JP4630676B2 - Drive device - Google Patents

Drive device Download PDF

Info

Publication number
JP4630676B2
JP4630676B2 JP2005016650A JP2005016650A JP4630676B2 JP 4630676 B2 JP4630676 B2 JP 4630676B2 JP 2005016650 A JP2005016650 A JP 2005016650A JP 2005016650 A JP2005016650 A JP 2005016650A JP 4630676 B2 JP4630676 B2 JP 4630676B2
Authority
JP
Japan
Prior art keywords
vibration
vibration type
drive
motors
actuators
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005016650A
Other languages
Japanese (ja)
Other versions
JP2006211742A (en
JP2006211742A5 (en
Inventor
義文 西本
博和 橋爪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Canon Precision Inc
Original Assignee
Canon Inc
Canon Precision Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc, Canon Precision Inc filed Critical Canon Inc
Priority to JP2005016650A priority Critical patent/JP4630676B2/en
Publication of JP2006211742A publication Critical patent/JP2006211742A/en
Publication of JP2006211742A5 publication Critical patent/JP2006211742A5/ja
Application granted granted Critical
Publication of JP4630676B2 publication Critical patent/JP4630676B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、少なくとも3つの振動型アクチュエータを駆動源として用いた駆動装置に関するものである。
The present invention relates to a drive device using at least three vibration actuators as drive sources.

従来の駆動装置では、複数の振動型モータを駆動源として用い、これら振動型モータからの駆動力を合成して被駆動部材に伝達しているものがある(例えば、特許文献1参照)。具体的には、各振動型モータからの駆動力を1つの出力軸に伝達し、この出力軸で合成された駆動力によって被駆動部材を駆動している。   Some conventional drive devices use a plurality of vibration-type motors as drive sources and synthesize drive forces from these vibration-type motors and transmit them to a driven member (see, for example, Patent Document 1). Specifically, the driving force from each vibration type motor is transmitted to one output shaft, and the driven member is driven by the driving force synthesized by this output shaft.

この駆動装置では、各振動型モータに連結された動力伝達機構における増減速比や、振動型モータの数に応じて、様々な回転数や出力トルクを得ることができる。そして、被駆動部材に対して、所望の駆動力を供給することができる。
特開平06−197564号公報(段落番号0008〜0025、図1等)
In this drive device, various rotation speeds and output torques can be obtained according to the speed increase / decrease ratio in the power transmission mechanism connected to each vibration type motor and the number of vibration type motors. A desired driving force can be supplied to the driven member.
Japanese Patent Laid-Open No. 06-197564 (paragraph numbers 0008 to 0025, FIG. 1, etc.)

上述した駆動装置では、複数の振動型モータが1つの出力軸に連結されているため、これら振動型モータを略等しい回転数で駆動する必要がある。しかしながら、複数の振動型モータにおいて、駆動特性に大きな差が生じている場合には、いわゆる鳴き現象が発生してしまう。   In the drive device described above, since a plurality of vibration type motors are connected to one output shaft, it is necessary to drive these vibration type motors at substantially the same number of revolutions. However, when there is a large difference in drive characteristics among a plurality of vibration motors, a so-called squealing phenomenon occurs.

すなわち、他の振動型モータに比べて回転数の小さい振動型モータが、他の振動型モータの駆動による影響を受けることによって、鳴き現象が発生してしまう。そして、鳴き現象が発生した振動型モータにおいては、回転数や出力トルクが低下してしまう。   That is, a squealing phenomenon occurs when a vibration type motor having a smaller number of rotations than other vibration type motors is affected by the drive of the other vibration type motor. In the vibration type motor in which the squeal phenomenon occurs, the rotation speed and the output torque are reduced.

本発明の1つの目的は、少なくとも3つの振動型アクチュエータを駆動源として用いた駆動装置において、各振動型アクチュエータにおける鳴きの発生を抑制することができる駆動装置を提供することにある。
One object of the present invention is to provide a drive device that can suppress the occurrence of squeal in each vibration type actuator in a drive device using at least three vibration type actuators as a drive source.

