JP4630601B2 - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP4630601B2
JP4630601B2 JP2004239883A JP2004239883A JP4630601B2 JP 4630601 B2 JP4630601 B2 JP 4630601B2 JP 2004239883 A JP2004239883 A JP 2004239883A JP 2004239883 A JP2004239883 A JP 2004239883A JP 4630601 B2 JP4630601 B2 JP 4630601B2
Authority
JP
Japan
Prior art keywords
piping
fuel cell
connecting portion
electrically insulating
insulating resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004239883A
Other languages
Japanese (ja)
Other versions
JP2006059652A (en
Inventor
雅彦 佐藤
隆之 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004239883A priority Critical patent/JP4630601B2/en
Publication of JP2006059652A publication Critical patent/JP2006059652A/en
Application granted granted Critical
Publication of JP4630601B2 publication Critical patent/JP4630601B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、電解質の両側に一対の電極を設けた電解質・電極構造体を、セパレータにより挟持する発電セルを設け、少なくとも反応ガス又は冷却媒体を流す流路が形成されるとともに、前記流路に連通する配管接続部を設けた燃料電池と、前記配管接続部に装着される配管部材とを備える燃料電池システムに関する。   The present invention provides a power generation cell that sandwiches an electrolyte / electrode structure provided with a pair of electrodes on both sides of an electrolyte with a separator, and at least a flow path for flowing a reaction gas or a cooling medium is formed. The present invention relates to a fuel cell system including a fuel cell provided with a pipe connection portion that communicates with a pipe member attached to the pipe connection portion.

例えば、固体高分子型燃料電池は、高分子イオン交換膜からなる電解質膜(電解質)の両側に、それぞれアノード側電極及びカソード側電極を対設した電解質膜・電極構造体を、セパレータによって挟持した発電セルを備えている。この種の燃料電池は、通常、所定の数の発電セルを積層することにより、燃料電池スタックとして使用されている。   For example, in a polymer electrolyte fuel cell, an electrolyte membrane / electrode structure in which an anode side electrode and a cathode side electrode are provided on both sides of an electrolyte membrane (electrolyte) made of a polymer ion exchange membrane is sandwiched between separators. It has a power generation cell. This type of fuel cell is normally used as a fuel cell stack by stacking a predetermined number of power generation cells.

この燃料電池において、アノード側電極には、燃料ガス、例えば、主に水素を含有するガス(以下、水素含有ガスともいう)が供給される一方、カソード側電極には、酸化剤ガス、例えば、主に酸素を含有するガスあるいは空気(以下、酸素含有ガスともいう)が供給されている。アノード側電極に供給された燃料ガスは、電極触媒上で水素がイオン化され、電解質膜を介してカソード側電極側へと移動する。その間に生じた電子は外部回路に取り出され、直流の電気エネルギとして利用される。   In this fuel cell, a fuel gas, for example, a gas mainly containing hydrogen (hereinafter also referred to as hydrogen-containing gas) is supplied to the anode side electrode, while an oxidant gas, for example, A gas or air mainly containing oxygen (hereinafter also referred to as oxygen-containing gas) is supplied. In the fuel gas supplied to the anode side electrode, hydrogen is ionized on the electrode catalyst and moves to the cathode side electrode side through the electrolyte membrane. Electrons generated during that time are taken out to an external circuit and used as direct current electric energy.

上記の燃料電池では、燃料ガス、酸化剤ガス及び冷却媒体を流すために、種々の配管構造が採用されている。例えば、特許文献1に開示されている燃料電池の冷却装置では、図8に示すように、単セル1と冷却板2とを組み合せたセルスタック3を備えている。このセルスタック3の周側面には、冷媒ヘッダ兼用の燃料ガス供給用マニホールド4a及び燃料ガス排出用マニホールド4bと、酸化剤ガス供給用マニホールド5a及び酸化剤ガス排出用マニホールド5bとが配設されている。   In the fuel cell described above, various piping structures are employed for flowing the fuel gas, the oxidant gas, and the cooling medium. For example, the fuel cell cooling device disclosed in Patent Document 1 includes a cell stack 3 in which a single cell 1 and a cooling plate 2 are combined as shown in FIG. On the peripheral side surface of the cell stack 3, a fuel gas supply manifold 4a and a fuel gas discharge manifold 4b, which are also used as a refrigerant header, an oxidant gas supply manifold 5a and an oxidant gas discharge manifold 5b are disposed. Yes.

燃料ガス供給用マニホールド4aには、入口中空部6aが設けられ、前記入口中空部6aに分岐管継手7aを介して冷媒チューブ8の一端が接続されている。冷媒チューブ8は、冷却板2に設けられている凹溝(図示せず)に嵌合して配管され、セルスタック3の側部で分岐管継手7bを介して出口中空部6bに接続されている。   The fuel gas supply manifold 4a is provided with an inlet hollow portion 6a, and one end of a refrigerant tube 8 is connected to the inlet hollow portion 6a via a branch pipe joint 7a. The refrigerant tube 8 is piped by fitting into a concave groove (not shown) provided in the cooling plate 2, and is connected to the outlet hollow portion 6 b via the branch pipe joint 7 b on the side portion of the cell stack 3. Yes.

冷媒チューブ8は、電気絶縁性を有する可撓性チューブであり、例えば、フッ素樹脂(電解質のリン酸に対する耐腐食が高い)で構成されている。これにより、単セル1間に電気的な短絡回路が形成されることを有効に阻止することができる、としている。   The refrigerant tube 8 is a flexible tube having electrical insulation properties, and is made of, for example, a fluororesin (highly resistant to electrolyte phosphoric acid). As a result, it is possible to effectively prevent the formation of an electrical short circuit between the single cells 1.

特開平5−82142号公報(図1)Japanese Patent Laid-Open No. 5-82142 (FIG. 1)

しかしながら、上記の特許文献1では、冷媒チューブ8がフッ素樹脂で形成されるため、例えば、金属製配管に比べて変形し易く、耐久性が低下するという問題がある。しかも、温度変化に対する軸径の変化が惹起し、運転環境によっては所望のシール性を維持することができないという問題がある。また、度重なる軸径の変化により経時劣化が惹起されるおそれがある。   However, in said patent document 1, since the refrigerant | coolant tube 8 is formed with a fluororesin, there exists a problem that it is easy to deform | transform compared with metal piping, for example, and durability falls. In addition, there is a problem in that a change in shaft diameter with respect to a temperature change is caused, and a desired sealing property cannot be maintained depending on the operating environment. In addition, deterioration with time may be caused by repeated changes in the shaft diameter.

本発明はこの種の問題を解決するものであり、簡単な構成で、電気的絶縁性に優れるとともに、温度変化に対する寸法変化及び経時劣化を良好に阻止することが可能な燃料電池システムを提供することを目的とする。   The present invention solves this type of problem, and provides a fuel cell system that has a simple structure, excellent electrical insulation, and can satisfactorily prevent dimensional changes and deterioration over time with respect to temperature changes. For the purpose.

本発明は、電解質の両側に一対の電極を設けた電解質・電極構造体を、セパレータにより挟持する発電セルを設け、少なくとも反応ガス又は冷却媒体を流す流路が形成されるとともに、前記流路に連通する配管接続部を設けた燃料電池と、前記配管接続部に装着される配管部材とを備える燃料電池システムである。   The present invention provides a power generation cell that sandwiches an electrolyte / electrode structure provided with a pair of electrodes on both sides of an electrolyte with a separator, and at least a flow path for flowing a reaction gas or a cooling medium is formed. A fuel cell system comprising a fuel cell provided with a connecting pipe connection portion and a piping member attached to the piping connection portion.

配管部材は、電気絶縁樹脂製配管本体と、前記電気絶縁樹脂製配管本体に設けられ且つ配管接続部に連結される連結部とを有するとともに、前記連結部の内周、外周又は内部には、前記電気絶縁樹脂製配管本体よりも線膨張係数の低い補強部材が設けられている。   The piping member has an electrically insulating resin piping main body and a connecting portion provided in the electrically insulating resin piping main body and connected to the pipe connecting portion. A reinforcing member having a linear expansion coefficient lower than that of the electrically insulating resin pipe main body is provided.

また、配管部材は、電気絶縁樹脂製配管本体と、前記電気絶縁樹脂製配管本体に設けられ且つ配管接続部に連結される連結部とを有するとともに、前記連結部の内周、外周又は内部には、前記電気絶縁樹脂製配管本体よりもヤング率の高い補強部材が設けられている。   The piping member has an electrically insulating resin piping main body and a connecting portion provided on the electrically insulating resin piping main body and connected to the pipe connecting portion, and on the inner periphery, outer periphery, or inside of the connecting portion. Is provided with a reinforcing member having a Young's modulus higher than that of the electrically insulating resin pipe main body.

さらに、燃料電池は、複数の発電セルを積層した積層体を備えるとともに、前記積層体の積層方向に貫通して流路が形成され、前記積層体を挟持する一対のエンドプレートを有し、少なくとも一方のエンドプレートには、配管接続部が設けられることが好ましい。   Further, the fuel cell includes a laminate in which a plurality of power generation cells are laminated, has a pair of end plates that sandwich the laminate, the flow path being formed so as to penetrate in the lamination direction of the laminate, One end plate is preferably provided with a pipe connecting portion.

本発明によれば、燃料電池の配管接続部に連結される連結部に補強部材が設けられるため、前記連結部は温度変化に対する寸法変化が良好に抑制される。従って、配管部材の連結部は、簡単な構成で、温度変化によるシール性の低下の防止及び耐久性の向上を図ることが可能になる。しかも、配管部材は、電気絶縁樹脂製配管本体を備えており、所望の電気的絶縁性を確保することができる。   According to the present invention, since the reinforcing member is provided at the connecting portion connected to the pipe connecting portion of the fuel cell, the dimensional change with respect to the temperature change of the connecting portion is favorably suppressed. Accordingly, the connecting portion of the piping member can be prevented from being deteriorated in sealing performance due to temperature change and improved in durability with a simple configuration. And the piping member is provided with the electrical insulation resin piping main body, and can ensure desired electrical insulation.

図1は、本発明の第1の実施形態に係る燃料電池システム10の概略斜視図である。   FIG. 1 is a schematic perspective view of a fuel cell system 10 according to a first embodiment of the present invention.

燃料電池システム10は、例えば、自動車等の車両に搭載されており、配管構造12に接続される燃料電池スタック14を備える。この燃料電池スタック14は、複数の発電セル16が矢印A方向に積層された積層体18を備え、前記積層体18の積層方向両端には、エンドプレート20a、20bが配置される。エンドプレート20a、20bは、図示しない締め付けボルトにより積層方向(矢印A方向)に締め付けられる。   The fuel cell system 10 is mounted on a vehicle such as an automobile, for example, and includes a fuel cell stack 14 connected to the piping structure 12. The fuel cell stack 14 includes a stacked body 18 in which a plurality of power generation cells 16 are stacked in the direction of arrow A, and end plates 20 a and 20 b are disposed at both ends of the stacked body 18 in the stacking direction. The end plates 20a and 20b are fastened in the stacking direction (arrow A direction) by fastening bolts (not shown).

図2に示すように、各発電セル16は、電解質膜・電極構造体(電解質・電極構造体)22と、前記電解質膜・電極構造体22を挟持する薄板波形状の第1及び第2金属セパレータ24、26とを備える。   As shown in FIG. 2, each power generation cell 16 includes an electrolyte membrane / electrode structure (electrolyte / electrode structure) 22, and a thin plate-shaped first and second metal sandwiching the electrolyte membrane / electrode structure 22. Separators 24 and 26 are provided.

発電セル16の長辺方向(図2中、矢印B方向)の一端縁部には、矢印A方向に互いに連通して、酸化剤ガス、例えば、酸素含有ガスを供給するための酸化剤ガス供給連通孔(流路)28a、冷却媒体を供給するための冷却媒体供給連通孔(流路)30a、及び燃料ガス、例えば、水素含有ガスを排出するための燃料ガス排出連通孔(流路)32bが設けられる。   An oxidant gas supply for supplying an oxidant gas, for example, an oxygen-containing gas, to one end edge of the power generation cell 16 in the long side direction (the arrow B direction in FIG. 2) communicates with each other in the arrow A direction. A communication hole (flow path) 28a, a cooling medium supply communication hole (flow path) 30a for supplying a cooling medium, and a fuel gas discharge communication hole (flow path) 32b for discharging a fuel gas, for example, a hydrogen-containing gas. Is provided.

発電セル16の長辺方向の他端縁部には、矢印A方向に互いに連通して、燃料ガスを供給するための燃料ガス供給連通孔(流路)32a、冷却媒体を排出するための冷却媒体排出連通孔(流路)30b、及び酸化剤ガスを排出するための酸化剤ガス排出連通孔(流路)28bが設けられる。   The other end edge of the power generation cell 16 in the long side direction communicates with each other in the direction of arrow A, and a fuel gas supply communication hole (flow path) 32a for supplying fuel gas, and cooling for discharging the cooling medium. A medium discharge communication hole (flow channel) 30b and an oxidant gas discharge communication hole (flow channel) 28b for discharging the oxidant gas are provided.

電解質膜・電極構造体22は、例えば、パーフルオロスルホン酸の薄膜に水が含浸された固体高分子電解質膜34と、前記固体高分子電解質膜34を挟持するアノード側電極36及びカソード側電極38とを備える。   The electrolyte membrane / electrode structure 22 includes, for example, a solid polymer electrolyte membrane 34 in which a perfluorosulfonic acid thin film is impregnated with water, and an anode side electrode 36 and a cathode side electrode 38 that sandwich the solid polymer electrolyte membrane 34. With.

アノード側電極36及びカソード側電極38は、カーボンペーパ等からなるガス拡散層(図示せず)と、白金合金が表面に担持された多孔質カーボン粒子が前記ガス拡散層の表面に一様に塗布されることにより形成される電極触媒層(図示せず)とを有する。電極触媒層は、固体高分子電解質膜34の両面側に形成される。   The anode side electrode 36 and the cathode side electrode 38 are uniformly coated on the surface of the gas diffusion layer with a gas diffusion layer (not shown) made of carbon paper or the like and porous carbon particles carrying a platinum alloy on the surface. And an electrode catalyst layer (not shown) formed. The electrode catalyst layers are formed on both sides of the solid polymer electrolyte membrane 34.

第1金属セパレータ24は、電解質膜・電極構造体22に向かう面に燃料ガス供給連通孔32aと燃料ガス排出連通孔32bとを連通する燃料ガス流路40を設ける。第1金属セパレータ24は、反対の面に冷却媒体供給連通孔30aと冷却媒体排出連通孔30bとを連通する冷却媒体流路42を設ける。   The first metal separator 24 is provided with a fuel gas flow path 40 that communicates the fuel gas supply communication hole 32 a and the fuel gas discharge communication hole 32 b on the surface facing the electrolyte membrane / electrode structure 22. The first metal separator 24 is provided with a cooling medium flow path 42 that communicates the cooling medium supply communication hole 30a and the cooling medium discharge communication hole 30b on the opposite surface.

第2金属セパレータ26は、電解質膜・電極構造体22に向かう面に酸化剤ガス流路44を設けるとともに、この酸化剤ガス流路44は、酸化剤ガス供給連通孔28aと酸化剤ガス排出連通孔28bとに連通する。第2金属セパレータ26は、反対の面に第1金属セパレータ24と重なり合って冷却媒体流路42が一体的に形成される。   The second metal separator 26 is provided with an oxidant gas flow path 44 on the surface facing the electrolyte membrane / electrode structure 22, and the oxidant gas flow path 44 communicates with the oxidant gas supply communication hole 28 a and the oxidant gas discharge communication. It communicates with the hole 28b. The second metal separator 26 overlaps with the first metal separator 24 on the opposite surface, and the cooling medium flow path 42 is integrally formed.

燃料ガス流路40、冷却媒体流路42及び酸化剤ガス流路44は、例えば、矢印B方向に延在する複数本の溝部により構成される。第1及び第2金属セパレータ24、26の面の周縁部には、図示しないシール部材が一体成形される。   The fuel gas flow path 40, the cooling medium flow path 42, and the oxidant gas flow path 44 are configured by, for example, a plurality of grooves extending in the direction of arrow B. A seal member (not shown) is integrally formed on the peripheral portions of the surfaces of the first and second metal separators 24 and 26.

エンドプレート20aには、配管接続部46、48が積層体18とは反対の面に個別に、あるいは一体的に設けられる。配管接続部46には、接続用筒状部50a、52a及び54bが、矢印A方向に膨出形成されるとともに、前記筒状部50a、52a及び54bには、酸化剤ガス供給連通孔28a、冷却媒体供給連通孔30a及び燃料ガス排出連通孔32bに連通する孔部51a、53a及び55bが形成される。筒状部50a、52a及び54bの端部には、孔部51a、53a及び55bに平行してそれぞれねじ穴58が設けられる。   On the end plate 20 a, pipe connection portions 46 and 48 are provided individually or integrally on the surface opposite to the laminated body 18. In the pipe connection portion 46, connection tubular portions 50a, 52a and 54b are formed to bulge in the direction of arrow A, and the oxidant gas supply communication holes 28a, Hole portions 51a, 53a and 55b communicating with the coolant supply passage 30a and the fuel gas discharge passage 32b are formed. Screw holes 58 are provided at the ends of the cylindrical portions 50a, 52a, and 54b in parallel with the holes 51a, 53a, and 55b, respectively.

配管接続部48は、燃料ガス供給連通孔32a、冷却媒体排出連通孔30b及び酸化剤ガス排出連通孔28bに連通する孔部55a、53b及び51bが形成された接続用筒状部54a、52b及び50bが矢印A方向に膨出形成される。筒状部54a、52b及び50bの端部には、孔部55a、53b及び51bに平行してそれぞれねじ穴58が形成される。   The pipe connecting portion 48 includes connecting tubular portions 54a, 52b in which holes 55a, 53b, and 51b communicating with the fuel gas supply communication hole 32a, the cooling medium discharge communication hole 30b, and the oxidant gas discharge communication hole 28b are formed. 50b bulges in the direction of arrow A. Screw holes 58 are formed at the ends of the cylindrical portions 54a, 52b and 50b in parallel with the holes 55a, 53b and 51b, respectively.

配管構造12は、筒状部50a、50bに装着される配管部材60a、60bと、筒状部52a、52bに装着される配管部材62a、62bと、筒状部54a、54bに装着される配管部材64a、64bとを備える。   The piping structure 12 includes piping members 60a and 60b attached to the tubular portions 50a and 50b, piping members 62a and 62b attached to the tubular portions 52a and 52b, and piping attached to the tubular portions 54a and 54b. Members 64a and 64b.

図3に示すように、配管部材60a、60bは、酸化剤ガス供給部66を構成している。酸化剤ガス供給部66は、空気を圧縮して供給するためのスーパーチャージャ(又はポンプ)68を設けるともに、このスーパーチャージャ68は、加湿器70に接続される。加湿器70は、図示していないが、水透過性膜や中空糸膜等を用いており、前記加湿器70に配管部材60a、60bが接続されて、前記配管部材60bを流れる使用済みの空気(オフガス)よって前記配管部材60aを流れる反応前の空気が加湿される。   As shown in FIG. 3, the piping members 60 a and 60 b constitute an oxidant gas supply unit 66. The oxidant gas supply unit 66 is provided with a supercharger (or pump) 68 for supplying compressed air, and the supercharger 68 is connected to a humidifier 70. Although not shown, the humidifier 70 uses a water permeable membrane, a hollow fiber membrane or the like, and used air flowing through the piping member 60b by connecting the piping members 60a and 60b to the humidifier 70. Therefore, the air before reaction flowing through the piping member 60a is humidified.

図4に示すように、配管部材64a、64bは、燃料ガス供給部72を構成する。燃料ガス供給部72は、水素タンク74を備え、この水素タンク74の出口側には、該水素タンク74から供給される水素ガスを所定の圧力に減圧するためのレギュレータ76が配設され、このレギュレータ76の下流にはエゼクタ78が配設される。エゼクタ78には配管部材64a、64bが接続され、この配管部材64bは、使用済みの燃料ガス(オフガス)を配管部材64aに戻して燃料ガスの再使用を図る水素循環流路を構成している。   As shown in FIG. 4, the piping members 64 a and 64 b constitute a fuel gas supply unit 72. The fuel gas supply unit 72 includes a hydrogen tank 74. On the outlet side of the hydrogen tank 74, a regulator 76 for reducing the hydrogen gas supplied from the hydrogen tank 74 to a predetermined pressure is disposed. An ejector 78 is disposed downstream of the regulator 76. Piping members 64a and 64b are connected to the ejector 78, and the piping member 64b constitutes a hydrogen circulation flow path for returning the used fuel gas (off-gas) to the piping member 64a so as to reuse the fuel gas. .

図5に示すように、配管部材60aは、電気絶縁樹脂製配管本体80と、この配管本体80の一端部に設けられ且つ配管接続部46の筒状部50aに連結される第1連結部82aと、前記配管本体80の他端部に設けられ、加湿器70に連結される第2連結部82bとを有する。   As shown in FIG. 5, the piping member 60 a includes an electrically insulating resin piping main body 80 and a first connecting portion 82 a provided at one end of the piping main body 80 and connected to the tubular portion 50 a of the pipe connecting portion 46. And a second connection part 82 b provided at the other end of the pipe body 80 and connected to the humidifier 70.

第1連結部82aには、フランジ部84が設けられるとともに、このフランジ部84に形成される孔部86と筒状部50aに形成されるねじ穴58とに止めねじ88が挿入され、前記第1連結部82aが前記配管接続部46に固定される。第1連結部82aの内周には、スリーブ部材90が装着される。このスリーブ部材90の内周面90aと第1連結部82aの内周面92とは、略同一直径に設定される。   The first connecting portion 82a is provided with a flange portion 84, and a set screw 88 is inserted into a hole portion 86 formed in the flange portion 84 and a screw hole 58 formed in the tubular portion 50a. One connecting portion 82 a is fixed to the pipe connecting portion 46. A sleeve member 90 is attached to the inner periphery of the first connecting portion 82a. The inner peripheral surface 90a of the sleeve member 90 and the inner peripheral surface 92 of the first connecting portion 82a are set to have substantially the same diameter.

スリーブ部材90は、配管本体80よりも線膨張係数の低い材料で構成される。配管本体80は、例えば、フッ素系樹脂で形成されており、その線膨張係数は、ポリテトラフルオロエチレン(PTFE)で10-4/℃程度である。 The sleeve member 90 is made of a material having a lower linear expansion coefficient than the pipe body 80. The pipe body 80 is made of, for example, a fluorine-based resin, and its linear expansion coefficient is about 10 −4 / ° C. with polytetrafluoroethylene (PTFE).

スリーブ部材90は、金属、例えば、ステンレス鋼(SUS)やチタン等が使用される。ステンレス鋼の線膨張係数は、1.7×10-5/℃程度であり、チタンの線膨張係数は、8.8×10-6/℃程度である。なお、スリーブ部材90は、配管本体80よりも線膨張係数の低い樹脂で構成してもよく、例えば、線膨張係数が10-5/℃程度のFRP樹脂を用いてもよい。 The sleeve member 90 is made of metal such as stainless steel (SUS) or titanium. The linear expansion coefficient of stainless steel is about 1.7 × 10 −5 / ° C., and the linear expansion coefficient of titanium is about 8.8 × 10 −6 / ° C. The sleeve member 90 may be made of a resin having a lower linear expansion coefficient than that of the pipe body 80. For example, an FRP resin having a linear expansion coefficient of about 10 −5 / ° C. may be used.

第2連結部82bの内周には、同様に補強部材としてスリーブ部材94が装着されている。このスリーブ部材94は、上記のスリーブ部材90と同様に構成されている。   A sleeve member 94 is similarly mounted as a reinforcing member on the inner periphery of the second connecting portion 82b. The sleeve member 94 is configured in the same manner as the sleeve member 90 described above.

配管部材60bは、上記の配管部材60aと同様に構成される一方、配管部材62a、62b、64a及び64bは、少なくとも配管接続部46、48に連結される連結部の内周に、金属製あるいはFRP樹脂製等のスリーブ(図示せず)が装着されている。なお、配管部材62a、62bは、図示しない冷却媒体循環系を構成しており、ポンプ等によって前記配管部材62bから排出された冷却媒体を前記配管部材62aに循環供給する。   While the piping member 60b is configured in the same manner as the piping member 60a described above, the piping members 62a, 62b, 64a and 64b are made of metal or at least on the inner periphery of the connecting portion connected to the pipe connecting portions 46 and 48. A sleeve (not shown) made of FRP resin or the like is attached. The piping members 62a and 62b constitute a cooling medium circulation system (not shown), and the cooling medium discharged from the piping member 62b by a pump or the like is circulated and supplied to the piping member 62a.

このように構成される燃料電池システム10の動作について、以下に説明する。   The operation of the fuel cell system 10 configured as described above will be described below.

先ず、図3に示すように、酸化剤ガス供給部66において、スーパーチャージャ68を介して圧縮された空気が加湿器70に供給される。この加湿器70には、燃料電池スタック14の発電に使用された反応済みの空気であるオフガスが配管部材60bを介して供給され、このオフガスから使用前の空気に加湿が行われる。そして、加湿された空気は、配管部材60aを通って燃料電池スタック14の酸化剤ガス供給連通孔28aに供給される。   First, as shown in FIG. 3, compressed air is supplied to the humidifier 70 through the supercharger 68 in the oxidant gas supply unit 66. The humidifier 70 is supplied with off-gas, which has been reacted air used for power generation of the fuel cell stack 14, via the piping member 60b, and humidifies the air before use from the off-gas. The humidified air is supplied to the oxidant gas supply communication hole 28a of the fuel cell stack 14 through the piping member 60a.

一方、図4に示すように、燃料ガス供給部72において、水素タンク74から供給される燃料ガスは、レギュレータ76を介して所定の圧力に減圧される。さらに、燃料ガスは、エゼクタ78から配管部材64aを通って燃料電池スタック14の燃料ガス供給連通孔32aに供給される。   On the other hand, as shown in FIG. 4, in the fuel gas supply unit 72, the fuel gas supplied from the hydrogen tank 74 is reduced to a predetermined pressure via the regulator 76. Further, the fuel gas is supplied from the ejector 78 through the piping member 64 a to the fuel gas supply communication hole 32 a of the fuel cell stack 14.

図2に示すように、燃料電池スタック14内では、酸化剤ガスが、酸化剤ガス供給連通孔28aから第2金属セパレータ26の酸化剤ガス流路44に導入され、電解質膜・電極構造体22のカソード側電極38に沿って移動する。一方、燃料ガスは、燃料ガス供給連通孔32aから第1金属セパレータ24の燃料ガス流路40に導入され、電解質膜・電極構造体22のアノード側電極36に沿って移動する。   As shown in FIG. 2, in the fuel cell stack 14, oxidant gas is introduced into the oxidant gas flow path 44 of the second metal separator 26 from the oxidant gas supply communication hole 28 a, and the electrolyte membrane / electrode structure 22. It moves along the cathode side electrode 38. On the other hand, the fuel gas is introduced into the fuel gas flow path 40 of the first metal separator 24 from the fuel gas supply communication hole 32 a and moves along the anode side electrode 36 of the electrolyte membrane / electrode structure 22.

従って、各電解質膜・電極構造体22では、カソード側電極38に供給される酸化剤ガスと、アノード側電極36に供給される燃料ガスとが、電極触媒層内で電気化学反応により消費され、発電が行われる。   Therefore, in each electrolyte membrane / electrode structure 22, the oxidant gas supplied to the cathode side electrode 38 and the fuel gas supplied to the anode side electrode 36 are consumed by an electrochemical reaction in the electrode catalyst layer, Power generation is performed.

次いで、カソード側電極38に供給されて消費された酸化剤ガスは、酸化剤ガス排出連通孔28bに沿って流動した後、エンドプレート20aに連結された配管部材60bに排出される。同様に、アノード側電極36に供給されて消費された燃料ガスは、燃料ガス排出連通孔32bに排出されて流動し、エンドプレート20aに連結された配管部材64bに排出される。   Next, the oxidant gas consumed by being supplied to the cathode side electrode 38 flows along the oxidant gas discharge communication hole 28b, and then is discharged to the piping member 60b connected to the end plate 20a. Similarly, the fuel gas consumed by being supplied to the anode side electrode 36 is discharged to the fuel gas discharge communication hole 32b, flows, and discharged to the piping member 64b connected to the end plate 20a.

また、冷却媒体は、配管部材62aから燃料電池スタック14内の冷却媒体供給連通孔30aに供給される。冷却媒体は、第1及び第2金属セパレータ24、26間の冷却媒体流路42に導入された後、矢印B方向に沿って流動する。この冷却媒体は、電解質膜・電極構造体22を冷却した後、冷却媒体排出連通孔30bを移動してエンドプレート20aに連結された配管部材62bに排出され、循環使用される。   Further, the cooling medium is supplied from the piping member 62 a to the cooling medium supply communication hole 30 a in the fuel cell stack 14. The cooling medium is introduced into the cooling medium flow path 42 between the first and second metal separators 24 and 26 and then flows along the arrow B direction. The cooling medium cools the electrolyte membrane / electrode structure 22, then moves through the cooling medium discharge communication hole 30 b and is discharged to the piping member 62 b connected to the end plate 20 a for circulation.

この場合、第1の実施形態では、配管部材60aが電気絶縁樹脂製の配管本体80を設けることにより、前記配管部材60aは、所望の電気的絶縁性を確保することができる。しかも、配管本体80に設けられ、燃料電池スタック14の配管接続部46の筒状部50aに連結される第1連結部82aには、その内周に補強部材としてスリーブ部材90が装着されている。   In this case, in the first embodiment, the piping member 60a is provided with the piping main body 80 made of an electrically insulating resin, so that the piping member 60a can ensure desired electrical insulation. Moreover, a sleeve member 90 is mounted on the inner periphery of the first connecting portion 82a provided on the pipe body 80 and connected to the tubular portion 50a of the pipe connecting portion 46 of the fuel cell stack 14 as a reinforcing member. .

通常、燃料電池システム10では、発電セル16の作動温度が80℃程度である一方、寒冷地で使用される際には、マイナス30℃以下の低温となる場合がある。このため、配管部材60aには、比較的大きな温度変化が発生し易い。   Normally, in the fuel cell system 10, the operating temperature of the power generation cell 16 is about 80 ° C., but when used in a cold region, the temperature may be as low as −30 ° C. or less. For this reason, a relatively large temperature change is likely to occur in the piping member 60a.

そこで、第1の実施形態では、スリーブ部材90が、配管本体80よりも線膨張係数の低い金属やFRP樹脂等で構成されており、第1連結部82aの寸法変化が良好に抑制される。従って、第1連結部82aは、簡単な構成で、温度変化によるシール性の低下を防止するとともに、耐久性の向上を図ることが可能になるという効果が得られる。なお、他の配管部材60b、62a、62b、64a及び64bにおいても、上記の配管部材60aと同様の効果が得られる。   Therefore, in the first embodiment, the sleeve member 90 is made of metal, FRP resin, or the like having a lower linear expansion coefficient than the pipe main body 80, and the dimensional change of the first connecting portion 82a is satisfactorily suppressed. Therefore, the first connecting portion 82a has a simple configuration, and it is possible to prevent the deterioration of the sealing performance due to the temperature change and to improve the durability. In addition, the same effect as said piping member 60a is acquired also in the other piping members 60b, 62a, 62b, 64a, and 64b.

図6は、本発明の第2の実施形態に係る燃料電池システムを構成する配管部材100の一部断面説明図である。なお、第1の実施形態に係る燃料電池システム10と同一の構成要素には同一の参照符号を付して、その詳細な説明は省略する。また、以下に説明する第3の実施形態においても同様に、その詳細な説明は省略する。   FIG. 6 is a partial cross-sectional explanatory view of the piping member 100 constituting the fuel cell system according to the second embodiment of the present invention. The same components as those of the fuel cell system 10 according to the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. Similarly, in the third embodiment described below, detailed description thereof is omitted.

配管部材100は、電気絶縁樹脂製配管本体102を設け、この配管本体102の一端部には、例えば、筒状部50aに連結される連結部104が設けられる。この連結部104の外周には、配管本体102よりも線膨張係数の低く、且つヤング率の高い補強部材としてスリーブ部材106が装着される。このスリーブ部材106は、スリーブ部材90と同様に構成される。なお、スリーブ部材106は、少なくとも配管本体102よりもヤング率が高ければよい。従って、スリーブ部材106は、配管本体102よりも撓み難く、度重なる温度変化にも寸法変化による経時劣化を良好に抑制することができる。   The piping member 100 is provided with a pipe body 102 made of an electrically insulating resin, and one end portion of the pipe body 102 is provided with, for example, a connecting portion 104 connected to the cylindrical portion 50a. A sleeve member 106 is attached to the outer periphery of the connecting portion 104 as a reinforcing member having a lower linear expansion coefficient and a higher Young's modulus than the pipe main body 102. The sleeve member 106 is configured similarly to the sleeve member 90. The sleeve member 106 only needs to have a Young's modulus higher than that of at least the pipe main body 102. Therefore, the sleeve member 106 is more difficult to bend than the pipe body 102, and deterioration with time due to dimensional changes can be satisfactorily suppressed even with repeated temperature changes.

図7は、本発明の第3の実施形態に係る燃料電池システムを構成する配管部材110の一部断面説明図である。   FIG. 7 is a partial cross-sectional explanatory view of the piping member 110 constituting the fuel cell system according to the third embodiment of the present invention.

配管部材110は、電気絶縁樹脂製配管本体112を備え、この配管本体112の一端部には、例えば、筒状部50aに連結される連結部114が設けられる。連結部114の内部には、配管本体112よりも線膨張係数の低い(及び/又はヤング率の高い)補強部材としてスリーブ部材116が埋設される。このスリーブ部材116は、スリーブ部材90と同様に構成される。   The piping member 110 includes a pipe body 112 made of an electrically insulating resin, and one end portion of the pipe body 112 is provided with a connecting portion 114 that is connected to the tubular portion 50a, for example. A sleeve member 116 is embedded in the connecting portion 114 as a reinforcing member having a lower linear expansion coefficient (and / or a higher Young's modulus) than the pipe main body 112. The sleeve member 116 is configured in the same manner as the sleeve member 90.

このように構成される第2及び第3の実施形態では、連結部104、114にスリーブ部材106、116が設けられており、第1の実施形態形態と同様の効果が得られる。   In the second and third embodiments configured as described above, the sleeve members 106 and 116 are provided in the connecting portions 104 and 114, and the same effect as in the first embodiment can be obtained.

本発明の第1の実施形態に係る燃料電池システムの概略斜視図である。1 is a schematic perspective view of a fuel cell system according to a first embodiment of the present invention. 前記燃料電池システムを構成する燃料電池スタックの要部分解斜視説明図である。It is a principal part disassembled perspective explanatory drawing of the fuel cell stack which comprises the said fuel cell system. 酸化剤ガス供給部の概略説明図である。It is a schematic explanatory drawing of an oxidizing gas supply part. 燃料ガス供給部の概略説明図である。It is a schematic explanatory drawing of a fuel gas supply part. 前記燃料電池システムを構成する配管部材が配管接続部に連結された状態の一部断面図である。It is a partial cross section figure of the state where the piping member which comprises the said fuel cell system was connected with the piping connection part. 本発明の第2の実施形態に係る燃料電池システムを構成する配管部材の一部説明図である。It is a partial explanatory view of a piping member constituting a fuel cell system according to a second embodiment of the present invention. 本発明の第3の実施形態に係る燃料電池システムを構成する配管部材の一部説明図である。It is a partial explanatory view of a piping member constituting a fuel cell system according to a third embodiment of the present invention. 特許文献1に開示されている燃料電池の冷却装置の説明図である。2 is an explanatory diagram of a fuel cell cooling device disclosed in Patent Document 1. FIG.

符号の説明Explanation of symbols

10…燃料電池システム 12…配管構造
14…燃料電池スタック 16…発電セル
18…積層体 20a、20b…エンドプレート
28a…酸化剤ガス供給連通孔 28b…酸化剤ガス排出連通孔
30a…冷却媒体供給連通孔 30b…冷却媒体排出連通孔
32a…燃料ガス供給連通孔 32b…燃料ガス排出連通孔
34…固体高分子電解質膜 36…アノード側電極
38…カソード側電極 40…燃料ガス流路
42…冷却媒体流路 44…酸化剤ガス流路
46、48…配管接続部
50a、50b、52a、52b、54a、54b…筒状部
60a、60b、62a、62b、64a、64b、100、110…配管部材
66…酸化剤ガス供給部 70…加湿器
72…燃料ガス供給部 80、102、112…配管本体
82a、82b、104、114…連結部
90、94、106、116…スリーブ部材
DESCRIPTION OF SYMBOLS 10 ... Fuel cell system 12 ... Piping structure 14 ... Fuel cell stack 16 ... Power generation cell 18 ... Laminated body 20a, 20b ... End plate 28a ... Oxidant gas supply communication hole 28b ... Oxidant gas discharge communication hole 30a ... Cooling medium supply communication Hole 30b ... Cooling medium discharge communication hole 32a ... Fuel gas supply communication hole 32b ... Fuel gas discharge communication hole 34 ... Solid polymer electrolyte membrane 36 ... Anode side electrode 38 ... Cathode side electrode 40 ... Fuel gas flow path 42 ... Cooling medium flow Channel 44 ... Oxidant gas channel 46, 48 ... Piping connection 50a, 50b, 52a, 52b, 54a, 54b ... Cylindrical portion 60a, 60b, 62a, 62b, 64a, 64b, 100, 110 ... Piping member 66 ... Oxidant gas supply unit 70 ... Humidifier 72 ... Fuel gas supply unit 80, 102, 112 ... Piping bodies 82a, 82b, 104, 114 ... Forming part 90,94,106,116 ... sleeve member

Claims (3)

電解質の両側に一対の電極を設けた電解質・電極構造体を、セパレータにより挟持する発電セルを設け、少なくとも反応ガス又は冷却媒体を流す流路が形成されるとともに、前記流路に連通する配管接続部を設けた燃料電池と、
前記配管接続部に装着される配管部材と、
を備え、
前記配管部材は、電気絶縁樹脂製配管本体と、
前記電気絶縁樹脂製配管本体に設けられ且つ前記配管接続部に連結される連結部と、
を有するとともに、
前記連結部の内周、外周又は内部には、前記電気絶縁樹脂製配管本体よりも線膨張係数の低い金属製あるいはFRP樹脂製等のスリーブ状の補強部材が装着又は埋設されることを特徴とする燃料電池システム。
A power generation cell that sandwiches an electrolyte / electrode structure provided with a pair of electrodes on both sides of the electrolyte by a separator is provided, and at least a flow path for flowing a reaction gas or a cooling medium is formed, and a pipe connection that communicates with the flow path A fuel cell provided with a section;
A piping member attached to the piping connection part;
With
The piping member is an electrically insulating resin piping main body,
A connecting portion provided in the electrically insulating resin piping main body and connected to the piping connecting portion;
And having
A sleeve-like reinforcing member made of metal or FRP resin having a lower linear expansion coefficient than the electrically insulating resin pipe main body is mounted or embedded in the inner periphery, outer periphery, or inside of the connecting portion. Fuel cell system.
電解質の両側に一対の電極を設けた電解質・電極構造体を、セパレータにより挟持する発電セルを設け、少なくとも反応ガス又は冷却媒体を流す流路が形成されるとともに、前記流路に連通する配管接続部を設けた燃料電池と、
前記配管接続部に装着される配管部材と、
を備え、
前記配管部材は、電気絶縁樹脂製配管本体と、
前記電気絶縁樹脂製配管本体に設けられ且つ前記配管接続部に連結される連結部と、
を有するとともに、
前記連結部の内周、外周又は内部には、前記電気絶縁樹脂製配管本体よりも線膨張係数の低く且つ前記電気絶縁樹脂製配管本体よりもヤング率の高いスリーブ状の補強部材が装着又は埋設されることを特徴とする燃料電池システム。
A power generation cell that sandwiches an electrolyte / electrode structure provided with a pair of electrodes on both sides of the electrolyte by a separator is provided, and at least a flow path for flowing a reaction gas or a cooling medium is formed, and a pipe connection that communicates with the flow path A fuel cell provided with a section;
A piping member attached to the piping connection part;
With
The piping member is an electrically insulating resin piping main body,
A connecting portion provided in the electrically insulating resin piping main body and connected to the piping connecting portion;
And having
A sleeve-like reinforcing member having a lower linear expansion coefficient than the electrically insulating resin pipe body and a higher Young's modulus than the electrically insulating resin pipe body is mounted or embedded in the inner periphery, outer periphery, or inside of the connecting portion. fuel cell system, characterized in that it is.
請求項1又は2記載の燃料電池システムにおいて、前記燃料電池は、複数の前記発電セルを積層した積層体を備えるとともに、前記積層体の積層方向に貫通して前記流路が形成され、
前記積層体を挟持する一対のエンドプレートを有し、少なくとも一方のエンドプレートには、前記配管接続部が設けられることを特徴とする燃料電池システム。
3. The fuel cell system according to claim 1, wherein the fuel cell includes a stacked body in which a plurality of the power generation cells are stacked, and the flow path is formed so as to penetrate in the stacking direction of the stacked body,
A fuel cell system comprising a pair of end plates for sandwiching the laminate, wherein at least one end plate is provided with the pipe connecting portion.
JP2004239883A 2004-08-19 2004-08-19 Fuel cell system Expired - Fee Related JP4630601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004239883A JP4630601B2 (en) 2004-08-19 2004-08-19 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004239883A JP4630601B2 (en) 2004-08-19 2004-08-19 Fuel cell system

Publications (2)

Publication Number Publication Date
JP2006059652A JP2006059652A (en) 2006-03-02
JP4630601B2 true JP4630601B2 (en) 2011-02-09

Family

ID=36106953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004239883A Expired - Fee Related JP4630601B2 (en) 2004-08-19 2004-08-19 Fuel cell system

Country Status (1)

Country Link
JP (1) JP4630601B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4978037B2 (en) * 2006-03-30 2012-07-18 株式会社日立製作所 Fuel cell system
JP5224085B2 (en) * 2006-11-24 2013-07-03 トヨタ自動車株式会社 Fuel cell system
JP5032153B2 (en) * 2007-03-01 2012-09-26 東芝燃料電池システム株式会社 Fuel cell
JP5220495B2 (en) * 2008-06-30 2013-06-26 本田技研工業株式会社 Fuel cell stack
JP5434033B2 (en) * 2008-10-01 2014-03-05 日産自動車株式会社 FUEL CELL STACK CASE AND METHOD OF FIXING FUEL CELL STACK
KR101033615B1 (en) 2009-04-03 2011-05-11 (주)퓨얼셀 파워 Fuel cell stack
JP5404171B2 (en) * 2009-05-11 2014-01-29 本田技研工業株式会社 Fuel cell stack
JP5363207B2 (en) * 2009-06-16 2013-12-11 トヨタ自動車株式会社 Fastening structure of piping for fuel cell
KR101272594B1 (en) 2011-07-12 2013-06-11 기아자동차주식회사 Manifold block for fuel cell stack
JP6469351B2 (en) * 2014-03-28 2019-02-13 本田技研工業株式会社 Fuel cell stack

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262081A (en) * 1985-09-10 1987-03-18 株式会社 富士電機総合研究所 Connecting structure of piping
JPH03149758A (en) * 1989-07-19 1991-06-26 Fuji Electric Co Ltd Cooling device for fuel cell
JPH056690U (en) * 1991-07-12 1993-01-29 中興化成工業株式会社 Insulation hose for fuel cell
JPH08130028A (en) * 1994-10-31 1996-05-21 Fuji Electric Co Ltd Solid polymer electrolyte fuel cell
JP2002343400A (en) * 2001-05-15 2002-11-29 Toyota Motor Corp Piping structure of fuel cell
JP2002373687A (en) * 2001-06-15 2002-12-26 Toyota Motor Corp Noise silencing for fuel-cell-mounted equipment
JP2004014130A (en) * 2002-06-03 2004-01-15 Nissan Motor Co Ltd Piping structure of fuel cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262081A (en) * 1985-09-10 1987-03-18 株式会社 富士電機総合研究所 Connecting structure of piping
JPH03149758A (en) * 1989-07-19 1991-06-26 Fuji Electric Co Ltd Cooling device for fuel cell
JPH056690U (en) * 1991-07-12 1993-01-29 中興化成工業株式会社 Insulation hose for fuel cell
JPH08130028A (en) * 1994-10-31 1996-05-21 Fuji Electric Co Ltd Solid polymer electrolyte fuel cell
JP2002343400A (en) * 2001-05-15 2002-11-29 Toyota Motor Corp Piping structure of fuel cell
JP2002373687A (en) * 2001-06-15 2002-12-26 Toyota Motor Corp Noise silencing for fuel-cell-mounted equipment
JP2004014130A (en) * 2002-06-03 2004-01-15 Nissan Motor Co Ltd Piping structure of fuel cell

Also Published As

Publication number Publication date
JP2006059652A (en) 2006-03-02

Similar Documents

Publication Publication Date Title
EP1760813B1 (en) Bipolar plate
WO2006121157A1 (en) Fuel cell
WO2007083838A1 (en) Fuel cell
WO2009107872A9 (en) Seal structure of membrane electrode assembly for fuel cell
JP2006120562A (en) Fuel cell stack
JP4630601B2 (en) Fuel cell system
JP2010027476A (en) Fuel cell stack and fuel cell using the same
JP3029419B2 (en) Method of manufacturing fuel cell separator and fuel cell separator
JP2007173166A (en) Fuel cell system
JP5299504B2 (en) Fuel cell stack
JP2007059187A (en) Fuel cell
JP2005100755A (en) Fuel cell stack
US20060234105A1 (en) Stack and fuel cell system having the same
JP2008021523A (en) Fuel cell stack
JP5074724B2 (en) Fuel cell
JP2009224180A (en) Current collector, and fuel cell
KR20090068262A (en) Fuel cell
JP2000100454A (en) Fuel cell stack
JP2006032037A (en) Piping member for fuel cell and its manufacturing method
JP2008091278A (en) Fuel cell
JP2009224211A (en) Humidifier, power generation cell system, fuel cell device, and electronic apparatus
JP2008159291A (en) Fuel cell stack
JPWO2008056615A1 (en) Fuel cell
JP2006147217A (en) Fuel cell system
JP2005166420A (en) Fuel cell stack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4630601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees