JP4627924B2 - Semiconductor device test equipment - Google Patents

Semiconductor device test equipment Download PDF

Info

Publication number
JP4627924B2
JP4627924B2 JP2001161700A JP2001161700A JP4627924B2 JP 4627924 B2 JP4627924 B2 JP 4627924B2 JP 2001161700 A JP2001161700 A JP 2001161700A JP 2001161700 A JP2001161700 A JP 2001161700A JP 4627924 B2 JP4627924 B2 JP 4627924B2
Authority
JP
Japan
Prior art keywords
semiconductor device
test
signal line
signal
termination resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001161700A
Other languages
Japanese (ja)
Other versions
JP2002350508A (en
Inventor
信介 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP2001161700A priority Critical patent/JP4627924B2/en
Publication of JP2002350508A publication Critical patent/JP2002350508A/en
Application granted granted Critical
Publication of JP4627924B2 publication Critical patent/JP4627924B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Tests Of Electronic Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は半導体デバイス試験装置に関し、特に被試験半導体デバイスに波形品質の高い試験信号を印加することを可能とした信号伝送回路の改良を提案するものである。
【0002】
【従来の技術】
図3及び図4を用いて従来の技術を説明する。図中DUTは被試験半導体デバイスを示す。この被試験半導体デバイスはソケットボード10に実装されたICソケット11に装着され、このICソケットを通じてドライバ12に接続され、ドライバ12から試験信号の供給を受けて試験が行われる。
ドライバ12とソケットボード10との間は同軸ケーブルで構成される信号線路13で接続され、更にICソケット11側に終端抵抗器14が接続されてドライバ12と被試験半導体デバイスDUTの各端子との間がインピーダンス整合された状態で電気的に接続される。
【0003】
尚、図3及び図4にはソケットボード10に1個の被試験半導体デバイスDUTを搭載しているように図示しているが、実際には複数の半導体デバイスが装着され、これら複数の半導体デバイスが一度に試験される。従ってドライバ12及び信号線路13から成る信号伝送チャンネルも多数設けられる。
ところでドライバ12から試験信号を被試験半導体デバイスDUTに印加して被試験半導体デバイスDUTが正常に動作するか否かを検査する試験を一般に機能試験と称している。
【0004】
これに対し、半導体デバイスの試験には直流試験と呼ばれている試験項目がある。この直流試験とは、被試験半導体デバイスの各端子の直流特性が所期の特性に合致しているか否かを問う試験である。つまり、被試験半導体デバイスの各端子に所定の電圧を印加した状態で目的とした量の電流が流れるか否かを試験したり、半導体デバイスの各端子から所定の電流を取り出している状態で端子に所定の電圧が発生するか否かを試験する。
図3に示す15はこの直流試験を行う直流試験ユニットを示す。この直流試験ユニット15はスイッチ回路16を通じて信号線路13に接続され機能試験を行っている状態では、スイッチ回路16により信号線路13から電気的に切離される。
【0005】
一方、直流試験を行う状態ではスイッチ回路16がオンの状態に制御され、直流試験ユニット15を信号線路13に電気的に接続すると共に、この状態ではドライバ12の出力側に接続したリレー接点17をオフに制御し、ドライバ12を信号線路13から切離し、直流試験を行う。
図3に示した半導体デバイス試験装置によれば被試験半導体デバイスDUTの各端子の直近(ソケットボード10上に)に終端抵抗器14を配置しているから、ドライバ12から出力した試験信号は被試験半導体デバイスDUTの各端子部分で吸収され、反射の発生を極力抑えることができる。この点で優れている回路構造である。
【0006】
然し乍ら、この回路構造を採る場合、終端抵抗器14が被試験半導体デバイスDUTの各端子に接続されたままであるため、直流試験時に被試験半導体デバイスDUTの各端子のリーク電流の有無を測定することができなく不都合が生じる。
この不都合を解消するために図4に示す回路構造が考えられた。つまり、ドライバ12から被試験半導体デバイスDUTに試験パターン信号を印加するための第1信号線路13Aと、被試験半導体デバイスDUTの各端子にソケットボード10の外側に設けた終端抵抗器14を接続するための第2信号線路13Bを設け、必要に応じて終端抵抗接続リレー18をオフの状態に制御することにより第1信号線路13A及び第2信号線路13Bから終端抵抗器14を電気的に切離し、被試験半導体デバイスDUTの各端子の直流試験を行うと共に、リーク電流の試験も行えるように構成している。
【0007】
従って、直流試験時は終端抵抗接続リレー18をオフの状態に設定することにより直流試験ユニット15は終端抵抗器14の影響を受けることなく被試験半導体デバイスDUTの各端子のリーク電流の測定を行うことができることになる。
【0008】
【発明が解決しようとする課題】
図4に示した回路構造によれば終端抵抗器14の影響を受けることなく直流試験を行うことができ、特にリーク電流の試験を行えることができる点で優れている。
然し乍ら、図に示す回路は以下に説明する欠点が存在する。つまり、機能試験時にはドライバ12から出力された試験信号はリレー接点17と、スイッチ回路16と、第1信号線路13Aを通じてソケットボード10に到達する。このときの各部の通過特性(立ち上り時間)を図5に示す。
【0009】
つまり、ドライバ12自体で信号の立ち上りに要する時間がT1、リレー接点17を通過するのに要する立ち上り時間がT2、スイッチ回路16を通過するに要する立ち上り時間がT3、第一信号線路13Aを通過するに要する立ち上り時間がT4とした場合、被試験半導体デバイスDUTの各端子に伝搬された試験信号の立ち上り時間をT5とすると、
T5= √(T12+T22+T32+T42
で表わすことができる。
【0010】
特に最近の被試験半導体デバイスは立ち上り及び立ち下りが急峻な高速波形を要求するため、被試験半導体デバイスDUTに伝搬する試験信号の波形品質の劣化は極力避けなければならない。
この発明の目的はドライバから被試験半導体デバイスに至る信号試験信号伝送路の伝搬遅延時間を可及的に小さくし、立ち上り時間が早く波形劣化の少ない試験信号を被試験半導体デバイスDUTに印加することを可能とした半導体デバイス試験装置を提供しようとするものである。
【0011】
【課題を解決するための手段】
この発明の請求項1ではソケットボードに装着された被試験半導体デバイスの信号端子に試験信号を送給する第1信号線路と、
一端がこの第1信号線路と信号端子側で共通接続され、他端がソケットボードの外側に導出された第2信号線路と、
この第2信号線路のソケットボードの外側に設けられ、第2信号線路を通じて被試験半導体デバイス信号端子に接続される終端抵抗器と、
この終端抵抗器を必要に応じて第2信号線路から切離すための終端抵抗接続リレー接点とを具備して構成される半導体デバイス試験装置において、
終端抵抗接続リレー接点と第2信号線路との接続点側において、被試験半導体デバイスの信号端子に直流試験装置を接続し、切離すためのスイッチ回路を接続した構成とした半導体デバイス試験装置を提案する。
【0012】
作用
この発明の構成によれば直流試験ユニットを接続し、切離すためのスイッチ回路を第2信号線路側に設けたから、ドライバから被試験半導体デバイスに試験信号を伝送する信号線路からスイッチ回路を除去することができる。この結果、ドライバから被試験半導体デバイスに至る回路の信号の伝搬遅延時間をスイッチ回路の所要時間分だけ短くすることができる。この結果として立ち上り時間劣化も改善することができる利点が得られる。
【0013】
【発明の実施の形態】
図1にこの発明による半導体デバイス試験装置の一実施例を示す。図3及び図4と対応する部分には同一符号を付して示す。この発明では第2信号線路13Bを具備した半導体デバイス試験装置において、ドライバ12の出力端子をリレー接点17を通じて直接第1信号線路13Aに接続すると共に、第2信号線路13Bの端部と終端抵抗接続リレー18との間にスイッチ回路16を接続した構成とした点を特徴とするものである。
【0014】
この構造によれば機能試験はリレー接点17をオン、終端抵抗接続リレー18をオンの状態に設定すれば、第1信号線路13A及び第2信号線路13Bは終端抵抗器14で終端され、インピーダンス整合される。従ってドライバ12は反射波に影響されることなく被試験半導体デバイスDUTの各端子に試験信号を印加することができる。
一方、直流試験時にはリレー接点17をオフ、終端抵抗接続リレー18をオフの状態に設定すると共に、スイッチ回路16により第2信号回路13Bに直流試験ユニット15を接続することにより、直接試験を行うことができる。
【0015】
この発明の構造によれば特に機能試験の状態ではドライバ12はリレー接点17を通じて第1信号線路13Aの一端に直流接続される。この結果、ドライバ12から被試験半導体デバイスDUTの各端子に伝搬された試験信号の立ち上り時間T5は
T5=√(T12+T22+T42
となり、スイッチ回路16で発生した立ち上り時間T3を除去することができる。
ドライバ12における信号の立ち上りに要する時間T1の違いによる立ち上り時間T5の実測例を表1に示す。
【0016】
【表1】

Figure 0004627924
表1から明らかなように立ち上りの早い(高速)信号の場合程、立ち上り時間T5の改善効果が高いことが解かる。
図2はこの発明の変形実施例を示す。この実施例ではこの発明を被試験半導体デバイスDUTの入力兼出力端子の信号線路に適用した場合を示す。この場合には、終端抵抗器14と、終端抵抗器接続リレー18との接続点にコンパレータ19を接続し、このコンパレータ19で被試験半導体デバイスDUTが出力する応答出力信号を取り込み、そのH論理の電圧及びL論理の電圧が正規の論理値を規定する電圧になっているか否かを判定しながら、被試験半導体デバイスDUTの応答出力信号を取り込む回路を具備した回路にこの発明を適用した場合を示す。
【0017】
この場合も、ドライバ12と被試験半導体デバイスDUTとを結ぶ線路にスイッチ回路16を接続しないから、ドライバ12と被試験半導体デバイスDUTまでの信号の伝搬遅延時間を短くすることができる。
【0018】
【発明の効果】
以上説明したように、この発明によれば簡単な接続変更だけで被試験半導体デバイスDUTに印加される信号の立ち上り時間を小さくすることができる。この結果、高速動作する半導体デバイスに波形劣化の少ない試験信号を印加することができるから、試験の信用性を高めることができる大きな利点が得られ、その効果は実用に供して頗る大である。
【図面の簡単な説明】
【図1】この発明の一実施例を説明するためのブロック図。
【図2】この説明の変形実施例を説明するためのブロック図。
【図3】従来技術を説明するためのブロック図。
【図4】従来技術の他の例を説明するためのブロック図。
【図5】図4に示した従来技術の他に欠点を説明するためのブロック図。
【符号の説明】
10 ソケットボード
11 ICソケット
DUT 被試験半導体デバイス
12 ドライバ
13 信号線路
13A 第1信号線路
13B 第2信号線路
14 終端抵抗器
15 直流試験ユニット
16 スイッチ回路
17 リレー接点
18 終端抵抗接続リレー[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device test apparatus, and in particular, proposes an improvement in a signal transmission circuit that makes it possible to apply a test signal with high waveform quality to a semiconductor device under test.
[0002]
[Prior art]
A conventional technique will be described with reference to FIGS. In the figure, DUT indicates a semiconductor device under test. The semiconductor device under test is mounted on an IC socket 11 mounted on a socket board 10 and connected to a driver 12 through the IC socket. A test signal is supplied from the driver 12 to perform a test.
The driver 12 and the socket board 10 are connected by a signal line 13 composed of a coaxial cable, and a termination resistor 14 is connected to the IC socket 11 side so that the driver 12 and each terminal of the semiconductor device DUT to be tested are connected. They are electrically connected with impedance matching between them.
[0003]
3 and 4 show the socket board 10 as being mounted with one semiconductor device DUT to be tested, but in actuality, a plurality of semiconductor devices are mounted. Are tested at once. Accordingly, a large number of signal transmission channels including the driver 12 and the signal line 13 are also provided.
Incidentally, a test in which a test signal is applied from the driver 12 to the semiconductor device DUT to be tested to check whether the semiconductor device DUT operates normally is generally referred to as a functional test.
[0004]
On the other hand, the test of the semiconductor device includes a test item called a direct current test. This DC test is a test for asking whether or not the DC characteristics of each terminal of the semiconductor device under test match the intended characteristics. That is, it is tested whether a target amount of current flows with a predetermined voltage applied to each terminal of the semiconductor device under test, or a terminal with a predetermined current taken out from each terminal of the semiconductor device. It is tested whether or not a predetermined voltage is generated.
Reference numeral 15 shown in FIG. 3 denotes a DC test unit for performing this DC test. The DC test unit 15 is electrically disconnected from the signal line 13 by the switch circuit 16 when connected to the signal line 13 through the switch circuit 16 and performing a function test.
[0005]
On the other hand, in the state where the DC test is performed, the switch circuit 16 is controlled to be in the ON state, and the DC test unit 15 is electrically connected to the signal line 13 and in this state, the relay contact 17 connected to the output side of the driver 12 is connected. Control is turned off, the driver 12 is disconnected from the signal line 13, and a DC test is performed.
According to the semiconductor device test apparatus shown in FIG. 3, since the terminating resistor 14 is arranged in the immediate vicinity of each terminal of the semiconductor device DUT under test (on the socket board 10), the test signal output from the driver 12 is Absorption at each terminal portion of the test semiconductor device DUT, and the occurrence of reflection can be suppressed as much as possible. This is an excellent circuit structure in this respect.
[0006]
However, when this circuit structure is adopted, since the termination resistor 14 remains connected to each terminal of the semiconductor device DUT to be tested, the presence or absence of leakage current at each terminal of the semiconductor device DUT to be tested is measured during the DC test. Inconvenience occurs.
In order to eliminate this inconvenience, a circuit structure shown in FIG. 4 has been considered. That is, the first signal line 13A for applying a test pattern signal from the driver 12 to the semiconductor device under test DUT and the termination resistor 14 provided outside the socket board 10 are connected to each terminal of the semiconductor device under test DUT. The second resistor 13 is electrically disconnected from the first signal line 13A and the second signal line 13B by controlling the termination resistor connection relay 18 to be turned off as necessary. In addition to performing a direct current test on each terminal of the semiconductor device DUT to be tested, it is also possible to perform a leakage current test.
[0007]
Therefore, during the DC test, by setting the termination resistor connection relay 18 to the OFF state, the DC test unit 15 measures the leakage current of each terminal of the semiconductor device DUT under test without being influenced by the termination resistor 14. Will be able to.
[0008]
[Problems to be solved by the invention]
The circuit structure shown in FIG. 4 is excellent in that a direct current test can be performed without being influenced by the termination resistor 14, and in particular, a leak current test can be performed.
However, the circuit shown in the figure has the following drawbacks. In other words, the test signal output from the driver 12 during the function test reaches the socket board 10 through the relay contact 17, the switch circuit 16, and the first signal line 13A. FIG. 5 shows the pass characteristics (rise time) of each part at this time.
[0009]
In other words, the time required for the signal rise by the driver 12 itself is T1, the rise time required for passing through the relay contact 17, T2, the rise time required for passing through the switch circuit 16 is T3, and passes through the first signal line 13A. If the rise time required for the test signal propagated to each terminal of the semiconductor device under test DUT is T5,
T5 = √ (T1 2 + T2 2 + T3 2 + T4 2 )
It can be expressed as
[0010]
In particular, since recent semiconductor devices under test require high-speed waveforms with steep rise and fall, deterioration of the waveform quality of test signals propagating to the semiconductor device DUT must be avoided as much as possible.
An object of the present invention is to reduce the propagation delay time of a signal test signal transmission path from a driver to a semiconductor device under test as much as possible, and to apply a test signal with a fast rise time and little waveform deterioration to the semiconductor device under test DUT. It is an object of the present invention to provide a semiconductor device testing apparatus that enables the above.
[0011]
[Means for Solving the Problems]
In the first aspect of the present invention, a first signal line for sending a test signal to a signal terminal of a semiconductor device under test mounted on a socket board;
A second signal line having one end connected in common to the first signal line on the signal terminal side and the other end led to the outside of the socket board;
A terminating resistor provided outside the socket board of the second signal line and connected to the semiconductor device signal terminal under test through the second signal line;
In a semiconductor device test apparatus configured to include a termination resistor connection relay contact for separating the termination resistor from the second signal line as necessary,
Proposed a semiconductor device test device with a configuration in which a DC test device is connected to the signal terminal of the semiconductor device under test and a switch circuit for disconnection is connected on the connection point side of the terminal resistor connection relay contact and the second signal line. To do.
[0012]
Action <br/> connect a DC test unit according to the configuration of the present invention, since the switching circuit for disconnecting provided on the second signal line side, a signal line for transmitting a test signal to the semiconductor device under test from the driver The switch circuit can be eliminated. As a result, the signal propagation delay time from the driver to the semiconductor device under test can be shortened by the time required for the switch circuit. As a result, there is an advantage that rise time degradation can be improved.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an embodiment of a semiconductor device test apparatus according to the present invention. Parts corresponding to those in FIGS. 3 and 4 are denoted by the same reference numerals. In this invention, in the semiconductor device testing apparatus equipped with the second signal line 13B, the output terminal of the driver 12 is directly connected to the first signal line 13A through the relay contact 17, and the end of the second signal line 13B is connected to the termination resistance. This is characterized in that a switch circuit 16 is connected to the relay 18.
[0014]
According to this structure, in the functional test, if the relay contact 17 is set to ON and the terminating resistor connection relay 18 is set to the ON state, the first signal line 13A and the second signal line 13B are terminated by the terminating resistor 14, and impedance matching is performed. Is done. Accordingly, the driver 12 can apply a test signal to each terminal of the semiconductor device DUT to be tested without being affected by the reflected wave.
On the other hand, the direct contact test is performed by setting the relay contact 17 to the off state and the terminating resistor connection relay 18 to the off state at the time of the direct current test and connecting the direct current test unit 15 to the second signal circuit 13B by the switch circuit 16. Can do.
[0015]
According to the structure of the present invention, the driver 12 is DC-connected to one end of the first signal line 13A through the relay contact 17 particularly in the state of the function test. As a result, the rising time T5 of the test signal propagated from the driver 12 to each terminal of the semiconductor device DUT to be tested is T5 = √ (T1 2 + T2 2 + T4 2 )
Thus, the rise time T3 generated in the switch circuit 16 can be removed.
Table 1 shows an actual measurement example of the rise time T5 due to the difference in the time T1 required for the signal rise in the driver 12.
[0016]
[Table 1]
Figure 0004627924
As can be seen from Table 1, the improvement effect of the rise time T5 is higher as the signal rises faster (high speed).
FIG. 2 shows a modified embodiment of the present invention. In this embodiment, the present invention is applied to a signal line of an input / output terminal of a semiconductor device DUT to be tested. In this case, a comparator 19 is connected to the connection point between the termination resistor 14 and the termination resistor connection relay 18, and the response output signal output from the semiconductor device DUT to be tested is captured by the comparator 19, and the H logic A case where the present invention is applied to a circuit having a circuit that captures a response output signal of the semiconductor device under test DUT while determining whether or not the voltage and the L logic voltage are voltages that define a normal logic value. Show.
[0017]
Also in this case, since the switch circuit 16 is not connected to the line connecting the driver 12 and the semiconductor device under test DUT, the signal propagation delay time to the driver 12 and the semiconductor device under test DUT can be shortened.
[0018]
【The invention's effect】
As described above, according to the present invention, the rise time of the signal applied to the semiconductor device under test DUT can be reduced only by a simple connection change. As a result, since a test signal with little waveform deterioration can be applied to a semiconductor device operating at high speed, a great advantage that the reliability of the test can be improved is obtained, and the effect is very practical.
[Brief description of the drawings]
FIG. 1 is a block diagram for explaining an embodiment of the present invention.
FIG. 2 is a block diagram for explaining a modified embodiment of this explanation.
FIG. 3 is a block diagram for explaining the prior art.
FIG. 4 is a block diagram for explaining another example of the prior art.
FIG. 5 is a block diagram for explaining a defect in addition to the prior art shown in FIG. 4;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Socket board 11 IC socket DUT Semiconductor device 12 to be tested 12 Driver 13 Signal line 13A 1st signal line 13B 2nd signal line 14 Termination resistor 15 DC test unit 16 Switch circuit 17 Relay contact 18 Termination resistance connection relay

Claims (2)

ソケットボードに装着された被試験半導体デバイスの信号端子に試験信号を送給する第1信号線路と、一端がこの第1信号線路と上記信号端子側で共通接続され、他端が上記ソケットボードの外側に導出された第2信号線路と、この第2信号線路の上記ソケットボードの外側に設けられ、上記第2信号線路を通じて上記信号端子に接続される終端抵抗器と、
この終端抵抗器を必要に応じて上記第2信号線路から切離す終端抵抗接続リレー接点とを具備して構成される半導体デバイス試験装置において、
上記第2信号線路の終端抵抗接続リレー接点との接続点側において、上記被試験半導体デバイスの信号端子に直流試験装置を接続し、切離すためのスイッチ回路を接続した構成としたことを特徴とする半導体デバイス試験装置。
A first signal line for sending a test signal to a signal terminal of a semiconductor device to be tested mounted on a socket board, one end of the first signal line and the signal terminal side are commonly connected, and the other end of the socket board A second signal line led to the outside, a termination resistor provided outside the socket board of the second signal line and connected to the signal terminal through the second signal line;
In a semiconductor device testing apparatus comprising a termination resistor connection relay contact that disconnects the termination resistor from the second signal line as necessary,
It is characterized in that a DC test device is connected to the signal terminal of the semiconductor device to be tested and a switch circuit for disconnecting is connected to the signal terminal of the semiconductor device under test on the connection point side of the second signal line with the termination resistor connection relay contact. Semiconductor device testing equipment.
前記終端抵抗器と前記終端抵抗器接続リレーとの接続点に接続され、前記被試験半導体デバイスが出力する応答出力信号の論理値が正規の論理値となっているか否かを判定するコンパレータを備える請求項1に記載の半導体デバイス試験装置。  A comparator connected to a connection point between the termination resistor and the termination resistor connection relay and determining whether a logical value of a response output signal output from the semiconductor device under test is a normal logical value; The semiconductor device test apparatus according to claim 1.
JP2001161700A 2001-05-30 2001-05-30 Semiconductor device test equipment Expired - Fee Related JP4627924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001161700A JP4627924B2 (en) 2001-05-30 2001-05-30 Semiconductor device test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001161700A JP4627924B2 (en) 2001-05-30 2001-05-30 Semiconductor device test equipment

Publications (2)

Publication Number Publication Date
JP2002350508A JP2002350508A (en) 2002-12-04
JP4627924B2 true JP4627924B2 (en) 2011-02-09

Family

ID=19004937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001161700A Expired - Fee Related JP4627924B2 (en) 2001-05-30 2001-05-30 Semiconductor device test equipment

Country Status (1)

Country Link
JP (1) JP4627924B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602005006378T2 (en) * 2005-03-11 2009-06-04 Verigy (Singapore) Pte. Ltd. Connection elements for an automatic test device for testing integrated circuits
KR100994811B1 (en) * 2006-03-17 2010-11-17 가부시키가이샤 어드밴티스트 Testing apparatus and performance board

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0391984U (en) * 1990-01-08 1991-09-19
JPH05256900A (en) * 1992-03-12 1993-10-08 Yokogawa Electric Corp Lsi tester
JPH07244125A (en) * 1994-03-08 1995-09-19 Yokogawa Electric Corp Ic tester
JPH09257871A (en) * 1996-03-22 1997-10-03 Advantest Corp I/o switching circuit of ic testing device
JPH09264934A (en) * 1996-03-28 1997-10-07 Ando Electric Co Ltd Shared input/output interface circuit for semiconductor inspecting apparatus
JPH10282191A (en) * 1997-04-09 1998-10-23 Nec Corp Integrated circuit tester
JPH1164436A (en) * 1997-08-21 1999-03-05 Advantest Corp Semiconductor-testing device
JP2000241503A (en) * 1998-12-24 2000-09-08 Advantest Corp Ic-testing apparatus and test method using the apparatus
JP2002040098A (en) * 2000-07-24 2002-02-06 Advantest Corp Testing device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0391984U (en) * 1990-01-08 1991-09-19
JPH05256900A (en) * 1992-03-12 1993-10-08 Yokogawa Electric Corp Lsi tester
JPH07244125A (en) * 1994-03-08 1995-09-19 Yokogawa Electric Corp Ic tester
JPH09257871A (en) * 1996-03-22 1997-10-03 Advantest Corp I/o switching circuit of ic testing device
JPH09264934A (en) * 1996-03-28 1997-10-07 Ando Electric Co Ltd Shared input/output interface circuit for semiconductor inspecting apparatus
JPH10282191A (en) * 1997-04-09 1998-10-23 Nec Corp Integrated circuit tester
JPH1164436A (en) * 1997-08-21 1999-03-05 Advantest Corp Semiconductor-testing device
JP2000241503A (en) * 1998-12-24 2000-09-08 Advantest Corp Ic-testing apparatus and test method using the apparatus
JP2002040098A (en) * 2000-07-24 2002-02-06 Advantest Corp Testing device

Also Published As

Publication number Publication date
JP2002350508A (en) 2002-12-04

Similar Documents

Publication Publication Date Title
US20060152234A1 (en) Method and apparatus for increasing operating frequency of a system for testing electronic devices
KR100278259B1 (en) Comparator for semiconductor testing device
JP4689125B2 (en) Improved test and calibration circuit and method in automatic test equipment
US7372288B2 (en) Test apparatus for testing multiple electronic devices
JP2004525546A (en) Improved loopback inspection for serial devices
EP0919823A3 (en) System for verifying signal timing accuracy on a digital testing device
JP5269896B2 (en) Test wafer unit and test system
US7800912B2 (en) Signal transfer system, signal output circuit board, signal receiving circuit board, signal output method, and signal receiving method
KR101138200B1 (en) Semiconductor wafer, semiconductor circuit, testing board and testing system
US6597165B2 (en) Compare path bandwidth control for high performance automatic test systems
JP4627924B2 (en) Semiconductor device test equipment
JP3871676B2 (en) LSI inspection method and apparatus, and LSI tester
KR20010018451A (en) method for testing a wire harness and system for performming the same
EP1041389A1 (en) System and method for characterising a test fixture
US20040237013A1 (en) Apparatus and method for sensing emulator cable orientation while providing signal drive capability
JPH11231022A (en) Inspection method of semiconductor device and device thereof
KR102191678B1 (en) SoC TEST SYSTEM
US7622930B2 (en) Method for inspecting transmission line characteristic of a semiconductor device using signal reflection measurement
KR102215319B1 (en) Device interface board of semiconductor test equipment and its operating method
CN110907795B (en) Circuit board for testing and operation method thereof
CN112285446B (en) Test system, transmitting device and receiving device for executing various tests
JPH0718914B2 (en) LSI tester
KR20240059116A (en) Apparatus and system for testing device under test (dut)
JPH03226683A (en) Method for testing lsi
JP2001289898A (en) Inspecting device, inspecting unit, and manufacturing method for inspecting device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080317

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100324

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4627924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees