JP4628491B1 - Structure joining structure and fixing device for joining structures used therein - Google Patents

Structure joining structure and fixing device for joining structures used therein Download PDF

Info

Publication number
JP4628491B1
JP4628491B1 JP2010138837A JP2010138837A JP4628491B1 JP 4628491 B1 JP4628491 B1 JP 4628491B1 JP 2010138837 A JP2010138837 A JP 2010138837A JP 2010138837 A JP2010138837 A JP 2010138837A JP 4628491 B1 JP4628491 B1 JP 4628491B1
Authority
JP
Japan
Prior art keywords
main
additional
fixing member
fixing
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010138837A
Other languages
Japanese (ja)
Other versions
JP2012001987A (en
Inventor
等 塩原
貴志 佐藤
功治 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANKO TECHONO CO.,LTD.
Ohmoto Gumi Co Ltd
Original Assignee
SANKO TECHONO CO.,LTD.
Ohmoto Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANKO TECHONO CO.,LTD., Ohmoto Gumi Co Ltd filed Critical SANKO TECHONO CO.,LTD.
Priority to JP2010138837A priority Critical patent/JP4628491B1/en
Application granted granted Critical
Publication of JP4628491B1 publication Critical patent/JP4628491B1/en
Publication of JP2012001987A publication Critical patent/JP2012001987A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】例えば既存コンクリート造構造体とこれに接して構築される新設コンクリート造構造体等、水平力の作用時に互いに独立して挙動し得る二つの構造体(主構造体と付加構造体)を両者間での水平せん断力の伝達を図りながら、その水平方向の回転軸回りに相対的な回転変形を許容する状態に接合する。
【解決手段】水平力の作用時に互いに独立して挙動し得る主構造体1と付加構造体2との間に跨って定着装置3を設置する。主構造体1と付加構造体2の境界に跨って配置され、一部に厚さ方向に貫通する挿通孔42aを有する定着部材4と、定着部材4を貫通して両構造体1、2に定着され、曲げ変形可能なアンカー5から定着装置3を構成する。
定着部材4に主構造体1と付加構造体2のいずれか一方に定着される定着部41と、他方に定着され、その側の表面が凸の形状に形成された本体部42を持たせ、本体部42の表面に沿って構造体2を相対的に回転変形可能にする。
【選択図】図1
[PROBLEMS] To provide two structures (main structure and additional structure) that can behave independently of each other when a horizontal force is applied, such as an existing concrete structure and a new concrete structure constructed in contact therewith. Joining to a state in which relative rotational deformation is allowed around the rotation axis in the horizontal direction while transmitting the horizontal shearing force between them.
A fixing device 3 is installed across a main structure 1 and an additional structure 2 that can behave independently of each other when a horizontal force is applied. The fixing member 4 that is disposed across the boundary between the main structure 1 and the additional structure 2 and has a through hole 42a partially penetrating in the thickness direction, and penetrates the fixing member 4 into both the structures 1 and 2. The fixing device 3 is composed of the anchor 5 which is fixed and bendable.
The fixing member 4 has a fixing portion 41 fixed to one of the main structure 1 and the additional structure 2, and a main body portion 42 fixed to the other and having a convex surface on the side, The structure 2 can be relatively rotationally deformed along the surface of the main body 42.
[Selection] Figure 1

Description

本発明は例えば既存コンクリート造の構造体とこれに接して構築される新設コンクリート造の構造体、あるいは構造物の主体となる構造体とそれに接して付加的に構築される構造体等、曲げ剛性の相違等により水平力の作用時に互いに独立して挙動し得る二つの構造体間で水平せん断力を伝達しながら、相対的な回転変形を許容する状態に接合した接合構造、及びその接合構造に使用される定着装置に関するものである。   The present invention includes, for example, an existing concrete structure and a new concrete structure constructed in contact with the structure, or a structure that is the main body of the structure and a structure that is additionally constructed in contact with the structure. A joint structure joined to a state allowing relative rotational deformation while transmitting a horizontal shear force between two structures that can behave independently of each other due to a difference in horizontal force, and the like. The present invention relates to a fixing device used.

例えば既存コンクリート造構造体の表面に接して新設のコンクリート造構造体を構築する場合、両構造体間で地震時のせん断力の伝達が行われるように新設構造体(付加構造体)を既設構造体(主構造体)に接合する必要がある(特許文献1、2参照)。例えば付加構造体(新構造体)がスラブで、その端面において主構造体(旧構造体)に接合される場合には、付加構造体は地震時の水平力に対して主構造体を補強する目的で主構造体に一体化されるから、両構造体間で、両構造体が対向する方向に直交する(対向する面に平行な)水平方向のせん断力が伝達されるように主構造体に接合されなければならない。   For example, when constructing a new concrete structure in contact with the surface of an existing concrete structure, the existing structure (additional structure) is installed so that shear force is transmitted between the two structures. It is necessary to join the body (main structure) (see Patent Documents 1 and 2). For example, when the additional structure (new structure) is a slab and is joined to the main structure (old structure) at the end face, the additional structure reinforces the main structure against the horizontal force during an earthquake. Since it is integrated into the main structure for the purpose, the main structure is transmitted between both structures so that a shearing force in the horizontal direction perpendicular to the direction in which both structures oppose each other (parallel to the opposing surface) is transmitted. Must be joined to.

両構造体間で水平方向のせん断力(水平せん断力)が伝達されるように両構造体を接合することは、主構造体(旧構造体)の表面側に、アンカーボルト等のアンカーによって主構造体に定着されるせん断力伝達部材を付加構造体(新構造体)側へ突出させた状態で固定することによって確保される(特許文献1、2参照)。   Joining both structures so that a horizontal shearing force (horizontal shearing force) is transmitted between the two structures is mainly achieved by anchors such as anchor bolts on the surface side of the main structure (old structure). It is ensured by fixing the shearing force transmission member fixed to the structure in a state of protruding to the additional structure (new structure) (see Patent Documents 1 and 2).

付加構造体(新構造体)の打ち継ぎが主構造体(旧構造体)の構築時に予定され、主構造体の構築時にせん断力伝達部材を事前に埋設しておくことができる場合には、主構造体の完成時にせん断力伝達部材を主構造体の表面寄りの部分に埋設しておくことが可能である。それに対し、主構造体の表面に付加構造体の打ち継ぎが予定されていない場合には、主構造体の表面寄りにせん断力伝達部材を埋設する必然性がないため、付加構造体の構築時には改めてせん断力伝達部材を埋設することが必要になる。   If the additional structure (new structure) will be spliced at the time of construction of the main structure (old structure) and the shear force transmission member can be embedded in advance at the time of construction of the main structure, When the main structure is completed, the shear force transmitting member can be embedded in a portion near the surface of the main structure. On the other hand, if there is no plan to splice the additional structure on the surface of the main structure, there is no necessity to embed a shear force transmission member near the surface of the main structure. It is necessary to embed a shearing force transmission member.

特許第4038472号公報(段落0067、0080、図11、図12)Japanese Patent No. 4038472 (paragraphs 0067 and 0080, FIGS. 11 and 12) 特許第4230533号公報(段落0081〜0083、図6、図7)Japanese Patent No. 4230533 (paragraphs 0081 to 0083, FIGS. 6 and 7)

一方、例えば曲げ剛性(固有振動数)の相違等に起因して水平力の作用時に付加構造体(新構造体)と主構造体(旧構造体)が互いに独立して挙動する場合には、主構造体の変形に追従する(引き摺られる)形で付加構造体が強制的に変形することになるが、この両構造体の変形時には各躯体の対向する面間に相対的な回転変形が発生し得ることになる。   On the other hand, for example, when the additional structure (new structure) and the main structure (old structure) behave independently of each other when a horizontal force is applied due to differences in bending rigidity (natural frequency), The additional structure is forcibly deformed in such a way that it follows (drags) the deformation of the main structure, but when both structures are deformed, a relative rotational deformation occurs between the opposing faces of each housing. Will be able to.

主構造体の変形に追従することによる付加構造体の変形は主構造体と付加構造体が対向する方向に主構造体が曲げ変形するときに発生するから、主構造体と付加構造体間の相対的な回転変形は主構造体と付加構造体が対向する面(構面内方向)に平行な水平軸の回り生ずる。   The deformation of the additional structure by following the deformation of the main structure occurs when the main structure is bent and deformed in the direction in which the main structure and the additional structure face each other. Relative rotational deformation occurs about a horizontal axis parallel to the surface (in-plane direction) where the main structure and the additional structure face each other.

以上のことから、主構造体と付加構造体は両者の対向する面に平行な水平軸回りの回転変形が許容される状態に接合されている必要がある。回転変形が許容されていなければ、両構造体の接合部が損傷を受けることによる。   From the above, it is necessary that the main structure and the additional structure be joined in a state in which rotational deformation around a horizontal axis parallel to the opposed surfaces of both is allowed. If rotational deformation is not allowed, the joint between both structures will be damaged.

この発明は上記背景より、主構造体と付加構造体に跨るせん断力伝達部材(アンカー)を用いて両構造体間の水平せん断力を伝達しながら、両者間の相対的な回転変形を許容する状態に両構造体を接合した接合構造とその構造に使用される定着装置を提案するものである。   From the above background, the present invention allows relative rotational deformation between the two structures while transmitting a horizontal shear force between the two structures using a shear force transmission member (anchor) straddling the main structure and the additional structure. The present invention proposes a joint structure in which both structures are joined to each other and a fixing device used in the structure.

請求項1に記載の発明の構造体の接合構造は、水平力の作用時に互いに独立して挙動し得る主構造体と付加構造体との間に跨って定着装置を設置し、両構造体を相対変位可能に接合した接合構造であり、
前記定着装置が、前記主構造体と前記付加構造体の境界に跨って配置され、一部に軸方向に貫通する挿通孔を有する定着部材と、この定着部材を貫通して両構造体に定着され、曲げ変形可能なアンカーとを備え、
前記定着部材は前記主構造体と前記付加構造体に跨って設置され、前記主構造体と前記付加構造体のいずれか一方に定着される定着部と、他方に定着され、その側の表面が凸の形状に形成された本体部を持ち、この本体部の表面に沿ってその側の構造体が前記定着部材に対して相対的に回転変形可能であり、
前記定着装置は前記主構造体と前記付加構造体が対向する方向に直交する方向に多数配列していることを構成要件とする。

According to the first aspect of the present invention, there is provided a bonding structure in which a fixing device is installed between a main structure and an additional structure that can behave independently of each other when a horizontal force is applied. It is a joint structure joined so that relative displacement is possible,
The fixing device is disposed across the boundary between the main structure and the additional structure, and has a fixing member having an insertion hole that partially penetrates in the axial direction, and is fixed to both structures through the fixing member. And an anchor capable of bending deformation,
The fixing member is installed across the main structure and the additional structure, is fixed to one of the main structure and the additional structure, is fixed to the other, and the surface on the side is fixed. has a body portion which is formed in the shape of convex, Ri relative rotation deformable der structure that side is relative to the fixing member along the surface of the body portion,
The fixing device includes a plurality of fixing devices arranged in a direction orthogonal to a direction in which the main structure and the additional structure face each other.

「本体部の、他方の構造体側の表面が凸の形状に形成される」とは、表面側が凸になるような立体形状に形成されることを言い、立体形状は本体部の軸回りに直線や曲線が回転してできる回転体形状等の曲面形状の他、それに近い多面体形状を含む。また本体部の表面は例えば図10に示すように少なくとも本体部の中心部(挿通孔)を通る一部が曲面形状や多面体形状等の立体形状の部分を有すればよい。   “The surface of the main body portion on the other structure side is formed in a convex shape” means that the surface side is formed in a three-dimensional shape that is convex, and the three-dimensional shape is a straight line around the axis of the main body portion. In addition to curved surface shapes such as a rotating body shape formed by rotating a curve, a polyhedral shape close to that is included. Further, for example, as shown in FIG. 10, the surface of the main body part may have a part having a three-dimensional shape such as a curved surface shape or a polyhedron shape, at least a part passing through the center part (insertion hole) of the main body part.

主構造体と付加構造体が水平力の作用時に互いに独立して挙動することには、例えば主構造体と付加構造体の曲げ剛性に差があり、曲げ剛性の差による固有振動数の差に起因し、独立して挙動(振動)することにより曲げ変形する場合と、曲げ剛性に差がなく、一様に曲げ変形しながらも、主構造体と付加構造体の接合部に相対的な回転変形が生ずる場合がある。   For the main structure and the additional structure to behave independently of each other when a horizontal force is applied, for example, there is a difference in the bending rigidity between the main structure and the additional structure, and the difference in natural frequency due to the difference in bending rigidity. Due to the independent behavior (vibration) and bending deformation, there is no difference in bending rigidity and relative bending at the joint of the main structure and additional structure while bending deformation is uniform. Deformation may occur.

例えば同一の曲げ剛性を持つ二つの構造体が隣接している場合に、両構造体が一様に曲げ変形するときには、変形前の状態で同一レベルに位置する部位間でも両構造体の曲げ変形によってレベル差(段差)が生ずるから、両構造体に曲げ剛性の差がない場合にも相対的な回転変形は生ずることになる。   For example, when two structures with the same bending rigidity are adjacent to each other, if both structures are bent and deformed uniformly, both structures are bent and deformed even between parts located at the same level in the state before the deformation. Because of this, a level difference (step) is generated, so that relative rotational deformation occurs even when there is no difference in bending rigidity between the two structures.

構造体は主として鉄筋コンクリート造構造物の一部であるが、無筋コンクリートやモルタル等の場合もある。主構造体は例えば既存のコンクリート造構造物、付加構造体は既存のコンクリート造構造物の表面に接触した状態で付加的に(新設で)構築されるコンクリート造構造物を指す。構造体は建築構造物と土木構造物の双方を含み、建物の柱、梁、スラブ、基礎等の他、橋梁の橋桁、橋脚、フーチング等が該当する。   The structure is mainly a part of a reinforced concrete structure, but may be unreinforced concrete or mortar. For example, the main structure refers to an existing concrete structure, and the additional structure refers to a concrete structure that is additionally (newly) constructed in contact with the surface of the existing concrete structure. The structure includes both building structures and civil engineering structures, and includes bridge girders, bridge piers, footings, etc. in addition to building columns, beams, slabs, foundations, and the like.

主構造体と付加構造体の接合部位は問われず、例えば新旧のスラブ同士、梁(桁)同士、柱同士、基礎同士等、あるいは付加構造体の構築位置等に応じ、これらの任意の組み合わせ等になる。付加構造体が主構造体に対する耐震(制震)補強の役目を持つ場合には、主構造体のいずれかの部位の表面に付加構造体のスラブや梁等が接合された状態で構築される。   The joint part of the main structure and the additional structure is not limited, for example, old and new slabs, beams (girder), columns, foundations, etc., or any combination of these depending on the construction position of the additional structure, etc. become. When the additional structure has the role of seismic (damping) reinforcement for the main structure, it is constructed with the slab or beam of the additional structure joined to the surface of any part of the main structure .

主構造体に対する付加構造体の構築の時期も問われず、主構造体と付加構造体の打ち継ぎのように主構造体の構築直後に付加構造体を構築する場合の他、主構造体の構築が完了し、使用期間中に主構造体に対する補強の必要性が発生したとき等になる。   Regardless of the timing of the construction of the additional structure to the main structure, the construction of the main structure is also possible in addition to the construction of the additional structure immediately after the construction of the main structure, such as the joining of the main structure and the additional structure. Is completed, and it becomes necessary to reinforce the main structure during the period of use.

定着部材は主構造体と付加構造体のいずれか一方の構造体に定着される定着部と、それに連続し、他方に定着される本体部の2部分からなり、全体的として軸方向には定着部の反対側である本体部が凸になる立体形状をする。   The fixing member is composed of a fixing part fixed to one of the main structure and the additional structure, and a main part fixed to the other, and the fixing member is fixed in the axial direction as a whole. A three-dimensional shape in which the main body part opposite to the part is convex.

定着部は本体部の周囲、もしくは周囲寄りの位置に周方向に連続して、もしくは断続的に形成(突設)され、全体的には環状に形成される。定着部のいずれかの部分がせん断力を負担したときに荷重を定着部全体に分散させる上では、定着部は連続的に形成される。「断続的に形成」とは、定着部が波形状に形成される場合のように定着部の深さが周方向に変化するようなことを言う。   The fixing unit is formed (protruded) continuously or intermittently in the circumferential direction around the main body or at a position near the periphery, and is formed in an annular shape as a whole. In order to disperse the load throughout the fixing unit when any portion of the fixing unit bears a shearing force, the fixing unit is continuously formed. “Intermittently forming” means that the depth of the fixing portion changes in the circumferential direction as in the case where the fixing portion is formed in a wave shape.

定着部材は主構造体と付加構造体に跨って設置され、両構造体が対向する方向(定着部材の軸方向)の一方側の端部である定着部が主構造体と付加構造体のいずれか一方(主構造体、もしくは付加構造体)に定着され、他方側の端部である本体部が主構造体と付加構造体のいずれか他方(付加構造体、もしくは主構造体)に定着される。   The fixing member is installed across the main structure and the additional structure, and the fixing portion which is one end portion in the direction in which both structures face each other (the axial direction of the fixing member) is either the main structure or the additional structure. Either the main structure or the additional structure is fixed, and the main body, which is the other end, is fixed to the other of the main structure and the additional structure (the additional structure or the main structure). The

定着部と本体部がそれぞれの側の構造体に定着されることにより、地震時に一方の構造体(主構造体)と他方の構造体(付加構造体)の双方の接触面(境界面)が平行な状態のまま、その接触面(両構造体が対向する面)に平行な水平方向の相対変位(ズレ変形)が生じようとするときに、定着部材は両構造体(付加構造体と主構造体)間の水平せん断力を伝達する。   By fixing the fixing part and the main body part to the structure on each side, the contact surface (boundary surface) of both one structure (main structure) and the other structure (additional structure) at the time of the earthquake When a horizontal relative displacement (displacement deformation) parallel to the contact surface (the surface where both structures face each other) is about to occur in a parallel state, the fixing member is fixed to both structures (additional structure and main structure). Transmits horizontal shear force between structures).

定着部材を軸方向に直交する方向に見たときに、図9に示すように定着部材が2方向(水平方向と鉛直方向)に同等の長さ(投影面積)を持った形状(立体形状)をし、軸方向に直交する方向に方向性のない形状をしていれば、鉛直方向のせん断力も伝達可能ではある。但し、定着部材は一方の構造体(主構造体)と他方の構造体(付加構造体)が独立して挙動するときには両構造体の対向する面間に、水平軸回りの相対的な回転変形が生じさせる機能を発揮するため、両構造体の相対的な回転変形を阻害しない形状に形成される。   When the fixing member is viewed in a direction orthogonal to the axial direction, as shown in FIG. 9, the fixing member has a shape (three-dimensional shape) having an equivalent length (projection area) in two directions (horizontal direction and vertical direction). If the shape has no directivity in the direction orthogonal to the axial direction, the shearing force in the vertical direction can be transmitted. However, when one structure (main structure) and the other structure (additional structure) behave independently, the fixing member is relatively rotated around the horizontal axis between the opposing surfaces of both structures. In order to exhibit the function of generating, a shape that does not hinder the relative rotational deformation of both structures is formed.

「両構造体の相対的な回転変形を阻害しない形状」とは、図1−(a)、(b)に示すように定着部材の定着部がその側の構造体に定着された状態のまま、本体部側の構造体が、凸の形状をしている本体部の表面に沿い、定着部側の構造体に対して相対的に回転変形し得る形状をすることを言う。主構造体と付加構造体の相対的な回転であるから、各構造体の回転変形前の状態からの絶対的な回転角度の大きさは問われない。   “A shape that does not hinder the relative rotational deformation of both structures” means that the fixing portion of the fixing member is fixed to the structure on the side as shown in FIGS. 1- (a) and (b). That is, the structure on the main body side has a shape that can be rotationally deformed relative to the structure on the fixing portion side along the surface of the main body having a convex shape. Since the rotation is relative between the main structure and the additional structure, the magnitude of the absolute rotation angle from the state before the rotational deformation of each structure is not limited.

「本体部の表面に沿って回転変形する」とは、例えば図1−(a)に示すように一方の構造体(主構造体)と他方の構造体(付加構造体)の接触面に平行な水平方向に見たときに、図6−(a)、(b)に示すように本体部の他方の構造体(付加構造体)側の表面が凸となった曲線状(立体的には曲面状)をしている場合に、他方の構造体(付加構造体)が一方の構造体(主構造体)に対して本体部の表面に沿い、滑りを生ずるように回転することを言う。   “Rotating deformation along the surface of the main body” means, for example, parallel to the contact surface of one structure (main structure) and the other structure (additional structure) as shown in FIG. 6 (a) and 6 (b), the surface on the other structure (additional structure) side of the main body is convex as shown in FIGS. In the case of a curved surface, the other structure (additional structure) rotates along the surface of the main body portion with respect to one structure (main structure) so as to cause slippage.

定着部材が一方の構造体に定着される定着部と、他方の構造体側が凸の形状になった本体部を有することで、主構造体と付加構造体間の相対的な回転変形が生じようとしたときには、形態的に定着部がその側の構造体に対して回転変形しようとする可能性より、本体部がその側の構造体に対して回転変形しようとする可能性が高い。この可能性の差に起因し、定着部材は定着部において一方の構造体に定着された状態を維持し、本体部において他方の構造体に対して相対移動しようとする。   By having a fixing portion where the fixing member is fixed to one structure and a main body having a convex shape on the other structure side, relative rotational deformation between the main structure and the additional structure may occur. In this case, there is a higher possibility that the main body portion tends to rotate and deform relative to the structure on the side than the possibility that the fixing portion tends to rotate and deform relative to the structure on the side. Due to the difference in possibility, the fixing member maintains a state where the fixing member is fixed to one structure in the fixing portion and tries to move relative to the other structure in the main body portion.

この結果、主構造体と付加構造体との間には相対的な回転変形が阻害されることなく、自然に発生する状態が得られるため、強制的な回転変形による主構造体と付加構造体間の接合部における損傷が未然に回避されるか、抑制される。   As a result, a naturally occurring state can be obtained without inhibiting relative rotational deformation between the main structure and the additional structure, so that the main structure and additional structure due to forced rotational deformation are obtained. Damage at the joints in between is avoided or suppressed in advance.

定着部材は前記のように主構造体と付加構造体間の対向する方向に直交する方向の水平せん断力を伝達しながら、その方向の水平軸回りの両構造体の相対的な回転変形を許容することで、水平軸回りの曲げモーメントに対しては主構造体と付加構造体をピン接合化する機能を発揮することになる。   As described above, the fixing member transmits a horizontal shearing force in a direction perpendicular to the opposing direction between the main structure and the additional structure, and allows relative rotational deformation of both structures around the horizontal axis in the direction. By doing so, the function of pin-bonding the main structure and the additional structure to the bending moment about the horizontal axis is exhibited.

定着部材の本体部表面の形状により主構造体と付加構造体との間の相対的な回転変形が生じ易い状態にあることで、一方の構造体(主構造体)と他方の構造体(付加構造体)が地震力や風荷重により独立して振動し、相対的な回転変形を起こそうとするとき、両構造体の対向する面間には図1−(a)、図6に示すように水平軸回りの曲げモーメントが作用することによって肌別れが生じようとし、水平軸回りの相対的な回転が発生する。この回転は正負の向きに交互に生ずる。   Due to the shape of the surface of the main body of the fixing member, the relative rotation deformation between the main structure and the additional structure is likely to occur, so that one structure (main structure) and the other structure (additional) When the structure) vibrates independently due to seismic force or wind load and is about to undergo relative rotational deformation, there is a gap between the opposing surfaces of both structures as shown in FIGS. When a bending moment around the horizontal axis acts on the skin, skin separation tends to occur, and relative rotation around the horizontal axis occurs. This rotation occurs alternately in positive and negative directions.

このとき、定着部材が主構造体と付加構造体との間の相対的な回転変形を阻害せず、回転変形を積極的に生じさせるには、定着部材が主構造体と付加構造体の双方に跨った状態を維持しない方がよく、図6に示すように定着部材の定着部が主構造体と付加構造体のいずれか一方の構造体に定着された状態を維持したまま、他方の構造体が本体部の表面に沿い、本体部に対して回転変形し得る状態にあることが適切である。   At this time, in order for the fixing member to prevent the relative rotational deformation between the main structure and the additional structure and prevent the rotational deformation positively, the fixing member has both the main structure and the additional structure. It is better not to maintain the state straddling the structure, and as shown in FIG. 6, the fixing portion of the fixing member is fixed to one of the main structure and the additional structure, and the other structure is maintained. Suitably, the body is in a state of being able to rotate and deform with respect to the main body along the surface of the main body.

そこで、他方の構造体に定着される本体部の表面がその構造体側に凸の曲面状に形成されることで、両構造体が相対的な回転変形を起こそうとするときに本体部側の構造体が本体部の表面に沿い、本体部に対して回転変形し得る状態が得られる。「曲面状」は具体的には定着部材の本体部が椀状等の楕円放物面その他の曲面状、あるいは多面体形状等をすることであり、「本体部に対して回転変形し得る状態」は本体部側の構造体と本体部表面との間の縁が切れる(分離する)ことに相当する。上記した「肌別れ」は本体部側の構造体と本体部表面との間の縁が切れて回転する結果として生じる。   Therefore, the surface of the main body fixed to the other structure is formed in a convex curved shape on the structure side, so that when the two structures are about to undergo relative rotational deformation, A state is obtained in which the structure can be rotationally deformed with respect to the main body along the surface of the main body. Specifically, “curved surface” means that the main body of the fixing member has an elliptic paraboloid such as a bowl or other curved surface, or a polyhedral shape, etc. Corresponds to the cutting (separation) of the edge between the structure on the main body side and the surface of the main body. The above “separation of skin” occurs as a result of the edge between the structure on the main body portion side and the main body surface being cut and rotating.

例えば図1−(a)に示すように定着部が主構造体に定着され、本体部が付加構造体に定着された状態で定着部材が両構造体に跨って設置されている場合に、両構造体が相対的な回転変形を起こそうとするとき、主構造体と付加構造体の端面(接触面)間に肌別れを生ずると仮定すれば、図1の例では相対的に高さ(成、あるいは厚さ)の小さい側の構造体である付加構造体が主構造体側の端面の下端、もしくは上端を回転中心として回転しようとする。付加構造体が主構造体側端面の下端回りに回転することと上端回りに回転することは交互に発生する。両構造体の相対的な回転変形の回転中心は定着部材を挿通するアンカーが曲げ変形を起こすときの曲げの中心でもある。   For example, as shown in FIG. 1- (a), when the fixing unit is fixed to the main structure and the main body is fixed to the additional structure, the fixing member is installed across the two structures. If it is assumed that when the structure is about to undergo relative rotational deformation, skin separation occurs between the end surfaces (contact surfaces) of the main structure and the additional structure, in the example of FIG. The additional structure, which is a structure on the side having a smaller thickness or thickness), tries to rotate about the lower end or upper end of the end face on the main structure side as the center of rotation. Rotation of the additional structure around the lower end of the main structure side end surface and rotation around the upper end occur alternately. The rotational center of relative rotational deformation of both structures is also the center of bending when the anchor that passes through the fixing member causes bending deformation.

このように主構造体と付加構造体が相対的に回転変形するときには、相対的に高さ(成(厚さ))の小さい側の構造体がその下端と上端を回転中心とし、他方の構造体に対して回転しようとする。従って本体部がいずれの側の構造体に定着されているかに関係なく、図1−(b)に示すように本体部の表面は主構造体と付加構造体が互いに対向する方向に直交する水平方向(相対的な回転変形の回転中心(回転軸)の方向)に見たとき、高さ(成、あるいは厚さ)の小さい側の構造体の下端と上端を中心とする円弧状、もしくはそれに近い形状に形成されていることが合理的である(請求項2)。   Thus, when the main structure and the additional structure are relatively rotationally deformed, the structure on the side having a relatively small height (composition (thickness)) has the lower end and the upper end as rotation centers, and the other structure. Try to rotate with respect to the body. Therefore, regardless of which side the main body is fixed to the structure on which side, as shown in FIG. 1- (b), the surface of the main body is a horizontal surface orthogonal to the direction in which the main structure and the additional structure face each other. When viewed in the direction (direction of the rotation center (rotation axis) of relative rotational deformation), the arc shape is centered on the lower end and upper end of the structure with the smaller height (composition or thickness), or It is reasonable to form in a close shape (Claim 2).

「回転中心(回転軸)の方向に見たとき」であるから、図9に示すように「円弧状、もしくはそれに近い形状」は定着部材の軸の回りに曲線が回転してできる回転体形状等の立体的な形状である場合と、図10に示すようにその立体的な形状の一部を含む場合の他、回転中心の方向に見たときに本体部の表面の外形線が「円弧状、もしくはそれに近い形状」を描く場合がある。   Since it is “when viewed in the direction of the rotation center (rotation axis)”, as shown in FIG. 9, “arc shape or a shape close to it” is a shape of a rotating body formed by rotating a curve around the axis of the fixing member. In addition to the case of a three-dimensional shape such as the one shown in FIG. 10 and a case where a part of the three-dimensional shape is included as shown in FIG. An arc shape or a shape close to it may be drawn.

「高さの小さい側の構造体の下端と上端を中心とする円弧状」とは、図1−(b)に示すように定着部材の軸方向の中心線に関して上半分の外形線が高さの小さい側の構造体の、対向する構造体側の面の内、下端を中心とする円弧、もしくはそれに近い曲線や多角形を描き、下半分の外形線が上端を中心とする円弧、もしくはそれに近い曲線や多角形を描くことを言う。   “Arc shape centered on the lower end and the upper end of the structure on the small height side” means that the upper half of the outline line with respect to the axial center line of the fixing member has a height as shown in FIG. Draw an arc centered at the lower end of the opposing structure side surface, or a curve or polygon close to it, and the lower half of the outer structure is an arc centered at the upper end or close to it Say to draw curves and polygons.

定着部材の本体部は両構造体の相対的な回転変形を許容すると共に、両構造体が対向する方向に直交する方向の水平せん断力を伝達する働きをすればよいから、本体部の表面が高さ(成、あるいは厚さ)の小さい側の構造体の下端と上端を中心とする円弧状等に形成されることは、相対的な回転の軸に平行に見たときの形状であればよく、必ずしも立体的に円弧状等の形状(回転体形状)をしている必要はない。図9は本体部が回転体形状をしている場合の例を示すが、図10は回転の軸方向(水平方向)に見たときの外形線が円弧状の形状をし、平面で見たときには定着部を除く本体部がT字状の形状をしている場合の例を示している。   The main body portion of the fixing member only needs to function to transmit the horizontal shearing force in the direction orthogonal to the direction in which both structures oppose while allowing the relative rotational deformation of both structures. It is formed in an arc shape centering on the lower end and upper end of the structure on the side where the height (composition or thickness) is small, as long as it is parallel to the axis of relative rotation. It is not always necessary to form a three-dimensional shape such as an arc (rotary body shape). FIG. 9 shows an example in which the main body has a rotating body shape, but FIG. 10 shows an outer shape of the arc when viewed in the axial direction (horizontal direction) of rotation, and is seen in a plane. In some cases, the main body portion excluding the fixing portion has a T-shape.

定着部材を軸方向に見たときの中心部には本体部を軸方向に貫通し、両構造体に定着される挿通孔が形成され、この挿通孔に定着部材によるせん断力伝達能力を補うと共に、主構造体と付加構造体間の相対的な回転変形後の復元機能を発揮するアンカーが挿通する。アンカーは定着部材の挿通孔を挿通し、主構造体と付加構造体に跨った状態で配置され、主構造体と付加構造体に定着されることにより定着部材と共に、付加構造体(主構造体)から受けるせん断力を主構造体(付加構造体)に伝達する働きをする。   An insertion hole is formed in the central portion when the fixing member is viewed in the axial direction and penetrates the main body portion in the axial direction and is fixed to both structures. The insertion hole supplements the shearing force transmission capability of the fixing member. The anchor which exhibits the restoring function after the relative rotational deformation between the main structure and the additional structure is inserted. The anchor is inserted through the insertion hole of the fixing member, and is arranged in a state straddling the main structure and the additional structure, and is fixed to the main structure and the additional structure, thereby being fixed together with the fixing member (the main structure). ) To transmit the shearing force received from the main structure (additional structure).

アンカーには主にボルト(アンカーボルト)や棒鋼等、棒状の鋼材が使用されるが、繊維強化プラスチック等も使用される。アンカー5にボルトを使用した場合、図1−(a)に示すようにアンカー5(ボルト)にはナット5aが付属することもある。ナット5aがアンカー5の軸方向端部に接続された場合、ナット5aは構造体1、2中での定着効果(引き抜き抵抗力)を確保する働きをし、定着部材4に接触する位置に接続された場合にはアンカー5の定着部材4に対する位置が変動しないようにアンカー5を定着部材4に接合(規制)する働きをする。   For anchors, rod-shaped steel materials such as bolts (anchor bolts) and steel bars are mainly used, but fiber reinforced plastics and the like are also used. When a bolt is used for the anchor 5, a nut 5a may be attached to the anchor 5 (bolt) as shown in FIG. When the nut 5 a is connected to the axial end of the anchor 5, the nut 5 a functions to secure the fixing effect (pulling resistance force) in the structures 1 and 2 and is connected to a position where the fixing member 4 comes into contact. In such a case, the anchor 5 is joined (regulated) to the fixing member 4 so that the position of the anchor 5 relative to the fixing member 4 does not change.

アンカーはまた、定着部材を挟んだ両側において主構造体と付加構造体のそれぞれに定着された状態を維持することで、弾性範囲内で曲げ変形することにより、あるいは曲げ変形と伸び変形を生ずることにより、主構造体と付加構造体間の相対的な回転変形時に追従する。アンカーが弾性範囲内で曲げ変形することで、両構造体の相対的な回転変形に追従し、回転変形が終息した後には、変形を復元させようとするばねの働きをする。アンカーの軸方向両端部は主構造体と付加構造体のそれぞれに定着された状態を維持するから、伸び変形を伴う場合は主構造体と付加構造体の分離を抑制(制限)する働きもする。   The anchor also maintains a fixed state in the main structure and the additional structure on both sides of the fixing member so that the anchor is bent or deformed within the elastic range, or the bending deformation and the expansion deformation are caused. Thus, it follows at the time of relative rotational deformation between the main structure and the additional structure. When the anchor is bent and deformed within the elastic range, it follows the relative rotational deformation of both structures, and after the rotational deformation ends, it acts as a spring that tries to restore the deformation. Since both ends in the axial direction of the anchor maintain the state fixed to the main structure and the additional structure, they also function to suppress (limit) separation of the main structure and the additional structure when accompanied by elongation deformation. .

本体部の挿通孔は本体部の中央部等に形成されるが、必ずしも本体部の中央部に1箇所である必要はなく、複数個形成されることもある。挿通孔の数に応じ、アンカーは本体部に1本、もしくは複数本挿通するが、本数は主構造体と付加構造体との間の相対的な回転変形を阻害しない程度に設定される。但し、両構造体の回転変形後のアンカーの復元力を期待する場合には複数本のアンカーが挿通する方が有利である。   The insertion hole of the main body is formed at the center of the main body or the like, but it is not always necessary to have one at the center of the main body, and a plurality of holes may be formed. Depending on the number of insertion holes, one or more anchors are inserted into the main body, but the number is set to such an extent that the relative rotational deformation between the main structure and the additional structure is not hindered. However, when the restoring force of the anchor after the rotational deformation of both structures is expected, it is advantageous to insert a plurality of anchors.

アンカーはその軸に直交する方向のせん断力に対する抵抗要素として機能するときには、アンカーのせん断力作用方向への投影面積分の抵抗力が定着部のせん断抵抗力に加算される。アンカーにせん断力に対する抵抗要素としての機能を期待する場合には、その期待すべきせん断抵抗力に応じた径(太さ)と長さが与えられる。   When the anchor functions as a resistance element against the shearing force in the direction perpendicular to the axis, a resistance force corresponding to the projected area in the shearing force acting direction of the anchor is added to the shearing resistance force of the fixing portion. When the anchor is expected to function as a resistance element against a shearing force, a diameter (thickness) and a length corresponding to the expected shearing resistance are given.

アンカーは定着部材に形成された挿通孔に螺合することにより、もしくは挿通孔に単純に挿通し、挿通孔内に接着剤やモルタル等が充填されることにより定着部材の本体部に一体化することもあるが、アンカーが定着部材(本体部)の挿通孔内を挿通した状態で、本体部に対して曲げ変形可能な状態を維持する面からは、挿通孔の内周面とアンカー表面との間にはある程度のクリアランスが確保される方がよい。   The anchor is integrated with the main body of the fixing member by screwing into an insertion hole formed in the fixing member or simply by inserting into the insertion hole and filling the insertion hole with an adhesive or mortar. In some cases, the anchor is inserted through the insertion hole of the fixing member (main body part), and from the surface that maintains a state in which the main body part can be bent and deformed, the inner peripheral surface of the insertion hole, the anchor surface, It is better to secure a certain amount of clearance in between.

定着部と本体部を有する定着部材とアンカーは請求項1、もしくは請求項2に記載の構造体の接合構造に使用される定着装置を構成する(請求項3)。この構造体接合用定着装置は主構造体と付加構造体の境界に跨って配置され、一部に厚さ方向に貫通する挿通孔を有する定着部材と、この定着部材を貫通して両構造体に定着され、曲げ変形可能なアンカーとを備え、定着部材が主構造体と付加構造体のいずれか一方に定着される定着部と、他方に定着され、その側の表面が凸の形状に形成された本体部を持つ。   The fixing member having the fixing portion and the main body portion and the anchor constitute a fixing device used in the structure joining structure according to claim 1 or claim 2 (claim 3). The fixing device for bonding a structure is disposed across the boundary between the main structure and the additional structure, and has a fixing member having an insertion hole penetrating in the thickness direction in part, and both structures passing through the fixing member. The fixing member is fixed to the fixing structure, the fixing member is fixed to one of the main structure and the additional structure, and the other surface is formed in a convex shape. It has a body part.

定着部材は前記のように定着部において一方の構造体(図示する場合は主構造体)中に定着(埋設)され、本体部において他方の構造体(図示する場合は付加構造体)に定着(埋設)されることにより他方の構造体から受ける水平せん断力を一方の構造体に伝達する。あるいは逆に一方の構造体から受ける水平せん断力を他方の構造体に伝達する。定着部は一方の構造体の他方の構造体側の面に形成された溝部に入り込む(嵌入)することにより一方の構造体に定着される。   As described above, the fixing member is fixed (embedded) in one structure (main structure in the case of illustration) in the fixing portion, and fixed to the other structure (additional structure in the case of illustration) in the main body ( The horizontal shearing force received from the other structure is transmitted to one structure. Or conversely, the horizontal shearing force received from one structure is transmitted to the other structure. The fixing unit is fixed to one structure by entering (inserting) into a groove formed on the surface of the other structure on the other structure side.

一方の構造体と他方の構造体の境界面には、前記のように地震時に双方の接触面が平行な状態のまま、相対変位(ズレ変形)が生じようとするため、この相対変位時に定着部材が一方の構造体と他方の構造体から水平せん断力を受けようとする。定着部材の本体部が他方の構造体からせん断力を受け、定着部の少なくとも軸方向の一部である一方の構造体中に埋設される区間(部分)が他方の構造体からのせん断力を一方の構造体に伝達し、その反力を負担する。   As described above, relative displacement (displacement deformation) tends to occur at the boundary surface between one structure and the other structure while the contact surfaces of both structures remain parallel to each other during an earthquake as described above. The member tends to receive a horizontal shear force from one structure and the other structure. The main body of the fixing member receives shearing force from the other structure, and the section (part) embedded in one structure that is at least a part of the axial direction of the fixing part receives shearing force from the other structure. It transmits to one structure and bears the reaction force.

本体部に連続して形成される定着部の本体部に対する形成位置と形状は問われず、一方の構造体(主構造体)の溝部に嵌入する環状の定着部は前記のように本体部の外周に形成される他、本体部の外周より内側に寄った位置に形成される。前者の場合、定着部の外周面は本体部の外周面に連続し、後者の場合には定着部の外周面は本体部外周面より内周側に位置する。   Regardless of the formation position and shape of the fixing portion formed continuously with the main body portion with respect to the main body portion, the annular fixing portion fitted into the groove portion of one structure (main structure) is the outer periphery of the main body portion as described above. In addition to the above, it is formed at a position closer to the inside than the outer periphery of the main body. In the former case, the outer peripheral surface of the fixing unit is continuous with the outer peripheral surface of the main body, and in the latter case, the outer peripheral surface of the fixing unit is located on the inner peripheral side of the outer peripheral surface of the main body.

定着部はその形状に対応して環状、もしくは面状等に形成されている一方の構造体の溝部に全周に亘って嵌入する。溝部へは、その深さ方向(軸方向)に定着部の全体が嵌入する場合と一部区間が嵌入する場合がある。定着部はまた、同心円状に、本体部の放射方向(半径方向)に複数形成されることもある。   The fixing portion is fitted over the entire circumference in the groove portion of one structure formed in an annular shape or a planar shape corresponding to the shape. There are cases where the entire fixing portion is inserted in the depth direction (axial direction) and a part of the section is inserted in the groove portion. A plurality of fixing portions may be formed concentrically in the radial direction (radial direction) of the main body portion.

定着部全体(深さ方向(軸方向)の全体)が一方の構造体の溝部に嵌入する場合には、本体部の外周面が他方の構造体に接触する。定着部の一部区間が溝部に嵌入する場合には、本体部の外周面と定着部の一部が他方の構造体に接触する。いずれの場合も、図11に示すように本体部の外周面が他方の構造体からのせん断力を負担し、定着部の外周面と内周面から一方の構造体にせん断力を伝達する。   When the entire fixing portion (the entire depth direction (axial direction)) is fitted into the groove portion of one structure, the outer peripheral surface of the main body comes into contact with the other structure. When a partial section of the fixing unit is fitted into the groove, the outer peripheral surface of the main body unit and a part of the fixing unit are in contact with the other structure. In any case, as shown in FIG. 11, the outer peripheral surface of the main body bears the shearing force from the other structure, and the shearing force is transmitted from the outer peripheral surface and the inner peripheral surface of the fixing unit to one structure.

図11−(a)、(b)に示すように定着部材4に他方の構造体(図示する場合は付加構造体2)から右向きのせん断力が作用したとき、そのせん断力はその作用の向きに対向する定着部材4の本体部42の外周面が受ける。他方の構造体(付加構造体2)からのせん断力は本体部42外周面の内、せん断力作用方向への投影面積分が受ける。図11−(a)、(b)中、せん断力を受ける面を太線で示している。   When a rightward shearing force is applied to the fixing member 4 from the other structure (additional structure 2 in the figure) as shown in FIGS. 11A and 11B, the shearing force is the direction of the action. Is received by the outer peripheral surface of the main body portion 42 of the fixing member 4 facing the surface. The shearing force from the other structure (additional structure 2) is received by the projected area in the shearing force acting direction in the outer peripheral surface of the main body 42. In FIG. 11- (a) and (b), the surface which receives a shear force is shown by the thick line.

本体部42の外周面が受けたせん断力はその外周面に対向する側を向き、一方の構造体(図示する場合は主構造体1)の溝部1bに嵌入する定着部41の外周面と内周面から一方の構造体(主構造体1)に伝達される。定着部41も図11−(b)に示すようにせん断力の作用方向を向く投影面積分でせん断力を一方の構造体(主構造体1)に伝達する。   The shearing force received by the outer peripheral surface of the main body 42 is directed to the side facing the outer peripheral surface, and the outer peripheral surface and the inner surface of the fixing unit 41 fitted into the groove portion 1b of one structure (main structure 1 in the figure). It is transmitted from the peripheral surface to one structure (main structure 1). As shown in FIG. 11- (b), the fixing unit 41 also transmits the shearing force to one structure (main structure 1) by a projected area corresponding to the direction in which the shearing force acts.

本体部42の外周面が受けた他方の構造体(付加構造体2)からのせん断力は図11−(b)に示すように本体部42外周面に対向する側に位置する定着部41の外周面と、この本体部42外周面と同一側に位置する定着部41の内周面から一方の構造体(主構造体1)に伝達される。一方の構造体(主構造体1)に作用するせん断力は逆の経路で他方構造体(付加構造体2)に伝達される。   The shearing force from the other structure (additional structure 2) received by the outer peripheral surface of the main body 42 is obtained by the fixing unit 41 located on the side facing the outer peripheral surface of the main body 42 as shown in FIG. It is transmitted to one structure (main structure 1) from the outer peripheral surface and the inner peripheral surface of the fixing portion 41 located on the same side as the outer peripheral surface of the main body 42. The shearing force acting on one structure (main structure 1) is transmitted to the other structure (additional structure 2) through the reverse path.

このように定着部材4の本体部42の外周に定着部41が形成され、本体部42の少なくとも一部が他方の構造体(付加構造体2)中に位置し、定着部41の少なくとも一部が一方の構造体(主構造体1)の溝部1bに嵌入することで、他方の構造体(付加構造体2)には本体部42の外周面が接触し、一方の構造体(主構造体1)には定着部41の外周面が接触する状態になる。   In this way, the fixing portion 41 is formed on the outer periphery of the main body portion 42 of the fixing member 4, and at least a part of the main body portion 42 is located in the other structure (additional structure 2). Is inserted into the groove portion 1b of one structure (main structure 1), so that the outer peripheral surface of the main body 42 comes into contact with the other structure (additional structure 2), and one structure (main structure) In 1), the outer peripheral surface of the fixing unit 41 comes into contact.

このため、他方の構造体(付加構造体2)からのせん断力は本体部42の外周面から本体部42に伝達され、定着部41から一方の構造体(主構造体1)に伝達される。定着部材4の定着部41は環状等に形成されている溝部1bに嵌入しているため、一方の構造体(主構造体1)には定着部41の外周面と内周面からせん断力が伝達される。   Therefore, the shearing force from the other structure (additional structure 2) is transmitted from the outer peripheral surface of the main body 42 to the main body 42, and is transmitted from the fixing unit 41 to one structure (main structure 1). . Since the fixing portion 41 of the fixing member 4 is fitted in the groove portion 1b formed in an annular shape or the like, a shearing force is applied to one structure (main structure 1) from the outer peripheral surface and the inner peripheral surface of the fixing portion 41. Communicated.

定着部材4の定着部41が一方の構造体(主構造体1)の溝部1bに嵌入することで、前記の通り、他方の構造体(付加構造体2)からのせん断力が定着部41から一方の構造体(主構造体1)に伝達されるが、他方の構造体(付加構造体2)からのせん断力を受ける本体部42は定着部41から一方の構造体(主構造体1)に伝達する際に、定着部41が一方の構造体(主構造体1)からの反力によって変形しないように定着部41の剛性を確保する機能を有する。   As the fixing part 41 of the fixing member 4 is fitted into the groove 1b of one structure (main structure 1), the shearing force from the other structure (additional structure 2) is generated from the fixing part 41 as described above. The main body 42 that is transmitted to one structure (main structure 1) but receives shearing force from the other structure (additional structure 2) is transferred from the fixing unit 41 to one structure (main structure 1). , The fixing portion 41 has a function of ensuring the rigidity of the fixing portion 41 so that the fixing portion 41 is not deformed by a reaction force from one structure (main structure 1).

例えば定着部材4が環状の定着部41のみからなり、定着部41をつなぐ本体部42がないとすれば、定着部材は鋼管と同等の形状をするため(特許第3384992号)、定着部が付加構造体、もしくは主構造体からせん断力の反力を受けたときに定着部が径方向に変形することが想定される。すなわち、本体部のない鋼管が主構造体と付加構造体に跨って双方に定着(埋設)された場合、鋼管は付加構造体から軸に直交する方向のせん断力を負担したときと、主構造体から反力を受けたときに、径方向の力によって曲げ変形し易いため、主構造体へのせん断力の伝達能力は低い。   For example, if the fixing member 4 is composed only of the annular fixing portion 41 and there is no main body portion 42 for connecting the fixing portion 41, the fixing member has the same shape as a steel pipe (Japanese Patent No. 3384992). It is assumed that the fixing portion is deformed in the radial direction when a reaction force of a shearing force is received from the structure or the main structure. That is, when a steel pipe without a main body is fixed (embedded) on both the main structure and the additional structure, the steel pipe bears a shearing force in a direction perpendicular to the axis from the additional structure. When receiving a reaction force from the body, it is easy to bend and deform due to the radial force, and therefore the ability to transmit the shear force to the main structure is low.

これに対し、定着部材4の本体部42が環状の定着部41の内周に存在することで、定着部41は放射方向(半径方向)に拘束され、本体部42がせん断力を面内力によって定着部41に伝達する状態にあるため、定着部41の径方向の曲げ剛性が大きく、定着部41はその方向の変形を起こしにくい形態になる。従って定着部41が一方の構造体(主構造体1)にせん断力を伝達するときに、一方の構造体(主構造体1)からの反力に対する抵抗力が高いため、定着部41が受けるせん断力を定着部材4全体に伝達することが可能になっている。   On the other hand, since the main body portion 42 of the fixing member 4 exists on the inner periphery of the annular fixing portion 41, the fixing portion 41 is restrained in the radial direction (radial direction), and the main body portion 42 generates a shearing force by an in-plane force. Since the fixing portion 41 is in a state of transmission, the fixing portion 41 has a large bending rigidity in the radial direction, and the fixing portion 41 does not easily deform in that direction. Therefore, when the fixing unit 41 transmits a shearing force to one structure (main structure 1), the fixing unit 41 receives the resistance force against the reaction force from the one structure (main structure 1). The shearing force can be transmitted to the entire fixing member 4.

定着部材4の本体部42の挿通孔42aの周囲にはその表面側と背面側の少なくともいずれかへ突出する筒状の突出部が形成されることもある。突出部は挿通孔42aに連続する中空断面で形成され、アンカー5は挿通孔42aに連続して突出部に形成される挿通孔を挿通する。本体部42への突出部の形成は本体部42の断面形状を変化させるため、突出部は本体部42の断面性能(断面2次モーメント)を向上させる働きをする。   A cylindrical projecting portion that projects to at least one of the front surface side and the back surface side may be formed around the insertion hole 42 a of the main body portion 42 of the fixing member 4. The protrusion is formed with a hollow cross section that is continuous with the insertion hole 42a, and the anchor 5 is inserted through the insertion hole formed in the protrusion with the insertion hole 42a. The formation of the protruding portion on the main body portion 42 changes the cross-sectional shape of the main body portion 42, and thus the protruding portion functions to improve the cross-sectional performance (secondary moment of cross section) of the main body portion 42.

突出部は本体部42からその表面側(他方の構造体側)と背面側(一方の構造体側)の少なくともいずれかへ突出した形で形成されることで、他方の構造体からのせん断力を本体部と共に負担する、または他方の構造体からのせん断力を定着部と共に一方の構造体に伝達する働きをする。突出部は本体部42の表面側に形成された場合に他方の構造体からのせん断力を負担し、背面側に形成された場合に一方の構造体にせん断力を伝達する。突出部は本体部42の表面側と背面側に連続的に形成されることもある。
The protruding portion is formed so as to protrude from the main body portion 42 to at least one of the front surface side (the other structural body side) and the back surface side (the one structural body side). It bears together with the part or transmits the shearing force from the other structure to one structure together with the fixing part. When the protrusion is formed on the front side of the main body 42, it bears the shearing force from the other structure, and when it is formed on the back side, it transmits the shearing force to the one structure. The projecting portion may be continuously formed on the front surface side and the back surface side of the main body portion 42.

定着部材が一方の構造体に定着される定着部と、他方の構造体側の表面が曲面状等、凸の形状になった本体部を有することで、主構造体と付加構造体間の相対的な回転変形が生じようとしたときには、形態的に定着部がその側の構造体に対して回転変形しようとする可能性より、本体部がその側の構造体に対して回転変形しようとする可能性を高めることができる。   By having a fixing portion where the fixing member is fixed to one structure and a main body having a convex surface such as a curved surface on the other structure side, the relative relationship between the main structure and the additional structure When the rotational deformation is about to occur, the main body portion may attempt to rotate and deform relative to the structure on the side, rather than the possibility that the fixing portion is rotationally deformed relative to the structure on the side. Can increase the sex.

この可能性の差により、定着部材は定着部において一方の構造体に定着された状態を維持し、本体部において他方の構造体に対して相対移動しようとすることで、主構造体と付加構造体との間の相対的な回転変形が阻害されることがなくなるため、強制的な回転変形による主構造体と付加構造体間の接合部における損傷を未然に回避、もしくは抑制することができる。   Due to the difference in possibility, the fixing member maintains a fixed state in one structure in the fixing portion and tries to move relative to the other structure in the main body portion. Since relative rotational deformation between the body and the body is not hindered, damage at the joint between the main structure and the additional structure due to forced rotational deformation can be avoided or suppressed in advance.

(a)は表面が球面をなした定着部材とアンカーからなる定着装置を用いて主構造体と付加構造体を接合した様子を示した縦断面図、(b)は本体部の表面が、付加構造体端面の上端と下端を中心とする円筒面、もしくは球面の一部を有する定着部材とアンカーからなる定着装置を用いて主構造体と付加構造体を接合した様子を示した縦断面図である。(A) is a longitudinal sectional view showing a state in which the main structure and the additional structure are joined using a fixing device including a fixing member having a spherical surface and an anchor, and (b) is a view showing that the surface of the main body is added. A longitudinal sectional view showing a state in which the main structure and the additional structure are joined using a fixing device including a fixing member and an anchor having a cylindrical surface centered on the upper end and the lower end of the structure end surface or a part of a spherical surface and an anchor. is there. 主構造体が既存構造物、付加構造体が耐震(制震)補強架構である場合の両構造体の接合状態を示した斜視図である。It is the perspective view which showed the joining state of both structures when a main structure is an existing structure and an additional structure is an earthquake-resistant (damping) reinforcement frame. 主構造体と付加構造体の接合部分を示した図2の構面内方向の斜視図である。FIG. 3 is a perspective view in the in-plane direction of FIG. 2 showing a joint portion between a main structure and an additional structure. 図3の平面図である。FIG. 4 is a plan view of FIG. 3. (a)は図2に示す構造物を構面内方向に見たときの両構造体の曲げ変形時の様子を示した立面図、(b)は(a)におけるB部分の拡大図である。(A) is an elevation view showing a state of bending deformation of both structures when the structure shown in FIG. 2 is viewed in the in-plane direction, and (b) is an enlarged view of a portion B in (a). is there. (a)は図5−(a)のA部分、及び図7のD部分の拡大図、(b)は(a)におけるC部分の拡大図である。(A) is an enlarged view of a portion A in FIG. 5- (a) and a portion D in FIG. 7, and (b) is an enlarged view of a portion C in (a). 図5−(a)に示す付加構造体が主構造体に対して回転変形したときの付加構造体のスラブと主構造体との関係を示したモデル図である。FIG. 6 is a model diagram showing a relationship between the slab of the additional structure and the main structure when the additional structure shown in FIG. 5A is rotationally deformed with respect to the main structure. 図1−(a)に示す定着装置が主構造体と付加構造体の境界面に位置している状態を定着部材の定着部側から見た様子を示した斜視図である。FIG. 2 is a perspective view illustrating a state in which the fixing device illustrated in FIG. 1A is located on a boundary surface between a main structure and an additional structure as viewed from the fixing unit side of the fixing member. 図1−(a)に示す定着装置が主構造体と付加構造体の境界面に位置している状態を定着部材の本体部側から見た様子を示した斜視図である。FIG. 2 is a perspective view illustrating a state in which the fixing device illustrated in FIG. 1A is located on a boundary surface between a main structure and an additional structure as viewed from the main body side of the fixing member. 図9に示す定着部材の本体部がT字形の平面形状をしている場合の定着装置を定着部材の本体部側から見た様子を示した斜視図である。FIG. 10 is a perspective view illustrating a state in which the fixing device when the main body portion of the fixing member illustrated in FIG. 9 has a T-shaped planar shape is viewed from the main body portion side of the fixing member. (a)は定着部材の基本形状と、他方の構造体(付加構造体)から一方の構造体(主構造体)へのせん断力の伝達の様子を示した縦断面図、(b)は(a)の背面図である。(A) is a longitudinal sectional view showing the basic shape of the fixing member and the state of shearing force transmitted from the other structure (additional structure) to one structure (main structure), and (b) is ( It is a rear view of a).

以下、図面を用いて本発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.

図1は水平力の作用時に互いに独立して挙動し得る一方の構造体(主構造体)1と他方の構造体(付加構造体)2との間に跨って定着装置3を設置し、両構造体1、2を相対変位可能に接合した接合構造の例を示す。以下では一方の構造体を主構造体1と、他方の構造体を付加構造体2と呼称する。   In FIG. 1, a fixing device 3 is installed between one structure (main structure) 1 and the other structure (additional structure) 2 that can behave independently of each other when a horizontal force is applied. The example of the joining structure which joined structure 1 and 2 so that relative displacement was possible is shown. Hereinafter, one structure is referred to as a main structure 1 and the other structure is referred to as an additional structure 2.

定着装置3は主構造体1と付加構造体2の境界(境界面)に跨って配置され、一部に軸方向に貫通する挿通孔を有する定着部材4と、この定着部材4を貫通して両構造体1、2に定着され、曲げ変形可能なアンカー5とを備える。   The fixing device 3 is disposed across the boundary (boundary surface) between the main structure 1 and the additional structure 2, and has a fixing member 4 having an insertion hole penetrating in the axial direction in a part thereof, and penetrating the fixing member 4. The anchors 5 are fixed to both structures 1 and 2 and can be bent and deformed.

定着部材4は主構造体1と付加構造体2のいずれか一方の構造体1に定着される定着部41と、他方の構造体2に定着され、その側の表面が凸の形状に形成された本体部42を持ち、この本体部42の表面に沿ってその側の構造体2が定着部材4に対して相対的に回転変形可能な状態にある。本体部42の中心部にはアンカー5が挿通する1箇所、もしくは複数箇所の挿通孔42aが形成される。   The fixing member 4 is fixed to one of the main structure 1 and the additional structure 2 and fixed to the other structure 2, and the surface of the fixing member 4 is formed in a convex shape. The main body portion 42 is held, and the structure 2 on the side of the main body portion 42 is in a state in which it can be rotationally deformed relative to the fixing member 4 along the surface thereof. One or a plurality of insertion holes 42a through which the anchor 5 is inserted are formed at the center of the main body 42.

主構造体1と付加構造体2の組み合わせには例えば図示するような既存構造物とそれに対して付加的に構築され、既存構造物を耐震(制震)補強する新設構造物の組み合わせ、あるいは新設で並列して構築される構造物の組み合わせ等がある。定着装置3を構成する定着部材4とアンカー5は主構造体1と付加構造体2の内部に定着(埋設)されるから、主構造体1と付加構造体2の構造種別は主として鉄筋コンクリート造になる。   The combination of the main structure 1 and the additional structure 2 is, for example, a combination of an existing structure as shown in the figure and a new structure that is constructed additionally to the existing structure to reinforce the existing structure by seismic (damping), or newly established. There are combinations of structures constructed in parallel. Since the fixing member 4 and the anchor 5 constituting the fixing device 3 are fixed (embedded) inside the main structure 1 and the additional structure 2, the structural type of the main structure 1 and the additional structure 2 is mainly reinforced concrete. Become.

図2〜図5は主構造体1としての既存構造物の片側の構面に平行に、付加構造体2としての耐震(制震)補強架構を構築し、既存構造物の梁に耐震補強架構のスラブを接合した場合の例を示している。以下、この例に基づいて詳細を説明する。図3は図2を構面内方向に見たときの主構造体1の梁1aと付加構造体2のスラブ2aとの接合部分を示し、図1は図3に示す梁1aとスラブ2aとの接合部の縦断面を示している。   2 to 5 show that an anti-seismic (seismic) reinforcement frame as the additional structure 2 is constructed in parallel with the structure on one side of the existing structure as the main structure 1, and the anti-seismic reinforcement frame is applied to the beam of the existing structure. The example at the time of joining this slab is shown. Details will be described below based on this example. 3 shows a joint portion between the beam 1a of the main structure 1 and the slab 2a of the additional structure 2 when FIG. 2 is viewed in the in-plane direction. FIG. 1 shows the beam 1a and the slab 2a shown in FIG. The longitudinal cross-section of the joint part is shown.

図2〜図5の例では付加構造体2は主構造体1の構面に対向する柱2bと梁2c、及び耐震要素としてのブレース2dを含む架構と、梁2cのレベルから主構造体1側へ張り出し、主構造体1の梁1aに接合されるスラブ2aを基本的な構成要素としている。   In the example of FIGS. 2 to 5, the additional structure 2 has a structure including a column 2 b and a beam 2 c facing the surface of the main structure 1 and a brace 2 d as a seismic element, and the main structure 1 from the level of the beam 2 c. The slab 2a that projects to the side and is joined to the beam 1a of the main structure 1 is a basic component.

付加構造体2の柱2bは高さ方向には梁2cとの接合部を含む区間単位で区分され、区分された位置に、高さ方向に隣接する柱2b、2bを水平方向に相対移動自在に連結する積層ゴム支承、滑り支承、弾性滑り支承等の免震装置2fが配置され、柱・梁の接合部間に、軸方向の伸縮時に減衰力を発生するダンパ2eを内蔵したブレース2dが架設されている。付加構造体2のスラブ2aは図1、図3、図4に示すように上記の定着装置3を介して主構造体1の梁1aに接合される。   The pillar 2b of the additional structure 2 is divided in a section unit including a joint with the beam 2c in the height direction, and the pillars 2b and 2b adjacent in the height direction can be relatively moved in the horizontal direction at the divided positions. A seismic isolation device 2f such as a laminated rubber bearing, a sliding bearing, an elastic sliding bearing, etc., is connected to the joint, and a brace 2d with a built-in damper 2e that generates a damping force during axial expansion and contraction is provided between the column and beam joints. It is erected. The slab 2a of the additional structure 2 is joined to the beam 1a of the main structure 1 via the fixing device 3 as shown in FIGS.

免震装置2fは付加構造体2が単なる耐震補強架構ではなく、地震時の水平力の、主構造体1への入力を軽減しながら、水平力を減衰させる制震補強架構であることの機能を発揮する面から、高さ方向に区分された柱2b、2bを互いに水平方向に相対移動自在に接続する働きをするために介在させられているが、付加構造体2が耐震補強架構であるような場合には必ずしも必要ではない。   The seismic isolation device 2f is a function that the additional structure 2 is not a mere seismic reinforcement frame, but is a seismic reinforcement frame that attenuates the horizontal force while reducing the input of the horizontal force during the earthquake to the main structure 1. Is interposed to serve to connect the columns 2b and 2b divided in the height direction so as to be relatively movable in the horizontal direction, but the additional structure 2 is a seismic reinforcement frame. In such a case, it is not always necessary.

図3は図2に示す付加構造体2を構面内方向(主構造体1と付加構造体2が対向する面に平行な方向)に見下ろした様子を示し、図4は図3の平面を示している。図3、図1に示すように定着装置3は構面内方向に多数配列し、高さ方向には1段、もしくは複数段、配列する。高さ方向に複数段、配列する場合は千鳥状に配列することもある。   3 shows a state in which the additional structure 2 shown in FIG. 2 is looked down in the in-plane direction (direction parallel to the surface where the main structure 1 and the additional structure 2 face each other), and FIG. 4 shows the plane of FIG. Show. As shown in FIGS. 3 and 1, a large number of fixing devices 3 are arranged in the in-plane direction, and one or more stages are arranged in the height direction. When arranged in multiple stages in the height direction, they may be arranged in a staggered pattern.

図3ではスラブ2aの、付加構造体2の梁2c側の端部をその梁2cとの一体性を確保する目的で、梁2cを構成するH形鋼に高さ方向に2段、配列して溶接されたスタッド(アンカー)2gをスラブ2a中に埋設する形で梁2cに接合している。これに対し、スラブ2aの主構造体1側ではスラブ2aの端部を主構造体1に対して構面内の水平方向の軸回りに回転変形可能なように、主構造体1との一体性の効果が強まらないよう、1段に配列した定着装置3を介して接合している。   In FIG. 3, the end of the additional structure 2 on the beam 2c side of the slab 2a is arranged in two steps in the height direction on the H-section steel constituting the beam 2c in order to ensure the integrity with the beam 2c. The stud (anchor) 2g welded in this manner is joined to the beam 2c in a form of being embedded in the slab 2a. On the other hand, on the main structure 1 side of the slab 2a, the end of the slab 2a is integrated with the main structure 1 so that the end of the slab 2a can be rotationally deformed about a horizontal axis in the composition plane with respect to the main structure 1. Bonding is performed via fixing devices 3 arranged in one stage so that the effect of the property does not increase.

図1では定着部材4が、定着部41を主構造体1側に向け、本体部42を付加構造体2側に向けた状態で配置されている様子を示しているが、定着部材4の軸方向の向きはいずれでもよく、定着部41を付加構造体2側に向け、本体部42を主構造体1側に向けて配置されることもある。   FIG. 1 shows a state in which the fixing member 4 is arranged with the fixing portion 41 facing the main structure 1 and the main body 42 facing the additional structure 2. The direction may be any direction, and the fixing unit 41 may be disposed toward the additional structure 2 and the main body 42 may be disposed toward the main structure 1.

定着部材4は図1、図11に示すように主構造体1と付加構造体2の内のいずれか一方の構造体の、他方の構造体側の面に形成される溝部1bに嵌入する定着部41と、定着部41に連続し、他方の構造体に埋設される本体部42の2部分からなる。溝部1bに定着部41が嵌入した状態で、溝部1b内にはモルタル、接着剤等の充填材が充填され、溝部1b内での定着部41の移動が拘束され、定着部41が安定させられる。   As shown in FIGS. 1 and 11, the fixing member 4 is a fixing portion that fits into a groove portion 1 b formed on the surface of the other structure side of one of the main structure 1 and the additional structure 2. 41 and two portions of a main body portion 42 that is continuous to the fixing portion 41 and embedded in the other structure. In a state where the fixing portion 41 is fitted in the groove portion 1b, the groove portion 1b is filled with a filler such as mortar and adhesive, and the movement of the fixing portion 41 in the groove portion 1b is restricted, and the fixing portion 41 is stabilized. .

定着部材4は一方の構造体(主構造体1)と他方の構造体(付加構造体2)の境界面に跨った状態で両構造体1、2間に配置され、図11−(a)に示すように定着部41の少なくとも軸方向の一部がその側の構造体(主構造体1)中に位置する。溝部1bは定着部41の形状に対応して環状に、もしくは定着部41を包囲する環状を含む円板状等、板状に形成される。   The fixing member 4 is disposed between the structures 1 and 2 in a state of straddling the boundary surface between one structure (main structure 1) and the other structure (additional structure 2). As shown, at least a part of the fixing portion 41 in the axial direction is located in the structure (main structure 1) on the side. The groove portion 1 b is formed in a ring shape corresponding to the shape of the fixing portion 41, or a plate shape such as a disk shape including an annular shape surrounding the fixing portion 41.

本体部42はそれが位置する他方の構造体(付加構造体2)側の表面の少なくとも一部が凸の曲面形状、またはそれに近い多面体形状に形成されている部分を有すればよい。定着部材4は主に鋼材等の金属材料から形成されるが、定着部材4の材料は問われず、繊維強化プラスチック等からも成形される。   The main body portion 42 may have a portion in which at least a part of the surface on the other structure (additional structure 2) side where the main body portion 42 is located is formed in a convex curved surface shape or a polyhedral shape close thereto. The fixing member 4 is mainly formed of a metal material such as a steel material, but the material of the fixing member 4 is not limited, and the fixing member 4 is also formed of a fiber reinforced plastic or the like.

定着部材4の本体部42の平面上の中心部、もしくはその付近には前記のように1箇所、もしくは複数箇所のアンカー5が挿通するための挿通孔42aが形成される。アンカー5は挿通孔42aを挿通した状態で一方の構造体(主構造体1)と他方の構造体(付加構造体2)のそれぞれに、両構造体1、2間の相対的な回転変形に伴い、アンカー5自体が伸び変形したときにも抜け出しを生じない程度の十分な定着長さを確保して定着される。   As described above, the insertion hole 42a for inserting the anchor 5 at one place or a plurality of places is formed in the central portion of the fixing member 4 on the plane of the main body portion 42 or in the vicinity thereof. In the state where the anchor 5 is inserted through the insertion hole 42a, the anchor 5 is applied to each of the one structure (main structure 1) and the other structure (additional structure 2). Accordingly, the anchor 5 is fixed with a sufficient fixing length so as not to come out even when the anchor 5 is stretched and deformed.

アンカー5は前記のように挿通孔42aの内周面に形成された雌ねじに螺合等することにより本体部42に接続される場合と、挿通孔42a内周面との間にクリアランスを確保した状態で、挿通孔42a内を単純に挿通する場合の他、挿通孔42a内を挿通した状態で、挿通孔42a内に接着剤やモルタル等が充填されて本体部42に接続される場合がある。   As described above, the anchor 5 secures a clearance between the case where the anchor 5 is connected to the main body 42 by being screwed into the female screw formed on the inner peripheral surface of the insertion hole 42a and the inner peripheral surface of the insertion hole 42a. In addition to simply inserting the insertion hole 42a in the state, the insertion hole 42a may be filled with an adhesive, mortar, or the like and connected to the main body 42 in a state of being inserted through the insertion hole 42a. .

定着部41はその側の構造体(主構造体1)の溝部1bに嵌入した状態で定着されることで、両構造体1、2が対向する方向(構面外方向)に直交する方向(構面内方向)の水平せん断力に抵抗し、両構造体1、2が構面内方向の水平軸回りに相対的に回転変形しようとするときにも、図1に示すようにその側の構造体(主構造体1)に定着された状態を維持する。定着部41は水平せん断力に対してはその方向への投影面積分の抵抗力を発揮し、回転変形時には構面内方向の水平軸回りの曲げモーメントに抵抗するから、これら2通りの外力に対する抵抗力を確保する上で、図11−(b)に示すように環状に閉じた形に形成される。   The fixing portion 41 is fixed in a state in which the fixing portion 41 is fitted in the groove portion 1b of the structure (main structure 1) on the side, so that the direction perpendicular to the direction in which both the structures 1 and 2 face each other (the direction outside the surface) ( 1 when resisting the horizontal shearing force in the (in-plane direction) and relatively rotating and deforming both structures 1 and 2 around the horizontal axis in the in-plane direction, as shown in FIG. The state fixed to the structure (main structure 1) is maintained. The fixing unit 41 exhibits a resistance corresponding to the projected area in the direction against the horizontal shearing force, and resists a bending moment about the horizontal axis in the in-plane direction at the time of rotational deformation. In order to secure the resistance force, it is formed in an annularly closed shape as shown in FIG.

本体部42も定着部41と同様にその側の構造体(付加構造体2)中に埋設される状態で定着されることで、両構造体1、2が対向する方向(構面外方向)に直交する方向(構面内方向)の水平せん断力に抵抗する。両構造体1、2が構面内方向の水平軸回りに相対的に回転変形しようとするときには、その側の構造体(付加構造体2)が本体部42の表面に沿って滑りを生じ、定着部41側の構造体(主構造体1)に対する相対的な回転変形の発生を助けるよう、曲面状に形成される。   Similarly to the fixing unit 41, the main body 42 is fixed in a state where it is embedded in the structure (additional structure 2) on the side, so that both structures 1 and 2 face each other (out-of-plane direction). Resists horizontal shearing force in the direction perpendicular to the surface (in-plane direction). When both structures 1 and 2 are about to rotate and deform around the horizontal axis in the in-plane direction, the structure on that side (additional structure 2) slips along the surface of the main body 42, It is formed in a curved surface so as to assist the occurrence of relative rotational deformation with respect to the structure (main structure 1) on the fixing unit 41 side.

本体部42の表面は例えば球面、またはそれに近い立体形状の曲面形状、または多面体形状に形成される。但し、他方の構造体(付加構造体2)が一方の構造体(主構造体1)に対して相対的な回転変形を起こそうとするときには、他方の構造体(付加構造体2)の内、一方の構造体(主構造体1)に接合される躯体である前記スラブ2aの、一方の構造体(主構造体1)側の下端と上端を回転中心として回転しようとするから、構面内水平方向に見たときには、図1−(b)に示すようにこの回転中心を中心とする円弧をなしていることが最も望ましいことになる。   The surface of the main body 42 is formed in, for example, a spherical surface, a three-dimensional curved surface shape close to it, or a polyhedral shape. However, when the other structure (additional structure 2) tends to undergo relative rotational deformation with respect to one structure (main structure 1), the other structure (additional structure 2) Since the slab 2a, which is a housing joined to one structure (main structure 1), tries to rotate with the lower end and upper end on the one structure (main structure 1) side as the center of rotation, When viewed in the inner horizontal direction, it is most desirable to form an arc centered on this rotation center as shown in FIG.

図1−(a)、図9は本体部42の表面が球面の場合の例を示し、図10は表面が球面の一部をなし、挿通孔42aの形成部分以外の部分が除去された形状をしている場合の例を示している。いずれの形状の場合も水平せん断力に対してはその方向への投影面積分が抵抗するが、図10の場合には水平せん断力の作用方向に直交する面をなしているため、図9の場合と同等の抵抗力を確保しながらも、材料費を節減することが可能であることの利点がある。   FIGS. 1A and 9 show an example in which the surface of the main body 42 is a spherical surface, and FIG. 10 shows a shape in which the surface is a part of a spherical surface and parts other than the part where the insertion hole 42a is formed are removed. An example of the case is shown. In any of the shapes, the projection area in the direction resists the horizontal shearing force, but in the case of FIG. 10, a plane perpendicular to the acting direction of the horizontal shearing force is formed. There is an advantage in that it is possible to save material costs while ensuring the same resistance as the case.

アンカー5は本体部42の挿通孔42aを挿通し、軸方向両端部が主構造体1と付加構造体2に定着される。アンカー5は構面内水平方向のせん断力を負担すると共に、その方向に平行な水平軸回りの回転変形時に曲げモーメントを負担し、回転変形後に復元させる機能を発揮し得るように径と長さが決められる。アンカー5の、両構造体1、2への定着部分には前記のようにナット5aが接続される他、雌ねじが切られる等によりリブが形成されることもある。   The anchor 5 is inserted through the insertion hole 42 a of the main body portion 42, and both end portions in the axial direction are fixed to the main structure 1 and the additional structure 2. The anchor 5 bears a shearing force in the horizontal direction in the plane of construction, and bears a bending moment at the time of rotational deformation around the horizontal axis parallel to the direction, and has a diameter and length so as to exhibit a function of restoring after the rotational deformation. Is decided. In addition to the nut 5a being connected to the anchor portion of the anchor 5 to the structures 1 and 2 as described above, a rib may be formed by cutting off the internal thread.

図5−(a)は付加構造体2が図2に示す制震補強架構である場合の主構造体1と付加構造体2の曲げ変形状態を、(b)は(a)におけるB部分の拡大図を示している。前記の通り、付加構造体2のスラブ2aは梁2cには高さ方向に並列するスタッド2gを介して接合されることで、一体性を確保している。柱2bは下側に隣接する柱2bとは免震装置2fを介して分離していることで、両柱2b、2bが共に鉛直状態を維持したまま、水平方向に相対移動可能になっている。   FIG. 5- (a) shows the bending deformation state of the main structure 1 and the additional structure 2 when the additional structure 2 is the seismic reinforcement frame shown in FIG. 2, and (b) shows the B portion in (a). An enlarged view is shown. As described above, the slab 2a of the additional structure 2 is joined to the beam 2c via the stud 2g arranged in parallel in the height direction, thereby ensuring integrity. The column 2b is separated from the column 2b adjacent to the lower side via the seismic isolation device 2f, so that both the columns 2b and 2b can be relatively moved in the horizontal direction while maintaining the vertical state. .

図5では特に、免震装置2fとして積層ゴムとその軸方向両端に接合されるフランジからなる積層ゴム支承を使用した場合に、上部のフランジとその上に位置する柱2bとの間に、底面が球面状になった連結部材2hを介在させることで、免震装置2fを挟んで下側に位置する柱2bと上側に位置する柱2bが互いに回転変形し得るように両柱2b、2bを連結している。連結部材2hは上部において上側の柱2bの下端に定着され、下面において免震装置2fの上部フランジに任意の水平軸回りに回転可能に接触している。   In particular, in FIG. 5, when a laminated rubber bearing comprising a laminated rubber and flanges joined to both axial ends thereof is used as the seismic isolation device 2f, a bottom surface is provided between the upper flange and the pillar 2b positioned thereon. By interposing the connecting member 2h having a spherical shape, both the columns 2b and 2b can be rotated so that the column 2b positioned on the lower side and the column 2b positioned on the upper side with respect to the seismic isolation device 2f can be rotationally deformed to each other. It is connected. The connecting member 2h is fixed to the lower end of the upper column 2b at the upper part, and is in contact with the upper flange of the seismic isolation device 2f at the lower part so as to be rotatable around an arbitrary horizontal axis.

この場合、免震装置2fによって上側の柱2bが下側の柱2bに対して水平方向に相対移動可能であると同時に、連結部材2hによって水平軸回りに回転可能であることで、上側の柱2bに接合された梁2cに接合されているスラブ2aは主構造体1の曲げ変形に追従して曲げ変形するときに、図7に示すようにスラブ2aが接続した上側の柱2bはその下端部が主構造体1側へ回転しながら、ローラー支承として下側の柱2bに対して主構造体1側へ水平移動する。上側の柱2bが下側の柱2bに対して水平方向に相対移動可能であることは、必ずしも免震装置2fによる必要はなく、スラブ2a自身が面外方向に曲げ変形することにより主構造体1の曲げ変形に追従することによっても生じ得る。   In this case, the upper column 2b can be moved relative to the lower column 2b in the horizontal direction by the seismic isolation device 2f, and at the same time can be rotated around the horizontal axis by the connecting member 2h. When the slab 2a joined to the beam 2c joined to 2b bends and deforms following the bending deformation of the main structure 1, the upper column 2b to which the slab 2a is connected as shown in FIG. As the roller rotates to the main structure 1 side, the part moves horizontally to the main structure 1 side with respect to the lower column 2b. The fact that the upper column 2b is movable relative to the lower column 2b in the horizontal direction is not necessarily required by the seismic isolation device 2f, and the main structure is formed by bending the slab 2a in the out-of-plane direction. It can also occur by following the bending deformation of 1.

付加構造体2のスラブ2aは上側の柱2bに接合された梁2cに並列するスタッド2gによって剛に接合されているから、スラブ2aが接続した柱2bの下側の、免震装置2f側における水平軸回りの回転によって図6−(a)に示すようにスラブ2aの主構造体1側の端部が変形前の水平状態より上に移動(上昇)しようとする。図6−(a)は図7のD部分の拡大図であり、図6−(a)中、一点鎖線が変形前のスラブ2aの縦断面上の中心線を示している。   Since the slab 2a of the additional structure 2 is rigidly joined by the stud 2g parallel to the beam 2c joined to the upper column 2b, on the seismic isolation device 2f side below the column 2b to which the slab 2a is connected. As shown in FIG. 6A, the end of the slab 2a on the main structure 1 side tends to move (rise) above the horizontal state before deformation as shown in FIG. 6A is an enlarged view of a portion D in FIG. 7. In FIG. 6A, the alternate long and short dash line indicates the center line on the longitudinal section of the slab 2 a before deformation.

ここで、スラブ2aの主構造体1側の端部の上昇によるアンカー5の定着状態への影響の有無を確認する。図6−(a)、(b)に示すように図7に示す状態のときの主構造体1を構成する柱1cの変形前の状態からの回転角度をθ1、付加構造体2のスラブ2aの主構造体1側の端面の変形前の状態からの回転角度をθ2とする。また主構造体1の柱1cの、付加構造体2のスラブ2aの中心線上の変形前の状態からの水平変位量をδ1、付加構造体2のスラブ2aの端面の、変形前からの水平変位量をδ2とする。   Here, the presence or absence of the influence on the fixing state of the anchor 5 due to the rise of the end of the slab 2a on the main structure 1 side is confirmed. As shown in FIGS. 6A and 6B, the rotation angle from the state before deformation of the column 1c constituting the main structure 1 in the state shown in FIG. 7 is θ1, and the slab 2a of the additional structure 2 The rotation angle from the state before the deformation of the end surface on the main structure 1 side is defined as θ2. Further, the horizontal displacement amount of the column 1c of the main structure 1 from the state before the deformation on the center line of the slab 2a of the additional structure 2 is δ1, and the horizontal displacement of the end surface of the slab 2a of the additional structure 2 from before the deformation. Let the amount be δ2.

θ1は主構造体2の連層耐震壁の層間変形角であるから、θ1=1/250と仮定し、付加構造体2のスラブ2aの厚さを200mm(スラブ2aの中心線から上端、もしくは下端までの距離を100mm)とすれば、δ1=100×tanθ1=100×1/250より0.4mmとなる。   Since θ1 is the interlaminar deformation angle of the multistory shear wall of the main structure 2, assuming that θ1 = 1/250, the thickness of the slab 2a of the additional structure 2 is 200 mm (upper end from the center line of the slab 2a, or If the distance to the lower end is 100 mm), it is 0.4 mm from δ1 = 100 × tan θ1 = 100 × 1/250.

一方、スラブ2aの主構造体1側の端部の、変形前の状態からの鉛直変位量をδvとし、主構造体1の付加構造体2側の柱1cの中心線から、付加構造体2の柱2bの中心線までの距離(離隔距離)をeとすると、図6−(a)からδv=e×tanθ2である。ここで、e=2500mmの場合に、δv=5mmと仮定すると、5=2500×tanθ2よりtanθ2=1/500となり、δ2=100×tanθ2=100×1/500より0.2mmとなる。   On the other hand, the amount of vertical displacement of the end of the slab 2a on the main structure 1 side from the state before deformation is δv, and the additional structure 2 is determined from the center line of the column 1c on the additional structure 2 side of the main structure 1. If the distance (separation distance) to the center line of the column 2b is e, δv = e × tan θ2 from FIG. Here, in the case of e = 2500 mm, assuming that δv = 5 mm, tan θ2 = 1/500 from 5 = 2500 × tan θ2, and 0.2 mm from δ2 = 100 × tan θ2 = 100 × 1/500.

付加構造体のスラブの中心線上の主構造体と付加構造体間の距離δはδ=δ1+δ2であるから、0.6mmとなる。またe=2500mmの場合に、δv=10mmと仮定すると、δ=0.8mmとなる。   Since the distance δ between the main structure and the additional structure on the center line of the slab of the additional structure is δ = δ1 + δ2, it is 0.6 mm. If e = 2500 mm and δv = 10 mm, then δ = 0.8 mm.

δは主構造体1と付加構造体2が相対的に回転変形したときに、主構造体1と付加構造体2が分離する距離であり、アンカー5の伸び変形量に相当するから、このアンカー5の伸び変形量を十分に超える定着長さが主構造体1と付加構造体2側に確保されていれば、アンカー5の抜け出しが発生することはないことになる。結果として、主構造体1と付加構造体2が相対的な回転変形によって分離する事態も回避され、アンカー5の定着状態への影響も発生しないことになる。   δ is a distance at which the main structure 1 and the additional structure 2 are separated when the main structure 1 and the additional structure 2 are relatively rotationally deformed, and corresponds to the elongation deformation amount of the anchor 5. If the fixing length sufficiently exceeding the elongation deformation amount of 5 is secured on the main structure 1 and the additional structure 2 side, the anchor 5 will not come off. As a result, the situation where the main structure 1 and the additional structure 2 are separated due to relative rotational deformation is also avoided, and the anchoring state of the anchor 5 is not affected.

図8は図1−(a)に示す定着部材4を定着部41側(主構造体1側)から見た様子を、図9は図1−(a)に示す定着部材4を本体部42側(付加構造体2側)から見た様子を示す。主構造体1と付加構造体2の境界面である主構造体1の梁1aの側面(付加構造体2のスラブ2aの端面)は定着部材4の定着部41から本体部42に移行する区間に位置し、定着部41が主構造体1の梁1a内に、本体部42が付加構造体2のスラブ2a内に位置する。   8 shows a state in which the fixing member 4 shown in FIG. 1A is viewed from the fixing portion 41 side (main structure 1 side), and FIG. 9 shows the fixing member 4 shown in FIG. The state seen from the side (additional structure 2 side) is shown. The side surface of the beam 1a of the main structure 1 that is the boundary surface between the main structure 1 and the additional structure 2 (the end surface of the slab 2a of the additional structure 2) is a section in which the fixing member 4 transitions from the fixing portion 41 to the main body portion 42. The fixing portion 41 is located in the beam 1 a of the main structure 1, and the main body portion 42 is located in the slab 2 a of the additional structure 2.

図10は図9における本体部42の、アンカー5が挿通する挿通孔42a部分を除く部分が除去された形状に本体部42が形成されている場合の定着部材4を本体部42側(付加構造体2側)から見た様子を示す。図10では図9における本体部42の挿通孔42aを含む領域を帯状に残し、その他の領域を除去し、平面上、T字形に本体部42を形成している。   10 shows the fixing member 4 when the main body 42 is formed in a shape in which the main body 42 in FIG. 9 is removed from the main body 42 except for the insertion hole 42a through which the anchor 5 is inserted. The state seen from the body 2 side) is shown. In FIG. 10, the region including the insertion hole 42 a of the main body 42 in FIG. 9 is left in a band shape, and other regions are removed, and the main body 42 is formed in a T shape on a plane.

図10に示す形状に本体部42が形成された場合、帯状に残された部分の側面が主構造体1(梁1a)と付加構造体2(スラブ2a)がズレ変形を生ずる水平方向を向いた状態で定着部材4が配置されることで、その方向の水平せん断力を受け易くなる利点がある。水平せん断力がそのせん断力を受ける面に対して垂直でない場合には、その面が水平せん断力を完全に負担しきれないのに対し、帯状に残された部分の側面が水平せん断力に対して垂直であれば、その側面が水平せん断力を完全に負担できることに基づく。   When the main body 42 is formed in the shape shown in FIG. 10, the side surfaces of the portion that is left in the strip shape are oriented in the horizontal direction in which the main structure 1 (beam 1a) and the additional structure 2 (slab 2a) are deformed. When the fixing member 4 is arranged in a state in which the fixing member 4 is placed, there is an advantage that the horizontal shearing force in that direction is easily received. If the horizontal shearing force is not perpendicular to the surface that receives the shearing force, the surface cannot fully support the horizontal shearing force, whereas the side surface of the part that is left in the strip shape is not affected by the horizontal shearing force. If it is vertical, it is based on the fact that its side can fully bear the horizontal shear force.

1……主構造体、1a……梁、1b……溝部、1c……柱、
2……付加構造体、2a……スラブ、2b……柱、2c……梁、2d……ブレース、2e……ダンパ、2f……免震装置、2g……スタッド、2h……連結部材、
3……定着装置、
4……定着部材、41……定着部、42……本体部、42a……挿通孔、
5……アンカー、5a……ナット。
1 ... main structure, 1a ... beam, 1b ... groove, 1c ... pillar,
2 …… Additional structure 2a …… Slab 2b …… Column 2c …… Beam 2d …… Brace 2e …… Damper 2f …… Seismic isolation device 2g …… Stud 2h …… Connecting member
3. Fixing device,
4... Fixing member, 41... Fixing portion, 42... Main body portion, 42 a.
5 …… Anchor, 5a …… Nut.

Claims (3)

水平力の作用時に互いに独立して挙動し得る主構造体と付加構造体との間に跨って定着装置を設置し、両構造体を相対変位可能に接合した接合構造であり、
前記定着装置は前記主構造体と前記付加構造体の境界に跨って配置され、一部に厚さ方向に貫通する挿通孔を有する定着部材と、この定着部材を貫通して両構造体に定着され、曲げ変形可能なアンカーとを備え、
前記定着部材は前記主構造体と前記付加構造体に跨って設置され、前記主構造体と前記付加構造体のいずれか一方に定着される定着部と、他方に定着され、その側の表面が凸の形状に形成された本体部を持ち、この本体部の表面に沿ってその側の構造体が前記定着部材に対して相対的に回転変形可能であり、
前記定着装置は前記主構造体と前記付加構造体が対向する方向に直交する方向に多数配列していることを特徴とする構造体の接合構造。
It is a joint structure in which a fixing device is installed between the main structure and the additional structure that can behave independently of each other when a horizontal force is applied, and both structures are joined so as to be relatively displaceable.
The fixing device is disposed across the boundary between the main structure and the additional structure, and has a fixing member having an insertion hole that partially penetrates in the thickness direction, and is fixed to both structures through the fixing member. And an anchor capable of bending deformation,
The fixing member is installed across the main structure and the additional structure, is fixed to one of the main structure and the additional structure, is fixed to the other, and the surface on the side is fixed. has a body portion which is formed in the shape of convex, Ri relative rotation deformable der structure that side is relative to the fixing member along the surface of the body portion,
A large number of the fixing devices are arranged in a direction orthogonal to a direction in which the main structure and the additional structure are opposed to each other .
前記定着部材の本体部の表面は前記主構造体と前記付加構造体が互いに対向する方向に直交する水平方向に見たとき、前記主構造体と前記付加構造体のいずれか高さの小さい側の構造体の下端と上端を中心とする円弧状、もしくはそれに近い形状に形成されていることを特徴とする請求項1に記載の構造体の接合構造。   When the surface of the main body portion of the fixing member is viewed in a horizontal direction orthogonal to the direction in which the main structure and the additional structure face each other, the smaller side of either the main structure or the additional structure 2. The joint structure according to claim 1, wherein the structure is formed in an arc shape centering on a lower end and an upper end of the structure or a shape close thereto. 請求項1、もしくは請求項2に記載の構造体の接合構造に使用される定着装置であり、
前記主構造体と前記付加構造体の境界に跨って配置され、一部に厚さ方向に貫通する挿通孔を有する定着部材と、この定着部材を貫通して両構造体に定着され、曲げ変形可能なアンカーとを備え、
前記定着部材は前記主構造体と前記付加構造体のいずれか一方に定着される定着部と、他方に定着され、その側の表面が凸の形状に形成された本体部を持つことを特徴とする構造体接合用定着装置。
A fixing device used for the structure joining structure according to claim 1 or claim 2,
A fixing member that is disposed across the boundary between the main structure and the additional structure, and has a through-hole partially penetrating in the thickness direction, is fixed to both structures through the fixing member, and is bent and deformed. With possible anchors,
The fixing member has a fixing portion fixed to one of the main structure and the additional structure, and a main body portion fixed to the other, the surface of which is formed in a convex shape. Fixing device for joining structures.
JP2010138837A 2010-06-18 2010-06-18 Structure joining structure and fixing device for joining structures used therein Active JP4628491B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010138837A JP4628491B1 (en) 2010-06-18 2010-06-18 Structure joining structure and fixing device for joining structures used therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010138837A JP4628491B1 (en) 2010-06-18 2010-06-18 Structure joining structure and fixing device for joining structures used therein

Publications (2)

Publication Number Publication Date
JP4628491B1 true JP4628491B1 (en) 2011-02-09
JP2012001987A JP2012001987A (en) 2012-01-05

Family

ID=43638536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010138837A Active JP4628491B1 (en) 2010-06-18 2010-06-18 Structure joining structure and fixing device for joining structures used therein

Country Status (1)

Country Link
JP (1) JP4628491B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4799703B1 (en) * 2011-04-08 2011-10-26 等 塩原 Bonding structure of structure
JP2012233374A (en) * 2011-05-09 2012-11-29 Meiko Consultants Co Ltd Seismic reinforcement structure
JP5978363B1 (en) * 2015-08-05 2016-08-24 国立大学法人 東京大学 Connection structure of connecting slab

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6120438B2 (en) * 2013-03-14 2017-04-26 五洋建設株式会社 Junction structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63289124A (en) * 1987-05-20 1988-11-25 Tokyu Constr Co Ltd Pin-joint work of pile head in pile foundation of building
JPH09235890A (en) * 1996-03-01 1997-09-09 Kajima Corp Vibration damping reinforcing structure for existing building

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63289124A (en) * 1987-05-20 1988-11-25 Tokyu Constr Co Ltd Pin-joint work of pile head in pile foundation of building
JPH09235890A (en) * 1996-03-01 1997-09-09 Kajima Corp Vibration damping reinforcing structure for existing building

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4799703B1 (en) * 2011-04-08 2011-10-26 等 塩原 Bonding structure of structure
JP2012233374A (en) * 2011-05-09 2012-11-29 Meiko Consultants Co Ltd Seismic reinforcement structure
JP5978363B1 (en) * 2015-08-05 2016-08-24 国立大学法人 東京大学 Connection structure of connecting slab

Also Published As

Publication number Publication date
JP2012001987A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
JP4799703B1 (en) Bonding structure of structure
JP5726590B2 (en) Connection structure of reinforced concrete beams or columns
JP4230533B1 (en) Bonding structure of structure and fixing member for shear force transmission used therefor
JP4628491B1 (en) Structure joining structure and fixing device for joining structures used therein
JP2009047193A (en) Damper device and structure
JP5798359B2 (en) Seismic device with built-in damper with deformation limiting function
JP4997354B1 (en) Fixing member for shear force transmission with fixing maintenance function
JP2016199923A (en) Base isolation structure and construction method thereof
JP2005213964A (en) Vibration damping joint structure for column leg part and upper member
JP2006257710A (en) Joint structure of cast-in-situ concrete pile to foundation
JP5331268B1 (en) Fixing device for shear force transmission with tensile resistance function
WO2014006780A1 (en) Anchoring device for transmitting shear force having tensile resistance functionality
JP2000274108A (en) Vibration control damper and its installation structure
JP6117974B1 (en) Joint structure of seismic retrofitting frame
JP5052396B2 (en) Pile head joint structure and temporary tool for pile head joint used in its construction
JP5639722B1 (en) Structure connection structure
JP5314203B1 (en) Structure connection structure
JP5318298B1 (en) Beam joint structure
JP5478131B2 (en) Brace structure and building having the brace structure
JP2008240357A (en) Reinforcing structure and method for pile foundation
JP5978363B1 (en) Connection structure of connecting slab
JP5559073B2 (en) Shear deformation type elastic-plastic damper
JP4787678B2 (en) Pile head joint structure and joint material used therefor
JP2007321400A (en) Pile head jointing structure and jointing material for use in it
JP4092651B2 (en) Seismic reinforcement structure for existing buildings

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4628491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250