本発明の駆動装置は、電気−機械エネルギ変換素子への駆動信号の印加によって振動を発生する振動体と、該振動体に接触する接触体を備える、少なくとも3つの振動型アクチュエータと、少なくとも3つの振動型アクチュエータに同一の駆動信号を印加するための回路と、少なくとも3つの振動型アクチュエータからの駆動力を合成して被駆動部材に伝達する動力伝達機構とを有する。ここで、少なくとも3つの振動型アクチュエータに同一の駆動信号を印加した場合に、これら振動型アクチュエータにおける回転数の平均値よりも低い回転数で駆動する振動型アクチュエータの数が、上記回転数の平均値よりも高い回転数で駆動する振動型アクチュエータの数よりも多くしている。
The drive device according to the present invention includes a vibration body that generates vibration by applying a drive signal to the electromechanical energy conversion element , at least three vibration-type actuators including a contact body that contacts the vibration body, and at least three It has a circuit for applying the same drive signal to the vibration type actuator, and a power transmission mechanism for synthesizing drive forces from at least three vibration type actuators and transmitting them to the driven member. Here, when the same drive signal is applied to at least three vibration-type actuators, the number of vibration-type actuators driven at a lower rotation speed than the average rotation speed of these vibration-type actuators is the average of the rotation speeds. More than the number of vibration type actuators driven at a higher rotational speed than the value.

本発明によれば、少なくとも3つの振動型アクチュエータを駆動した場合に、いずれかの振動型アクチュエータにおいて鳴き現象が発生するのを抑制することができる。
According to the present invention, when at least three vibration actuators are driven, it is possible to suppress the occurrence of a squeal phenomenon in any of the vibration actuators.

以下、本発明の実施例について説明する。   Examples of the present invention will be described below.

図1は、本発明の実施例1である駆動装置の構成を示す概略図である。   FIG. 1 is a schematic diagram showing the configuration of a drive apparatus that is Embodiment 1 of the present invention.

図1において、動力伝達機構の一部である回転軸1には、動力伝達機構の一部である伝達部材(ギヤ)2が固定されている。また、回転軸1は、不図示の動力伝達機構(回転軸1及び伝達部材2以外の機構)を介して被駆動部材24に連結されている。
In FIG. 1, a transmission member (gear) 2 which is a part of the power transmission mechanism is fixed to a rotary shaft 1 which is a part of the power transmission mechanism . The rotating shaft 1 is connected to the driven member 24 through a power transmission mechanism ( not shown ) (mechanism other than the rotating shaft 1 and the transmission member 2) .

伝達部材2は、伝達部材(ギヤ)3〜8と噛み合っている。各伝達部材3〜8は、各振動型モータ9〜14の出力軸に固定されている。振動型モータ9〜14は、回転軸1の軸回りに配置されている。   The transmission member 2 meshes with the transmission members (gears) 3 to 8. Each transmission member 3-8 is being fixed to the output shaft of each vibration type motor 9-14. The vibration type motors 9 to 14 are arranged around the rotation shaft 1.

上述した構成において、各振動型モータ9〜14の駆動力は、伝達部材3〜8および伝達部材2を介して回転軸1に伝達され、この伝達経路において駆動力が合成される。そして、回転軸1の回転力は、動力伝達機構(不図示)を介して被駆動部材24に伝達され、被駆動部材24が動作することになる。
In the above configuration, the driving force of the vibration type motor 9 to 14 is transmitted to the rotating shaft 1 via a respective transmission member 3-8 and the transmitting member 2, the driving force is synthesized in this pathway. And the rotational force of the rotating shaft 1 is transmitted to the driven member 24 via a power transmission mechanism (not shown), and the driven member 24 operates.

ここで、被駆動部材24としては、例えば、搭載されたTVカメラ等を旋回させる電動雲台装置の駆動部、半導体製造装置において直線動作を行わせる電動ステージ、撮影光学系内の撮影レンズを光軸方向に移動させる駆動部、画像形成装置における感光ドラムがある。   Here, as the driven member 24, for example, a driving unit of an electric head device for turning a mounted TV camera or the like, an electric stage for performing a linear operation in a semiconductor manufacturing apparatus, and a photographing lens in a photographing optical system are used as light. There is a drive unit that moves in the axial direction, and a photosensitive drum in the image forming apparatus.

各振動型モータ9〜14には、各駆動回路15〜20からの駆動信号が入力される。各駆動回路15〜20には、駆動信号を供給する発振回路21および制御回路22が接続されている。上述した各回路には、電源回路23から所定の電力が供給される。   Drive signals from the drive circuits 15 to 20 are input to the vibration motors 9 to 14, respectively. An oscillation circuit 21 and a control circuit 22 that supply drive signals are connected to each of the drive circuits 15 to 20. Predetermined power is supplied from the power supply circuit 23 to each circuit described above.

発振回路21は、制御回路22からの制御信号を受けると、該制御信号に応じた周波数の信号を各駆動回路15〜20に出力する。各駆動回路15〜20は、90度の位相差をもつ2相の交流電圧(駆動信号)を出力し、この2相の交流電圧は各振動型モータ9〜14に印加される。
When receiving the control signal from the control circuit 22, the oscillation circuit 21 outputs a signal having a frequency corresponding to the control signal to each of the drive circuits 15-20. Each drive circuit 15-20 outputs a two-phase AC voltage (drive signal) having a phase difference of 90 degrees, and this two-phase AC voltage is applied to each vibration motor 9-14.

各振動型モータ9〜14は、図2に示す構造を有している。振動型モータにおいては、電気−機械エネルギ変換素子としての圧電素子26に交流電圧を印加することによって圧電素子26を伸縮させ、この伸縮を利用して弾性体25に進行性の振動波を発生させる。そして、この進行性振動波によって、弾性体25に加圧接触した回転体(接触体)29が回転する。   Each vibration type motor 9-14 has the structure shown in FIG. In the vibration type motor, an AC voltage is applied to the piezoelectric element 26 as an electro-mechanical energy conversion element to expand and contract the piezoelectric element 26, and a progressive vibration wave is generated in the elastic body 25 using the expansion and contraction. . Then, the rotating body (contact body) 29 in pressure contact with the elastic body 25 is rotated by the progressive vibration wave.

円環状の弾性体25の一端面には圧電素子26が接着され、回転体29と接触する他端面側には合成樹脂の摩擦材27が接着されている。これにより、振動体28が構成される。回転体29は、加圧ばね30および加圧用リング31を有する加圧機構32からの加圧力を受けることにより、摩擦材27に圧接している。   A piezoelectric element 26 is bonded to one end surface of the annular elastic body 25, and a synthetic resin friction material 27 is bonded to the other end surface side in contact with the rotating body 29. Thereby, the vibrating body 28 is configured. The rotating body 29 is in pressure contact with the friction material 27 by receiving pressure from a pressure mechanism 32 having a pressure spring 30 and a pressure ring 31.

振動体28の圧電素子26に位相の90度ずれた2相の交流電圧が印加されると、振動体28には進行性振動波が発生し、摩擦材27および回転体29間の摩擦によって回転体29が振動体28に対して回転する。回転体29には軸33が固定されており、軸33は回転体29と一体となって回転する。   When a two-phase AC voltage having a phase difference of 90 degrees is applied to the piezoelectric element 26 of the vibrating body 28, a progressive vibration wave is generated in the vibrating body 28 and rotates due to friction between the friction material 27 and the rotating body 29. The body 29 rotates with respect to the vibrating body 28. A shaft 33 is fixed to the rotating body 29, and the shaft 33 rotates together with the rotating body 29.

本実施例では、図2に示すように環状タイプの振動型モータを用いた場合について説明したが、いわゆる棒状タイプなどの他の振動型モータを用いてもよい。   In the present embodiment, the case of using the annular type vibration type motor as shown in FIG. 2 has been described, but other vibration type motors such as a so-called rod type may be used.

上述した振動型モータの構成において、振動体28の圧電素子26に印加される交流電圧の周波数が振動体28の共振周波数に近づくほど、振動体28の振動振幅が増加し、振動体28に加圧接触した回転体29をより速く回転させることができる。   In the configuration of the vibration type motor described above, the vibration amplitude of the vibration body 28 increases as the frequency of the AC voltage applied to the piezoelectric element 26 of the vibration body 28 approaches the resonance frequency of the vibration body 28, and is applied to the vibration body 28. The rotating body 29 in pressure contact can be rotated faster.

図3および図4は、振動型モータ(圧電素子)に印加される駆動信号の周波数(駆動周波数)と、振動型モータの回転数との関係を示したものである。図3および図4では、2つの振動型モータの駆動特性を示している。図3のfr1、fr2および、図4のfr1’、fr2’は、各振動型モータの共振周波数を示す。   3 and 4 show the relationship between the frequency (drive frequency) of the drive signal applied to the vibration type motor (piezoelectric element) and the rotation speed of the vibration type motor. 3 and 4 show the drive characteristics of the two vibration motors. Fr1 and fr2 in FIG. 3 and fr1 ′ and fr2 ′ in FIG. 4 indicate resonance frequencies of the vibration motors.

各振動型モータにおいては、駆動周波数が高周波側から共振周波数fr1、fr2、fr1’、fr2’に近づくに従って回転数が増加する特性を有している。   Each vibration type motor has a characteristic that the rotational frequency increases as the drive frequency approaches the resonance frequencies fr1, fr2, fr1 ', fr2' from the high frequency side.

図3は、各振動型モータを構成する振動体の共振周波数の差「|fr1−fr2|」が図4に示す場合に比べて小さい場合を示している。   FIG. 3 shows a case where the difference “| fr1-fr2 |” of the resonance frequencies of the vibrating bodies constituting each vibration type motor is smaller than the case shown in FIG.

図3において、駆動周波数f1で各振動型モータを駆動すると、回転数の差は「N1−N2(N1>N2)」となる。また、駆動周波数f2で各振動型モータを駆動すると、回転数の差は「N3−N4(N3>N4)」となる。さらに、駆動周波数f3で各振動型モータを駆動すると、回転数の差が「N5−N6(N5>N6)」となる。   In FIG. 3, when each vibration type motor is driven at the drive frequency f1, the difference in the rotational speed is “N1−N2 (N1> N2)”. Further, when each vibration type motor is driven at the drive frequency f2, the difference in the rotational speed is “N3−N4 (N3> N4)”. Further, when each vibration type motor is driven at the drive frequency f3, the difference in the rotational speed becomes “N5−N6 (N5> N6)”.

一方、図4は、各振動型モータを構成する振動体の共振周波数の差「|fr1’−fr2’|」が図3に示す場合に比べて大きい場合を示している。   On the other hand, FIG. 4 shows a case where the difference “| fr1′−fr2 ′ |” of the resonance frequencies of the vibrators constituting each vibration type motor is larger than that shown in FIG.

図4において、駆動周波数f1で各振動型モータを駆動すると、回転数の差は「N1’−N2’(N1’>N2’)」となる。また、駆動周波数f2で各振動型モータを駆動すると、回転数の差は「N3’−N4’(N3’>N4’)」となる。さらに、駆動周波数f3で各振動型モータを駆動すると、回転数の差が「N5’−N6’(N5’>N6’)」となる。   In FIG. 4, when each vibration type motor is driven at the drive frequency f1, the difference in the rotational speed is “N1′−N2 ′ (N1 ′> N2 ′)”. Further, when each vibration motor is driven at the drive frequency f2, the difference in the rotational speed is “N3′−N4 ′ (N3 ′> N4 ′)”. Further, when each vibration type motor is driven at the drive frequency f3, the difference in the rotational speed becomes “N5′−N6 ′ (N5 ′> N6 ′)”.

このように振動型モータの共振周波数に差がある場合には、同じ駆動周波数で振動型モータを駆動すると回転数に差が生じ、駆動周波数が共振周波数に近づくほど回転数の差が大きくなる。   When there is a difference in the resonance frequency of the vibration type motor as described above, when the vibration type motor is driven at the same drive frequency, a difference occurs in the rotation speed, and the difference in the rotation speed increases as the drive frequency approaches the resonance frequency.

図4に示すように共振周波数の差が大きい振動型モータを複数用いた場合であって、回転数の高い側の振動型モータの数が、回転数の低い側の振動型モータの数よりも多い場合には、各振動型モータに同じ駆動周波数を印加することによって、以下に説明する不具合が生じる。   As shown in FIG. 4, in the case where a plurality of vibration type motors having a large difference in resonance frequency are used, the number of vibration type motors on the higher rotation side is larger than the number of vibration type motors on the lower rotation side. In many cases, applying the same drive frequency to each vibration type motor causes the problems described below.

振動型モータの回転数の差が所定値を超えたとき、すなわち、駆動周波数が所定の周波数よりも小さく、かつ、共振周波数よりも大きい範囲内にあるときに、回転数の低い側の振動型モータにおいて鳴き現象が発生することがある。すなわち、回転数の低い側の振動型モータが、回転数の高い側の振動型モータの駆動による影響を受けることで、鳴き現象が発生してしまう。   When the difference in rotational speed of the vibration type motor exceeds a predetermined value, that is, when the drive frequency is smaller than the predetermined frequency and within the range higher than the resonance frequency, the vibration type on the lower rotational speed side A squeaking phenomenon may occur in the motor. That is, the squealing phenomenon occurs because the vibration type motor on the low rotation speed side is affected by the driving of the vibration type motor on the high rotation speed side.

このように鳴き現象が発生した振動型モータでは、さらに回転数が低下し、より一層鳴き現象を助長することになる。そして、回転数の低下によって、駆動装置におけるトルクが低下してしまう。   In the vibration type motor in which the squeal phenomenon has occurred in this way, the rotational speed is further reduced, and the squeal phenomenon is further promoted. And the torque in a drive device will fall by the fall of rotation speed.

同じ駆動周波数を複数の振動型モータに印加して、複数の振動型モータを同じ回転数で回転させるためには、図3および図4に示す駆動周波数と回転数の関係が略一致している必要がある。   In order to apply the same drive frequency to a plurality of vibration-type motors and rotate the plurality of vibration-type motors at the same rotation speed, the relationship between the drive frequency and the rotation speed shown in FIGS. 3 and 4 is substantially the same. There is a need.

しかしながら、各振動型モータ9〜14における振動体28は、上述したように弾性体25、圧電素子26および摩擦材27で構成されており、僅かなバラツキがある。このため、振動型モータ9〜14の振動体28では、共振周波数に差が生じ、結果として振動型モータ9〜14における共振周波数が異なってしまう。   However, the vibrating body 28 in each of the vibration type motors 9 to 14 includes the elastic body 25, the piezoelectric element 26, and the friction material 27 as described above, and has slight variations. For this reason, in the vibrating body 28 of the vibration type motors 9 to 14, a difference occurs in the resonance frequency, and as a result, the resonance frequencies in the vibration type motors 9 to 14 are different.

このように振動型モータ9〜14の共振周波数が異なっている場合には、上述したように、回転数の小さい側の振動型モータにおいて鳴き現象が発生してしまう。   In this way, when the resonance frequencies of the vibration type motors 9 to 14 are different, as described above, a squealing phenomenon occurs in the vibration type motor on the side with a smaller rotation speed.

そこで、本実施例では、各振動型モータ9〜14における共振周波数を、所定の共振周波数に対して、該所定の共振周波数の略1%以下の範囲内となるように設定している。各振動型モータ9〜14の共振周波数は、駆動装置内に組み込む前に測定しておくことができ、この測定結果が上述した範囲内となっていればよい。   Therefore, in this embodiment, the resonance frequency in each of the vibration type motors 9 to 14 is set to be within a range of about 1% or less of the predetermined resonance frequency with respect to the predetermined resonance frequency. The resonance frequency of each of the vibration type motors 9 to 14 can be measured before being incorporated in the driving device, and the measurement result only needs to be within the above-described range.

このように各振動型モータ9〜14の共振周波数を、所定の共振周波数に対して略1%以下の範囲内とすることで、鳴き現象の発生を抑制することができる。すなわち、各振動型モータ9〜14における振動体28の共振周波数を上述した条件に設定することで、振動型モータ9〜14に対して同じ周波数の駆動信号を印加しても、振動型モータ9〜14間における回転数の差が所定値よりも大きくなるのを抑制できる。これにより、所定値以上の回転数の差によって生じる鳴き現象を抑制できる。   In this way, by setting the resonance frequency of each of the vibration type motors 9 to 14 within a range of approximately 1% or less with respect to the predetermined resonance frequency, occurrence of a squealing phenomenon can be suppressed. That is, by setting the resonance frequency of the vibrating body 28 in each of the vibration type motors 9 to 14 to the above-described condition, even if a drive signal having the same frequency is applied to the vibration type motors 9 to 14, the vibration type motor 9. It can suppress that the difference of the rotation speed between ~ 14 becomes larger than predetermined value. Thereby, the squealing phenomenon which arises by the difference in rotation speed beyond a predetermined value can be suppressed.

例えば、共振周波数が60kHzとなる複数の振動型モータを用いる場合には、各振動型モータ9〜14の共振周波数を、共振周波数60kHzに対して0.6kHz(60kHz×0.1)以内となるように設定すればよい。   For example, when using a plurality of vibration type motors having a resonance frequency of 60 kHz, the resonance frequency of each of the vibration type motors 9 to 14 is within 0.6 kHz (60 kHz × 0.1) with respect to the resonance frequency of 60 kHz. It should be set as follows.

一方、各振動型モータ9〜14の回転数を、所定の回転数に対して、該所定の回転数の略15%以下の範囲内となるように設定してもよい。具体的には、周波数が同じ駆動信号を複数の振動型モータに印加して各振動型モータでの回転数を予め測定しておき、回転数(駆動周波数および回転数の関係を示す駆動特性)が上述した条件を満たす振動型モータを駆動装置内に組み込めばよい。   On the other hand, the rotational speed of each of the vibration type motors 9 to 14 may be set to be within a range of about 15% or less of the predetermined rotational speed with respect to the predetermined rotational speed. Specifically, a drive signal having the same frequency is applied to a plurality of vibration type motors to measure the number of rotations in each vibration type motor in advance, and the number of rotations (drive characteristics indicating the relationship between the drive frequency and the number of rotations). However, a vibration type motor that satisfies the above-described conditions may be incorporated in the drive device.

この場合も、上述したように鳴き現象の発生を抑制することができる。   In this case as well, the occurrence of the squealing phenomenon can be suppressed as described above.

例えば、所定の駆動信号(周波数が同じ駆動信号)を印加して振動型モータ9〜14を200r/minで回転させる場合には、回転数が、回転数200r/minに対して30r/min(200r/min×0.15)以内となる振動型モータを用いればよい。   For example, when a predetermined drive signal (a drive signal having the same frequency) is applied to rotate the vibration type motors 9 to 14 at 200 r / min, the rotation speed is 30 r / min (with respect to the rotation speed 200 r / min). A vibration type motor within 200r / min × 0.15) may be used.

さらに、本実施例のように3つ以上の振動型モータ9〜14を用いる場合において、所定の駆動信号(同一の駆動信号)の印加による複数の振動型モータ9〜14における回転数の平均値を基準値としたとき、該基準値よりも回転数の低い振動型モータの数が、基準値よりも回転数の高い振動型モータの数よりも多くなるようにしてもよい。すなわち、各振動型モータ9〜14の回転数は予め測定しておくことができ、この測定結果に基づいて、上述した条件を満たす振動型モータを駆動装置内に組み込めばよい。   Further, in the case of using three or more vibration type motors 9 to 14 as in this embodiment, the average value of the rotation speeds of the plurality of vibration type motors 9 to 14 by applying a predetermined drive signal (the same drive signal). Is a reference value, the number of vibration motors having a lower rotational speed than the reference value may be larger than the number of vibration motors having a higher rotational speed than the reference value. That is, the rotational speed of each of the vibration type motors 9 to 14 can be measured in advance, and based on the measurement result, a vibration type motor that satisfies the above-described conditions may be incorporated in the drive device.

このように構成しても、複数の振動型モータを駆動した際の鳴き現象の発生を抑制することができる。   Even if comprised in this way, generation | occurrence | production of the noise phenomenon at the time of driving a some vibration type motor can be suppressed.

なお、本実施例では、各振動型モータ9〜14の駆動力を回転軸1に伝達する動力伝達機構としてギヤを用いているが、プーリおよびベルトの組み合わせ、タイミングプーリおよびタイミングベルトの組み合わせ、ロータ等の組み合わせによって動力伝達機構を構成することもできる。
In this embodiment, a gear is used as a power transmission mechanism for transmitting the driving force of each of the vibration type motors 9 to 14 to the rotary shaft 1, but a combination of a pulley and a belt, a combination of a timing pulley and a timing belt, a rotor A power transmission mechanism can also be comprised by the combination of these.

また、本実施例では、6つの振動型モータ9〜14を用いた構成について説明したが、つ以上の振動型モータを用いる場合に本発明を適用することができる。例えば、図5から図7に示すように、3つや4つの振動型モータを駆動装置内に組み込むことができる。
Moreover, although the present Example demonstrated the structure using the six vibration type motors 9-14, this invention can be applied when using three or more vibration type motors. For example, as shown in FIGS. 5 to 7, three or four vibration type motors can be incorporated in the drive device.

さらに、複数の振動型モータを用いた場合において、図5および図6に示すように、回転軸1に固定された伝達部材(ギヤ)の径と、各振動型モータの出力軸に取り付けられた伝達部材(ギヤ)の径を変更する、すなわち、ギヤ比を変更することで、回転軸1におけるトルクや回転数を変更できる。これにより、被駆動部材24に対して、使用目的に対応した適切な駆動力を供給することができる。例えば、ギヤを含む動力伝達機構によって減速比を増加させれば、振動型モータの数を減らすことができ、駆動装置の大型化を抑制することができる。
Further, when a plurality of vibration type motors are used, as shown in FIGS. 5 and 6, the diameter of the transmission member (gear) fixed to the rotary shaft 1 and the output shaft of each vibration type motor are attached. By changing the diameter of the transmission member (gear), that is, by changing the gear ratio, the torque and the number of rotations of the rotary shaft 1 can be changed. As a result, an appropriate driving force corresponding to the purpose of use can be supplied to the driven member 24. For example, if the reduction ratio is increased by a power transmission mechanism including gears, the number of vibration type motors can be reduced, and an increase in the size of the drive device can be suppressed.

本発明の実施例1である駆動装置の構成を示す図。The figure which shows the structure of the drive device which is Example 1 of this invention. 振動型モータの断面図。Sectional drawing of a vibration type motor. 振動型モータの駆動周波数と回転数との関係を示す図。The figure which shows the relationship between the drive frequency and rotation speed of a vibration type motor. 振動型モータの駆動周波数と回転数との関係を示す図。The figure which shows the relationship between the drive frequency and rotation speed of a vibration type motor. 3つの振動型モータを用いた駆動装置の構成を示す図。The figure which shows the structure of the drive device using three vibration type motors. 3つの振動型モータを用いた駆動装置の他の構成を示す図。The figure which shows the other structure of the drive device using three vibration type motors. 4つの振動型モータを用いた駆動装置の構成を示す図。The figure which shows the structure of the drive device using four vibration type motors.

符号の説明Explanation of symbols

1:回転軸
2:伝達部材(ギヤ)
3〜8:伝達部材(ギヤ)
9〜14:振動型モータ
24:被駆動部材
28:振動体
29:回転体
32:加圧機構
33:軸

1: Rotating shaft 2: Transmission member (gear)
3-8: Transmission member (gear)
9-14: Vibration type motor 24: Driven member 28: Vibrating body 29: Rotating body 32: Pressurizing mechanism 33: Shaft

Claims (1)

電気−機械エネルギ変換素子への駆動信号の印加によって振動を発生する振動体と、該振動体に接触する接触体を備える、少なくとも3つの振動型アクチュエータと、
前記少なくとも3つの振動型アクチュエータに同一の駆動信号を印加するための回路と、
前記少なくとも3つの振動型アクチュエータからの駆動力を合成して被駆動部材に伝達する動力伝達機構とを有し、
前記少なくとも3つの振動型アクチュエータに同一の駆動信号を印加した場合に、これら振動型アクチュエータにおける回転数の平均値よりも低い回転数で駆動する振動型アクチュエータの数が、前記回転数の平均値よりも高い回転数で駆動する振動型アクチュエータの数よりも多いことを特徴とする駆動装置。
A vibration body that generates vibration by applying a drive signal to the electromechanical energy conversion element; and at least three vibration-type actuators including a contact body that contacts the vibration body;
A circuit for applying the same drive signal to the at least three vibration actuators;
A power transmission mechanism that synthesizes the driving force from the at least three vibration-type actuators and transmits it to the driven member;
When the same drive signal is applied to the at least three vibration actuators, the number of vibration actuators that are driven at a lower rotation speed than the average rotation speed of these vibration actuators is greater than the average rotation speed. The number of vibration type actuators driven at a high rotational speed is larger than the number of vibration type actuators.
JP2005016650A 2005-01-25 2005-01-25 Drive device Expired - Fee Related JP4630676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005016650A JP4630676B2 (en) 2005-01-25 2005-01-25 Drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005016650A JP4630676B2 (en) 2005-01-25 2005-01-25 Drive device

Publications (3)

Publication Number Publication Date
JP2006211742A JP2006211742A (en) 2006-08-10
JP2006211742A5 JP2006211742A5 (en) 2008-03-06
JP4630676B2 true JP4630676B2 (en) 2011-02-09

Family

ID=36967986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005016650A Expired - Fee Related JP4630676B2 (en) 2005-01-25 2005-01-25 Drive device

Country Status (1)

Country Link
JP (1) JP4630676B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5262360B2 (en) * 2008-07-03 2013-08-14 株式会社豊田自動織機 Driving method and driving apparatus for ultrasonic motor
JPWO2011125719A1 (en) * 2010-03-31 2013-07-08 株式会社ニコン MOTOR DEVICE, ROTOR DRIVE METHOD, AND ROBOT DEVICE
JP5854631B2 (en) * 2011-04-27 2016-02-09 キヤノン株式会社 Drive control method, pan head device, stage, and actuator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001205190A (en) * 2000-01-27 2001-07-31 Canon Inc Output device using vibration type drive assembly and device having this output device
JP2003134857A (en) * 2001-10-29 2003-05-09 Canon Inc Drive unit for vibration wave motor
JP2003333872A (en) * 2002-05-15 2003-11-21 Canon Inc Driving device for laminated vibration-type actuator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001205190A (en) * 2000-01-27 2001-07-31 Canon Inc Output device using vibration type drive assembly and device having this output device
JP2003134857A (en) * 2001-10-29 2003-05-09 Canon Inc Drive unit for vibration wave motor
JP2003333872A (en) * 2002-05-15 2003-11-21 Canon Inc Driving device for laminated vibration-type actuator

Also Published As

Publication number Publication date
JP2006211742A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
JP2009533701A (en) One kind of integrated optical equipment focus control / zoom system
JP6866128B2 (en) Vibration type actuator drive method, vibration type drive device and mechanical device
JP2011163521A (en) Rotary drive unit
JP4882279B2 (en) Vibration wave motor
JP4630676B2 (en) Drive device
US10917024B2 (en) Vibration-type drive apparatus, robot, image forming apparatus, and image pickup apparatus that inhibit undesired vibration
KR100485882B1 (en) Vibration element and vibration wave driving apparatus
JP5932402B2 (en) Vibration wave drive
JP2006197697A (en) Drive unit
JP5218045B2 (en) Vibration actuator, lens barrel, camera system, and driving method of vibration actuator
JPS62225182A (en) Oscillatory wave motor
CN101931340B (en) Vibration wave driven apparatus and image pickup apparatus including vibration wave driven apparatus
JP4328731B2 (en) Pan head device and pan head system
US9401667B2 (en) Vibration-type driving device
JP4667646B2 (en) Camera lens drive device
JP6292737B2 (en) Control method of vibration type driving device
JPH09201081A (en) Apparatus and method for driving by using vibrating actuator
JP5285006B2 (en) Lens drive device
JP4784154B2 (en) Vibration actuator
JP2006288106A (en) Driving apparatus and control method
JP4924726B2 (en) Vibration wave motor, lens barrel and camera
JP2011167067A (en) Vibration actuator
JP5825833B2 (en) Drive control method, pan head device and stage
JP2010246272A (en) Vibration actuator, lens barrel, camera, and method of manufacturing vibration actuator
JP6164874B2 (en) Vibration type driving device and imaging device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080122

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081211

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4630676

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees