JP4630374B2 - Method for evaluating powder molded body electrode - Google Patents

Method for evaluating powder molded body electrode Download PDF

Info

Publication number
JP4630374B2
JP4630374B2 JP2009026185A JP2009026185A JP4630374B2 JP 4630374 B2 JP4630374 B2 JP 4630374B2 JP 2009026185 A JP2009026185 A JP 2009026185A JP 2009026185 A JP2009026185 A JP 2009026185A JP 4630374 B2 JP4630374 B2 JP 4630374B2
Authority
JP
Japan
Prior art keywords
electrode
molded body
powder
discharge
powder molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009026185A
Other languages
Japanese (ja)
Other versions
JP2009102747A (en
Inventor
正裕 岡根
昭弘 後藤
雅夫 秋吉
和司 中村
浩行 寺本
宏行 落合
光敏 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Mitsubishi Electric Corp
Original Assignee
IHI Corp
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, Mitsubishi Electric Corp filed Critical IHI Corp
Priority to JP2009026185A priority Critical patent/JP4630374B2/en
Publication of JP2009102747A publication Critical patent/JP2009102747A/en
Application granted granted Critical
Publication of JP4630374B2 publication Critical patent/JP4630374B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は、金属粉末から成形された粉末成形体を電極として、加工液中あるいは気中において電極と被加工物の間にパルス状の放電を発生させ、そのエネルギにより、被加工物表面に電極材料あるいは電極材料が放電エネルギにより反応した物質からなる被膜を形成する放電表面処理に関するものである。   The present invention uses a powder molded body formed from a metal powder as an electrode, generates a pulsed discharge between the electrode and the workpiece in the machining fluid or in the air, and uses the energy to generate an electrode on the surface of the workpiece. The present invention relates to a discharge surface treatment for forming a film made of a material in which a material or an electrode material reacts with discharge energy.

航空機用ガスタービンエンジンのタービンブレードなどの表面には、高温環境下での強度と潤滑性を持った材料をコーティングあるいは肉盛りする必要がある。高温環境下でCr(クロム)やMo(モリブデン)が酸化されて酸化物となることで潤滑性を発揮することがわかっていることから、Co(コバルト)をベースとし、CrやMoを含んだ材料を溶接・溶射などの方法で被膜を厚く盛り上げている。
ここで、溶接とは、ワークと溶接棒との間の放電により溶接棒の材料をワークに溶融付着させる方法であり、溶射とは、金属材料を溶かした状態にし、スプレー状にワークに吹き付け被膜を形成させる方法である。
しかしながら、この溶接・溶射の何れの方法も人手による作業であり、熟練を要するため、作業をライン化することが困難であり、コストが高くなるという問題がある。
また、特に溶接は、熱が集中してワークに入る方法であるため、厚みの薄い材料を処理する場合や、単結晶合金・一方向凝固合金など方向制御合金のように割れやすい材料では、溶接割れが発生しやすく歩留まりが低いという問題もある。
It is necessary to coat or build up a material having strength and lubricity in a high temperature environment on the surface of an aircraft gas turbine engine such as a turbine blade. Since it has been known that Cr (chromium) and Mo (molybdenum) are oxidized to form an oxide in a high-temperature environment, it exhibits lubricity, so it is based on Co (cobalt) and contains Cr and Mo. The coating is thickened by welding or spraying the material.
Here, welding is a method in which the material of the welding rod is melted and adhered to the workpiece by electric discharge between the workpiece and the welding rod, and thermal spraying is a state in which a metal material is melted and sprayed onto the workpiece in a spray form. Is a method of forming
However, both the welding and thermal spraying methods are manual operations and require skill, so that there is a problem that it is difficult to line the operations and the cost is increased.
In particular, welding is a method in which heat concentrates and enters the workpiece. Therefore, when processing thin materials or materials that are easily broken such as directional control alloys such as single crystal alloys and unidirectionally solidified alloys, There is also a problem that cracking is likely to occur and the yield is low.

一方、高温環境下での強度と潤滑性を有する溶接・溶射等の表面処理方法とは異なるが、その他の表面処理技術としては、例えば国際公開WO99/58744号公報に示されるように放電加工による表面処理も確立している。   On the other hand, although different from surface treatment methods such as welding and thermal spraying having strength and lubricity in a high temperature environment, other surface treatment techniques include, for example, electrical discharge machining as disclosed in International Publication WO99 / 58744. Surface treatment has also been established.

また、これまで厚膜の形成は困難であったが、特開2004―60013号公報に示されるように、炭化物を形成しないもしくは形成しにくい金属材料を50重量%以上含む合金を電極材料に用いることで、厚膜の形成を可能にしている。   Further, although it has been difficult to form a thick film until now, as disclosed in Japanese Patent Application Laid-Open No. 2004-60013, an alloy containing 50% by weight or more of a metal material that does not form carbide or is difficult to form is used as an electrode material. This makes it possible to form a thick film.

国際公開WO99/58744号公報(第7−8頁)
特開2004―60013号公報
International Publication No. WO99 / 58744 (pages 7-8)
Japanese Patent Laid-Open No. 2004-60013

放電表面処理による厚膜の形成では、電極側からの材料の供給とその供給された材料のワーク表面での溶融及びワーク材料との結合の仕方が被膜性能に最も影響を与える。
電極側から供給された材料が全て溶融され、ワーク材料と結合されれば緻密で強度の高い被膜を形成することができるが、電極側からの材料の供給が過多になるなどして供給された材料を全て溶融することができなければ、十分に溶融されていない材料が被膜に含まれ、その結果高い強度を持つ被膜が形成できなくなる。
In the formation of the thick film by the discharge surface treatment, the method of supplying the material from the electrode side, melting the supplied material on the workpiece surface, and bonding with the workpiece material has the greatest influence on the coating performance.
If all the material supplied from the electrode side is melted and combined with the workpiece material, a dense and high-strength film can be formed. However, the material supplied from the electrode side was supplied excessively. If all of the materials cannot be melted, the coating will contain materials that are not sufficiently melted, and as a result, a coating with high strength cannot be formed.

電極側から供給された材料の溶融状態を見極めるため、放電表面処理中の極間電圧、電流波形を観測したところ、電極側から供給される材料をよく溶融させて強度の高い被膜を形成できた際には、即放電をほとんど起こしていなく、逆に、電極側から供給される材料を溶融できずに強度の高い被膜を形成できなかった際には、即放電を頻繁に起こしていることが発明者らの実験により見出された。
ここで、即放電とは、電極とワークの間の浮遊物と電極が接近し、極間電圧が立ち上がりきる前にその浮遊物に対して放電する現象である。具体的には、電圧が印加されてから2μsec以内に放電が発生する状態である。
即放電が起こると、放電が一点に集中し、電極材料に放電エネルギが供給されにくくなるため、電極材料を全て溶融することができず、高い強度を持つ被膜を形成することが困難になる。
In order to determine the melting state of the material supplied from the electrode side, the interelectrode voltage and current waveform during the discharge surface treatment were observed. As a result, the material supplied from the electrode side was well melted to form a high-strength film. At that time, there was almost no immediate discharge, and conversely, when the material supplied from the electrode side could not be melted and a high-strength film could not be formed, immediate discharge was frequently caused. Found by the inventors' experiments.
Here, the immediate discharge is a phenomenon in which the floating material between the electrode and the workpiece approaches the electrode, and the floating material is discharged before the voltage between the electrodes rises. Specifically, the discharge occurs within 2 μsec after the voltage is applied.
When immediate discharge occurs, the discharge concentrates at one point, and it becomes difficult to supply discharge energy to the electrode material. Therefore, it is difficult to melt all the electrode material and it is difficult to form a coating film having high strength.

本発明は、放電表面処理による緻密で強度の高い被膜を形成技術を確立することを目的とし、特に、電極側から供給された材料にパルス状の放電を発生させ、そのエネルギにより、電極材料を溶融しワーク材料と結合させ、緻密で強度の高い被膜を形成するための、粉末成形体電極の評価を確立することを目的とする。   The object of the present invention is to establish a technology for forming a dense and high-strength film by discharge surface treatment, and in particular, a pulsed discharge is generated in the material supplied from the electrode side, and the electrode material is formed by the energy. The object is to establish an evaluation of a powder molded body electrode for melting and bonding with a work material to form a dense and high-strength film.

本発明にかかる粉末成形体電極の評価方法は、金属或いは金属化合物の粉末を成形した粉末成形体電極を用い、加工液中或いは気中において、該電極と被加工物との間にパルス状の放電を発生させ、そのエネルギにより被加工物表面に電極材料或いは電極材料が放電エネルギにより反応した物質からなる被膜を形成する放電表面処理方法に用いる粉末成形体電極の評価方法において、上記粉末成形体電極に4本の針状の電極を直線上にA,B,C,Dの順番で設置し、針A,Dに電流を流した際に、針B,C間に生じる電位差を測地する四短針法の測定を行い、上記粉末成形体の電極の電気抵抗を測定し、上記粉末成形形態電極の可否を判断するものである。   The method for evaluating a powder molded body electrode according to the present invention uses a powder molded body electrode formed by molding a powder of a metal or a metal compound, and has a pulse shape between the electrode and the workpiece in a processing liquid or air. In the method for evaluating a powder molded body used in a discharge surface treatment method for generating an electric discharge and forming a coating made of an electrode material or a material obtained by reacting the electrode material with the discharge energy on the surface of the workpiece by the energy. Four electrode-like electrodes are installed on the electrodes in the order of A, B, C, and D, and when a current is passed through the needles A and D, the potential difference generated between the needles B and C is measured. The short needle method is measured, the electrical resistance of the electrode of the powder compact is measured, and the propriety of the powder compacted electrode is judged.

この発明によれば、放電表面処理時に緻密で強度の高い被膜を安定に形成することができる電極であるか否かを判断することができるという効果を有する。   According to the present invention, it is possible to determine whether or not the electrode can stably form a dense and high-strength film during discharge surface treatment.

正常な放電中の電圧および電流波形図である。FIG. 4 is a voltage and current waveform diagram during normal discharge. 即放電時の電圧および電流波形図である。It is a voltage and current waveform diagram at the time of immediate discharge. 即放電が全放電に占める割合とその時に形成される被膜の強度との関係を示す特性線図である。It is a characteristic diagram which shows the relationship between the ratio for which an immediate discharge accounts to all the discharges, and the intensity | strength of the film formed at that time. Co合金を電極とした場合における四短針法で測定した電極の電気抵抗値と即放電の起こりやすさの関係を示す特性線図である。It is a characteristic diagram which shows the relationship between the electrical resistance value of the electrode measured by the four-short needle method, and the probability of occurrence of immediate discharge when Co alloy is used as the electrode. 四短針法の測定原理を示す簡略構成図である。It is a simplified block diagram which shows the measurement principle of the four short needle method. Co合金を電極とし、休止時間が4、6、8μsのときの四短針法で測定した電極の電気抵抗値と即放電の起こりやすさの関係を示す特性線図である。It is a characteristic diagram which shows the relationship between the electrical resistance value of the electrode measured by the four-short needle method when Co alloy is used as an electrode, and when the rest time is 4, 6, and 8 μs and the likelihood of immediate discharge.

実施の形態1.
放電表面処理による厚膜の形成では、上述したとおり電極側からの材料の供給と、その供給された材料のワーク表面での溶融及びワーク材料との結合の仕方が被膜性能に最も影響を与える。
そこで、発明者らは、電極側から供給された材料の溶融状態を見極めるため、放電表面処理中の極間電圧、電流波形を波形計測器により観測した。
電極側から供給される材料をよく溶融させて強度の高い被膜を形成できた際には、図1に示す極間波形が観測され、逆に、電極側から供給される材料を溶融できずに強度の高い被膜を形成できなかった際には、図2に示す極間波形が多く観測された。
図2に示す波形は、即放電時に観測される波形である。
Embodiment 1 FIG.
In the formation of the thick film by the discharge surface treatment, as described above, the supply of the material from the electrode side, the melting of the supplied material on the workpiece surface, and the bonding with the workpiece material have the greatest influence on the coating performance.
Therefore, the inventors observed the interelectrode voltage and current waveform during the discharge surface treatment with a waveform measuring instrument in order to determine the molten state of the material supplied from the electrode side.
When the material supplied from the electrode side is well melted to form a high-strength film, the interpolar waveform shown in FIG. 1 is observed, and conversely, the material supplied from the electrode side cannot be melted. When a high-strength film could not be formed, many interpolar waveforms shown in FIG. 2 were observed.
The waveform shown in FIG. 2 is a waveform observed during immediate discharge.

図3は、即放電の発生頻度とその時に形成される被膜強度の関係を示す図である。
当関係を示すにあたり、電極材料にはCo(コバルト)合金を用いた。
図において、横軸に即放電が全放電に対して占める割合を示し、縦軸に形成された被膜の強度を示す。
図から明らかなように、即放電の発生する割合が大きいほど、形成された被膜の強度が小さくなることが確認できる。
即放電が発生すると、放電が一点に集中し、電極から供給される材料に放電エネルギが伝わりにくくなるため、電極材料を全て溶融することができず、溶融されていない材料を被膜内に巻き込んでしまうことから、高い強度の被膜が形成できないと推察される。
すなわち、本実施の形態では、高い強度の被膜を形成すべく、放電表面処理における即放電の割合と被膜強度との関係から、最適な加工条件を見出すと共に、その条件を満たすために必要な電極を得るものである。
FIG. 3 is a diagram showing the relationship between the frequency of occurrence of immediate discharge and the strength of the coating film formed at that time.
In showing this relationship, a Co (cobalt) alloy was used as the electrode material.
In the figure, the horizontal axis indicates the ratio of the immediate discharge to the total discharge, and the vertical axis indicates the strength of the formed film.
As is clear from the figure, it can be confirmed that the greater the rate at which immediate discharge occurs, the lower the strength of the formed film.
When an immediate discharge occurs, the discharge concentrates at one point, making it difficult for the discharge energy to be transmitted to the material supplied from the electrode. Therefore, the electrode material cannot be completely melted, and unmelted material is caught in the film. Therefore, it is assumed that a high-strength film cannot be formed.
That is, in this embodiment, in order to form a high-strength film, the optimum processing conditions are found from the relationship between the ratio of immediate discharge in discharge surface treatment and the film strength, and electrodes necessary to satisfy the conditions are found. Is what you get.

まず、図3について考察すると、即放電の占める割合が50%以下である場合には、即放電の占める割合が大きくなっていっても強度の下がり方はゆるやかであるが、即放電の占める割合が50%を超えると急激に強度が低下することが判明した。
これは、正常な放電よりも即放電の発生が多くなった場合、形成された被膜のほとんどが溶融されていない粉末で埋められ、粉末同士の密着力が著しく低下するためと推察される。
First, considering FIG. 3, when the proportion of immediate discharge is 50% or less, the intensity decreases gradually even if the proportion of immediate discharge increases, but the proportion of immediate discharge It has been found that the strength rapidly decreases when the content exceeds 50%.
This is presumably because when the occurrence of immediate discharge is larger than normal discharge, most of the formed coating is filled with unmelted powder, and the adhesion between the powders is significantly reduced.

要求される被膜強度に左右されるが、強度が30MPa以上の高強度の被膜が求められている航空機分野などでは、即放電の発生頻度を全放電の50%以内とすることで、それら要求を満たす高強度の被膜を形成することができる。
なお、即放電の割合が40%以内、30%以内となればさらによいことは当然である。
当関係はCo(コバルト)合金を電極材料とした場合を例に挙げ説明したが、他の金属或いは金属化合物の粉末を成形した粉末成形体電極を電極に用いた場合においても同様の傾向を示し、即放電の占める割合が50%を超えると急激に強度が低下することが判明した。
Although it depends on the required coating strength, in the aircraft field where a high-strength coating with a strength of 30 MPa or more is required, the demand can be met by setting the frequency of immediate discharge within 50% of the total discharge. A high-strength film can be formed.
Needless to say, it is better if the ratio of immediate discharge is within 40% and within 30%.
This relationship has been explained by taking the case where Co (cobalt) alloy is used as an electrode material as an example, but the same tendency is shown when a powder molded body electrode formed from a powder of another metal or metal compound is used as an electrode. It has been found that when the proportion of immediate discharge exceeds 50%, the strength rapidly decreases.

次に、即放電を抑えるための放電表面処理用電極条件について考察する。
上述した如く、即放電は、電極とワークとの極間に存在する浮遊物と電極とが接近し、極間電圧が立ち上がりきる前にその浮遊物に対して放電する現象であることから、極間の浮遊物の量を制御することにより、即放電の割合を変化させることができる。
なお、本実施の形態では、金属粉末から成形された粉末成形体を放電表面処理用電極とした場合について説明する。
Next, the electrode conditions for discharge surface treatment for suppressing immediate discharge will be considered.
As described above, the immediate discharge is a phenomenon in which the floating material existing between the electrode and the workpiece approaches the electrode and discharges to the floating material before the voltage between the electrodes rises. By controlling the amount of suspended matter in between, the rate of immediate discharge can be changed.
In the present embodiment, a case where a powder compact formed from a metal powder is used as an electrode for discharge surface treatment will be described.

周知の如く粉末成形体を放電表面処理用電極として使用する場合、該電極を成形する金属粉末が放電により電極より崩れ、溶融した状態で被加工物上に堆積することにより被膜が形成される。
ここで、電極から崩れて極間へ浮遊する電極粉末の量が即放電の発生と密接な関係がある。
すなわち、電極の崩れやすさを一つの指標とすることにより即放電を起こしやすい電極、起こしにくい電極と判別することができる。
As is well known, when a powder molded body is used as an electrode for discharge surface treatment, the metal powder forming the electrode collapses from the electrode due to discharge and is deposited on the workpiece in a molten state to form a film.
Here, the amount of electrode powder that collapses from the electrode and floats between the electrodes is closely related to the occurrence of immediate discharge.
That is, by using the ease of electrode collapse as an index, it is possible to discriminate between an electrode that is likely to cause an immediate discharge and an electrode that is less likely to occur.

次に、電極の崩れやすさについて説明する。
粉末成形体の電極において、電極粉末が崩れやすいかどうかは、電極内の粉末同士の密着強度に影響を受ける。
すなわち、高圧力で圧縮されたり、焼結された電極では、粉末同士の密着強度が高く、電極粉末は崩れにくいが、同様に被加工物に供給される電極粉末が少なく、放電加工を行った場合、電極粉末が溶融した被膜を形成することなく、掘り込み加工となってしまう。
一方、電極粉末の圧縮が不十分なものは、電極が崩れやすく、放電により多量の電極粉末が供給されるため、極間への電極粉末の浮遊が多くなり、即放電を起こしやすく、十分な被膜強度を得ることができない。
Next, the ease of collapse of the electrode will be described.
Whether or not the electrode powder easily collapses in the electrode of the powder compact is affected by the adhesion strength between the powders in the electrode.
That is, in an electrode compressed or sintered at a high pressure, the adhesion strength between the powders is high, and the electrode powder is not easily broken, but similarly, the electrode powder supplied to the work piece is small, and electric discharge machining was performed. In this case, digging is performed without forming a film in which the electrode powder is melted.
On the other hand, when the electrode powder is insufficiently compressed, the electrode tends to collapse, and a large amount of electrode powder is supplied by the discharge. The film strength cannot be obtained.

そこで、本発明者らは、電極の崩れやすさが最適となる電極を得るべく実験を重ねた。
放電表面処理に用いられる電極は、粉末成形体から構成されることから、電極の密着強度が、電極の電気抵抗に密接に結びつく。
すなわち、電極の粉末同士の密着力が小さいということは、電極が崩れやすく、電極の抵抗値が大きくなり、電極の粉末同士の密着力が大きいということは、電極が崩れにくく、電極の抵抗値が小さくなる。
そこで、電極成形条件の異なる電極(四短針法により測定した電極の抵抗値の異なる電極)を用いて、電極の電気抵抗と高強度の被膜を成形するための一指標である即放電の割合との関係を求めた。(図4)
なお、図4における条件は、放電表面処理用電極として、Cr(クロム)粉末25重量%、Co(コバルト)粉末75重量%を混合し、成形したCo合金を用い、使用した放電のパルス条件は、図1においてピーク電流値ie=4A、放電持続時間(放電パルス幅)te=4μs、休止時間to=4μsである。
Therefore, the present inventors have repeated experiments to obtain an electrode in which the fragility of the electrode is optimal.
Since the electrode used for the discharge surface treatment is composed of a powder compact, the adhesion strength of the electrode is closely related to the electrical resistance of the electrode.
That is, when the adhesion force between the electrode powders is small, the electrode easily collapses, and the resistance value of the electrode increases. When the adhesion force between the electrode powders is large, the electrode is less likely to collapse and the resistance value of the electrode. Becomes smaller.
Therefore, using electrodes with different electrode forming conditions (electrodes having different electrode resistance values measured by the four-short needle method), the electrical resistance of the electrode and the ratio of immediate discharge, which is one index for forming a high-strength film, Sought the relationship. (Fig. 4)
The conditions in FIG. 4 are as follows: the discharge surface treatment electrode used was a mixed Co alloy of 25 wt% Cr (chromium) powder and 75 wt% Co (cobalt) powder. In FIG. 1, the peak current value ie = 4 A, the discharge duration (discharge pulse width) te = 4 μs, and the rest time to = 4 μs.

図4に示されるように、電極の抵抗値が小さいほど粉末の密着強度が高く、即放電を起こしにくく、電極の抵抗値が大きいほど粉末の密着強度が低く、即放電を起こしやすい。
また、電極の電気抵抗が小さくなるほど被膜の形成速度が遅くなる傾向があり、電気抵抗が4.0E-4Ω以上未満の場合は、粉末同士の密着強度が高すぎて放電表面処理条件をどのように設定しても被膜を形成させることができなかった。
この場合は、上述の如く被加工物側に電極材料を堆積させる加工ではなく、被加工物側を掘り込む加工となってしまう。
一方、電極の電気抵抗が大きくなるほど電極は崩れやすくなり、電気抵抗が3.0E-2Ω以上になると電極材料が十分に溶融しないままにワークに付着する現象が見られ、形成される被膜は緻密ではなく、非常にポーラスなものとなってしまう。
As shown in FIG. 4, the smaller the resistance value of the electrode, the higher the adhesion strength of the powder and the less likely to cause immediate discharge, and the greater the resistance value of the electrode, the lower the adhesion strength of the powder and the more likely to cause immediate discharge.
In addition, as the electrical resistance of the electrode decreases, the film formation rate tends to be slow.If the electrical resistance is less than 4.0E-4Ω, the adhesion strength between the powders is too high and the discharge surface treatment conditions Even if it was set, a film could not be formed.
In this case, it is not the process of depositing the electrode material on the workpiece side as described above, but the process of digging the workpiece side.
On the other hand, as the electrical resistance of the electrode increases, the electrode tends to collapse, and when the electrical resistance exceeds 3.0E-2Ω, a phenomenon that the electrode material adheres to the work without being sufficiently melted is observed, and the formed film is not dense It becomes very porous.

以上より、Cr(クロム)粉末25重量%、Co(コバルト)粉末75重量%を混合し、成形したCo合金を電極材料とした場合、放電表面処理用電極はその電気抵抗が4.0E-4Ω以上3.0E-2Ω未満の範囲が緻密で強度の高い被膜を形成するための最適値である。   From the above, when 25% by weight of Cr (chrome) powder and 75% by weight of Co (cobalt) powder are mixed and the molded Co alloy is used as an electrode material, the electrical resistance of the discharge surface treatment electrode is 4.0E-4Ω or more. The range of less than 3.0E-2Ω is the optimum value for forming a dense and high strength film.

他の材料を電極に用いた場合における電極の電気抵抗の最適値を表1に示す。   Table 1 shows the optimum values of the electrical resistance of the electrodes when other materials are used for the electrodes.

Figure 0004630374
Figure 0004630374

Mo(モリブデン)を主成分とする電極を用いた場合は1.0E-4Ω以上3.0E-3Ω以下の範囲が最適であり、Cu(銅)を主成分とする電極を用いた場合は、0.8E-3Ω以上1.0E-2Ω以下の範囲が最適であった。
このように、Mo、Cu、Co等のいずれかを主成分とした電極を用いて実験した結果、1.0E-4Ω未満もしくは3.0E-2Ω以上の電気抵抗となる電極は緻密で強度の高い被膜を形成することができなく、緻密で強度の高い被膜を形成するための最適値は1.0E-4Ω以上3.0E-2Ω未満の範囲であることが判明した。
The range of 1.0E-4Ω to 3.0E-3Ω is optimal when using Mo (molybdenum) as the main component, and 0.8E when using Cu (copper) as the main component. The range of -3Ω to 1.0E-2Ω was optimal.
Thus, as a result of experiments using an electrode mainly composed of Mo, Cu, Co, etc., an electrode having an electric resistance of less than 1.0E-4Ω or 3.0E-2Ω is a dense and high-strength film. It was found that the optimum value for forming a dense and high-strength film is in the range of 1.0E-4Ω or more and less than 3.0E-2Ω.

次に、本発明における放電表面処理用電極の抵抗値測定方法について説明する。
金属の抵抗値を測定する場合テスターなどで測定するのが一般的であるが、テスターで測定する場合は測定する試料の大きさに依存した値のみ測定されるため、測定する試料が大であれば計測される電気抵抗が大きくなり、測定する試料が小であれば電気抵抗は小さくなる。
ここで、本発明における放電表面処理では、電極(測定する試料)の大きさに左右されることなく、電極の崩れやすさを図る指標とする関係から、常に一定の条件で検出することが必要である。
Next, a method for measuring the resistance value of the discharge surface treatment electrode in the present invention will be described.
When measuring the resistance value of metals, it is common to measure with a tester, but when measuring with a tester, only the value depending on the size of the sample to be measured is measured. The measured electrical resistance increases, and the electrical resistance decreases if the sample to be measured is small.
Here, in the discharge surface treatment according to the present invention, it is necessary to always detect under constant conditions because of the relationship with the index of the ease of collapse of the electrode, regardless of the size of the electrode (sample to be measured). It is.

そこで、本発明における放電表面処理用電極の電気抵抗測定は四短針法を用いることを特徴とする。
四短針法の測定原理は、図5に示すように試験片に4本の針状の電極を直線状に設置して、短針Aと短針Dの間に電流(I)を流した時に、短針Bと短針Cとの間に生じる電位差(V)を測定し、その抵抗(V/I)を求めるものである。
短針の間隔により求められる抵抗の値が変化するが、本実施の形態では、短針の間隔が1.5mmであるプローブを用いて電気抵抗を測定している。
ただし、この方法はあくまで短針Bと短針Cとの間に生じる電位差を測定するものであり、正確には電極そのものの電気抵抗の測定ではない。
なお、テスターによる方法では電極の電気抵抗を測定する場合、電極を切断するなどして一定の形状にしなければならなかったが、四短針法を用いることにより、電気抵抗を測定する際に電極の形状を揃える必要がなく、電気抵抗を測定した電極を放電表面処理に用いることも可能であり、電極を無駄にせず、汎用的である。
Therefore, the electrical resistance measurement of the discharge surface treatment electrode in the present invention is characterized by using a four-short needle method.
The measurement principle of the four-short needle method is as follows. When four needle-shaped electrodes are installed in a straight line on the test piece and current (I) is passed between the short hand A and the short hand D as shown in FIG. The potential difference (V) generated between B and the short hand C is measured, and the resistance (V / I) is obtained.
Although the value of resistance calculated | required changes with the space | interval of a short hand, in this Embodiment, the electrical resistance is measured using the probe whose space | interval of a short hand is 1.5 mm.
However, this method only measures the potential difference generated between the short hand B and the short hand C, and is not precisely the measurement of the electrical resistance of the electrode itself.
In the tester method, when measuring the electrical resistance of the electrode, it was necessary to cut the electrode into a certain shape, but by using the four-short needle method, the electrode resistance was measured when measuring the electrical resistance. It is not necessary to make the shape uniform, and an electrode whose electrical resistance is measured can be used for the discharge surface treatment, so that the electrode is not wasted and is general-purpose.

本実施の形態によれば、電極の電気抵抗は電極内の粉末同士の密着強度を示す指標とすることができるため、定量的に測定可能な四短針法に基づく電極抵抗を調べることにより、高強度の被膜を形成可能かどうか試験することができる。
また、四短針法による電気抵抗が、1.0E-4Ω以上3.0E-2Ω未満の範囲に含まれる電極は、緻密で強度の高い被膜を形成することができる。
また、電極の崩れやすさの指標として、電極の硬度を直接測るものも存在するが、電極の表面のみ硬くできていて、内部は軟らかい電極であった場合など評価が難しく、電極の崩れやすさを示す指標を四短針法による電極抵抗で求めることにより、それら問題も解決できる。
According to the present embodiment, since the electrical resistance of the electrode can be used as an index indicating the adhesion strength between the powders in the electrode, by examining the electrode resistance based on the four-short needle method that can be quantitatively measured, It can be tested whether a strong coating can be formed.
In addition, an electrode whose electric resistance by the four-short needle method is in the range of 1.0E-4Ω or more and less than 3.0E-2Ω can form a dense and high-strength film.
In addition, there is an index for measuring the hardness of the electrode directly as an index of the tendency of the electrode to collapse, but it is difficult to evaluate, for example, when the electrode surface is hard and the inside is a soft electrode, and the electrode is easily collapsed. These problems can also be solved by obtaining the index indicating the value by the electrode resistance by the four-short needle method.

実施の形態2.
本実施の形態では、即放電の発生頻度と、電極の電気抵抗及び放電休止時間の関係に着目したものである。
図6は、電気抵抗の異なるいくつかの電極を用いて放電表面処理を施した際に、全放電に対する即放電の割合を示したものを示す図である。
なお、使用した放電表面処理用電極は、Cr(クロム)粉末25重量%、Co(コバルト)粉末50重量%、Ni(ニッケル)粉末25重量%を混合し、成形したCo合金を使用し、放電のパルス条件は、図1においてピーク電流値ie=5A、放電持続時間(放電パルス幅)te=4μs、休止時間to=4、6、8μsとした。
Embodiment 2. FIG.
In the present embodiment, attention is paid to the relationship between the occurrence frequency of immediate discharge, the electrical resistance of the electrode, and the discharge pause time.
FIG. 6 is a diagram showing a ratio of immediate discharge with respect to total discharge when performing discharge surface treatment using several electrodes having different electric resistances.
The discharge surface treatment electrode used was a mixture of 25% by weight of Cr (chromium) powder, 50% by weight of Co (cobalt) powder, and 25% by weight of Ni (nickel) powder. In FIG. 1, the pulse conditions were set such that the peak current value ie = 5 A, the discharge duration (discharge pulse width) te = 4 μs, and the rest time to = 4, 6, 8 μs.

図4と同様に、電気抵抗が大きくなるほど即放電を起こしやすくなり、電気抵抗が小さくなるほど即放電を起こしにくくなる。
休止時間to=4μsの場合は、電極の電気抵抗が4.0E-4Ω以上3.0E-2Ω未満の範囲で即放電の割合が50%以下にならない範囲があった。
一方、休止時間to=6μsの場合は、電極の電気抵抗が4.0E-4Ω以上3.0E-2Ω未満の全ての範囲で即放電の発生が50%以下となった。
また、この関係はピーク電流値ie、放電持続時間teを変化させて実験した場合においても不変であった。
As in FIG. 4, the greater the electrical resistance, the easier the immediate discharge occurs, and the smaller the electrical resistance, the less likely the immediate discharge occurs.
When the rest time to = 4 μs, there was a range in which the ratio of immediate discharge did not become 50% or less when the electrical resistance of the electrode was 4.0E-4Ω or more and less than 3.0E-2Ω.
On the other hand, in the case of the rest time to = 6 μs, the occurrence of immediate discharge was 50% or less in all the ranges where the electrical resistance of the electrode was 4.0E-4Ω or more and less than 3.0E-2Ω.
This relationship was unchanged even when the experiment was performed by changing the peak current value ie and the discharge duration te.

このことより電極とワーク間に浮遊する粉末の量に関しては、その電極の電気抵抗と休止時間が支配的要因であることがわかった。
以上より、電極の主成分がCo(コバルト)である場合、電極の電気抵抗が4.0E-4Ω以上3.0E-2Ω未満の範囲において緻密で高い強度を持つ被膜を形成させるためには、休止時間を6μs以上にすればよいことが分かった。
ここで、休止時間を8μs以上とすればさらによいことは図6より明らかである。
ただし、加工効率という点から見ると休止時間は短いほどよく、必要とされる被膜の強度によって最適値が決定される。
From this, it was found that the electrical resistance and rest time of the electrode were the dominant factors with respect to the amount of powder floating between the electrode and the workpiece.
From the above, when the main component of the electrode is Co (cobalt), in order to form a dense and high-strength film in the range where the electric resistance of the electrode is 4.0E-4Ω or more and less than 3.0E-2Ω, It has been found that it is sufficient to set the current to 6 μs or more.
Here, it is clear from FIG. 6 that it is even better if the pause time is 8 μs or more.
However, from the standpoint of processing efficiency, the shorter the downtime, the better, and the optimum value is determined by the required coating strength.

他の材料を電極に用いた場合における休止時間の最適値を表2に示す。   Table 2 shows the optimum values of the downtime when other materials are used for the electrodes.

Figure 0004630374
Figure 0004630374

Mo(モリブデン)を主成分とする電極で電気抵抗が1.0E-4Ω以上3.0E-3Ω以下の範囲の際は、休止時間to=250μs以上とすることで緻密で高い強度を持つ被膜を形成でき、Cu(銅)を主成分とする電極で電気抵抗が0.8E-3Ω以上1.0E-2Ω以下の範囲の際は、休止時間to=16μs以上とすることで緻密で高い強度を持つ被膜を形成できることが判明した。 When the electrode is composed mainly of Mo (molybdenum) and the electrical resistance is in the range of 1.0E-4Ω or more and 3.0E-3Ω or less, a dense and high-strength film can be formed by setting the rest time to = 250μs or more. When the electrode is composed mainly of Cu (copper) and the electrical resistance is in the range of 0.8E-3Ω or more and 1.0E-2Ω or less, a dense and high-strength film is formed by setting the rest time to = 16μs or more. It turns out that you can.

このように、Mo、Cu、Co等のいずれかを主成分とした電極を用いて実験した結果、緻密で強度の高い被膜を形成するためには、電気抵抗が1.0E-4Ω以上3.0E-2Ω未満の範囲である電極を用いて休止時間をto=6μs以上とする必要があることが判明した。
なお、その他電極成分としては、Cr、Ni、Fe、Wを主成分とする合金或いは粉末混合電極でも略同様である。
As described above, as a result of experiments using an electrode mainly composed of Mo, Cu, Co or the like, in order to form a dense and high-strength film, the electric resistance is 1.0E-4Ω or more and 3.0E- It has been found that it is necessary to make the rest time to = 6 μs or more by using an electrode having a range of less than 2Ω.
In addition, as other electrode components, an alloy having Cr, Ni, Fe, W as a main component or a powder mixed electrode is substantially the same.

本実施の形態によれば、粉末成形体電極を用いて被膜を形成するには、四短針法による電極抵抗が、1.0E-4Ω以上3.0E-2Ω未満の範囲の電極を用いて、休止時間6μs以上で加工をすることにより、高強度の被膜を形成することができる。   According to the present embodiment, in order to form a film using the powder molded body electrode, the electrode resistance by the four-short needle method is an electrode in the range of 1.0E-4Ω or more and less than 3.0E-2Ω, and the rest time By processing at 6 μs or more, a high-strength film can be formed.

なお、上述した実施の形態では、四短針法に基づく電極抵抗が適正な範囲となる電極を用いることにより即放電を抑えた高強度の被膜形成について説明したが、被膜成形加工中、電圧印加から放電発生までにかかる時間を検出する装置により極間に即放電が発生しているか否か、或いは即放電の割合を検出し、サーボ制御により即放電を抑えることも可能である。   In the above-described embodiment, the formation of a high-strength film that suppresses immediate discharge by using an electrode in which the electrode resistance based on the four-short needle method is in an appropriate range has been described. It is also possible to suppress the immediate discharge by servo control by detecting whether or not an immediate discharge has occurred between the electrodes by a device that detects the time taken until the occurrence of the discharge, or the ratio of the immediate discharge.

Claims (5)

金属或いは金属化合物の粉末を成形した粉末成形体電極を用い、加工液中或いは気中において、該電極と被加工物との間にパルス状の放電を発生させ、そのエネルギにより被加工物表面に電極材料或いは電極材料が放電エネルギにより反応した物質からなる被膜を形成する放電表面処理方法に用いる粉末成形体電極の評価方法において、
上記粉末成形体電極に4本の針状の電極を直線上にA,B,C,Dの順番で設置し、針A,Dに電流を流した際に、針B,C間に生じる電位差を測地する四短針法の測定を行い、上記粉末成形体の電極の電気抵抗を測定し、該測定値を上記粉末成形体電極内の粉末同士の密着強度を示す指標とし、上記粉末成形電極の可否を判断することを特徴とする粉末成形体電極の評価方法。
Using a powder molded body electrode formed by molding a metal or metal compound powder, a pulsed discharge is generated between the electrode and the workpiece in the machining fluid or in the air, and the energy is applied to the surface of the workpiece. In the evaluation method of the powder molded body electrode used in the discharge surface treatment method for forming a coating comprising an electrode material or a material in which the electrode material reacts with discharge energy,
Four needle-like electrodes are installed on the powder molded body electrode in the order of A, B, C, and D, and a potential difference is generated between the needles B and C when a current is passed through the needles A and D. And measuring the electric resistance of the electrode of the powder molded body, and using the measured value as an index indicating the adhesion strength between the powders in the powder molded body electrode, the powder molded body electrode A method for evaluating a powder molded body electrode, comprising:
四短針法で測定された電極の電気抵抗に基づき、抵抗値が小さいほど電極における粉末同士の密着強度が高く、抵抗値が大きいほど電極における粉末同士の密着強度が低いことを判断することを特徴とする請求項1に記載の粉末成形体電極の評価方法。 Based on the electrical resistance of the electrode measured by the four-short needle method, the smaller the resistance value, the higher the adhesion strength between the powders in the electrode, and the larger the resistance value, the lower the adhesion strength between the powders in the electrode. The method for evaluating a powder molded body electrode according to claim 1. 電極の組成がCo合金の場合は、四短針法で測定された電極の電気抵抗が4.0E-4Ω以上3.0E-2Ω以下の範囲の際に、前記Co合金粉末の密着強度が最適範囲であると判断することを特徴とする請求項1に記載の粉末成形体電極の評価方法。 If the composition of the electrodes is Co alloy, when measuring range electrical resistance following 4.0E-4ohm more 3.0E-2 [Omega electrode by a four hour hand method, the adhesion strength of the Co alloy powder is an optimum range The method for evaluating a powder molded body electrode according to claim 1, characterized in that: 電極の組成がMo合金の場合は、四短針法で測定された電極の電気抵抗が1.0E-4Ω以上3.0E-3Ω以下の範囲の際に、前記Co合金粉末の密着強度が最適範囲であると判断することを特徴とする請求項1に記載の粉末成形体電極の評価方法。 If the composition of the electrodes is Mo alloy, when measuring range electrical resistance following 1.0E-4ohm more 3.0E-3 [Omega] electrodes by a four hour hand method, the adhesion strength of the Co alloy powder is an optimum range The method for evaluating a powder molded body electrode according to claim 1, characterized in that: 電極の組成がCu合金の場合は、四短針法で測定された電極の電気抵抗が0.8E-3Ω以上1.0E-2Ω以下の範囲の際に、前記Co合金粉末の密着強度が最適範囲であると判断することを特徴とする請求項1に記載の粉末成形体電極の評価方法。 If the composition of the electrode is Cu alloy, when measuring range electrical resistance following 0.8E-3Ω or 1.0E-2 [Omega electrode by a four hour hand method, the adhesion strength of the Co alloy powder is an optimum range The method for evaluating a powder molded body electrode according to claim 1, characterized in that:
JP2009026185A 2009-02-06 2009-02-06 Method for evaluating powder molded body electrode Active JP4630374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009026185A JP4630374B2 (en) 2009-02-06 2009-02-06 Method for evaluating powder molded body electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009026185A JP4630374B2 (en) 2009-02-06 2009-02-06 Method for evaluating powder molded body electrode

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004312025A Division JP2006124741A (en) 2004-10-27 2004-10-27 Surface treatment method by discharge, and electrode for surface treatment by discharge

Publications (2)

Publication Number Publication Date
JP2009102747A JP2009102747A (en) 2009-05-14
JP4630374B2 true JP4630374B2 (en) 2011-02-09

Family

ID=40704718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009026185A Active JP4630374B2 (en) 2009-02-06 2009-02-06 Method for evaluating powder molded body electrode

Country Status (1)

Country Link
JP (1) JP4630374B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08143792A (en) * 1994-11-17 1996-06-04 Mitsubishi Materials Corp Composition for forming conductive film and formation of conductive film
JP2000336154A (en) * 1999-03-23 2000-12-05 Mitsubishi Chemicals Corp Production of electroconductive polymer
JP2001240730A (en) * 2000-02-28 2001-09-04 Mitsubishi Chemicals Corp Electroconductive polythiophene

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08143792A (en) * 1994-11-17 1996-06-04 Mitsubishi Materials Corp Composition for forming conductive film and formation of conductive film
JP2000336154A (en) * 1999-03-23 2000-12-05 Mitsubishi Chemicals Corp Production of electroconductive polymer
JP2001240730A (en) * 2000-02-28 2001-09-04 Mitsubishi Chemicals Corp Electroconductive polythiophene

Also Published As

Publication number Publication date
JP2009102747A (en) 2009-05-14

Similar Documents

Publication Publication Date Title
Mohanty et al. Surface modification of Ti-alloy by micro-electrical discharge process using tungsten disulphide powder suspension
Czelusniak et al. Materials used for sinking EDM electrodes: a review
Singh et al. Effect of the addition of conductive powder in dielectric on the surface properties of superalloy Super Co 605 by EDM process
Marashi et al. State of the art in powder mixed dielectric for EDM applications
US7641945B2 (en) Electrical-discharge surface-treatment method
US20020169516A1 (en) Method of controlling an electrochemical machining process
JP4563318B2 (en) Discharge surface treatment electrode, discharge surface treatment apparatus, and discharge surface treatment method
JPWO2010016121A1 (en) Discharge surface treatment method
Chiu et al. A preliminary study of cladding steel with NiTi by microwave-assisted brazing
JP4630374B2 (en) Method for evaluating powder molded body electrode
JP2006124741A (en) Surface treatment method by discharge, and electrode for surface treatment by discharge
ÖZERKAN et al. Effect of powder mixed dielectric on machining performance in electric discharge machining (EDM)
Yadav et al. A concise review on improvement of tribological properties by electrical discharge coating process
EP1662022A1 (en) Device for electrical discharge coating and method for electrical discharge coating
Ahmad et al. An electrical discharge machining (EDM) of inconel 718 using copper tungsten electrode with higher peak current and pulse duration
JP4816832B1 (en) Surface layer forming method by electric discharge machining and the surface layer
JP4900539B1 (en) Discharge surface treatment method
JP3847697B2 (en) Electrode for discharge surface treatment
Hejwowski et al. A comparative study of electrochemical properties of metallic glasses and weld overlay coatings
JP2005213554A (en) Discharge surface treatment method and discharge surface treatment apparatus
Cui et al. Ferrite number as a function of the larson-miller parameter for austenitic stainless weld metals after creep testing
JP4332637B2 (en) Discharge surface treatment method and discharge surface treatment apparatus.
Sharma et al. Study the Effect of Machining Parameters in Electric Discharge Machining of EN 31 Die Steel
Arshad et al. euspen’s 21st International Conference & Exhibition, Copenhagen, DK, June 2021
Luo et al. Wear and Corrosion Resistance of 304 Stainless Steel/WC Composite Coatings Prepared by Laser Cladding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4630374

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250