + 2, (C2F5) 2N (CmF2m + 1), where N = 5-7, Microencapsulated fire extinguishing agents with m = 1-2 are described, and fire extinguishing materials comprising a mixture of these microcapsule extinguishing agents and a polymer binder are also disclosed.
本発明は、オゾン層保護を目的とし、WO99/56830A1に記載のマイクロカプセル化消火剤および消火材料よりも優れた消火能力を有する液体を芯材とするマイクロカプセル化消火剤および消火材料を提供すること目的とする。 The present invention provides a microencapsulated fire extinguishing agent and a fire extinguishing material whose core material is a liquid having a fire extinguishing ability superior to that of the microencapsulated fire extinguishing agent and fire extinguishing material described in WO99 / 56830A1 for the purpose of protecting the ozone layer. It is intended.
ジブロモメタン(CH2Br2)は以下のような特徴を持っている。 Dibromomethane (CH2Br2) has the following characteristics.
(1)オゾン層保護のために規制されている対象物質とはなっておらず、オゾン層保護の目的に有用であること。
(2)融点が−52℃、沸点が96−97℃であるため常温で液体であり、しかも、疎水性であることから、いわゆるコアソルベーション法を用いれば、芯材として容易にマイクロカプセル化しうること。
(3)分子内に臭素を有し引火点をもたないことから消火能力を有すること。(1) It is not a target substance regulated for ozone layer protection, and is useful for the purpose of ozone layer protection.
(2) Since it has a melting point of −52 ° C. and a boiling point of 96 to 97 ° C., it is liquid at normal temperature and is hydrophobic, so that it can be easily microencapsulated as a core material by using a so-called core solution method. To go.
(3) Having a fire extinguishing ability because it has bromine in its molecule and no flash point.
(4)ジブロモメタンの分子量は178.83であるから、標準状態として1g当たりの気体体積は129mlとなる。一方、WO99/56830A1にマイクロカプセル化消火剤の芯材として記載されているC3F7I,CnF2n+2および(C2F5)2N(CmF2m+1)の分子量(ここで、N=5−7,m=1−2)は288.04(C5F12)から371.05((C2F5)3N)の範囲にあるから、標準状態として1g当たりの気体体積は60.4−75.7mlの範囲にあることになる。したがって、同一重量の使用であれば、そして、沸点以上の同一温度であれば、ジブロモメタンが最も大きい体積の消火ガスを放出することになり、消火ガス体積から見れば消火に要する時間が最も少なく、消火効果が最も高くなることが期待される。(4) Since the molecular weight of dibromomethane is 178.83, the gas volume per gram is 129 ml as a standard state. On the other hand, the molecular weights (where N = 5-7, m = 1-2) of C3F7I, CnF2n + 2 and (C2F5) 2N (CmF2m + 1) described as core materials for microencapsulated fire extinguishing agents in WO99 / 56830A1 are 288. .04 (C5F12) to 371.05 ((C2F5) 3N), the gas volume per gram as a standard state is in the range of 60.4-75.7 ml. Therefore, if the same weight is used, and if the temperature is equal to or higher than the boiling point, dibromomethane will release the largest volume of fire extinguishing gas, and the fire extinguishing gas will require the least amount of time when viewed from the volume of the fire extinguishing gas. The fire extinguishing effect is expected to be the highest.
本発明においては、上記の(4)の特徴に注目し、ジブロモメタンを芯材とするマイクロカプセル化消火剤を調製し、この消火剤と硬化性高分子バインダの混合物に硬化剤を加えて硬化させた消火材料を調製した。 In the present invention, paying attention to the above feature (4), a microencapsulated fire extinguishing agent having dibromomethane as a core material is prepared, and a curing agent is added to the mixture of the fire extinguishing agent and the curable polymer binder for curing. A fire extinguishing material was prepared.
比較例として、同様な方法で、WO99/56830A1に記載のC3F7I,CnF2n+2および(C2F5)2N(CmF2m+1)をそれぞれ芯材とするマイクロカプセル化消火剤を調製し、各々の消火剤と硬化性樹脂バインダの混合物に硬化剤を加えて硬化させた消火材料を調製した。 As comparative examples, microencapsulated fire extinguishing agents having C3F7I, CnF2n + 2 and (C2F5) 2N (CmF2m + 1) described in WO99 / 56830A1 as core materials were prepared in the same manner, and each fire extinguishing agent and curable resin binder were prepared. A fire extinguishing material was prepared by adding a curing agent to the above mixture and curing.
そして、硬化させた消火材料について、消火効果の目安として、消火時間を測定し、消火時間の短い方を消火効果が優位と判定した。 And about the hardened fire extinguishing material, the fire extinguishing time was measured as a standard of the fire extinguishing effect, and the shorter fire extinguishing time was judged to be superior.
そして、上記目的を達成するために、請求項1に記載の発明において、マイクロカプセル化ジブロモメタン消火剤において、液体状態のジブロモメタンを芯材とする粒径100−400μmの粉体からなるマイクロカプセルであって、該マイクロカプセルがジブロモメタンの沸点以上の所定温度に加熱されたとき、マイクロカプセル壁が気化したジブロモメタンガスのガス圧により破壊し、ジブロモメタンガスが放出されることを特徴とするものである。 And in order to achieve the said objective, in the invention of Claim 1, in the microencapsulated dibromomethane fire extinguisher, the microcapsule which consists of powder with a particle size of 100-400 micrometers which uses dibromomethane in a liquid state as a core material When the microcapsule is heated to a predetermined temperature not lower than the boiling point of dibromomethane, the microcapsule wall is destroyed by the gas pressure of the vaporized dibromomethane gas, and the dibromomethane gas is released. is there.
更に、請求項2に記載の発明においては、請求項1に記載のマイクロカプセル化ジブロモメタン消火剤において、マイクロカプセル壁を形成する物質がゼラチンを含むことを特徴とするものである。 Furthermore, in the invention described in claim 2, in the microencapsulated dibromomethane fire extinguisher described in claim 1, the substance forming the microcapsule wall contains gelatin.
更に、請求項3に記載の発明においては、請求項1に記載のマイクロカプセル化ジブロモメタン消火剤において、マイクロカプセル壁を形成する物質がゼラチンおよびアラビアゴムを含むことを特徴とするものである。 Furthermore, in the invention described in claim 3, in the microencapsulated dibromomethane extinguishing agent described in claim 1, the substance forming the microcapsule wall contains gelatin and gum arabic.
更に、請求項4に記載の発明においては、消火材料において、硬化性樹脂バインダと上記記載のマイクロカプセル化ジブロモメタン消火剤との混合物からなり、40−60重量%の該硬化性樹脂バインダと残りを該マイクロカプセル化ジブロモメタン消火剤とする消火材料であって、該消火材料が火炎の照射熱により120−200℃の温度範囲に加熱される時、ジブロモメタンガスが該消火材料から放出されることにより消火することを特徴とするものである。 Furthermore, in the invention described in claim 4, the fire extinguishing material is composed of a mixture of a curable resin binder and the above-described microencapsulated dibromomethane fire extinguisher, and 40 to 60% by weight of the curable resin binder and the remainder. Is a microencapsulated dibromomethane extinguishing agent, and when the fire extinguishing material is heated to a temperature range of 120-200 ° C. by the irradiation heat of the flame, dibromomethane gas is released from the fire extinguishing material It is characterized by extinguishing the fire.
更に、請求項5に記載の発明においては、請求項4に記載の消火材料において、硬化剤を含まないパテ状の状態であることを特徴とするものである。 Furthermore, the invention according to claim 5 is characterized in that the fire extinguishing material according to claim 4 is in a putty-like state containing no curing agent.
更に、請求項6に記載の発明においては、請求項4に記載の消火材料において、 硬化剤により硬化された状態であることを特徴とするものである。 Furthermore, the invention described in claim 6 is characterized in that the fire extinguishing material according to claim 4 is in a state of being cured by a curing agent.
更に、請求項7に記載の発明においては、請求項6に記載の消火材料において、 モールドに注入され所望の形状に硬化形成されたことを特徴とするものである。 Furthermore, the invention according to claim 7 is characterized in that the fire extinguishing material according to claim 6 is injected into a mold and cured to a desired shape.
本発明においては、以下の製造プロセルを用いる。 In the present invention, the following production process is used.
[1]マイクロカプセルの殻となる高分子材料の溶液中にジブロモメタンを混合し、乳化エマルジョンとする。液相−相分離法(例えば、コアソルベーション法)を用いて、マイクロカプセル化ジブロモメタン消火剤を製造する。 [1] Dibromomethane is mixed in a solution of a polymer material that becomes a shell of a microcapsule to obtain an emulsified emulsion. A microencapsulated dibromomethane fire extinguisher is produced using a liquid-phase separation method (eg, a core solvation method).
高分子材料としては、ゼラチン、アラビアゴム、アルギン酸ナトリウム、カルボキシメチルセルローズ、カラゲナン、ポリビニルアルコールなどの公知のものが用いられる。 As the polymer material, known materials such as gelatin, gum arabic, sodium alginate, carboxymethylcellulose, carrageenan, polyvinyl alcohol and the like are used.
[2]撹拌機付の混合容器中への低温硬化性樹脂及びマイクロカプセル化ジブロモメタン消火剤の投入と混合。混合された樹脂組成物はパテ状の消火材料として用いることができる。 [2] Charge and mix low-temperature curable resin and microencapsulated dibromomethane extinguisher into a mixing vessel equipped with a stirrer. The mixed resin composition can be used as a putty-like fire extinguishing material.
低温硬化性樹脂としては、ジアンエポキシ樹脂、脂肪族エポキシ樹脂またはこれらの混合物が用いられる。ポリウレタンも用いることができる。 As the low temperature curable resin, a dian epoxy resin, an aliphatic epoxy resin, or a mixture thereof is used. Polyurethane can also be used.
[3]さらに、混合容器中でパテ状の消火材料に硬化剤を加えて混合し、未硬化状態の硬化剤入り樹脂組成物とする。 [3] Further, a curing agent is added to the putty-like fire extinguishing material in a mixing container and mixed to obtain an uncured resin composition containing a curing agent.
[4]未硬化状態の硬化剤入り樹脂組成物をモールド中に注入し、室温で硬化させて所望の形状の消火材料とする。 [4] An uncured resin composition containing a curing agent is poured into a mold and cured at room temperature to obtain a fire extinguishing material having a desired shape.
本発明によると、マイクロカプセル化消火剤及びこれを含有する消火材料には、オゾン層を保護するために使用の禁止されていないジブロモメタンを用いるため、オゾン層破壊の恐れがなく、また、比較例に用いられる消火材料よりもジブロモメタンの気化ガスは放出ガス量が多く、その比重が空気よりも重いので火災の発生している箇所を覆うように集中しえるので、消火効果も高い。 According to the present invention, the microencapsulated fire extinguisher and the fire extinguishing material containing the same use dibromomethane which is not prohibited to protect the ozone layer, so there is no risk of ozone layer destruction. The vaporized gas of dibromomethane is larger than the fire extinguishing material used in the example, and its specific gravity is heavier than air, so it can be concentrated so as to cover the place where the fire is occurring, so the fire extinguishing effect is also high.
本発明を以下の実施例によって更に詳細に説明するが、本発明はそれらに限定されるものではない。 The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.
実施例1
20重量部のジブロモメタン(CH2Br2)を60重量部の5%ゼラチン水溶液に加えて乳化し、エマルジョンとする。
さらに、60重量部の5%アラビアゴム水溶液を加える。このエマルジョン混合物に150重量部の水を加えて希釈エマルジョンとする。
ついで、15%酢酸水溶液を徐々に加えてPHを4−4.5とし、マイクロカプセル状態のコアセルベートを生じさせる。以上の工程はすべて40℃の温度で連続撹拌下で遂行させる。
次の段階として、温度を約10−5℃に下げることにより、コアセルベートのマイクロカプセル壁を固化させる。
さらに、1重量部の30%ホルマリン水溶液を加えることにより固化したマイクロカプセル壁を硬化させる。
そして、マイクロカプセルをロ別し、乾燥し、粉末状のマイクロカプセル化ジムロモメタン消火剤を得る。 Example 1
20 parts by weight of dibromomethane (CH2Br2) is added to 60 parts by weight of a 5% gelatin aqueous solution and emulsified to form an emulsion.
Further, 60 parts by weight of 5% aqueous gum arabic solution is added. 150 parts by weight of water is added to the emulsion mixture to form a diluted emulsion.
Next, a 15% aqueous acetic acid solution is gradually added to adjust the pH to 4-4.5 to produce a microcapsule coacervate. All the above steps are performed at a temperature of 40 ° C. under continuous stirring.
As the next step, the microcapsule wall of the coacervate is solidified by lowering the temperature to about 10-5 ° C.
Further, the solidified microcapsule wall is hardened by adding 1 part by weight of 30% formalin aqueous solution.
The microcapsules are then separated and dried to obtain a powdered microencapsulated dimmolomethane extinguisher.
比較例1
20重量部のジブロモメタンを20重量部のヘプタフルオロ−2−ヨードプロパン(C3F7I)に換え、実施例 1と同様に行い、粉末状のマイクロカプセル化ヘプタフルオロ−2−ヨードプロパン消火剤を得る。 Comparative Example 1
20 parts by weight of dibromomethane is replaced with 20 parts by weight of heptafluoro-2-iodopropane (C3F7I), and the same procedure as in Example 1 is performed to obtain a powdery microencapsulated heptafluoro-2-iodopropane extinguisher.
比較例2
20重量部のジブロモメタンを20重量部のパーフルオロトリエチルアミン((C2F5)3N)に換え、実施例 1と同様に行い、粉末状のマイクロカプセル化パーフルオロトリエチルアミン消火剤を得る。 Comparative Example 2
20 parts by weight of dibromomethane is replaced with 20 parts by weight of perfluorotriethylamine ((C2F5) 3N), and the same procedure as in Example 1 is performed to obtain a powdery microencapsulated perfluorotriethylamine fire extinguisher.
比較例3
20重量部のジブロモメタンを20重量部のパーフルオロヘプタン(C7F16)に換え、実施例1と同様に行い、粉末状のマイクロカプセル化パーフルオロヘプタン消火剤を得る。 Comparative Example 3
20 parts by weight of dibromomethane is replaced with 20 parts by weight of perfluoroheptane (C7F16), and the same procedure as in Example 1 is performed to obtain a powdery microencapsulated perfluoroheptane fire extinguisher.
実施例2
ジフェニロルプロパン(ビスフェノールA)とエピクロルヒドリンからの液状縮合生成物である7.28gのエポキシ樹脂(II)を、次式
続いて、上記の混合物に、実施例1の製法で得た60gのマイクロカプセル化ジブロモメタン消火剤を少しずつ加え、その後、さらに硬化剤として3.6gのポリエチレン−ポリアミン(PEPA)を連続混合しながら加えて樹脂組成物を得た。
I,II及びPEPAを含む樹脂バインダとマイクロカプセル化ジブロモメタン消火剤との重量比は40/60であった。
混合の後、この樹脂組成物をモールドに注入し、20−25℃の温度下で48時間硬化させ、5mm厚の硬化物シートを作製した。
上記の硬化物シートの機械的性質を測定し、引張り破断強度は4.4MPa、引っ張り破断伸度は30%であった。 Example 2
7.28 g of epoxy resin (II), which is a liquid condensation product from diphenylolpropane (bisphenol A) and epichlorohydrin, is represented by the following formula:
Subsequently, 60 g of the microencapsulated dibromomethane fire extinguisher obtained by the production method of Example 1 was added little by little to the above mixture, and then 3.6 g of polyethylene-polyamine (PEPA) as a curing agent was continuously mixed. In addition, a resin composition was obtained.
The weight ratio of the resin binder containing I, II and PEPA to the microencapsulated dibromomethane extinguisher was 40/60.
After mixing, this resin composition was poured into a mold and cured at a temperature of 20-25 ° C. for 48 hours to prepare a cured product sheet having a thickness of 5 mm.
The mechanical properties of the cured sheet were measured, and the tensile strength at break was 4.4 MPa and the tensile elongation at break was 30%.
消火効果は次のような方法で消火テストを行い、消火時間を測定した。 The fire extinguishing effect was measured by the fire extinguishing test by the following method.
上底および下底に通気口、横壁に覗き穴を設けた250x250x250mmの金属製ボックスの内側を通気口と覗き穴を除いて、5mm厚の硬化物シートで完全にカバーした。
ベンゼンの入ったシャーレをこのボックスの中央に置き点火した。
そして、覗き穴からの目視によって、点火時から炎の消滅時までの消火時間を測定した。その結果、消火時間は5秒であった。The inside of a 250 × 250 × 250 mm metal box provided with a vent on the upper and lower bases and a peephole on the side wall was completely covered with a 5 mm thick cured material sheet except for the vent and peephole.
A petri dish containing benzene was placed in the center of the box and ignited.
And the fire extinguishing time from the time of ignition to the time of extinction of the flame was measured by visual observation from the peephole. As a result, the fire extinguishing time was 5 seconds.
実施例3
10.92gの樹脂(II)を43.68gの樹脂(I)に加えて混合し、続いて、上記の混合物に、40gのマイクロカプセル化ジブロモメタン消火剤を少しずつ加え、さらに5.4gのポリエチレン−ポリアミン(PEPA)を連続混合しながら加え樹脂組成物を得た。
I,II及びPEPAを含む樹脂バインダとマイクロカプセル化ジブロモメタン消火剤との重量比は60/40であった。
混合の後、この樹脂組成物をモールドに注入し、20−25℃の温度下で48時間硬化させ、5mm厚の硬化物シートを作製した。
上記の硬化物シートの機械的性質を測定し、引張り破断強度は9.6MPa、引っ張り破断伸度は42%であった。そして、消火時間は6秒であった。 Example 3
10.92 g of Resin (II) is added to 43.68 g of Resin (I) and mixed, then 40 g of microencapsulated dibromomethane fire extinguisher is added in portions to the above mixture and an additional 5.4 g of Polyethylene-polyamine (PEPA) was added with continuous mixing to obtain a resin composition.
The weight ratio of the resin binder containing I, II and PEPA to the microencapsulated dibromomethane extinguisher was 60/40.
After mixing, this resin composition was poured into a mold and cured at a temperature of 20-25 ° C. for 48 hours to prepare a cured product sheet having a thickness of 5 mm.
The mechanical properties of the cured sheet were measured, and the tensile strength at break was 9.6 MPa and the tensile elongation at break was 42%. The fire extinguishing time was 6 seconds.
実施例4
36.4gの樹脂(I)に60gのマイクロカプセル化ジブロモメタン消火剤を少しづつ加え、さらに3.6gのポリエチレン−ポリアミン(PEPA)を連続混合しながら加え樹脂組成物を得た。
I及びPEPAを含む樹脂バインダとマイクロカプセル化ジブロモメタン消火剤との重量比は40/60であった。
混合の後、この樹脂組成物をモールドに注入し、20−25℃の温度下で48時間硬化させ、5mm厚の硬化物シートを作製した。
上記の硬化物シートの機械的性質を測定し、引張り破断強度は23.5MPa、引張り破断伸度は45%であった。そして、消火時間は9秒であった。 Example 4
To 36.4 g of resin (I), 60 g of microencapsulated dibromomethane fire extinguisher was added little by little, and 3.6 g of polyethylene-polyamine (PEPA) was added with continuous mixing to obtain a resin composition.
The weight ratio of the resin binder containing I and PEPA to the microencapsulated dibromomethane extinguisher was 40/60.
After mixing, this resin composition was poured into a mold and cured at a temperature of 20-25 ° C. for 48 hours to prepare a cured product sheet having a thickness of 5 mm.
The mechanical properties of the cured sheet were measured, and the tensile strength at break was 23.5 MPa and the tensile elongation at break was 45%. The fire extinguishing time was 9 seconds.
実施例5
36.4gの樹脂(II)に60gのマイクロカプセル化ジブロモメタン消火剤を少しずつ加え、さらに3.6gのポリエチレン−ポリアミン(PEPA)を連続混合しながら加え樹脂組成物を得た。
II及びPEPAを含む樹脂バインダとマイクロカプセル化ジブロモメタン消火剤との重量比は40/60であった。
混合の後、この樹脂組成物をモールドに注入し、20−25℃の温度下で48時間硬化させ、5mm厚の硬化物シートを作製した。
上記の硬化物シートの機械的性質を測定し、引張り破断強度は0.9MPa、引張り破断伸度は37%であった。そして、消火時間は9秒であった。 Example 5
To 36.4 g of resin (II), 60 g of microencapsulated dibromomethane fire extinguisher was added little by little, and 3.6 g of polyethylene-polyamine (PEPA) was added with continuous mixing to obtain a resin composition.
The weight ratio of the resin binder containing II and PEPA to the microencapsulated dibromomethane extinguisher was 40/60.
After mixing, this resin composition was poured into a mold and cured at a temperature of 20-25 ° C. for 48 hours to prepare a cured product sheet having a thickness of 5 mm.
The mechanical properties of the cured sheet were measured, the tensile strength at break was 0.9 MPa, and the tensile elongation at break was 37%. The fire extinguishing time was 9 seconds.
比較例4
実施例2における60gのマイクロカプセル化ジブロモメタン消火剤を比較例1の製法で得た60gのマイクロカプセル化ヘプタフルオロ−2−ヨードプロパン消火剤に換え、実施例2と同様に行い、5mm厚の硬化物シートを作製した。
上記の硬化物シートの機械的性質を測定し、引張り破断強度は5.2MPa、引張り破断伸度は27%であった。そして、消火時間は13秒であった。 Comparative Example 4
60 g of microencapsulated dibromomethane fire extinguisher in Example 2 was replaced with 60 g of microencapsulated heptafluoro-2-iodopropane fire extinguisher obtained by the production method of Comparative Example 1, and the same procedure as in Example 2 was performed. A cured product sheet was produced.
The mechanical properties of the cured sheet were measured, and the tensile strength at break was 5.2 MPa and the tensile elongation at break was 27%. The fire extinguishing time was 13 seconds.
比較例5
実施例2における60gのマイクロカプセル化ジブロモメタン消火剤を比較例2の製法で得た60gのマイクロカプセル化パーフルオロトリエチルアミン消火剤に換え、実施例2と同様に行い、5mm厚の硬化物シートを作製した。
上記の硬化物シートの機械的性質を測定し、引張り破断強度は6.3MPa、引張り破断伸度は24%であった。そして、消火時間は18秒であった。 Comparative Example 5
60 g of microencapsulated dibromomethane extinguishing agent in Example 2 was replaced with 60 g of microencapsulated perfluorotriethylamine extinguishing agent obtained by the production method of Comparative Example 2, and the same procedure as in Example 2 was performed. Produced.
The mechanical properties of the cured sheet were measured, and the tensile strength at break was 6.3 MPa and the tensile elongation at break was 24%. The fire extinguishing time was 18 seconds.
比較例6
実施例2における60gのマイクロカプセル化ジブロモメタン消火剤を比較例3の製法で得た60gのマイクロカプセル化パーフルオロヘプタン消火剤に換え、実施例2と同様に行い、5mm厚の硬化物シートを作製した。
上記の硬化物シートの機械的性質を測定し、引張り破断強度は7.1MPa、引張り破断伸度は23%であった。そして、消火時間は15秒であった。 Comparative Example 6
60 g of microencapsulated dibromomethane extinguishing agent in Example 2 was replaced with 60 g of microencapsulated perfluoroheptane extinguishing agent obtained by the method of Comparative Example 3, and the same procedure as in Example 2 was performed. Produced.
The mechanical properties of the cured sheet were measured, and the tensile strength at break was 7.1 MPa and the tensile elongation at break was 23%. The fire extinguishing time was 15 seconds.
実施例2、比較例4、比較例5および比較例6の結果から、樹脂バインダとマイクロカプセル消火剤の重量比を同じにして作製した硬化シートによって内側をカバーしたボックス中における消火テストの場合、マイクロカプセル化ジブロモメタン消火剤、マイクロカプセル化ヘプタフルオロ−2−ヨードプロパン消火剤、マイクロカプセル化パーフルオロトリエチルアミン消火剤及びマイクロカプセル化パーフルオロヘプタン消火剤の消火時間は、それぞれ、5秒、13秒、18秒及び15秒であった。 From the results of Example 2, Comparative Example 4, Comparative Example 5 and Comparative Example 6, in the case of a fire extinguishing test in a box whose inside was covered with a cured sheet prepared with the same weight ratio of resin binder and microcapsule fire extinguishing agent The fire times of the microencapsulated dibromomethane fire extinguisher, microencapsulated heptafluoro-2-iodopropane fire extinguisher, microencapsulated perfluorotriethylamine fire extinguisher and microencapsulated perfluoroheptane fire extinguisher are 5 seconds and 13 seconds, respectively. 18 seconds and 15 seconds.
以上の消火テストの結果から、ジブロモメタンを用いた場合が最も消火効果が高いことがわかる。 From the results of the above fire extinguishing test, it can be seen that the use of dibromomethane has the highest fire extinguishing effect.
ジブロモメタンの消火時間が最も小さいのは、ボックス内での酸素濃度がマイクロカプセル消火剤からの放出ガスのために下がって行くが、ベンゼンの燃焼継続に必要なボックス内の酸素濃度限界以下に達する時間は、ジブロモメタンの場合が最も早いことによるものと考えられる。 Dibromomethane has the shortest extinguishing time because the oxygen concentration in the box decreases due to the gas released from the microcapsule extinguishing agent, but below the oxygen concentration limit in the box necessary for continued combustion of benzene The time is thought to be due to the earliest in the case of dibromomethane.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005380918A JP4632948B2 (en) | 2005-12-13 | 2005-12-13 | Microencapsulated fire extinguishing agent having dibromomethane as core material and fire extinguishing material containing the extinguishing agent |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005380918A JP4632948B2 (en) | 2005-12-13 | 2005-12-13 | Microencapsulated fire extinguishing agent having dibromomethane as core material and fire extinguishing material containing the extinguishing agent |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007160028A JP2007160028A (en) | 2007-06-28 |
JP4632948B2 true JP4632948B2 (en) | 2011-02-16 |
Family
ID=38243578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005380918A Expired - Fee Related JP4632948B2 (en) | 2005-12-13 | 2005-12-13 | Microencapsulated fire extinguishing agent having dibromomethane as core material and fire extinguishing material containing the extinguishing agent |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4632948B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2748845C1 (en) * | 2020-10-29 | 2021-05-31 | Общество с ограниченной ответственностью "СИНТЕЗ ГРУПП" | Thermoactivated microencapsulated extinguishing agent, method for its production and fire extinguishing article containing such agent |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4959513B2 (en) * | 2007-11-09 | 2012-06-27 | 大和グランド株式会社 | Manufacturing method of fire-extinguishing prints |
JP2009160387A (en) * | 2007-12-11 | 2009-07-23 | Vision Development Co Ltd | Microencapsulated fire extinguisher and manufacturing method thereof, and fire extinguishing composite material |
WO2009090747A1 (en) * | 2008-01-17 | 2009-07-23 | Tadamasa Fujimura | Microencapsulated fire extinguisher, process for producing the same, and fire-extinguishing composite material |
JP5374309B2 (en) * | 2009-09-30 | 2013-12-25 | 積水化学工業株式会社 | Microcapsule-type fire extinguishing agent, resin composition, and resin molding |
US8461086B2 (en) * | 2009-10-16 | 2013-06-11 | Lytone Enterprise, Inc. | Microcapsule composition for inhibiting an ethylene response in plants, method for preparing microcapsules, and method using the microcapsule composition |
KR101184790B1 (en) * | 2011-02-10 | 2012-09-20 | 제이에스씨 파이로 치미카 | Standalone Means for Firefighting |
RU2469761C1 (en) * | 2011-06-23 | 2012-12-20 | Общество С Ограниченной Ответственностью "Делси" | Microcapsulated fire-extinguishing agent, method of its obtaining, fire-extinguishing composite material and fire-extinguishing coating |
RU2559480C2 (en) * | 2012-10-04 | 2015-08-10 | Федеральное государственное бюджетное учреждение "Всероссийский ордена "Знак Почета" научно-исследовательский институт противопожарной обороны МЧС России" (ФГБУ ВНИИПО МЧС России) | Microencapsulated extinguishing agent and method of its production, extinguishing composite material, extinguishing coating of paint, and extinguishing fabric containing such agent |
RU2555887C2 (en) * | 2012-10-04 | 2015-07-10 | ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ "ВСЕРОССИЙСКИЙ ОРДЕНА "ЗНАК ПОЧЕТА" НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ПРОТИВОПОЖАРНОЙ ОБОРОНЫ МИНИСТЕРСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ДЕЛАМ ГРАЖДАНСКОЙ ОБОРОНЫ, ЧРЕЗВЫЧАЙНЫМ СИТУАЦИЯМ И ЛИКВИДАЦИИ ПОСЛЕДСТВИЙ СТИХИЙНЫХ БЕДСТВИЙ" (ФГБУ ВНИИПО МЧС России) | Method of dry chemical fire suppression and microencapsulated fire suppression agent |
RU2596953C1 (en) * | 2015-08-10 | 2016-09-10 | Общество с ограниченной ответственностью "Инновационные химические технологии" | Pre-fire situation warning system |
EA036280B1 (en) * | 2015-08-10 | 2020-10-21 | Общество С Ограниченной Ответственностью "Термоэлектрика" | Autonomous device for warning of pre-fire situations |
RU2622947C2 (en) * | 2015-08-10 | 2017-06-21 | Общество с ограниченной ответственностью "Инновационные химические технологии" | Polymer composite material used for forming an electrical equipment local overheats signal |
RU2596954C1 (en) * | 2015-08-10 | 2016-09-10 | Общество с ограниченной ответственностью "Инновационные химические технологии" | Method of detecting pre-fire situations arising due to faults in electric circuit |
RU179466U1 (en) * | 2017-11-01 | 2018-05-15 | Акционерное общество "Фортис" | AUTONOMOUS FIRE EXTINGUISHING INSTALLATION BASED ON THERMOACTIVATED AGENT CONTAINED IN MICROCapsules |
KR101944942B1 (en) * | 2018-07-10 | 2019-02-01 | 주식회사 파이어캅 | Fire extinguisher sheet having self extinguisher function and high flexibility and producing method thereof |
CN112316351B (en) * | 2020-10-26 | 2022-03-25 | 南京师范大学 | Preparation method of microcapsule fire extinguishing agent with dibromomethane as core material |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4939127Y1 (en) * | 1970-05-08 | 1974-10-28 | ||
JPS57180970A (en) * | 1981-04-30 | 1982-11-08 | Yoshirou Kishiho | Fire fighting tool |
JPS57193646A (en) * | 1981-05-25 | 1982-11-29 | Hochiki Co | Fire fighting plate |
JP2001501500A (en) * | 1996-09-09 | 2001-02-06 | ザ ユニヴァーシティ オブ ニュー メキシコ | Hydrobromocarbon blends for fire and explosion control |
-
2005
- 2005-12-13 JP JP2005380918A patent/JP4632948B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4939127Y1 (en) * | 1970-05-08 | 1974-10-28 | ||
JPS57180970A (en) * | 1981-04-30 | 1982-11-08 | Yoshirou Kishiho | Fire fighting tool |
JPS57193646A (en) * | 1981-05-25 | 1982-11-29 | Hochiki Co | Fire fighting plate |
JP2001501500A (en) * | 1996-09-09 | 2001-02-06 | ザ ユニヴァーシティ オブ ニュー メキシコ | Hydrobromocarbon blends for fire and explosion control |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2748845C1 (en) * | 2020-10-29 | 2021-05-31 | Общество с ограниченной ответственностью "СИНТЕЗ ГРУПП" | Thermoactivated microencapsulated extinguishing agent, method for its production and fire extinguishing article containing such agent |
Also Published As
Publication number | Publication date |
---|---|
JP2007160028A (en) | 2007-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4632948B2 (en) | Microencapsulated fire extinguishing agent having dibromomethane as core material and fire extinguishing material containing the extinguishing agent | |
RU2469761C1 (en) | Microcapsulated fire-extinguishing agent, method of its obtaining, fire-extinguishing composite material and fire-extinguishing coating | |
RU2389525C2 (en) | Microcapsulated extinguishing agent and method for making thereof, extinguishing composite, extinguishing paint coating and extinguishing fabric containing said agent | |
KR101733423B1 (en) | Halogen-based gaseous fire extinguishing agent composition and manufacturing method thereof | |
JP4698641B2 (en) | Microencapsulated fire extinguishing agent, method for producing the same, and fire-extinguishing composite material | |
CN115382146B (en) | Fire extinguishing sheet | |
US20190076687A1 (en) | Microcapsules, Method for Preparing Microcapsules, Fire-Extinguishing Agents, Materials, Coatings, and Articles Based Thereupon | |
JP2009160387A (en) | Microencapsulated fire extinguisher and manufacturing method thereof, and fire extinguishing composite material | |
DK2674198T3 (en) | Autonomous firefighting agent | |
RU2631866C1 (en) | Method of obtaining fire-extinguishing microcapsules (versions) and fire-extinguishing microcapsule | |
US20230143503A1 (en) | Preparation of eco-friendly fire extinguisher microcapsules and applications thereof | |
CN114307028B (en) | Fire-extinguishing microcapsule core material, fire-extinguishing microcapsule and preparation method thereof | |
KR102123659B1 (en) | Fire extinguishing sheet comprising a microcapsule for fire extinguishing | |
KR102399937B1 (en) | Two-component sealant composition comprising microcapsule for fire extinguishing | |
SE501874C2 (en) | Fire-fighting materials consisting mainly of crushed glass particles with hydrophobic coating, and its use | |
WO2017184020A1 (en) | Microencapsulated fire-extinguishing agent and preparation method thereof | |
RU2555887C2 (en) | Method of dry chemical fire suppression and microencapsulated fire suppression agent | |
KR102189631B1 (en) | Wallpaper for fire extinguishing including microcapsules for fire extinguishing, and preparation method thereof | |
JP2009167311A (en) | Fire extinguishing pressure-sensitive adhesive layer and fire extinguishing pressure-sensitive adhesive sheet using the same | |
WO2009090747A1 (en) | Microencapsulated fire extinguisher, process for producing the same, and fire-extinguishing composite material | |
CN117018529A (en) | Fire extinguishing microcapsule, fire extinguishing adhesive tape and application thereof | |
Vilesov et al. | Novel microencapsulated liquid fire extinguishers with a nanomodified microcapsule shell | |
WO2017184023A1 (en) | Autonomous fire-extinguishing means | |
KR102670535B1 (en) | Fire-fighting microcapsules with built-in fire extinguishing substance and manufacturing method of the same | |
RU2791540C1 (en) | Microcapsulated fire extinguishing agent, method for its production and fire extinguishing product containing such agent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080107 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20080107 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080107 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100922 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101013 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101110 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101116 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131126 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |