JP4628527B2 - DC motor - Google Patents

DC motor Download PDF

Info

Publication number
JP4628527B2
JP4628527B2 JP2000238925A JP2000238925A JP4628527B2 JP 4628527 B2 JP4628527 B2 JP 4628527B2 JP 2000238925 A JP2000238925 A JP 2000238925A JP 2000238925 A JP2000238925 A JP 2000238925A JP 4628527 B2 JP4628527 B2 JP 4628527B2
Authority
JP
Japan
Prior art keywords
magnetic pole
sensor
pole part
magnet
main magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000238925A
Other languages
Japanese (ja)
Other versions
JP2002058186A (en
Inventor
昌亨 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Ecology Systems Co Ltd
Original Assignee
Panasonic Ecology Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Ecology Systems Co Ltd filed Critical Panasonic Ecology Systems Co Ltd
Priority to JP2000238925A priority Critical patent/JP4628527B2/en
Publication of JP2002058186A publication Critical patent/JP2002058186A/en
Application granted granted Critical
Publication of JP4628527B2 publication Critical patent/JP4628527B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、主にルームエアコンや給湯機や換気扇などの送風ファン駆動源として用いられる小型電動機の一種であるDCモータに関するものである。
【0002】
【従来の技術】
近年、この種のDCモータは、小型化、低コスト化、部品点数・加工工数の削減、設備・金型投資の抑制を実現した上での高品質、高出力および高効率化が強く要求されている。DCモータの高出力および高効率化には、固定子は磁気飽和限界までスロット面積を拡げるとともに、高密度実装巻線により実現し、また、回転子は磁束密度の高い磁石を使用することにより対処されている。さらに、最近では多極化することによって高効率化を実現している。
【0003】
磁石は形状面からはリング型磁石とセグメント型磁石に区分され、セグメント型磁石の方が磁束密度は高い。また、磁性粉体を金型内で成型するときに磁場をかけて配向するか、磁場をかけないで配向しないかによって、異方性磁石、等方性磁石に区分され、磁場をかけて得られる異方性磁石には、磁場配向によってラジアル異方性磁石と極異方性磁石と軸方向異方性に区分され、極異方性磁石はラジアル異方性磁石よりも20%程度磁束密度が高く、着磁波形は正弦波となるので、低振動化、高出力および高効率化には極異方性磁石が用いられるようになってきた。
【0004】
従来、この種のDCモータの一例として図8および図9に示されるものが知られていた。以下、その構成について図8および図9を参照しながら説明する。
【0005】
図に示すように、固定子54は、6つのスロットを有する固定子鉄心51を一体成形あるいは軸方向からの挟み込みによるインシュレータ52にて絶縁し、電機子巻線53を直接巻装して構成され、磁石回転子55は、シャフト56を圧入した回転子鉄心57に4枚のフェライト異方性セグメント磁石58を貼り付け、フェライト異方性セグメント磁石58の軸方向長さは固定子鉄心51の軸方向長さ以上に構成され、59は磁石回転子55の磁極位置を検出するための位置検出素子であるホールIC60および電機子巻線53への通電を制御する駆動IC61を搭載したプリント基板であり、ホールIC60はフェライト異方性セグメント磁石58の漏れ磁束を検出する構成であった。しかし、このような6スロット4極のDCモータでは、極端な高効率化はできないため、固定子鉄心51のスロット数を6スロットから9スロットあるいは12スロットにし、磁石回転子55の極数を4極から8極にすることによって、高効率化する構成が提案されてきている。しかしながら、磁石回転子55の極数を4極から8極に増やすことによって、磁石回転子55の加工工数は2倍になってしまうため、コスト高となるので、リング型磁石である極異方性磁石、特に樹脂磁石において金型内にサマリウムコバルト磁石などを埋め込んで、成形時に極配向させる極異方性樹脂磁石の採用が低コスト化をねらって増えてきている。
【0006】
【発明が解決しようとする課題】
このような従来のDCモータによれば、プリント基板59を電動機内部に内蔵し、ホールIC60を用いて磁石回転子55の磁極位置を検出する場合、磁石58の軸方向長さの少なくともプリント基板59側は固定子鉄心51に巻装された電機子巻線53の軸方向長さ以上とする必要がある。しかしながら、この方法では固定子鉄心51の軸方向中心と磁石58の軸方向中心がずれるので、磁気中心がずれ、固定子鉄心51と磁石58との磁力において軸方向にアンバランスを生じて、軸方向の振動が大きくなるという課題があった。
【0007】
また、磁石58の軸方向長さをプリント基板59の反対側へも同様に長くすれば、磁石58と固定子鉄心51の磁気中心のずれは無くなるが、DCモータの軸方向長さが長くなりすぎ、薄型化できないという課題があった。
【0008】
また、磁石58の軸方向長さが固定子鉄心51に軸方向長さよりも異常に長くなった場合、固定子鉄心51が磁気飽和を生じるので、誘起電圧位相がセンサ信号よりも進むとともに、誘起電圧波形のピークが凹状に歪むため、通電位相が遅れ、消費電力が異常に上昇し、出力が低下し、トルクリップルおよびトルク変化率が大きくなり、回転方向の振動が大きくなるという課題があった。
【0009】
また、環状の回転子鉄心の外周部にリング状の第1永久磁石を接着固定し、回転子鉄心の端面にセンサ用の第2永久磁石を接着固定したDCモータ(特開平10−322999号公報参照)の構成が開示されているが、その目的は電気絶縁体が干渉しない自由な位置に磁気センサーを配置することであり、この構成のDCモータでは、回転子鉄心への永久磁石の接着固定を2回行う必要があり、品質の安定した接着固定を行うには、高温炉を使用して約1時間程度を要するため、加工工数の増大および設備投資が増大するという課題があった。そして、特に第2永久磁石の接着固定の位置については、少量の位置ずれでも重量アンバランスを生じたり、センサ信号の変化間隔が均等にならないという課題があった。さらに、第2永久磁石を接着する接着面は平坦面であるとともに、磁極面に対する垂直度の精度を高くしなければならないという課題があった。
【0010】
また、金型内にサマリウムコバルト磁石などを埋め込んで、成形時に極配向させる極異方性樹脂磁石の構成とした場合は、均一な磁場配向や特性を維持するためには、コールドスラグが磁石本体に混ざって成形されないように、スプールランナーが必要となる。そして、成形後の樹脂磁石のゲート側と反ゲート側の特性を同等にするためには、成形時の射出圧力を下げるとともに、流動性、射出スピードを大幅に上げる必要があり、そのためにはスプールランナーの断面積および容積を大きくする必要がある。また、成形後の型開き時にスプールランナーが破損し、金型内に残らないようにするためにも、スプールランナーの断面積および容積を大きくする必要がある。その結果、大量のスプールランナーが生じることになる。そして、このスプールランナーをすべて粉砕再生したときには、磁気特性が劣化し、効率の低下、減磁耐力の大幅劣化、機械的強度の大幅劣化が生じるという課題があった。逆に粉砕再生する量を制限したときには、コストアップや産業廃棄物として処理するなど環境に対して悪影響を与える可能性を有しているという課題があった。
【0011】
また、極配向された主磁極部と磁石回転子の磁極位置を検知するためのセンサ用磁極部を一体的に成形することも考えられるが、樹脂磁石は流動性が低い上、ガスの発生量も多いので、複雑な形状になれば、ショートショットになったり、ガス溜まりが生じるなど高品質を保つことができないという課題があった。
【0012】
さらに、主磁極部とセンサ用磁極部を一体的に成形する構成において、磁束量を上げるには、厚肉成形となるため、ひけやクラックなどが発生する可能性を有するので、高品質を保つことができないという課題があった。
【0013】
本発明は、このような従来の課題を解決するものであり、振動が大きくなるなどの特性劣化効率低下を生じることなく、コストおよび加工工数を低減でき、品質を高く保つとともに、環境に悪影響を与えない。さらには、電子部品を実装したプリント基板を内蔵しても、薄型化・小型化・軽量化・低消費電力化・高品質化できる環境共生型のDCモータを提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明のDCモータは上記目的を達成するために、磁石回転子は樹脂磁石よりなる環状の主磁極部と、この主磁極部の外径よりも小さい外径で略環状の樹脂磁石よりなるセンサ用磁極部から構成され、このセンサ用磁極部を構成する樹脂磁石は、軸方向に貫通する複数の貫通穴を有し、この貫通穴は、主磁極部側を小径部とした段付き貫通穴またはすり鉢状貫通穴とし、
前記主磁極部は保持部を介してシャフトに固定され、前記保持部は、軸方向に突出し、センサ用磁極部を固定する突部を備え、この突部を前記貫通穴に嵌合し、前記突部の先端部を前記貫通穴の大径部側にできる空間部内に潰して前記センサ用磁極部を固定したDCモータの構成としたものである。
【0015】
本発明によれば、主磁極部の磁石ボリュームを削減できるとともに、固定子鉄心の磁気中心と主磁極部の磁気中心を合わすことができ、また、高温炉などを使用する接着が不要となり、磁石回転子を製造する加工工数,加工費および投資費用が低減でき、重量アンバランスやセンサ信号の不均一を抑制でき、形状が複雑にならないことから、品質を高く保つことができるので、低コスト化、低振動化、高性能化、小型化、高品質化したDCモータが得られる。
また、主磁極部に対するセンサ用磁極部の正確な位置合わせが一層容易にできるとともに、保持部を形成する材料ボリュームを削減でき、高温炉などを使用する接着が不要となり、磁石回転子を製造する加工工数,加工費および投資費用が低減でき、重量アンバランスやセンサ信号の不均一を抑制でき、潰した先端部が軸方向に突出しないことから、軸方向長さをより一層短くできるので、低コスト化,高品質化,高性能化,一層の小型化を実現したDCモータが得られる。
【0016】
また他の手段は、センサ用磁極部を構成する樹脂磁石の磁性粉体微粒子の磁化容易軸を軸方向に異方化した磁石回転子の構成としたものである。
【0017】
本発明によれば、センサ用磁極部の軸方向長さを短くできるので、磁石ボリュームを削減でき、低コスト化、小型化したDCモータが得られる。
【0018】
また他の手段は、突部は主磁極部の磁極位置に対応して設けられ、センサ用磁極部は主磁極部と同極数の着磁が成形時にされるとともに、貫通穴を磁極位置に対応させて設けた磁石回転子の構成としたものである。
【0019】
本発明によれば、電動機組み立て工程においてセンサ用磁極部を着磁する工程が不要となるので、より低コストのDCモータが得られる。
【0020】
また他の手段は、センサ用磁極部を構成する樹脂磁石は主磁極部を構成する樹脂磁石と同一材料とした磁石回転子の構成としたものである。
【0021】
本発明によれば、センサ用磁極部はモータ運転時に圧力等の力がかからないので、主磁極部の成形時に生じたスプールランナーを粉砕した廃材100%にてセンサ用磁極部を成形できるため、産業廃棄物の発生を抑制できる環境共生型で、より一層低コスト化したDCモータが得られる。
【0024】
また他の手段は、保持部の突部のうち少なくとも先端部を薄肉とした磁石回転子の構成としたものである。
【0025】
本発明によれば、保持部を形成する材料ボリュームを削減でき、高温炉などを使用する接着が不要となり、先端部が容易に潰れることから、センサ用磁極部の固定に要する加工時間が大幅に短縮できるため、磁石回転子を製造する加工工数,加工費および投資費用が低減でき、重量アンバランスやセンサ信号の不均一を抑制できるので、一層の低コスト化,高品質化,高性能化,小型化したDCモータが得られる。
【0026】
【発明の実施の形態】
本発明は、磁石回転子は樹脂磁石よりなる環状の主磁極部と、この主磁極部の外径よりも小さい外径で略環状の樹脂磁石よりなるセンサ用磁極部から構成され、このセンサ用磁極部を構成する樹脂磁石は、軸方向に貫通する複数の貫通穴を有し、この貫通穴は、主磁極部側を小径部とした段付き貫通穴またはすり鉢状貫通穴とし、前記主磁極部は保持部を介してシャフトに固定され、前記保持部は、軸方向に突出し、センサ用磁極部を固定する突部を備え、この突部を前記貫通穴に嵌合し、前記突部の先端部を前記貫通穴の大径部側にできる空間部内に潰して前記センサ用磁極部を固定したDCモータの構成としたものであり、適正な鎖交磁束を確保した上で主磁極部を形成する磁石の軸方向長さを短くするなど、保持部を含む磁石ボリュームを減少でき、固定子鉄心の磁気中心と回転トルクを発生する主磁極部の磁気中心とが一致し、磁気飽和が抑制され、鎖交磁束が正弦波になるとともに、高温炉などを使用する接着が不要になり、形状が複雑にならないことから、ガス溜まりやヒケ、クラックの発生が抑制されるという作用を有する。また、主磁極部に対するセンサ用磁極部の正確な位置合わせが一層容易になるとともに、潰した先端部が軸方向に突出しないので、磁石回転子の軸方向長さが短くなるという作用を有する。
【0027】
また、センサ用磁極部を構成する樹脂磁石の磁性粉体微粒子の磁化容易軸を軸方向に異方化した磁石回転子の構成としたものであり、センサ用磁極部の軸方向長さを短くできるという作用を有する。
【0028】
また、突部は主磁極部の磁極位置に対応して設けられ、センサ用磁極部は主磁極部と同極数の着磁が成形時にされるとともに、貫通穴を磁極位置に対応させて設けた磁石回転子の構成としたものであり、電動機組み立て工程においてセンサ用磁極部を着磁する工程が不要になるという作用を有する。
【0029】
また、センサ用磁極部を構成する樹脂磁石は主磁極部を構成する樹脂磁石と同一材料とした磁石回転子の構成としたものであり、主磁極部の成形時に生じたスプールランナーを粉砕して、廃材100%にてセンサ用磁極部を成形できるという作用を有する。
【0031】
また、保持部の突部のうち少なくとも先端部を薄肉とした磁石回転子の構成としたものであり、保持部の材料ボリュームが削減し、先端部が容易に潰すことが可能となり、センサ用磁極部の保持部への固定に要する時間が短くなるという作用を有する。
【0032】
以下、本発明の実施例について図1〜図7を参照しながら説明する。
【0033】
【実施例】
(実施例1)
図1〜図3に示すように、1は複数のスロットを有する固定子鉄心4に絶縁材にて形成されたインシュレータ2を介して電機子巻線3を巻装した固定子で、固定子1は熱硬化性樹脂16にてモールド成形されて外被を形成しており、17はブラケットで軸受け14を保持している。10はホールIC11、駆動IC12および電子部品13などを実装したプリント基板で、8は磁石回転子であり、極配向された主磁極部6と、保持部5と、軸方向異方性のセンサ用磁極部7とシャフト9から構成され、主磁極部6と保持部5は磁場配向用のサマリウムコバルト磁石を内蔵した成形金型にて樹脂磁石を射出成形して一体的に形成している。このとき、成形金型から取り出した主磁極部6は着磁状態である。18は保持部5の軸方向に略直立して一体的に設けられた複数の突部で、主磁極部の極間に相対する位置に設けられており、センサ用磁極部7を位置決め、保持する。そして、センサ用磁極部7は主磁極部6および保持部5と同一材料であり、主磁極部6および保持部5の成形時に生じたスプールランナーを粉砕した廃材100%を、主磁極部6と同極数の着磁が均等間隔にされたサマリウムコバルト磁石を内蔵した成形金型にて略環状に成形する。そして、センサ用磁極部7は主磁極部6と同極数とし、軸方向に磁場配向および着磁を磁極間隔が均等間隔になるよう施された状態であり、突部18に嵌合するための複数の貫通穴19を極間に設けている。また、センサ用磁極部7の固定は突部18に貫通穴19を嵌合させた後、突部18の先端部18aを超音波溶着または熱溶着または高周波溶着またはインパルス溶着などで潰して保持部5に固定される。また、センサ用磁極部7の外径から外側および主磁極部6の外径より内側の範囲に空間部15を設け、プリント基板10に駆動IC12などを実装するその配置は、ホールIC11はセンサ用磁極部7に対向した位置に、駆動IC12についてはプリント基板10に電気的に接続する接続脚12aの長さ(プリント基板10の端面からの高さ)が2mm以上のため、接続脚12aのプリント基板10への半田部12bが空間部15に位置するよう配置され、同様に電子部品13の中で高さが2mm以上あるツェナーダイオード、コンデンサなどの電子部品13aについても空間部15に位置するよう配置されている。
【0034】
このような本発明のDCモータによれば、主磁極部6を極異方性樹脂磁石で形成し、センサ用磁極部7を主磁極部6の外径よりも小さい樹脂磁石で形成し、主磁極部6とセンサ用磁極部7は軸方向に並んで位置した磁石回転子8の構成とすることによって、適正な鎖交磁束を確保した上で主磁極部6の軸方向長さを短くするなど磁石ボリュームを減少でき、固定子鉄心4の磁気中心と回転トルクを発生する主磁極部6の磁気中心とが一致するので、軸方向の振動の発生が抑制できる。また、磁気飽和が抑制され、鎖交磁束が正弦波になるため、常に誘起電圧位相に対して最適な通電位相で運転できるので、トルクリップル・トルク変化率の増大が抑制され、回転方向の振動の増大が抑制される。また、磁石ボリュームを減らすことができるため、コスト低減・小型化・軽量化ができ、低コスト・低振動・小型化・軽量化のDCモータが得られる。
【0035】
また、保持部5の突部18にセンサ用磁極部7の貫通穴19を嵌合させ、突部18の先端部18aを潰してセンサ用磁極部7を固定して磁石回転子8を構成することによって、主磁極部6に対するセンサ用磁極部7の正確な位置合わせが容易になるうえ、主磁極部6の外径とセンサ用磁極部7の外径の平行度が均一になるとともに、高温炉などを使用する接着が不要となり、磁石回転子を製造する加工工数,加工費および投資費用が低減できるとともに、主磁極部6および保持部5の成形が厚肉成形にならないため、成形タクトが短くなり、生産能力が増大し、コスト低減ができるとともに、ヒケの発生の抑制、寸法精度の高精度化が可能となり、重量アンバランスやセンサ信号の不均一を抑制できるので、低コスト化・高品質化・高性能化したDCモータが得られる。
【0036】
また、センサ用磁極部7を軸方向に磁性粉体のフェライト微粒子の磁化容易軸が配向された軸方向異方性にすることによって、センサ用磁極部の軸方向長さが短くできる。また、センサ用磁極部を再着磁する場合の着磁電圧も下げることが可能となり、加工に要する電力が削減できるとともに、主磁極部におけるセンサ用磁極部近傍の磁束量の低下が抑制可能となるので、固定子鉄心に鎖交する磁束は正弦波状を乱すことなく、磁束量も増加する。したがって、低振動、より一層の低コスト・小型化・軽量化・低消費電力のDCモータが得られる。
【0037】
また、突部18を主磁極部6の磁極位置に対応した位置(実施例1では極間部)に設け、センサ用磁極部7を主磁極部6と同極数の着磁を施すとともに、貫通穴18の位置を磁極位置に対応した位置(実施例1では極間部)に設けて成形することによって、センサ用磁極部7を電動機組み立て工程で着磁する工程が不要となるので、着磁ヨークや着磁電源が不要になり、投資金額が抑制できるとともに、生産タクトが短くなり、生産能力が増大するため、より低コストのDCモータが得られる。
【0038】
また、センサ用磁極部7を主磁極部6および保持部5と同一材料とすることにより、センサ用磁極部7は主磁極部6および保持部5の成形時に生じたスプールランナーを粉砕した廃材100%にて形成することができるので、主磁極部6には必要以上のリターン材を混入しなくてもよいため、磁束量の低下や、機械的強度の劣化を防ぐことができるとともに、産業廃棄物の発生を抑制できる環境共生型で、より一層低コスト化したDCモータが得られる。
【0039】
また、図4(a)に示すように、突部18の先端部を凹状に薄肉で形成したり、図4(b)に示すように、突部18の先端部に肉ぬすみを設けたりした薄肉先端部18bとすることによって、樹脂磁石の材料を削減できるとともに、先端部18bを容易に潰すことが可能となり、加工時間が短縮されるので、生産タクトが短くなり、生産能力が増大し、コスト低減ができるため、より一層低コスト化したDCモータが得られる。
【0040】
また、図5(a)、(b)および図6に示すように、センサ用磁極部20の貫通穴を段付き貫通穴21aや、すり鉢状貫通穴21cとなるよう形成することによって、突部18への嵌合が容易になるので、加工時間が短縮され、生産タクトが短くなり、生産能力が増大し、コスト低減ができるため、より一層低コスト化したDCモータが得られる。
【0041】
さらに、図7に示すように、段付き貫通穴21aの小径側を主磁極部6側に位置させて突部18に嵌合し、突部18の先端部18aを段付き貫通穴21aの大径部空間21b内に潰してセンサ用磁極部20を固定することによって、磁石回転子8aの磁石部の軸方向長さが短くできるので、プリント基板10を磁石部に近付けることが可能となり、DCモータの軸方向長さをより一層短くできるため、熱硬化性樹脂16の減量などによる一層の軽量化、小型化、低コスト化したDCモータが得られる。
【0042】
また、2mm以上の高さを有する電子部品13aおよび駆動IC12の接続脚12aなどを電気的に接続する半田部12bをセンサ用磁極部7である樹脂磁石の外径から外側および主磁極部6である極異方性樹脂磁石の外径より内側の範囲にある空間部15に位置させる構成とすることによって、空間部15を有効に活用できるため、DCモータの軸方向長さが一層短くでき、熱硬化性樹脂16の量も削減できる。したがって、一層の小型化・軽量化・低コスト化したDCモータが得られる。
【0043】
なお、実施例1ではセンサ用磁極部7を軸方向に磁性粉体のフェライト微粒子の磁化容易軸が配向された軸方向異方性としたが、等方性としても良く、貫通穴19に突部18を嵌合し、突部の先端部18aを潰して構成することによる作用効果に差異は生じない。
【0044】
また、実施例1では極間部に突部18および貫通穴19を設けたが、磁極ピーク部に設けても良く、主磁極部の磁極とセンサ用磁極部の磁極の極性が物理的に同じになるよう磁極位置を規制できれば、その作用効果に差異を生じない。
【0045】
また、段付き貫通穴の大径部のみすり鉢状としてもよく、その作用効果に差異を生じない。
【0046】
【発明の効果】
以上の実施例から明らかなように、本発明によれば、磁石回転子は樹脂磁石よりなる環状の主磁極部と、この主磁極部の外径よりも小さい外径で略環状の樹脂磁石よりなるセンサ用磁極部から構成され、このセンサ用磁極部を構成する樹脂磁石は複数の貫通穴を有し、主磁極部は保持部を介してシャフトに固定され、保持部はセンサ用磁極部を固定する突部を備え、この突部にセンサ用磁極部の貫通穴を嵌合し、突部の先端部を潰してセンサ用磁極部を固定したDCモータの構成とすることによって、適正な鎖交磁束を確保した上で主磁極部を形成する磁石の軸方向長さを短くするなど、保持部を含む磁石ボリュームを減少でき、固定子鉄心の磁気中心と回転トルクを発生する主磁極部の磁気中心とが一致し、磁気飽和が抑制され、鎖交磁束が正弦波になるとともに、高温炉などを使用する接着が不要になり、形状が複雑にならないことから、ガス溜まりやヒケ、クラックの発生が抑制され、アンバランス量も低減できるので、低コスト化、低振動化、高性能化、小型化、高品質化したDCモータが得られる。
【0047】
また、センサ用磁極部を構成する樹脂磁石の磁性粉体微粒子の磁化容易軸を軸方向に異方化した磁石回転子の構成により、センサ用磁極部の軸方向長さを短くできるので、磁石ボリュームを削減できるとともに、センサ用磁極部の着磁電圧を下げることができるので、主磁極部に逆磁界を生じることがなくなるため、鎖交磁束は正弦波を乱すことなく、磁束量も増加し、低コスト化、低振動化、高性能化、高品質化、小型化したDCモータが得られる。
【0048】
また、突部は主磁極部の磁極位置に対応して設けられ、センサ用磁極部は主磁極部と同極数の着磁が成形時にされるとともに、貫通穴を磁極位置に対応させて設けた磁石回転子の構成により、センサ用磁極部を電動機組み立て工程で着磁する工程が不要となるので、着磁ヨークや着磁電源が不要になり、投資金額が抑制できるとともに、生産タクトが短くなり、生産能力が増大するため、より低コストのDCモータが得られる。
【0049】
また、センサ用磁極部を構成する樹脂磁石は主磁極部を構成する樹脂磁石と同一材料とした磁石回転子の構成としたものであり、主磁極部の成形時に生じたスプールランナーを粉砕して、廃材100%にてセンサ用磁極部を成形できるので、主磁極部には必要以上のリターン材を混入しなくてもよいため、磁束量の低下や、機械的強度の劣化を防ぐことができるとともに、産業廃棄物の発生を抑制できる環境共生型で、より一層低コスト化、高品質化したDCモータが得られる。
【0050】
また、センサ用磁極部を構成する樹脂磁石に設けられた複数の貫通穴は段付き貫通穴またはすり鉢状貫通穴とし、この段付き貫通穴またはすり鉢状貫通穴の小径側を主磁極部側に位置させて突部に嵌合し、前記突部の先端部を前記段付き貫通穴または前記すり鉢状貫通穴の大径部空間内に潰して前記センサ用磁極部を固定した磁石回転子の構成により、主磁極部に対するセンサ用磁極部の正確な位置合わせが一層容易になるとともに、磁石回転子の軸方向長さが短くなるので、熱硬化性樹脂の減量などによる一層の軽量化、小型化、低コスト化したDCモータが得られる。
【0051】
また、保持部の突部のうち少なくとも先端部を薄肉とすることによって、保持部の材料ボリュームが削減し、先端部を潰すのが容易になることにより、センサ用磁極部の保持部への固定に要する時間が短くなるので、加工時間が短縮され、生産タクトが短くなり、生産能力が増大し、コスト低減ができるため、より一層低コスト化したDCモータが得られる。
【図面の簡単な説明】
【図1】本発明の実施例1におけるDCモータの構造を示す縦断面図
【図2】同DCモータの磁石回転子におけるセンサ用磁極部を取り付ける前の斜視図
【図3】同DCモータのセンサ用磁極部の斜視図
【図4】(a)同DCモータの磁石回転子におけるセンサ用磁極部を取り付ける前の他の斜視図(b)同DCモータの磁石回転子におけるセンサ用磁極部を取り付ける前の他の斜視図
【図5】(a)同DCモータにおける他のセンサ用磁極部の斜視図(b)同DCモータにおける他のセンサ用磁極部の断面図
【図6】同DCモータにおける他のセンサ用磁極部の断面図
【図7】同DCモータにおける他の構造を示す縦断面図
【図8】従来のDCモータの構造を示す縦断面図
【図9】同DCモータの固定子、磁石回転子およびプリント基板を示す分解斜視図
【符号の説明】
1 固定子
2 インシュレータ
3 電機子巻線
4 固定子鉄心
5 保持部
6 主磁極部
7 センサ用磁極部
8 磁石回転子
9 シャフト
10 プリント基板
11 ホールIC
12 駆動IC
12a 接続脚
12b 半田部
13 電子部品
13a 2mm以上の高さを有する電子部品
14 軸受け
15 空間部
16 熱硬化性樹脂
17 ブラケット
18 突部
18a 先端部
18b 薄肉先端部
19 貫通穴
20 センサ用磁極部
21a 段付き貫通穴
21b 大径部空間
21c すり鉢状貫通穴
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a DC motor which is a kind of small electric motor mainly used as a drive source for a blower fan such as a room air conditioner, a hot water heater and a ventilation fan.
[0002]
[Prior art]
In recent years, this type of DC motor has been strongly demanded for high quality, high output, and high efficiency while realizing downsizing, cost reduction, reduction of parts and processing man-hours, and suppression of equipment and mold investment. ing. High output and high efficiency of DC motors can be achieved by expanding the slot area to the magnetic saturation limit and using high-density mounting windings, and using a magnet with high magnetic flux density for the rotor. Has been. Furthermore, recently, high efficiency has been achieved by increasing the number of poles.
[0003]
The magnet is divided into a ring-type magnet and a segment-type magnet in terms of shape, and the segment-type magnet has a higher magnetic flux density. In addition, when magnetic powder is molded in a mold, it is classified into anisotropic magnets and isotropic magnets depending on whether it is oriented by applying a magnetic field or not by applying a magnetic field. The anisotropic magnet is divided into a radial anisotropic magnet, a polar anisotropic magnet, and an axial anisotropy according to the magnetic field orientation, and the polar anisotropic magnet has a magnetic flux density of about 20% that of the radial anisotropic magnet. Since the magnetization waveform is a sine wave, polar anisotropic magnets have been used for low vibration, high output and high efficiency.
[0004]
Conventionally, what was shown by FIG. 8 and FIG. 9 as an example of this kind of DC motor was known. Hereinafter, the configuration will be described with reference to FIGS.
[0005]
As shown in the figure, the stator 54 is configured by insulating a stator core 51 having six slots by an insulator 52 formed by integral molding or sandwiching from the axial direction, and winding an armature winding 53 directly. In the magnet rotor 55, four ferrite anisotropic segment magnets 58 are attached to a rotor core 57 into which a shaft 56 is press-fitted, and the axial length of the ferrite anisotropic segment magnet 58 is the axis of the stator core 51. Reference numeral 59 denotes a printed circuit board on which a Hall IC 60 that is a position detection element for detecting the magnetic pole position of the magnet rotor 55 and a drive IC 61 that controls energization to the armature winding 53 are mounted. The Hall IC 60 is configured to detect the leakage magnetic flux of the ferrite anisotropic segment magnet 58. However, such a 6-slot 4-pole DC motor cannot achieve extremely high efficiency. Therefore, the number of slots of the stator core 51 is changed from 6 to 9 or 12 slots, and the number of poles of the magnet rotor 55 is set to 4. There has been proposed a configuration that increases the efficiency by changing the number of poles from eight to eight. However, increasing the number of poles of the magnet rotor 55 from 4 poles to 8 poles doubles the number of processing steps of the magnet rotor 55, which increases costs. The use of polar anisotropic resin magnets in which a samarium cobalt magnet or the like is embedded in a mold of a conductive magnet, particularly a resin magnet, and polarized at the time of molding is increasing for the purpose of cost reduction.
[0006]
[Problems to be solved by the invention]
According to such a conventional DC motor, when the printed circuit board 59 is built in the electric motor and the magnetic pole position of the magnet rotor 55 is detected using the Hall IC 60, at least the printed circuit board 59 having the axial length of the magnet 58 is detected. The side must be longer than the axial length of the armature winding 53 wound around the stator core 51. However, in this method, since the axial center of the stator core 51 and the axial center of the magnet 58 are shifted, the magnetic center is shifted, and the magnetic force between the stator core 51 and the magnet 58 causes an imbalance in the axial direction. There was a problem that the vibration in the direction became large.
[0007]
Similarly, if the axial length of the magnet 58 is also increased to the opposite side of the printed circuit board 59, the magnetic center is not displaced between the magnet 58 and the stator core 51, but the axial length of the DC motor is increased. Therefore, there was a problem that the thickness could not be reduced.
[0008]
Further, when the axial length of the magnet 58 becomes abnormally longer in the stator core 51 than the axial length, the stator core 51 is magnetically saturated, so that the induced voltage phase advances more than the sensor signal and is induced. Since the peak of the voltage waveform is distorted into a concave shape, the energization phase is delayed, the power consumption increases abnormally, the output decreases, the torque ripple and the torque change rate increase, and the vibration in the rotational direction increases. .
[0009]
Further, a DC motor (Japanese Patent Laid-Open No. 10-322999) in which a ring-shaped first permanent magnet is bonded and fixed to the outer peripheral portion of an annular rotor core, and a second permanent magnet for a sensor is bonded and fixed to an end surface of the rotor core. The purpose is to arrange the magnetic sensor at a free position where the electrical insulator does not interfere. In the DC motor having this configuration, the permanent magnet is fixed to the rotor core by adhesion. In order to perform adhesive fixing with stable quality, it takes about one hour using a high-temperature furnace, and there is a problem that the number of processing steps increases and capital investment increases. In particular, with respect to the position where the second permanent magnet is bonded and fixed, there is a problem that even a small amount of misalignment causes a weight imbalance or the change intervals of the sensor signals are not uniform. Further, the bonding surface for bonding the second permanent magnet is a flat surface, and there is a problem that the accuracy of the perpendicularity to the magnetic pole surface must be increased.
[0010]
In addition, when a samarium cobalt magnet or the like is embedded in the mold and the polar anisotropic resin magnet is configured to have a polar orientation during molding, a cold slag is used to maintain uniform magnetic field orientation and characteristics. A spool runner is required so that it is not mixed with the mold. In order to equalize the characteristics of the molded magnet side on the gate side and the counter-gate side, it is necessary to lower the injection pressure at the time of molding and greatly increase the fluidity and injection speed. It is necessary to increase the cross-sectional area and volume of the runner. In addition, it is necessary to increase the cross-sectional area and the volume of the spool runner in order to prevent the spool runner from being broken and remaining in the mold when the mold is opened after molding. As a result, a large amount of spool runners are generated. When all the spool runners are pulverized and regenerated, there are problems that the magnetic properties are deteriorated, the efficiency is lowered, the demagnetization resistance is greatly deteriorated, and the mechanical strength is greatly deteriorated. On the other hand, when the amount of pulverization / regeneration is limited, there is a problem that it may have an adverse effect on the environment, such as an increase in cost and disposal as industrial waste.
[0011]
In addition, it is conceivable to integrally mold the pole-oriented main magnetic pole part and the magnetic pole part for the sensor for detecting the magnetic pole position of the magnet rotor, but the resin magnet has low fluidity and generates a large amount of gas. Therefore, if the shape is complicated, there is a problem that high quality cannot be maintained, such as short shots and gas accumulation.
[0012]
Furthermore, in the configuration in which the main magnetic pole part and the sensor magnetic pole part are formed integrally, the thickness of the magnetic flux is increased in order to increase the amount of magnetic flux. There was a problem that it was not possible.
[0013]
The present invention solves such a conventional problem, and can reduce costs and processing man-hours without deteriorating the efficiency of deterioration of characteristics such as increased vibrations, while maintaining high quality and adversely affecting the environment. Don't give. It is another object of the present invention to provide an environmentally symbiotic DC motor that can be thinned, reduced in size, reduced in weight, reduced in power consumption, and improved in quality even when a printed circuit board on which electronic components are mounted is incorporated.
[0014]
[Means for Solving the Problems]
  In order to achieve the above object, the DC motor of the present invention has an annular main magnetic pole portion made of a resin magnet, and a sensor made of a substantially annular resin magnet having an outer diameter smaller than the outer diameter of the main magnetic pole portion. The resin magnet that consists of the magnetic pole part for the sensor, Penetrates in the axial directionHaving a plurality of through holes,This through hole is a stepped through hole or a mortar-shaped through hole with the main magnetic pole part side as a small diameter part,
AboveThe main magnetic pole part is fixed to the shaft via a holding part, and the holding part isProject axially,Protrusion that fixes the magnetic pole for sensorInto the through holeThe tip of the protrusionCrush in the space that can be formed on the large diameter side of the through hole.In this configuration, the sensor magnetic pole portion is fixed.
[0015]
  According to the present invention, the magnet volume of the main magnetic pole portion can be reduced, the magnetic center of the stator core can be aligned with the magnetic center of the main magnetic pole portion, and no adhesion using a high temperature furnace or the like is required. The processing man-hours, processing costs, and investment costs for manufacturing the rotor can be reduced, weight imbalance and sensor signal non-uniformity can be suppressed, and the shape does not become complex, so the quality can be kept high, resulting in lower costs. DC motors with reduced vibration, higher performance, smaller size, and higher quality can be obtained.
In addition, accurate alignment of the magnetic pole part for the sensor with respect to the main magnetic pole part can be further facilitated, the volume of the material forming the holding part can be reduced, and adhesion using a high temperature furnace or the like is not required, and a magnet rotor is manufactured. The number of processing steps, processing costs and investment costs can be reduced, weight imbalance and sensor signal non-uniformity can be suppressed, and since the crushed tip does not protrude in the axial direction, the axial length can be further shortened. A DC motor that achieves cost reduction, high quality, high performance, and further miniaturization can be obtained.
[0016]
Another means is a configuration of a magnet rotor in which the easy magnetization axis of the magnetic powder fine particles of the resin magnet constituting the sensor magnetic pole portion is anisotropic in the axial direction.
[0017]
According to the present invention, since the axial length of the sensor magnetic pole portion can be shortened, the magnet volume can be reduced, and a low-cost and compact DC motor can be obtained.
[0018]
Another means is that the protrusion is provided corresponding to the magnetic pole position of the main magnetic pole part, the sensor magnetic pole part is magnetized with the same number of poles as the main magnetic pole part, and the through hole is at the magnetic pole position. It is set as the structure of the magnet rotor provided correspondingly.
[0019]
According to the present invention, a step of magnetizing the sensor magnetic pole portion in the electric motor assembling step is not required, so that a lower-cost DC motor can be obtained.
[0020]
Another means is that the resin magnet constituting the magnetic pole part for the sensor is configured as a magnet rotor made of the same material as the resin magnet constituting the main magnetic pole part.
[0021]
According to the present invention, since the magnetic pole part for the sensor is not subjected to pressure or the like during motor operation, the magnetic pole part for the sensor can be formed with 100% waste material obtained by pulverizing the spool runner generated during the formation of the main magnetic pole part. It is possible to obtain a DC motor that is symbiotic with the environment and capable of suppressing the generation of waste and is further reduced in cost.
[0024]
The other means is a configuration of a magnet rotor in which at least a tip portion of the protrusion of the holding portion is thin.
[0025]
According to the present invention, the material volume for forming the holding portion can be reduced, the use of a high-temperature furnace or the like is not required, and the tip portion is easily crushed. Therefore, the processing time required for fixing the magnetic pole portion for the sensor is greatly increased. Because it can be shortened, the man-hours for manufacturing the magnet rotor, the processing cost, and the investment cost can be reduced, and the weight imbalance and sensor signal non-uniformity can be suppressed, further reducing the cost, increasing the quality, improving the performance, A miniaturized DC motor can be obtained.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
  According to the present invention, the magnet rotor includes an annular main magnetic pole portion made of a resin magnet, and a sensor magnetic pole portion made of a substantially annular resin magnet having an outer diameter smaller than the outer diameter of the main magnetic pole portion. The resin magnet that makes up the magnetic pole is, Penetrates in the axial directionHaving a plurality of through holes,This through hole is a stepped through hole or mortar-shaped through hole with the main magnetic pole part side as a small diameter part,The main magnetic pole part is fixed to the shaft via a holding part, and the holding part isProject axially,Protrusion that fixes the magnetic pole for sensorInto the through holeThe tip of the protrusionCrush in the space that can be formed on the large diameter side of the through hole.A magnet including a holding portion, such as a DC motor configured with the sensor magnetic pole portion fixed, and having a proper interlinkage magnetic flux and shortening the axial length of the magnet forming the main magnetic pole portion. The volume can be reduced, the magnetic center of the stator core matches the magnetic center of the main magnetic pole that generates rotational torque, magnetic saturation is suppressed, the linkage flux becomes a sine wave, and a high-temperature furnace is used. Adhesion is not required, and the shape is not complicated, so that it has the effect of suppressing the occurrence of gas accumulation, sink marks, and cracks.In addition, accurate alignment of the sensor magnetic pole portion with respect to the main magnetic pole portion is further facilitated, and the crushed tip portion does not protrude in the axial direction, so that the axial length of the magnet rotor is shortened.
[0027]
In addition, the magnet magnet has a magnetic rotor configuration in which the easy axis of magnetization of the magnetic fine particles of the resin magnet constituting the magnetic pole part for the sensor is anisotropic in the axial direction, and the axial length of the magnetic pole part for the sensor is shortened. Has the effect of being able to.
[0028]
Also, the protrusion is provided corresponding to the magnetic pole position of the main magnetic pole part, the sensor magnetic pole part is magnetized with the same number of poles as the main magnetic pole part, and the through hole is provided corresponding to the magnetic pole position. The magnet rotor is configured, and has an effect that the process of magnetizing the magnetic pole portion for the sensor is not required in the motor assembly process.
[0029]
The resin magnet that constitutes the magnetic pole part for the sensor is a magnet rotor made of the same material as the resin magnet that constitutes the main magnetic pole part, and the spool runner generated during molding of the main magnetic pole part is crushed. The magnetic pole part for sensors can be formed with 100% waste material.
[0031]
In addition, the magnet rotor is configured such that at least the tip of the protrusion of the holding part is thin, and the material volume of the holding part is reduced and the tip can be easily crushed. This has the effect of shortening the time required for fixing the part to the holding part.
[0032]
Embodiments of the present invention will be described below with reference to FIGS.
[0033]
【Example】
Example 1
As shown in FIGS. 1 to 3, reference numeral 1 denotes a stator in which an armature winding 3 is wound around an insulator 2 formed of an insulating material on a stator core 4 having a plurality of slots. Is molded with a thermosetting resin 16 to form a jacket, and 17 is a bracket holding the bearing 14. Reference numeral 10 denotes a printed circuit board on which the Hall IC 11, the drive IC 12, the electronic component 13, and the like are mounted. Reference numeral 8 denotes a magnet rotor. The main magnetic pole part 6 and the holding part 5 are integrally formed by injection molding of a resin magnet with a molding die incorporating a samarium cobalt magnet for magnetic field orientation. At this time, the main magnetic pole portion 6 taken out from the molding die is in a magnetized state. Reference numeral 18 denotes a plurality of protrusions that are integrally provided substantially upright in the axial direction of the holding portion 5, and are provided at positions opposed to the poles of the main magnetic pole portion to position and hold the magnetic pole portion 7 for the sensor. To do. The sensor magnetic pole portion 7 is made of the same material as the main magnetic pole portion 6 and the holding portion 5, and 100% of the waste material obtained by pulverizing the spool runner generated when the main magnetic pole portion 6 and the holding portion 5 are formed is used as the main magnetic pole portion 6. It is formed into a substantially annular shape by a molding die incorporating a samarium cobalt magnet with the same number of poles of equal magnetization. The sensor magnetic pole portion 7 has the same number of poles as the main magnetic pole portion 6, is in a state in which magnetic field orientation and magnetization are applied in the axial direction so that the magnetic pole intervals are evenly spaced, and is fitted to the protrusion 18. A plurality of through holes 19 are provided between the electrodes. The sensor magnetic pole portion 7 is fixed by fitting the through hole 19 to the protrusion 18 and then crushing the tip 18a of the protrusion 18 by ultrasonic welding, heat welding, high frequency welding, impulse welding, or the like. 5 is fixed. Further, the space IC 15 is provided in the range from the outer diameter of the sensor magnetic pole section 7 to the outer side and the outer diameter of the main magnetic pole section 6, and the drive IC 12 and the like are mounted on the printed circuit board 10. Since the length of the connection leg 12a (height from the end face of the printed circuit board 10) that is electrically connected to the printed circuit board 10 is 2 mm or more at the position facing the magnetic pole part 7, the print of the connection leg 12a is performed. The solder part 12b to the substrate 10 is disposed so as to be positioned in the space part 15. Similarly, the electronic component 13a such as a Zener diode or a capacitor having a height of 2 mm or more in the electronic part 13 is also positioned in the space part 15. Has been placed.
[0034]
According to such a DC motor of the present invention, the main magnetic pole portion 6 is formed of a polar anisotropic resin magnet, the sensor magnetic pole portion 7 is formed of a resin magnet smaller than the outer diameter of the main magnetic pole portion 6, The magnetic pole portion 6 and the sensor magnetic pole portion 7 are configured as a magnet rotor 8 positioned side by side in the axial direction, so that an appropriate interlinkage magnetic flux is secured and the axial length of the main magnetic pole portion 6 is shortened. The volume of the magnet can be reduced, and the magnetic center of the stator core 4 and the magnetic center of the main magnetic pole portion 6 that generates rotational torque coincide with each other, so that the occurrence of vibration in the axial direction can be suppressed. In addition, since magnetic saturation is suppressed and the linkage flux becomes a sine wave, operation can always be performed with the optimum energization phase with respect to the induced voltage phase, so an increase in torque ripple and torque change rate is suppressed, and vibration in the rotational direction is suppressed. Increase is suppressed. In addition, since the magnet volume can be reduced, the cost can be reduced, the size can be reduced, and the weight can be reduced, and a low-cost, low vibration, size, and weight reduction DC motor can be obtained.
[0035]
Further, the through hole 19 of the sensor magnetic pole part 7 is fitted into the protrusion 18 of the holding part 5, the tip 18 a of the protrusion 18 is crushed and the sensor magnetic pole part 7 is fixed to constitute the magnet rotor 8. This facilitates accurate alignment of the sensor magnetic pole portion 7 with respect to the main magnetic pole portion 6, makes the outer diameter of the main magnetic pole portion 6 and the outer diameter of the sensor magnetic pole portion 7 uniform, and increases the temperature. Adhesion using a furnace or the like is no longer necessary, and the man-hours, processing costs and investment costs for manufacturing the magnet rotor can be reduced, and the molding of the main magnetic pole portion 6 and the holding portion 5 does not become a thick-walled molding. Shorter, increased production capacity, reduced cost, reduced sink marks, increased dimensional accuracy, and reduced weight imbalance and sensor signal non-uniformity. Quality and high performance DC motors can be obtained.
[0036]
Further, the axial length of the magnetic pole part for the sensor can be shortened by making the magnetic pole part for the sensor 7 axially anisotropic in which the easy magnetization axis of the ferrite fine particles of the magnetic powder is oriented in the axial direction. In addition, it is possible to reduce the magnetizing voltage when re-magnetizing the sensor magnetic pole part, and it is possible to reduce the power required for processing, and it is possible to suppress the decrease in the amount of magnetic flux near the sensor magnetic pole part in the main magnetic pole part. Therefore, the magnetic flux interlinking with the stator core does not disturb the sine wave shape, and the amount of magnetic flux increases. Therefore, a DC motor with low vibration, further lower cost, smaller size, lighter weight, and lower power consumption can be obtained.
[0037]
In addition, the protrusion 18 is provided at a position corresponding to the magnetic pole position of the main magnetic pole portion 6 (the interpolar portion in the first embodiment), the sensor magnetic pole portion 7 is magnetized with the same number of poles as the main magnetic pole portion 6, and By forming the through hole 18 at a position corresponding to the magnetic pole position (in the inter-electrode portion in the first embodiment), the step of magnetizing the sensor magnetic pole portion 7 in the motor assembling step becomes unnecessary. Since a magnetic yoke and a magnetized power source are not required, the investment amount can be suppressed, production tact time is shortened, and production capacity is increased, so that a lower cost DC motor can be obtained.
[0038]
Further, the sensor magnetic pole portion 7 is made of the same material as the main magnetic pole portion 6 and the holding portion 5, so that the sensor magnetic pole portion 7 is a waste material 100 obtained by pulverizing a spool runner generated when the main magnetic pole portion 6 and the holding portion 5 are formed. Since the main magnetic pole part 6 does not need to contain more return material than necessary, it can prevent a decrease in the amount of magnetic flux and a deterioration in mechanical strength, as well as industrial disposal. It is possible to obtain a DC motor that is symbiotic with the environment and can further reduce costs.
[0039]
Further, as shown in FIG. 4A, the tip of the protrusion 18 is formed in a concave thin shape, or as shown in FIG. 4B, the tip of the protrusion 18 is thinned. By making the thin tip 18b, the material of the resin magnet can be reduced, and the tip 18b can be easily crushed, and the processing time is shortened, so the production tact is shortened and the production capacity is increased. Since the cost can be reduced, a DC motor with further reduced costs can be obtained.
[0040]
Further, as shown in FIGS. 5 (a), 5 (b) and FIG. 6, the projecting portion is formed by forming the through hole of the magnetic pole portion 20 for the sensor into a stepped through hole 21a or a mortar-shaped through hole 21c. Since the fitting to 18 is facilitated, the machining time is shortened, the production tact is shortened, the production capacity is increased, and the cost can be reduced, so that a DC motor with a further reduced cost can be obtained.
[0041]
Further, as shown in FIG. 7, the small diameter side of the stepped through hole 21a is positioned on the main magnetic pole part 6 side and fitted into the protrusion 18, and the tip 18a of the protrusion 18 is larger than the stepped through hole 21a. The axial length of the magnet portion of the magnet rotor 8a can be shortened by crushing in the radial space 21b and fixing the sensor magnetic pole portion 20, so that the printed circuit board 10 can be brought closer to the magnet portion, and the DC Since the axial length of the motor can be further shortened, a DC motor that is further reduced in weight, size, and cost due to a reduction in the amount of the thermosetting resin 16 can be obtained.
[0042]
Further, the solder part 12b for electrically connecting the electronic component 13a having a height of 2 mm or more and the connecting leg 12a of the driving IC 12 is connected to the outside and the main magnetic pole part 6 from the outer diameter of the resin magnet as the sensor magnetic pole part 7. By adopting a configuration in which the space portion 15 is positioned in the range inside the outer diameter of a certain polar anisotropic resin magnet, the space portion 15 can be used effectively, so that the axial length of the DC motor can be further shortened, The amount of the thermosetting resin 16 can also be reduced. Therefore, a DC motor that is further reduced in size, weight, and cost can be obtained.
[0043]
In the first embodiment, the sensor magnetic pole portion 7 has an axial anisotropy in which the easy axis of magnetization of the ferrite fine particles of the magnetic powder is oriented in the axial direction. However, it may be isotropic and protrudes into the through hole 19. A difference does not arise in the effect by fitting the part 18 and crushing and comprising the front-end | tip part 18a of a protrusion.
[0044]
Further, in the first embodiment, the protrusion 18 and the through hole 19 are provided in the interpolar part, but may be provided in the magnetic pole peak part, and the polarity of the magnetic pole of the main magnetic pole part and the magnetic pole part of the sensor magnetic pole part are physically the same. If the position of the magnetic pole can be regulated so as to satisfy the following, there will be no difference in the effect.
[0045]
Further, only the large-diameter portion of the stepped through hole may be formed in a mortar shape, and there is no difference in the function and effect.
[0046]
【The invention's effect】
As is clear from the above embodiments, according to the present invention, the magnet rotor is composed of an annular main magnetic pole portion made of a resin magnet, and a substantially annular resin magnet having an outer diameter smaller than the outer diameter of the main magnetic pole portion. The resin magnet constituting the sensor magnetic pole part has a plurality of through holes, the main magnetic pole part is fixed to the shaft via the holding part, and the holding part is the sensor magnetic pole part. Providing a fixed protrusion, fitting the through hole of the sensor magnetic pole part into this protrusion, crushing the tip of the protrusion and fixing the sensor magnetic pole part, it is possible to obtain an appropriate chain. It is possible to reduce the magnet volume including the holding part, such as shortening the axial length of the magnet that forms the main magnetic pole part after securing the commutation magnetic flux, and to reduce the magnetic center of the stator core and the main magnetic pole part that generates rotational torque. The magnetic center coincides, magnetic saturation is suppressed, and flux linkage As it becomes a sine wave, the use of a high-temperature furnace or the like is not required, and the shape is not complicated, so the generation of gas pools, sink marks and cracks is suppressed, and the amount of unbalance can be reduced. A DC motor with reduced vibration, higher performance, smaller size, and higher quality can be obtained.
[0047]
In addition, the configuration of the magnet rotor in which the axis of easy magnetization of the magnetic powder particles of the resin magnet constituting the magnetic pole part for the sensor is anisotropic in the axial direction enables the axial length of the magnetic pole part for the sensor to be shortened. Since the volume can be reduced and the magnetizing voltage of the magnetic pole part for the sensor can be lowered, a reverse magnetic field is not generated in the main magnetic pole part, so the interlinkage magnetic flux does not disturb the sine wave and the amount of magnetic flux increases. Thus, a low-cost, low-vibration, high-performance, high-quality, and compact DC motor can be obtained.
[0048]
Also, the protrusion is provided corresponding to the magnetic pole position of the main magnetic pole part, the sensor magnetic pole part is magnetized with the same number of poles as the main magnetic pole part, and the through hole is provided corresponding to the magnetic pole position. The magnet rotor configuration eliminates the need to magnetize the sensor magnetic pole in the motor assembly process, which eliminates the need for a magnetizing yoke and magnetizing power supply, reduces investment costs, and reduces production tact time. Thus, since the production capacity is increased, a lower-cost DC motor can be obtained.
[0049]
The resin magnet that constitutes the magnetic pole part for the sensor is a magnet rotor made of the same material as the resin magnet that constitutes the main magnetic pole part, and the spool runner generated during molding of the main magnetic pole part is crushed. Since the sensor magnetic pole part can be formed with 100% waste material, it is not necessary to mix more return material than necessary in the main magnetic pole part, so that it is possible to prevent a decrease in the amount of magnetic flux and a deterioration in mechanical strength. At the same time, an environmentally symbiotic DC motor that can suppress the generation of industrial waste, and can be obtained at a lower cost and higher quality.
[0050]
The plurality of through holes provided in the resin magnet constituting the sensor magnetic pole part are stepped through holes or mortar through holes, and the small diameter side of the stepped through hole or mortar through hole is on the main magnetic pole part side. A configuration of a magnet rotor in which the sensor magnetic pole portion is fixed by positioning and fitting to the protrusion, and crushing the tip of the protrusion into the large-diameter space of the stepped through hole or the mortar-shaped through hole This makes it easier to accurately position the sensor magnetic pole with respect to the main magnetic pole, and the axial length of the magnet rotor is shortened. A low-cost DC motor can be obtained.
[0051]
Also, by thinning at least the tip of the protrusion of the holding part, the material volume of the holding part is reduced, and the tip part can be easily crushed, thereby fixing the magnetic pole part for the sensor to the holding part. Therefore, the machining time is shortened, the production tact time is shortened, the production capacity is increased, and the cost can be reduced, so that a DC motor with further reduced cost can be obtained.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing the structure of a DC motor in Embodiment 1 of the present invention.
FIG. 2 is a perspective view before attaching a magnetic pole part for a sensor in a magnet rotor of the DC motor.
FIG. 3 is a perspective view of a magnetic pole part for a sensor of the DC motor.
4A is another perspective view before attaching the magnetic pole part for the sensor in the magnet rotor of the DC motor. FIG. 4B is another perspective view before attaching the magnetic pole part for the sensor in the magnet rotor of the DC motor.
5A is a perspective view of another sensor magnetic pole portion in the DC motor. FIG. 5B is a cross-sectional view of another sensor magnetic pole portion in the DC motor.
FIG. 6 is a sectional view of another sensor magnetic pole part in the DC motor.
FIG. 7 is a longitudinal sectional view showing another structure of the DC motor.
FIG. 8 is a longitudinal sectional view showing the structure of a conventional DC motor
FIG. 9 is an exploded perspective view showing a stator, a magnet rotor, and a printed circuit board of the DC motor.
[Explanation of symbols]
1 Stator
2 Insulator
3 Armature winding
4 Stator core
5 Holding part
6 Main magnetic pole
7 Magnetic pole for sensor
8 Magnet rotor
9 Shaft
10 Printed circuit board
11 Hall IC
12 Driving IC
12a Connecting leg
12b Solder part
13 Electronic components
13a Electronic component having a height of 2 mm or more
14 Bearing
15 Space
16 Thermosetting resin
17 Bracket
18 Projection
18a Tip
18b Thin-walled tip
19 Through hole
20 Magnetic pole for sensor
21a Stepped through hole
21b Large diameter space
21c Mortar-shaped through hole

Claims (5)

固定子鉄心に電機子巻線を巻装した固定子と、
極異方性磁石を用いた磁石回転子と、
ホールICなどの電子部品を実装したプリント基板を内蔵したDCモータであって、
前記磁石回転子は樹脂磁石よりなる環状の主磁極部と、
この主磁極部の外径よりも小さい外径で略環状の樹脂磁石よりなるセンサ用磁極部から構成され、
このセンサ用磁極部を構成する樹脂磁石は、軸方向に貫通する複数の貫通穴を有し、
この貫通穴は、主磁極部側を小径部とした段付き貫通穴またはすり鉢状貫通穴とし、
前記主磁極部は保持部を介してシャフトに固定され、
前記保持部は、軸方向に突出し、センサ用磁極部を固定する突部を備え、
この突部を前記貫通穴に嵌合し、
前記突部の先端部を前記貫通穴の大径部側にできる空間部内に潰して前記センサ用磁極部を固定したことを特徴とするDCモータ。
A stator having armature windings wound around the stator core;
A magnet rotor using polar anisotropic magnets;
A DC motor with a built-in printed circuit board on which electronic components such as a Hall IC are mounted,
The magnet rotor has an annular main magnetic pole portion made of a resin magnet,
It is composed of a magnetic pole part for sensors made of a substantially annular resin magnet with an outer diameter smaller than the outer diameter of the main magnetic pole part,
The resin magnet constituting the magnetic pole part for sensor has a plurality of through holes penetrating in the axial direction ,
This through hole is a stepped through hole or a mortar-shaped through hole with the main magnetic pole part side as a small diameter part,
The main magnetic pole part is fixed to the shaft via a holding part,
The holding portion includes a protruding portion that protrudes in the axial direction and fixes the magnetic pole portion for the sensor,
Fit this protrusion into the through hole ,
A DC motor, wherein the sensor magnetic pole part is fixed by crushing a tip part of the projecting part into a space part formed on the large diameter part side of the through hole .
センサ用磁極部を構成する樹脂磁石の磁性粉体微粒子の磁化容易軸は軸方向に異方化されたことを特徴とする請求項1記載のDCモータ。  2. The DC motor according to claim 1, wherein an easy axis of magnetization of the magnetic powder particles of the resin magnet constituting the sensor magnetic pole part is anisotropic in the axial direction. 突部は主磁極部の磁極位置に対応して設けられ、センサ用磁極部は主磁極部と同極数の着磁が成形時にされるとともに、貫通穴を磁極位置に対応させて設けたことを特徴とする請求項1または2記載のDCモータ。  The protrusion is provided corresponding to the magnetic pole position of the main magnetic pole part, and the magnetic pole part for the sensor is provided with the same number of poles as the main magnetic pole part at the time of molding, and the through hole is provided corresponding to the magnetic pole position. The DC motor according to claim 1 or 2. センサ用磁極部を構成する樹脂磁石は主磁極部を構成する樹脂磁石と同一材料としたことを特徴とする請求項1から3のいずれかに記載のDCモータ。  4. The DC motor according to claim 1, wherein the resin magnet constituting the magnetic pole part for sensor is made of the same material as the resin magnet constituting the main magnetic pole part. 保持部の突部のうち少なくとも先端部は薄肉であることを特徴とする請求項1からのいずれかに記載のDCモータ。DC motor according to any one of claims 1 4, at least a tip portion of the projection of the holding portion is characterized by a thin-walled.
JP2000238925A 2000-08-07 2000-08-07 DC motor Expired - Fee Related JP4628527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000238925A JP4628527B2 (en) 2000-08-07 2000-08-07 DC motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000238925A JP4628527B2 (en) 2000-08-07 2000-08-07 DC motor

Publications (2)

Publication Number Publication Date
JP2002058186A JP2002058186A (en) 2002-02-22
JP4628527B2 true JP4628527B2 (en) 2011-02-09

Family

ID=18730551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000238925A Expired - Fee Related JP4628527B2 (en) 2000-08-07 2000-08-07 DC motor

Country Status (1)

Country Link
JP (1) JP4628527B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104411976A (en) * 2012-06-19 2015-03-11 三菱电机株式会社 Pump, method for manufacturing pump, and refrigeration cycle device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7663280B2 (en) 2005-05-19 2010-02-16 Panasonic Corporation Spindle motor and disk drive device using the same
JP4842893B2 (en) * 2007-03-07 2011-12-21 アスモ株式会社 Gear mechanism and motor with reduction gear
US9903372B2 (en) * 2012-10-05 2018-02-27 Mitsubishi Electric Corporation Pump, method for manufacturing pump, and refrigeration cycle device
CN104617731B (en) * 2015-03-04 2016-11-23 余姚市爱优特电机有限公司 The reaction magnetic ring of motor rotor and rotating shaft assembling structure
EP3982515B1 (en) * 2018-03-12 2023-05-03 Mitsubishi Electric Corporation Electric motor, compressor, fan, and refrigerating and air conditioning apparatus
CN108565993A (en) * 2018-06-11 2018-09-21 成都银河磁体股份有限公司 A kind of magnet
JP2020031480A (en) * 2018-08-22 2020-02-27 日立グローバルライフソリューションズ株式会社 Electric air blower and vacuum cleaner having the same mounted therein
JP7440397B2 (en) 2020-11-30 2024-02-28 株式会社ミツバ brushless motor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0654504A (en) * 1992-07-29 1994-02-25 Matsushita Electric Ind Co Ltd Rotor of brushless motor
JPH0731115A (en) * 1993-07-02 1995-01-31 Matsushita Electric Ind Co Ltd Dc brushless motor
JPH11299207A (en) * 1998-04-17 1999-10-29 Matsushita Electric Ind Co Ltd Brushless motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104411976A (en) * 2012-06-19 2015-03-11 三菱电机株式会社 Pump, method for manufacturing pump, and refrigeration cycle device

Also Published As

Publication number Publication date
JP2002058186A (en) 2002-02-22

Similar Documents

Publication Publication Date Title
US5500994A (en) Method of manufacturing a rotor
JP3146492B2 (en) Brushless DC motor
CA2164745C (en) Power-generating electric motor
JP3395071B2 (en) Motor structure
JP3672775B2 (en) Brushless motor
US10491082B2 (en) Permanent-magnet electric motor
JP4628527B2 (en) DC motor
JP2000333429A (en) Brushless electric motor and manufacturing method thereof
JP4782083B2 (en) Motor rotor, motor and air conditioner
US4237394A (en) Frequency generator and miniature motor provided with the same
JP3236578B2 (en) Brushless motor
US5866961A (en) Motor structure
JP4208683B2 (en) Motor rotor, motor and air conditioner
JP2007028857A (en) Brushless motor and its rotor
US20100295401A1 (en) Motor and device using the same
JPH11299207A (en) Brushless motor
JP3748037B2 (en) Brushless motor and air conditioner
US20210028678A1 (en) Motor and brushless wiper motor
JP3083510B2 (en) Brushless motor, method of manufacturing the same, and method of manufacturing magnet rotor
CN109980815A (en) The motor of inner-rotor type
KR200386970Y1 (en) Brushless DC motor
JPH0666287U (en) Brushless motor rotor device
JP2591448Y2 (en) Stator device for brushless motor
KR900003985B1 (en) Brushless motor
KR100797911B1 (en) Brushless DC motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070807

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070912

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees