JP4631722B2 - solenoid valve - Google Patents

solenoid valve Download PDF

Info

Publication number
JP4631722B2
JP4631722B2 JP2006014609A JP2006014609A JP4631722B2 JP 4631722 B2 JP4631722 B2 JP 4631722B2 JP 2006014609 A JP2006014609 A JP 2006014609A JP 2006014609 A JP2006014609 A JP 2006014609A JP 4631722 B2 JP4631722 B2 JP 4631722B2
Authority
JP
Japan
Prior art keywords
spool
fluid
sleeve
displacement
throttle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006014609A
Other languages
Japanese (ja)
Other versions
JP2007198415A (en
Inventor
宏 八十島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006014609A priority Critical patent/JP4631722B2/en
Publication of JP2007198415A publication Critical patent/JP2007198415A/en
Application granted granted Critical
Publication of JP4631722B2 publication Critical patent/JP4631722B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding Valves (AREA)
  • Magnetically Actuated Valves (AREA)

Description

本発明は、電磁アクチュエータにより駆動力を得るとともに、この駆動力によりスプールを変位させ流体の流れを制御する電磁弁に関する。   The present invention relates to an electromagnetic valve that obtains a driving force by an electromagnetic actuator and controls a fluid flow by displacing a spool by the driving force.

〔従来の技術〕
従来から、自動変速機における油圧回路の切替や、バルブ可変タイミング装置における油圧の供給等に電磁弁が用いられている。
[Conventional technology]
Conventionally, electromagnetic valves have been used for switching hydraulic circuits in automatic transmissions, supplying hydraulic pressure in variable valve timing devices, and the like.

この電磁弁は、電磁アクチュエータから駆動力を伝達され軸方向一方側に変位するスプールと、スプールを軸方向に摺動自在に収容するスリーブとを備え、作動油等の流体の流れを制御する。また、スリーブの一方側の内部空間は、スプールにより封鎖され、スプールの変位に伴い作動油が流出入するダンパ室をなす(例えば、特許文献1参照)。そして、このダンパ室からの作動油の流出入は、スリーブを貫通する絞りを介して行われる。   The solenoid valve includes a spool that is displaced from one side in the axial direction by a driving force transmitted from the electromagnetic actuator, and a sleeve that slidably accommodates the spool in the axial direction, and controls the flow of fluid such as hydraulic oil. Further, the internal space on one side of the sleeve is sealed by a spool, and forms a damper chamber into which hydraulic oil flows in and out as the spool is displaced (see, for example, Patent Document 1). The hydraulic oil flows in and out of the damper chamber through a throttle that penetrates the sleeve.

〔従来技術の不具合〕
ところで、この絞りは、スプールの変位に対する応答性および安定性を決めるチューニング要素となっている。つまり、絞りの設置位置、絞り径などにより、スプールの応答性および安定性が決まる。そして、応答性の向上を優先して安定性を低下させると、油圧が高圧の場合に油圧の脈動が大きくなり油振が発生する虞がある。逆に、安定性の向上を優先して応答性を低下させると、油圧が低圧の場合に応答性の低下が顕著になり、応答遅れが大きくなってしまう。さらに、極低温では作動油の流動性が低下するため、応答性の低下が顕著になる。
特開2000−220762号公報
[Problems with conventional technology]
By the way, this diaphragm is a tuning factor that determines the response and stability to the displacement of the spool. That is, the responsiveness and stability of the spool are determined by the position of the diaphragm, the diameter of the diaphragm, and the like. If priority is given to improving the responsiveness and the stability is lowered, when the oil pressure is high, the pulsation of the oil pressure increases and there is a risk that oil vibration will occur. On the other hand, if priority is given to improving the stability and the responsiveness is lowered, when the hydraulic pressure is low, the responsiveness is significantly lowered and the response delay becomes large. Furthermore, since the fluidity of the hydraulic fluid is reduced at extremely low temperatures, the responsiveness is significantly reduced.
JP 2000-220762 A

本発明は、上記の問題点を解決するためになされたものであり、その目的は、電磁弁において、流体圧の高低に係わらずスプールの変位に対する応答性および安定性を両立させることにある。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to achieve both responsiveness and stability with respect to displacement of a spool in a solenoid valve regardless of the level of fluid pressure.

〔請求項1の手段〕
請求項1に記載の電磁弁は、電磁アクチュエータにより駆動力を得て作動し、流体の流れを制御するものであり、電磁アクチュエータから駆動力を伝達され軸方向一方側に変位するとともに、流体圧に応じて変位量を可変するスプールと、スプールを軸方向に摺動自在に収容するスリーブとを備える。また、スリーブの一方側の内部空間は、スプールにより封鎖され、スプールの変位に伴い流体が流出入するダンパ室をなす。そして、ダンパ室からの流体の流出入は、スリーブを貫通する絞りを介して行われ、絞りは、絞りを介する流体の流出入における有効流路面積を、スプールの変位量に応じて可変できるように設けられている。
[Means of Claim 1]
The electromagnetic valve according to claim 1 operates by obtaining a driving force by an electromagnetic actuator and controls the flow of fluid. The driving force is transmitted from the electromagnetic actuator and is displaced to one side in the axial direction. And a sleeve for slidably accommodating the spool in the axial direction. Further, the internal space on one side of the sleeve is sealed by a spool, and forms a damper chamber into which fluid flows in and out as the spool is displaced. The fluid flows in and out of the damper chamber through a restrictor penetrating the sleeve, and the restrictor can change the effective flow path area for the fluid inflow and inflow through the restrictor according to the amount of displacement of the spool. Is provided.

この手段によれば、有効流路面積がスプールの変位量に応じて可変され、さらにスプールの変位量が流体圧に応じて可変されるので、有効流路面積が流体圧に応じて可変される。すなわち、絞りは、絞りを通過する流体の流量(絞り通過流量)が流体圧に応じて可変されるように設けられている。例えば、絞りは、流体圧が高いほど絞り通過流量が小さくなるように設けられている。   According to this means, the effective flow path area is varied according to the amount of displacement of the spool, and further, the displacement amount of the spool is varied according to the fluid pressure, so that the effective flow area is varied according to the fluid pressure. . That is, the restrictor is provided so that the flow rate of the fluid passing through the restrictor (the restrictor passing flow rate) can be varied according to the fluid pressure. For example, the throttle is provided so that the flow rate through the throttle decreases as the fluid pressure increases.

ここで、スプールの変位に対する応答性(スプール応答性)は、絞り通過流量が大きいほど向上し、絞り通過流量が小さいほど低下する。一方、スプールの変位に対する安定性(スプール安定性)は、絞り通過流量が小さいほど向上し、絞り通過流量が大きいほど低下する。   Here, the responsiveness to the displacement of the spool (spool responsiveness) improves as the throttle passage flow rate increases, and decreases as the throttle passage flow rate decreases. On the other hand, the stability against spool displacement (spool stability) improves as the throttle passage flow rate decreases, and decreases as the throttle passage flow rate increases.

これに対し、上記のように絞りが設けられていれば、流体圧が高いほど絞り通過流量が小さくなってスプール安定性が向上し、逆に流体圧が低いほど絞り通過流量が大きくなってスプール応答性が向上する。つまり、流体圧高圧時には、絞り通過流量が小さくなってスプール安定性の低下を補い、逆に、流体圧低圧時には、絞り通過流量が大きくなってスプール応答性の低下を補う。この結果、流体圧の高低に係わらずスプール応答性およびスプール安定性を両立させることができる。   On the other hand, if the throttle is provided as described above, the higher the fluid pressure, the smaller the throttle passage flow rate and the spool stability improves. Conversely, the lower the fluid pressure, the larger the throttle passage flow rate, and the spool. Responsiveness is improved. That is, when the fluid pressure is high, the throttle passage flow rate is reduced to compensate for the decrease in spool stability. Conversely, when the fluid pressure is low, the throttle passage flow rate is increased to compensate for a decrease in spool response. As a result, it is possible to achieve both spool response and spool stability regardless of the fluid pressure level.

〔請求項2の手段〕
請求項2に記載の電磁弁によれば、絞りの内部開口部の周縁およびスプールの外周の少なくとも一方を加工することで、有効流路面積とスプールの変位量との相関を可変する。
これにより、有効流路面積とスプールの変位量との相関を、簡便に変更することができる。
[Means of claim 2]
According to the electromagnetic valve of the second aspect, the correlation between the effective flow path area and the amount of displacement of the spool is varied by processing at least one of the peripheral edge of the inner opening of the throttle and the outer periphery of the spool.
Thereby, the correlation between the effective flow path area and the amount of displacement of the spool can be easily changed.

〔請求項3の手段〕
請求項3に記載の電磁弁によれば、流体は、油圧を得るための作動油であり、油圧に応じて、スプールの変位量が可変される。
この手段は、電磁弁の一適用例を示すものである。
[Means of claim 3]
According to the electromagnetic valve of the third aspect, the fluid is hydraulic oil for obtaining hydraulic pressure, and the displacement amount of the spool is varied according to the hydraulic pressure.
This means shows one application example of the electromagnetic valve.

最良の形態1の電磁弁は、電磁アクチュエータにより駆動力を得て作動し、流体の流れを制御するものであり、電磁アクチュエータから駆動力を伝達され軸方向一方側に変位するとともに、流体圧に応じて変位量を可変するスプールと、スプールを軸方向に摺動自在に収容するスリーブとを備える。また、スリーブの一方側の内部空間は、スプールにより封鎖され、スプールの変位に伴い流体が流出入するダンパ室をなす。そして、ダンパ室からの流体の流出入は、スリーブを貫通する絞りを介して行われ、絞りは、絞りを介する流体の流出入における有効流路面積を、スプールの変位量に応じて可変できるように設けられている。
さらに、この電磁弁によれば、流体は、油圧を得るための作動油であり、油圧に応じて、スプールの変位量が可変される。
The electromagnetic valve of the best mode 1 operates by obtaining a driving force by an electromagnetic actuator, and controls the flow of fluid. The driving force is transmitted from the electromagnetic actuator and is displaced to one side in the axial direction. A spool that varies the amount of displacement in response to the spool and a sleeve that slidably accommodates the spool in the axial direction are provided. Further, the internal space on one side of the sleeve is sealed by a spool, and forms a damper chamber into which fluid flows in and out as the spool is displaced. The fluid flows in and out of the damper chamber through a restrictor penetrating the sleeve, and the restrictor can change the effective flow path area for the fluid inflow and inflow through the restrictor according to the amount of displacement of the spool. Is provided.
Further, according to this solenoid valve, the fluid is hydraulic oil for obtaining hydraulic pressure, and the displacement amount of the spool is varied according to the hydraulic pressure.

〔実施例1の構成〕
実施例1の電磁弁1の構成を、図1ないし図3を用いて説明する。
電磁弁1は、電磁アクチュエータ(図示せず)により駆動力を得て作動し、流体の流れを制御するものであり、例えば、自動変速機における油圧回路の切替や、バルブ可変タイミング装置における油圧の供給等に用いられる。つまり、この電磁弁1は、油圧を得るための作動油の流れを制御する。
[Configuration of Example 1]
The structure of the solenoid valve 1 of Example 1 is demonstrated using FIG. 1 thru | or FIG.
The solenoid valve 1 is operated by obtaining a driving force by an electromagnetic actuator (not shown) and controls the flow of fluid. For example, switching of a hydraulic circuit in an automatic transmission or a hydraulic pressure in a valve variable timing device is performed. Used for supply. That is, the solenoid valve 1 controls the flow of hydraulic oil for obtaining hydraulic pressure.

電磁弁1は、軸方向に変位して作動油の流れを制御するスプール2と、スプール2を軸方向に摺動自在に収容するスリーブ3と、スプール2を軸方向他方側に付勢する復元バネ4とを備える。   The solenoid valve 1 includes a spool 2 that is displaced in the axial direction to control the flow of hydraulic oil, a sleeve 3 that slidably accommodates the spool 2 in the axial direction, and a restoration that biases the spool 2 toward the other side in the axial direction. A spring 4.

スプール2は、軸方向一方側から順に、スリーブ3の内周面に摺接する大径部6、7、8を有する。また、スプール2は、電磁アクチュエータに駆動力が発生すると、この駆動力により軸方向一方側に付勢される。そして、スプール2は、この駆動力、および復元バネ4による付勢力等が均衡する位置まで変位する。   The spool 2 includes large-diameter portions 6, 7, and 8 that are in sliding contact with the inner peripheral surface of the sleeve 3 in order from one side in the axial direction. Further, when a driving force is generated in the electromagnetic actuator, the spool 2 is urged to one side in the axial direction by the driving force. Then, the spool 2 is displaced to a position where the driving force and the urging force by the restoring spring 4 are balanced.

スリーブ3は、インポート10、アウトポート11、フィードバックポート12、ドレインポート13等の各種のポートを有する。
インポート10は、作動油の流入側外部流路に通じてスリーブ3内への作動油の流入口をなし、大径部7により開閉される。ここで、大径部7は、大径部8とともにスリーブ3内で作動油が流動する内部流動室15を形成し、軸方向に変位して内部流動室15とインポート10との連通度を調節する。
The sleeve 3 has various ports such as an import 10, an out port 11, a feedback port 12, and a drain port 13.
The import 10 communicates with the external flow path on the inflow side of the hydraulic oil and forms an inlet for the hydraulic oil into the sleeve 3 and is opened and closed by the large diameter portion 7. Here, the large diameter portion 7 forms an internal flow chamber 15 in which hydraulic oil flows in the sleeve 3 together with the large diameter portion 8, and is displaced in the axial direction to adjust the degree of communication between the internal flow chamber 15 and the import 10. To do.

アウトポート11は、作動油の流出側外部流路に通じてスリーブ3内からの作動油の流出口をなし、内部流動室15に対して、常時、開口する。
これにより、流入側外部流路の作動油は、連通度が調節された流路を経由して内部流動室15に流入することで、油圧が所定の目標値に制御される。そして、油圧制御された作動油が、内部流動室15から流出側外部流路に供給される。
The out port 11 communicates with the external flow path on the outflow side of the hydraulic oil to form an outlet for the hydraulic oil from the sleeve 3, and is always open to the internal flow chamber 15.
As a result, the hydraulic oil in the inflow side external flow path flows into the internal flow chamber 15 via the flow path whose degree of communication is adjusted, whereby the hydraulic pressure is controlled to a predetermined target value. Then, hydraulically controlled hydraulic oil is supplied from the internal flow chamber 15 to the outflow side external flow path.

なお、油圧の目標値が高いほど、内部流動室15とインポート10との連通度は大きくする必要がある。よって、油圧の目標値が高いほど、電磁アクチュエータが発生する駆動力が強くなり、スプール2の軸方向一方側への変位量が大きくなる。つまり、スプール2の変位量は、油圧に応じて可変される。   The higher the target value of hydraulic pressure, the greater the degree of communication between the internal fluid chamber 15 and the import 10. Therefore, the higher the target value of the hydraulic pressure, the stronger the driving force generated by the electromagnetic actuator, and the greater the displacement amount of the spool 2 toward the one side in the axial direction. That is, the displacement amount of the spool 2 is varied according to the hydraulic pressure.

フィードバックポート12は、流出側外部流路に供給された作動油の一部をフィードバック室16に供給するための流入口をなす。ここで、フィードバック室16は、大径部6と大径部7とにより形成され、スプール2の変位量を補正するため、油圧制御された作動油が導かれる空間である。そして、フィードバック室16の作動油は、大径部6と大径部7との軸方向に垂直な断面積の差に基づき、油圧による付勢力を大径部7に対し軸方向他方側に及ぼし、スプール2の変位量を補正している。   The feedback port 12 forms an inlet for supplying a part of the hydraulic oil supplied to the outflow side external flow path to the feedback chamber 16. Here, the feedback chamber 16 is formed by the large-diameter portion 6 and the large-diameter portion 7, and is a space through which hydraulically controlled hydraulic oil is guided in order to correct the displacement amount of the spool 2. The hydraulic oil in the feedback chamber 16 exerts an urging force by hydraulic pressure on the other side in the axial direction with respect to the large diameter portion 7 based on the difference in cross-sectional area perpendicular to the axial direction between the large diameter portion 6 and the large diameter portion 7. The displacement amount of the spool 2 is corrected.

ドレインポート13は、内部流動室15の作動油を排出するための流出口をなす。ドレインポート13は、インポート10が閉鎖され流入側外部流路から内部流動室15への油圧の供給がなくなると、大径部8により開放される。つまり、電磁アクチュエータにおいて駆動力の発生が停止すると、大径部7が、軸方向他方側に変位してインポート10を閉鎖するとともに、大径部8が、軸方向他方側に変位してドレインポート13を開放する。これにより、内部流動室15の作動油は、ドレインポート13を介して排出される。   The drain port 13 serves as an outlet for discharging the hydraulic oil in the internal flow chamber 15. The drain port 13 is opened by the large-diameter portion 8 when the import 10 is closed and the supply of hydraulic pressure from the inflow side external flow path to the internal flow chamber 15 is stopped. That is, when the generation of the driving force is stopped in the electromagnetic actuator, the large-diameter portion 7 is displaced in the other axial direction to close the import 10, and the large-diameter portion 8 is displaced in the other axial direction to 13 is released. Thereby, the hydraulic fluid in the internal fluid chamber 15 is discharged through the drain port 13.

〔実施例1の特徴〕
実施例1の電磁弁1によれば、スリーブ3の一方側の内部空間は、大径部6により封鎖され、スプール2の変位に伴い作動油が流出入するダンパ室18をなす。そして、ダンパ室18からの作動油の流出入は、スリーブ3を貫通する絞り19を介して行われる。ここで、絞り19は、絞り19を介する作動油の流出入における有効流路面積(以下、単に有効流路面積と呼ぶ)を、スプール2の変位量に応じて実質的に可変できるように設けられている。
[Features of Example 1]
According to the solenoid valve 1 of the first embodiment, the internal space on one side of the sleeve 3 is sealed by the large diameter portion 6 and forms a damper chamber 18 into which hydraulic oil flows in and out as the spool 2 is displaced. The hydraulic oil flows in and out of the damper chamber 18 through a throttle 19 that penetrates the sleeve 3. Here, the restrictor 19 is provided so that the effective flow passage area (hereinafter simply referred to as the effective flow passage area) of the hydraulic oil flowing in and out through the restrictor 19 can be substantially varied according to the displacement amount of the spool 2. It has been.

すなわち、絞り19の内部開口部21と大径部6の外周面との距離が、内部開口部21の径よりも十分に小さくなるように、絞り19および内部開口部21近傍の内周面を加工する。これにより、大径部6が、スプール2の変位量に応じて、絞り19を開閉して絞り19の開口面積を可変する。この結果、有効流路面積は絞り19の開口面積に略一致する。すなわち、有効流路面積は、スプール2の変位量に応じて実質的に可変される。   That is, the inner peripheral surface in the vicinity of the diaphragm 19 and the inner opening 21 is set so that the distance between the inner opening 21 of the diaphragm 19 and the outer peripheral surface of the large diameter portion 6 is sufficiently smaller than the diameter of the inner opening 21. Process. As a result, the large diameter portion 6 opens and closes the diaphragm 19 in accordance with the amount of displacement of the spool 2 to vary the opening area of the diaphragm 19. As a result, the effective flow path area substantially matches the opening area of the diaphragm 19. That is, the effective flow path area is substantially variable according to the displacement amount of the spool 2.

ここで、油圧の目標値が高いほどスプール2の変位量が大きくなるので、油圧が高いほど、内部開口部21に対する大径部6による閉鎖量が大きくなり、有効流路面積が小さくなる。つまり、油圧が高いほど、有効流路面積が小さくなり、絞り19を通過する作動油の流量(絞り通過流量)が小さくなる。   Here, since the displacement amount of the spool 2 increases as the target value of hydraulic pressure increases, the amount of closure by the large-diameter portion 6 with respect to the internal opening 21 increases as the hydraulic pressure increases, and the effective flow path area decreases. That is, the higher the hydraulic pressure, the smaller the effective flow path area, and the smaller the flow rate of hydraulic oil that passes through the throttle 19 (throttle passage flow rate).

なお、本実施例では、図1に示すように、絞り19は、電磁アクチュエータが駆動力を発生していない時でも、内部開口部21が部分的に閉鎖されるような位置に設けられているが、このような形態に限定されない。例えば、絞り19の設置位置を軸方向一方側にずらし、大径部7がインポート10を内部流動室15に対して開放する時に、大径部6が絞り内部開口部21の閉鎖を開始するようにしてもよい。また、絞り19の設置位置をさらに軸方向一方側にずらし、大径部7がインポート10を内部流動室15に対して開放する時よりも後に、大径部6が内部開口部21の閉鎖を開始するようにしてもよい。   In the present embodiment, as shown in FIG. 1, the diaphragm 19 is provided at a position where the internal opening 21 is partially closed even when the electromagnetic actuator does not generate a driving force. However, it is not limited to such a form. For example, when the installation position of the throttle 19 is shifted to one side in the axial direction and the large diameter portion 7 opens the import 10 to the internal flow chamber 15, the large diameter portion 6 starts to close the throttle internal opening 21. It may be. Further, the installation position of the throttle 19 is further shifted to the one side in the axial direction, and the large diameter portion 6 closes the internal opening 21 after the large diameter portion 7 opens the import 10 to the internal flow chamber 15. You may make it start.

さらに、絞り19を設ける位置は、電磁アクチュエータが発生する駆動力が最大の時の、絞り19の開口面積を考慮して決めてもよい(図3参照)。また、有効流路面積とスプール2の変位量との相関は、内部開口部21の周縁および大径部6の外周の少なくとも一方を加工することで、種々に可変することができる。   Furthermore, the position where the diaphragm 19 is provided may be determined in consideration of the opening area of the diaphragm 19 when the driving force generated by the electromagnetic actuator is maximum (see FIG. 3). Further, the correlation between the effective flow path area and the displacement amount of the spool 2 can be variously changed by processing at least one of the peripheral edge of the internal opening 21 and the outer periphery of the large diameter portion 6.

〔実施例1の効果〕
実施例1の電磁弁1によれば、スリーブ3の一方側の内部空間は、スプール2の変位に伴い作動油が流出入するダンパ室18をなす。そして、ダンパ室18からの作動油の流出入は、スリーブ3を貫通する絞り19を介して行われ、絞り19は、油圧が高いほど、有効流路面積が小さくなるように設けられている。
これにより、油圧が高いほど絞り通過流量が小さくなる。
[Effect of Example 1]
According to the solenoid valve 1 of the first embodiment, the internal space on one side of the sleeve 3 forms a damper chamber 18 into which hydraulic oil flows in and out as the spool 2 is displaced. The hydraulic oil flows into and out of the damper chamber 18 through a throttle 19 that penetrates the sleeve 3. The throttle 19 is provided so that the effective flow path area decreases as the hydraulic pressure increases.
Thereby, the higher the hydraulic pressure, the smaller the throttle passage flow rate.

ここで、スプール2の変位に対する応答性(スプール応答性)は、絞り通過流量が大きいほど向上し、絞り通過流量が小さいほど低下する。一方、スプール2の変位に対する安定性(スプール安定性)は、絞り通過流量が小さいほど向上し、絞り通過流量が大きいほど低下する。   Here, the responsiveness to the displacement of the spool 2 (spool responsiveness) increases as the throttle passage flow rate increases, and decreases as the throttle passage flow rate decreases. On the other hand, the stability against the displacement of the spool 2 (spool stability) increases as the throttle passage flow rate decreases, and decreases as the throttle passage flow rate increases.

このため、上記のように絞り19が設けられていれば、油圧が高いほど絞り通過流量が小さくなってスプール安定性が向上し、逆に油圧が低いほど絞り通過流量が大きくなってスプール応答性が向上する。つまり、スプール安定性が低下する油圧高圧時には、絞り通過流量が小さくなってスプール安定性の低下を補い、逆に、スプール応答性が低下する油圧低圧時には、絞り通過流量が大きくなってスプール応答性の低下を補う。この結果、油圧の高低に係わらずスプール応答性およびスプール安定性を両立させることができる。   Therefore, if the throttle 19 is provided as described above, the higher the hydraulic pressure, the smaller the throttle passage flow rate and the spool stability improves. Conversely, the lower the hydraulic pressure, the larger the throttle passage flow rate and the spool response. Will improve. In other words, when the hydraulic pressure is high and the spool stability decreases, the throttle flow rate decreases to compensate for the decrease in spool stability. Conversely, when the hydraulic pressure is low and the spool response decreases, the throttle flow rate increases and the spool response To compensate for the decline. As a result, it is possible to achieve both spool response and spool stability regardless of the hydraulic pressure level.

(a)はインポート全閉時の電磁弁を示す断面図であり、(b)はインポート全閉時の電磁弁の要部を示す要部断面図である。(A) is sectional drawing which shows the solenoid valve at the time of import full closure, (b) is principal part sectional drawing which shows the principal part of the solenoid valve at the time of import full closure. (a)はインポート半開時の電磁弁を示す断面図であり、(b)はインポート半開時の電磁弁の要部を示す要部断面図である。(A) is sectional drawing which shows the solenoid valve at the time of import half-opening, (b) is principal part sectional drawing which shows the principal part of the solenoid valve at the time of import half-opening. (a)はインポート全開時の電磁弁を示す断面図であり、(b)はインポート全開時の電磁弁の要部を示す要部断面図である。(A) is sectional drawing which shows the solenoid valve at the time of import full open, (b) is principal part sectional drawing which shows the principal part of the solenoid valve at the time of import full open.

符号の説明Explanation of symbols

1 電磁弁
2 スプール
3 スリーブ
18 ダンパ室
19 絞り
21 内部開口部
1 Solenoid valve 2 Spool 3 Sleeve 18 Damper chamber 19 Restriction 21 Internal opening

Claims (3)

電磁アクチュエータにより駆動力を得て作動し、流体の流れを制御する電磁弁において、
前記電磁アクチュエータから駆動力を伝達され軸方向一方側に変位するとともに、流体圧に応じて変位量を可変するスプールと、このスプールを軸方向に摺動自在に収容するスリーブとを備え、
このスリーブの一方側の内部空間は、前記スプールにより封鎖され、前記スプールの変位に伴い流体が流出入するダンパ室をなし、
このダンパ室からの流体の流出入は、前記スリーブを貫通する絞りを介して行われ、
前記絞りは、前記絞りを介する流体の流出入における有効流路面積を、前記スプールの変位量に応じて可変できるように設けられていることを特徴とする電磁弁。
In an electromagnetic valve that operates by obtaining driving force by an electromagnetic actuator and controls the flow of fluid,
A spool that receives a driving force transmitted from the electromagnetic actuator and is displaced to one side in the axial direction, and varies a displacement amount according to fluid pressure; and a sleeve that slidably accommodates the spool in the axial direction,
The internal space on one side of the sleeve is sealed by the spool, and forms a damper chamber in which fluid flows in and out with displacement of the spool.
The inflow and outflow of fluid from the damper chamber is performed through a throttle that penetrates the sleeve,
The electromagnetic valve according to claim 1, wherein the restrictor is provided so that an effective flow path area in fluid inflow and inflow through the restrictor can be varied in accordance with a displacement amount of the spool.
請求項1に記載の電磁弁において、
前記絞りの内部開口部の周縁および前記スプールの外周の少なくとも一方を加工することで、前記有効流路面積と前記スプールの変位量との相関を可変することを特徴とする電磁弁。
The solenoid valve according to claim 1,
An electromagnetic valve characterized in that the correlation between the effective flow path area and the amount of displacement of the spool is varied by processing at least one of the peripheral edge of the inner opening of the throttle and the outer periphery of the spool.
請求項1または請求項2に記載の電磁弁において、
流体は、油圧を得るための作動油であり、
油圧に応じて、前記スプールの変位量が可変されることを特徴とする電磁弁。
The solenoid valve according to claim 1 or 2,
The fluid is hydraulic oil for obtaining hydraulic pressure,
An electromagnetic valve characterized in that a displacement amount of the spool is varied in accordance with hydraulic pressure.
JP2006014609A 2006-01-24 2006-01-24 solenoid valve Expired - Fee Related JP4631722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006014609A JP4631722B2 (en) 2006-01-24 2006-01-24 solenoid valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006014609A JP4631722B2 (en) 2006-01-24 2006-01-24 solenoid valve

Publications (2)

Publication Number Publication Date
JP2007198415A JP2007198415A (en) 2007-08-09
JP4631722B2 true JP4631722B2 (en) 2011-02-16

Family

ID=38453218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006014609A Expired - Fee Related JP4631722B2 (en) 2006-01-24 2006-01-24 solenoid valve

Country Status (1)

Country Link
JP (1) JP4631722B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48102447U (en) * 1972-03-06 1973-12-01
JPS5831406U (en) * 1981-08-27 1983-03-01 ハンド−ザ−工業株式会社 Shock compression cylinder
JPH11210919A (en) * 1998-01-27 1999-08-06 Denso Corp Spool valve type hydraulic control valve
JP2000220762A (en) * 1998-11-25 2000-08-08 Toyota Motor Corp Solenoid valve
JP2004360889A (en) * 2003-05-30 2004-12-24 Borgwarner Inc Solenoid control valve
JP2005273912A (en) * 2004-03-25 2005-10-06 Eaton Corp Spool valve having baffle-like reservoir port for damping and electromagnetically operated and a method of manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48102447U (en) * 1972-03-06 1973-12-01
JPS5831406U (en) * 1981-08-27 1983-03-01 ハンド−ザ−工業株式会社 Shock compression cylinder
JPH11210919A (en) * 1998-01-27 1999-08-06 Denso Corp Spool valve type hydraulic control valve
JP2000220762A (en) * 1998-11-25 2000-08-08 Toyota Motor Corp Solenoid valve
JP2004360889A (en) * 2003-05-30 2004-12-24 Borgwarner Inc Solenoid control valve
JP2005273912A (en) * 2004-03-25 2005-10-06 Eaton Corp Spool valve having baffle-like reservoir port for damping and electromagnetically operated and a method of manufacturing the same

Also Published As

Publication number Publication date
JP2007198415A (en) 2007-08-09

Similar Documents

Publication Publication Date Title
JP5369400B2 (en) Flow control valve
US9732863B2 (en) Fluid control valve
KR20030050187A (en) Hydraulic relief valve
JP4631722B2 (en) solenoid valve
JP2011214693A (en) Solenoid spool valve
JP5708618B2 (en) Hydraulic control valve
JP4749103B2 (en) Load sensing control device
JP6609859B2 (en) Governor driving device and governor
WO2019177154A1 (en) Relief valve
JP2004360751A (en) Hydraulic control device
JP5616748B2 (en) Pressure regulator
JP4987393B2 (en) Pressure control valve
JP4303717B2 (en) Pressure reducing valve and water supply device
JP2005140248A (en) Spool valve with structure for reducing hydrodynamic force by notch
JP3872464B2 (en) Pressure reducing valve device
JP2012149681A (en) Spool valve
JP4917882B2 (en) Infinitely variable directional valve
JP7078140B2 (en) Pressure control valve
JP4841369B2 (en) Actuator control device
JP2002188603A (en) Switching valve
JP2005202736A (en) Pressure reducing valve system
JP2010174940A (en) Sequence valve
JP2008275041A (en) Load sensing control circuit
KR100387828B1 (en) control system for varying line pressure of auto transmission
JP2017137951A (en) Solenoid valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101101

R151 Written notification of patent or utility model registration

Ref document number: 4631722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees