JP4629167B2 - Nucleic acid synthesis method - Google Patents

Nucleic acid synthesis method Download PDF

Info

Publication number
JP4629167B2
JP4629167B2 JP28488997A JP28488997A JP4629167B2 JP 4629167 B2 JP4629167 B2 JP 4629167B2 JP 28488997 A JP28488997 A JP 28488997A JP 28488997 A JP28488997 A JP 28488997A JP 4629167 B2 JP4629167 B2 JP 4629167B2
Authority
JP
Japan
Prior art keywords
pcr
nucleic acid
heat treatment
acid synthesis
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28488997A
Other languages
Japanese (ja)
Other versions
JPH11113573A (en
Inventor
知子 中山
直行 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP28488997A priority Critical patent/JP4629167B2/en
Publication of JPH11113573A publication Critical patent/JPH11113573A/en
Application granted granted Critical
Publication of JP4629167B2 publication Critical patent/JP4629167B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は核酸合成法、特に、ポリメラーゼ連鎖反応(Polymerase Chain Reaction :以下PCRと略す)法による核酸合成法に関する。
【0002】
【従来の技術】
PCR法は、DNA鎖の1本鎖への解離、DNA鎖の中の特定の領域をはさんだプライマーの結合、DNAポリメラーゼによるDNA合成反応を繰り返すことによって、目的のDNA断片を数十万倍にも増幅できる方法である。PCR法は、マリス氏らの発明である特開昭61−274697号公報に述べられている。
PCR法は種々の試料中の核酸の高感度分析法として使用可能で、特に動物体液由来の試料中の核酸の分析法に使用できる。従って、PCR法は感染症や遺伝病やガンの診断等に利用される。さらに、PCR法は移植や親子鑑定の際のDNAタイピングの検査にも適した方法である。これらの場合末梢血液が検査対象に選ばれる場合が多い。
【0003】
PCR法の1つの欠点は色素、たんぱく、糖類あるいは未知の夾雑物が反応を阻害することである。すなわち、代表的な耐熱性DNAポリメラーゼであるThermus aquaticus 由来のTaqDNAポリメラーゼをはじめ、多くのDNAポリメラーゼは、微量の体液由来の夾雑物がPCR反応液中に混在しても、PCRが強く阻害されることが広く知られている。
【0004】
そこで、PCR法によるDNA増幅に先立って、被験物から細胞、細菌、ウィルス等(以下、遺伝子包含体と称する)を分離し、次に、その遺伝子包含体から核酸を抽出する過程が必要となる。その方法としては、酵素、界面活性剤、カオトロピック剤等により遺伝子包含体を分解し、その後、フェノールあるいはフェノール・クロロホルム等を用いて、遺伝子包含体の分解物から核酸を抽出する方法が従来より使用されている。
【0005】
最近では核酸抽出の過程において、イオン交換樹脂、ガラスフィルター、ガラスビーズあるいはタンパク凝集作用を有する試薬等が使用されている。
【0006】
【発明が解決しようとする課題】
しかし、これらの方法を用いて試料中の核酸の精製を行っても、不純物の完全な除去は困難であり、かつ試料中の核酸の回収量が一定しない場合も多く、このため引き続く核酸合成が、とりわけ試料中の目的とする核酸の含量が少ない場合には、うまくできない場合もある。また、これら精製法は操作が煩雑で時間を要し、また操作中のコンタミネーションの機会が高い。
【0007】
従って、これらの問題点を解決するためには、より簡便で、かつ効果的な試料前処理法が望まれる。
【0008】
我々は以前、PCR反応液中のpHを上昇させること(特願平8ー238112号)または、PCR反応液中にポリアミンを添加すること(特願平6ー146500号)により、試料中の遺伝子包含体もしくは試料そのものと遺伝子増幅反応液を混合し、PCRを行うことが可能であることを見いだした。しかし、この方法を用いた場合においても、試料中の遺伝子包含体もしくは試料そのものの種類によっては、PCR阻害物質の作用を抑制しきれず、試料中のDNAを効率よく増幅させることができない場合があることが見いだされた。
【0009】
そこで、本発明は、更に改良を加え、試料の種類に関係なく、PCR阻害物質の作用を抑制して、試料中のDNAを効率よく増幅させる新規な方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、上記課題を解決するため、生体由来試料に含まれる遺伝子包含体中もしくは生体由来試料中の目的とする遺伝子を増幅する核酸合成法において、プレヒーティングを伴う核酸合成を行う前に、生体由来試料を添加した遺伝子増幅反応液をプライマー付加による核酸を合成する耐熱酵素の熱安定性が保たれる温度である70℃〜90℃で5〜20分熱処理を行うことを特徴とする。
【0011】
本発明において、試料は生体由来試料中の遺伝子包含体もしくは生体由来試料そのものをいい、生体由来試料とは、動植物組織、体液、排泄物等をいい、遺伝子包含体とは、細胞、細菌、ウィルス等をいう。体液には血液、唾液、髄液、尿、乳が含まれ、細胞には血液から分離した白血球が含まれるが、これらに限定されるものではない。
【0012】
遺伝子増幅反応液は、通常、pH緩衝液並びにMgCl2 、KCl等の塩類、プライマー、デオキシリボヌクレオチド類及び耐熱酵素を含むものである。また、上記の塩類は適宜他の塩類に変更して使用されている。また、ゼラチン、アルブミン等のタンパク、ジメチルスルホキシド、界面活性剤等種々の物質が添加される場合がある。
【0013】
pH緩衝液は、トリス(ヒドロキシメチル)アミノメタンと塩酸、硝酸、硫酸等の鉱酸の組合せであり、鉱酸の中で望ましいものは塩酸である。また、トリシン、CAPSO(3ーNーCyclohexylamino −2 −hydroxypropanesulfonic acid )あるいはCHES(2ー(Cyclohexylamino )ethanesulfonic acid )と苛性ソーダ、苛性カリとの組み合わせによるpH緩衝液等種々のpH緩衝液が使用され得る。pH調整された緩衝液は、遺伝子増幅反応液の中で10mMから100mMの間の濃度で使用される。
【0014】
プライマーは、核酸と増幅用試薬等の存在下に合成の開始点として働くオリゴヌクレオチドをいう。プライマーは一本鎖であることが望ましいが、二本鎖も使用できる。もし、プライマーが二本鎖の場合には、増幅反応に先立って一本鎖にすることが望ましい。プライマーは、公知の方法により合成することができるし、また、生物界から単離することもできる。
【0015】
耐熱酵素は、プライマー付加による核酸を合成する酵素、あるいはかような化学合成系を意味する。適切な耐熱酵素としては、E.coliのDNAポリメラーゼI、E.coliのDNAポリメラーゼのクレノーフラグメント、T4DNAポリメラーゼ、TaqDNAポリメラーゼ、T.litoralisDNAポリメラーゼ、TthDNAポリメラーゼ、PfuDNAポリメラーゼそして逆転写酵素などがあるが、これらにのみ限定されるものではない。
【0016】
遺伝子増幅反応液のpHは、25℃の温度条件下で8.1以上、好ましくは8.1〜9.5である。更に好ましくは、例えば血液から分離した白血球で直接PCRを行う場合は、pH9.0付近、赤血球の溶血等の前処理を施すことなく、血液試料でPCRを行う場合には、pH8.8付近、唾液試料より直接PCRを行う場合には、pH9.4付近とすることがよい。
【0017】
また、本発明では、遺伝子増幅反応液にポリアミンを添加してもよい。ポリアミンとは、第1級もしくは第2級アミノ基を二つ以上もつ炭化水素の総称で、具体的には、例えばエチレンジアミン、トリメチレンジアミン、スペルミン、スペルミジン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、1、4ービス(3ー アミノプロピル)ー ピぺラジン、1ー(2ーアミノエチル)ピペラジン等が挙げられる。ポリアミンの添加量は、ポリアミンの種類や試料の種類、濃度等により異なるが、通常遺伝子増幅反応液中10〜0.01mM程度、好ましくは2〜0.5mM程度が良い。
【0018】
耐熱酵素の熱安定性が保たれる温度とは、前記耐熱酵素の活性が保持される温度で、好ましくは70〜90℃、更に好ましくは72〜90℃である。加熱時間は、熱処理温度にもよるが、5〜20分、好ましくは5〜15分である。
【0019】
なお、本発明で“核酸合成を行う前”とは、試料に遺伝子増幅反応液を添加する前、後のいずれも指すが、遺伝子増幅反応液の添加後の方が好ましい。
【0020】
また、本発明の核酸合成法(PCR)の手順は、核酸合成を行う前に熱処理を行う以外、通常の方法と変わらない。
【0021】
【実施例】
(実験例1)
PCR反応液(47.5μl)に抗凝固剤(EDTA-2K またはHeparin-Na)で処理したヒト血液を2.5 μl添加し、60℃、72℃または80℃で熱処理を行った後、PCRを行った。PCRのプライマーはHLA−DP遺伝子領域内に位置するplus鎖の塩基配列をもつオリゴヌクレオチド(P1)及びminus 鎖の塩基配列をもつオリゴヌクレオチド(P2)であり、配列は次の通りである。この2種類のプライマーを用いたPCRの結果、280bp の増幅産物を得ることができる。
【0022】
P1:5’TCCCCGCAGAGAATTAC3’
P2:5’CACTCACCTCGGCGC3’
PCR反応液には、pH8.9 に調節した10mM Tris-HCl, 35mM KCl,1.5mM MgCl2 , 200 μM のdATP,dCTP,dGTP及びdTTP, 1.0 μM のprimer, 1.25units/50μl のTaq DNA ポリメラーゼ(TaKaRa Taq: Takara shuzo, Kyoto, Japan)反応液を用いた。
【0023】
PCRは、94℃、4分30秒のプレヒーティングの後、94℃ 30秒間、58℃ 1分間、72℃ 1分間の条件で40サイクル、最後に72℃ 7分間のポリメライゼーションを行った。PCR終了後、反応液5μlを用いて、2.5%アガロースを含む、0.5μg/ ml臭化エチジウム添加TAE(40mM Tris-acetate, 1mM EDTA, pH8.0) 液中で電気泳動を行い検出した。
【0024】
抗凝固剤処理ヒト血液(2 サンプル)を直接添加したPCR反応液を、PCR前に各種温度で15分間熱処理を行い、PCRを行ったときの増幅産物の電気泳動図を図1に示す。図中AまたはAはHeparin-Na処理血、BまたはBはEDTA-2K 処理血(1、2はサンプルナンバー)を示し、1は60℃、2は72℃、3は80℃の温度でPCR前に熱処理を行った時、4は熱処理を行わなかった時のPCR産物の電気泳動の結果を示している。また、Mはサイズマーカー(HincIIで切断した250ng のφ X174-RF DNA)を示している。
【0025】
結果、60℃の熱処理を行った場合では熱処理を行わなかった場合に比べて、1例において、若干のPCR増幅産物の増量が認められたにすぎなかった(A−1 vs A−4 )。一方、72℃と80℃の熱処理では、熱処理を行わなかった時と比べて、多量の特異的なPCR増幅産物が認められた。
【0026】
(実験例2)
本例は、実験例1で最も増幅効率の良かった熱処理温度80℃とさらに高い90℃で、5分、15分、30分間熱処理を行った後、PCRを行った実験である。試料は実験例1で使用したAおよびB血液を用いた。また用いたPCR反応液の組成およびPCRの条件、PCR後の電気泳動の条件は実験例1と同様である。
【0027】
種々の温度、時間で熱処理を行い、PCRを行ったときのPCR産物の電気泳動図を図2に示した。図中Iは80℃、IIは90℃の熱処理温度を示し、1は15分、2は10分、3は5分の熱処理を、4は熱処理を行わなかった時のPCR産物の電気泳動の結果を示している。
【0028】
結果、Heparin-Na 処理血(A)を用いた場合には、熱処理を行わなかった場合において、PCR増幅産物が検出出来なかった(A−4 )が、熱処理を行った場合、80℃、90℃いずれの温度で5〜15分いずれの時間熱処理した場合においても、明瞭なPCR産物が検出できた。一方、EDTA-2K 処理血(B)を用いた場合には、熱処理を行わなかった場合(B−4 )に比べ、熱処理を行った場合、いずれの温度、いずれの時間で熱処理した場合においてもPCR増幅産物の増量が認められた。
【0029】
【発明の効果】
本発明により、核酸の分離・精製の過程を経ずに、血液等のPCR阻害物質を多く含んだ試料から、直接、目的のDNAを効率よく増幅することが可能となった。また、本発明により、簡便、迅速に核酸合成の操作を行えるようになり、コンタミネーションの機会の軽減が可能となった。
【0030】
【配列表】
配列番号:1
配列の長さ:17
配列の型:核酸
鎖の数:1本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成DNA
アンチセンス:No
配列: TCCCCGCAGAGAATTAC
【0031】
配列番号:2
配列の長さ:15
配列の型:核酸
鎖の数:1本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成DNA
アンチセンス:No
配列: CACTCACCTCGGCGC
【図面の簡単な説明】
【図1】抗凝固剤処理ヒト血液(2 サンプル)を直接添加したPCR反応液を、PCR前に各種温度で15分間熱処理を行い、PCRを行ったときの増幅産物の電気泳動図
【図2】種々の温度、時間で熱処理を行い、PCRを行ったときのPCR産物の電気泳動図
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a nucleic acid synthesis method, and more particularly to a nucleic acid synthesis method by a polymerase chain reaction (hereinafter abbreviated as PCR) method.
[0002]
[Prior art]
The PCR method is intended to multiply the target DNA fragment several hundred thousand times by repeating the dissociation of the DNA strand into a single strand, the binding of a primer across a specific region in the DNA strand, and the DNA synthesis reaction by DNA polymerase. Can be amplified. The PCR method is described in Japanese Patent Laid-Open No. 61-274697 which is an invention of Maris et al.
The PCR method can be used as a high-sensitivity analysis method for nucleic acids in various samples, and can be used particularly for analysis methods for nucleic acids in samples derived from animal body fluids. Therefore, the PCR method is used for diagnosis of infectious diseases, genetic diseases and cancer. Furthermore, the PCR method is also suitable for DNA typing examinations during transplantation and parentage testing. In these cases, peripheral blood is often selected for testing.
[0003]
One disadvantage of the PCR method is that dyes, proteins, sugars or unknown contaminants inhibit the reaction. That is, many DNA polymerases, including Taq DNA polymerase derived from Thermus aquaticus, which is a typical thermostable DNA polymerase, strongly inhibits PCR even if a small amount of contaminants derived from body fluids are mixed in the PCR reaction solution. It is widely known.
[0004]
Therefore, prior to DNA amplification by the PCR method, it is necessary to separate cells, bacteria, viruses, etc. (hereinafter referred to as gene inclusions) from the test substance, and then extract nucleic acids from the gene inclusions. . As the method, a method in which a gene inclusion body is decomposed with an enzyme, a surfactant, a chaotropic agent, etc., and then a nucleic acid is extracted from the decomposition product of the gene inclusion body using phenol or phenol / chloroform is conventionally used. Has been.
[0005]
Recently, in the process of nucleic acid extraction, ion exchange resins, glass filters, glass beads, reagents having a protein aggregating action, and the like are used.
[0006]
[Problems to be solved by the invention]
However, even if nucleic acid in a sample is purified using these methods, it is difficult to completely remove impurities, and the amount of recovered nucleic acid in the sample is often not constant. In particular, it may not be successful if the content of the target nucleic acid in the sample is low. In addition, these purification methods are complicated and require time, and there is a high chance of contamination during operation.
[0007]
Therefore, in order to solve these problems, a simpler and more effective sample pretreatment method is desired.
[0008]
We have previously increased the pH in the PCR reaction solution (Japanese Patent Application No. 8-238112) or added polyamines in the PCR reaction solution (Japanese Patent Application No. 6-146500). It was found that PCR can be performed by mixing the inclusion body or the sample itself with the gene amplification reaction solution. However, even when this method is used, depending on the type of gene inclusion in the sample or the sample itself, the action of the PCR inhibitor cannot be suppressed, and the DNA in the sample may not be efficiently amplified. I found something.
[0009]
Accordingly, the present invention aims to provide a novel method for further amplifying DNA in a sample efficiently by further improving and suppressing the action of a PCR inhibitor regardless of the type of the sample.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a nucleic acid synthesis method for amplifying a target gene in a gene inclusion body contained in a biological sample or a biological sample, before performing nucleic acid synthesis involving preheating. and characterized by performing a gene amplification reaction solution obtained by adding a biological sample derived from the 5 to 20 minute heat treatment at 70 ° C. to 90 ° C. is a temperature at which thermal stability of heat-resistant enzyme is maintained synthesizing a nucleic acid by primer added To do.
[0011]
In the present invention, a sample refers to a gene inclusion body in a biological sample or a biological sample itself, and the biological sample refers to animal and plant tissue, body fluid, excrement, etc., and a gene inclusion includes cells, bacteria, viruses Etc. Body fluids include blood, saliva, spinal fluid, urine, and milk, and cells include, but are not limited to, white blood cells separated from blood.
[0012]
The gene amplification reaction solution usually contains a pH buffer solution, salts such as MgCl 2 and KCl, primers, deoxyribonucleotides and a thermostable enzyme. Further, the above salts are used by appropriately changing to other salts. In addition, various substances such as proteins such as gelatin and albumin, dimethyl sulfoxide, and surfactants may be added.
[0013]
The pH buffer is a combination of tris (hydroxymethyl) aminomethane and a mineral acid such as hydrochloric acid, nitric acid, sulfuric acid, etc., and a desirable mineral acid is hydrochloric acid. In addition, various pH buffer solutions such as a pH buffer solution using a combination of tricine, CAPSO (3-N-Cyclohexylamino-2-hydroxypropanesulfonic acid) or CHES (2- (Cyclohexylamino) ethanesulfonic acid) with caustic soda and caustic potash can be used. The pH-adjusted buffer is used in the gene amplification reaction solution at a concentration between 10 mM and 100 mM.
[0014]
A primer refers to an oligonucleotide that serves as a starting point for synthesis in the presence of a nucleic acid and an amplification reagent. The primer is preferably single-stranded, but double-stranded can also be used. If the primer is double-stranded, it is desirable to make it single-stranded prior to the amplification reaction. The primer can be synthesized by a known method, or can be isolated from the biological world.
[0015]
The thermostable enzyme means an enzyme that synthesizes nucleic acid by adding a primer, or such a chemical synthesis system. Suitable thermoenzymes include E. coli. DNA polymerase I, E. coli Examples include, but are not limited to, the Klenow fragment of Escherichia coli DNA polymerase, T4 DNA polymerase, Taq DNA polymerase, T. litoralis DNA polymerase, Tth DNA polymerase, Pfu DNA polymerase, and reverse transcriptase.
[0016]
The pH of the gene amplification reaction solution is 8.1 or higher, preferably 8.1 to 9.5 under a temperature condition of 25 ° C. More preferably, for example, when PCR is directly performed on leukocytes separated from blood, pH is around 9.0, and when PCR is performed on a blood sample without pretreatment such as hemolysis of red blood cells, pH is about 8.8. When PCR is directly performed from a saliva sample, the pH should be around 9.4.
[0017]
In the present invention, a polyamine may be added to the gene amplification reaction solution. Polyamine is a general term for hydrocarbons having two or more primary or secondary amino groups. Specifically, for example, ethylenediamine, trimethylenediamine, spermine, spermidine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine. Pentaethylenehexamine, 1,4-bis (3-aminopropyl) -piperazine, 1- (2-aminoethyl) piperazine, and the like. The amount of polyamine added varies depending on the type of polyamine, the type of sample, the concentration, etc., but is usually about 10 to 0.01 mM, preferably about 2 to 0.5 mM in the gene amplification reaction solution.
[0018]
The temperature at which the heat stability of the thermostable enzyme is maintained is a temperature at which the activity of the thermostable enzyme is maintained, preferably 70 to 90 ° C, more preferably 72 to 90 ° C. The heating time is 5 to 20 minutes, preferably 5 to 15 minutes, depending on the heat treatment temperature.
[0019]
In the present invention, “before nucleic acid synthesis” refers to both before and after the gene amplification reaction solution is added to the sample, but preferably after the addition of the gene amplification reaction solution.
[0020]
The procedure of the nucleic acid synthesis method (PCR) of the present invention is the same as that of a normal method except that heat treatment is performed before nucleic acid synthesis.
[0021]
【Example】
(Experimental example 1)
2.5 μl of human blood treated with an anticoagulant (EDTA-2K or Heparin-Na) was added to the PCR reaction solution (47.5 μl), heat-treated at 60 ° C., 72 ° C. or 80 ° C., and then PCR was performed. . PCR primers are an oligonucleotide (P1) having a plus strand base sequence located within the HLA-DP gene region and an oligonucleotide (P2) having a minus strand base sequence, and the sequences are as follows. As a result of PCR using these two kinds of primers, an amplification product of 280 bp can be obtained.
[0022]
P1: 5'TCCCCGCAGAGAATTAC3 '
P2: 5 'CACTCACCTCGGGCGC3'
The PCR reaction solution contained 10 mM Tris-HCl, 35 mM KCl, 1.5 mM MgCl 2 , 200 μM dATP, dCTP, dGTP and dTTP adjusted to pH 8.9, 1.0 μM primer, 1.25 units / 50 μl Taq DNA polymerase ( TaKaRa Taq: Takara shuzo, Kyoto, Japan).
[0023]
PCR was performed at 94 ° C. for 4 minutes 30 seconds, followed by 40 cycles of 94 ° C. for 30 seconds, 58 ° C. for 1 minute, 72 ° C. for 1 minute, and finally 72 ° C. for 7 minutes. After completion of PCR, 5 μl of the reaction mixture was used to perform electrophoresis in 0.5 μg / ml ethidium bromide-added TAE (40 mM Tris-acetate, 1 mM EDTA, pH 8.0) solution containing 2.5% agarose. did.
[0024]
FIG. 1 shows an electrophoretogram of amplification products when PCR is performed by subjecting a PCR reaction solution directly added with anticoagulant-treated human blood (2 samples) to various temperatures before PCR for 15 minutes. In the figure, A 1 or A 2 is Heparin-Na treated blood, B 1 or B 2 is EDTA-2K treated blood (1, 2 is the sample number), 1 is 60 ° C, 2 is 72 ° C, 3 is 80 ° C 4 shows the result of electrophoresis of the PCR product when the heat treatment was performed before PCR at the temperature of 4 and when the heat treatment was not performed. M indicates a size marker (250 ng of φX174-RF DNA cut with HincII).
[0025]
As a result, in the case where the heat treatment at 60 ° C. was performed, only a slight increase in the PCR amplification product was observed in one case compared to the case where the heat treatment was not performed (A 2 −1 vs A 2 −4). ). On the other hand, in the heat treatment at 72 ° C. and 80 ° C., a large amount of specific PCR amplification product was observed as compared with the case where the heat treatment was not performed.
[0026]
(Experimental example 2)
This example is an experiment in which PCR was performed after heat treatment was performed for 5 minutes, 15 minutes, and 30 minutes at a heat treatment temperature of 80 ° C. and 90 ° C., which had the highest amplification efficiency in Experimental Example 1. The samples used were A 1 and B 1 blood used in Experimental Example 1. The composition of the PCR reaction solution used, the conditions for PCR, and the conditions for electrophoresis after PCR are the same as in Experimental Example 1.
[0027]
FIG. 2 shows an electrophoretogram of the PCR product when PCR was performed by heat treatment at various temperatures and times. In the figure, I is the heat treatment temperature of 80 ° C., II is the heat treatment temperature of 90 ° C., 1 is 15 minutes, 2 is 10 minutes, 3 is heat treatment for 5 minutes, and 4 is the PCR product electrophoresis when no heat treatment is performed. Results are shown.
[0028]
As a result, when Heparin-Na-treated blood (A 1 ) was used, PCR amplification products could not be detected when heat treatment was not performed (A 1 -4), but when heat treatment was performed, 80 ° C. A clear PCR product could be detected even when heat-treated at 90 ° C. for any time for 5 to 15 minutes. On the other hand, when EDTA-2K-treated blood (B 1 ) is used, when heat treatment is performed, compared with the case where heat treatment is not performed (B 1 -4), when heat treatment is performed at any temperature and at any time The increase in PCR amplification product was also observed in.
[0029]
【The invention's effect】
According to the present invention, it is possible to efficiently amplify a target DNA directly from a sample containing a large amount of a PCR-inhibiting substance such as blood without going through a process of separating and purifying nucleic acid. In addition, according to the present invention, nucleic acid synthesis can be performed simply and quickly, and the chance of contamination can be reduced.
[0030]
[Sequence Listing]
SEQ ID NO: 1
Sequence length: 17
Sequence type: Number of nucleic acid strands: Single strand topology: Type of linear sequence: Other nucleic acid Synthetic DNA
Antisense: No
Sequence: TCCCCGCAGAGAATTAC
[0031]
SEQ ID NO: 2
Sequence length: 15
Sequence type: Number of nucleic acid strands: Single strand topology: Type of linear sequence: Other nucleic acid Synthetic DNA
Antisense: No
Sequence: CACTCACCCTGGGCGC
[Brief description of the drawings]
[Fig. 1] Electrophoretic diagram of amplification products when PCR reaction solution directly added with anticoagulant-treated human blood (2 samples) is heat-treated at various temperatures for 15 minutes before PCR. [Fig. Electrophoretic diagram of PCR products when PCR is performed by heat treatment at various temperatures and times

Claims (1)

生体由来試料に含まれる遺伝子包含体中もしくは生体由来試料中の目的とする遺伝子を増幅する核酸合成法において、プレヒーティングを伴う核酸合成を行う前に、生体由来試料を添加した遺伝子増幅反応液をプライマー付加による核酸を合成する耐熱酵素の熱安定性が保たれる温度である70℃〜90℃で5〜20分熱処理を行うことを特徴とする核酸合成法。In a nucleic acid synthesis method for amplifying a target gene in a gene inclusion body or a biological sample contained in a biological sample, a gene amplification reaction solution to which the biological sample is added before performing nucleic acid synthesis with preheating a nucleic acid synthesis method which is characterized in that 5 to 20 minutes heat treatment at 70 ° C. to 90 ° C. is a temperature at which thermal stability of heat-resistant enzyme is maintained synthesizing a nucleic acid with primers added.
JP28488997A 1997-10-17 1997-10-17 Nucleic acid synthesis method Expired - Fee Related JP4629167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28488997A JP4629167B2 (en) 1997-10-17 1997-10-17 Nucleic acid synthesis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28488997A JP4629167B2 (en) 1997-10-17 1997-10-17 Nucleic acid synthesis method

Publications (2)

Publication Number Publication Date
JPH11113573A JPH11113573A (en) 1999-04-27
JP4629167B2 true JP4629167B2 (en) 2011-02-09

Family

ID=17684360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28488997A Expired - Fee Related JP4629167B2 (en) 1997-10-17 1997-10-17 Nucleic acid synthesis method

Country Status (1)

Country Link
JP (1) JP4629167B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8669061B2 (en) 2008-06-26 2014-03-11 Roche Molecular Systems, Inc. Method for the prevention of carryover contamination in nucleic acid amplification technologies
US9528105B2 (en) * 2014-09-04 2016-12-27 Techlab, Inc. Nucleic acid extraction using organic solvents to remove inhibitors

Also Published As

Publication number Publication date
JPH11113573A (en) 1999-04-27

Similar Documents

Publication Publication Date Title
US9518302B2 (en) Method for direct amplification from crude nucleic acid samples
AU749882B2 (en) A method of removing nucleic acid contamination in amplification reactions
CN107385040B (en) Amplicon rescue multiplex polymerase chain reaction for amplification of multiple targets
KR100238833B1 (en) Method for suppressing inhibition of enzyme-mediated reactions by ionic detergents
EP1069190B1 (en) Method for amplification of RNA
US6673578B1 (en) Method for synthesizing DNA
EP0585660B1 (en) Exonuclease decontamination method
US6962780B2 (en) Method for synthesis of nucleic acids
JP3452717B2 (en) Nucleic acid synthesis method
JP4470275B2 (en) Nucleic acid synthesis method
CN114134220A (en) PCR reaction solution for blood detection and kit thereof
JPH1080280A (en) Synthesis of nucleic acid
CN114391043A (en) Methylation detection and analysis of mammalian DNA
JP4629167B2 (en) Nucleic acid synthesis method
JP4186269B2 (en) Nucleic acid synthesis method
EP0751226B1 (en) Process for amplifying nucleic acid sequences
JP4186270B2 (en) Nucleic acid synthesis method
JP4503712B2 (en) Nucleic acid synthesis method
JP3416981B2 (en) Nucleic acid synthesis method
EP0989192A2 (en) Method for synthesis of nucleic acids
JP2001008685A (en) Method for synthesizing nucleic acid
JP3724321B2 (en) Nucleic acid synthesis method
JPH089997A (en) Method for synthesizing nucleic acid and reagent kit used therefor
JP4187057B2 (en) Nucleic acid synthesis method
JP2001008680A (en) Synthesis of nucleic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071004

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071218

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees