JP4627022B2 - Photometric analyzer - Google Patents

Photometric analyzer Download PDF

Info

Publication number
JP4627022B2
JP4627022B2 JP2005244975A JP2005244975A JP4627022B2 JP 4627022 B2 JP4627022 B2 JP 4627022B2 JP 2005244975 A JP2005244975 A JP 2005244975A JP 2005244975 A JP2005244975 A JP 2005244975A JP 4627022 B2 JP4627022 B2 JP 4627022B2
Authority
JP
Japan
Prior art keywords
phase
cylindrical body
distance
signal
opposing surfaces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005244975A
Other languages
Japanese (ja)
Other versions
JP2007040943A (en
Inventor
洋 藤井
克泰 樽井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2005244975A priority Critical patent/JP4627022B2/en
Priority to CN2006101109308A priority patent/CN101046441B/en
Publication of JP2007040943A publication Critical patent/JP2007040943A/en
Application granted granted Critical
Publication of JP4627022B2 publication Critical patent/JP4627022B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

この発明は、工場排水や河川などに含まれる有機性物質の吸光度等を測定する測光分析計に関し、特に、簡単且つ迅速にセル長を変更することができ、同期回路を用いることなく連続測定ができる測光分析計に関するものである。  The present invention relates to a photometric analyzer that measures the absorbance and the like of organic substances contained in industrial wastewater, rivers, etc. In particular, the cell length can be changed easily and quickly, and continuous measurement can be performed without using a synchronization circuit. It relates to a photometric analyzer that can be used.

この測光分析計に関して、本出願人は特許文献1に示すように、2つの筒状体を測定試料中に離間させて平行に配置し、少なくとも1つの筒状体を回転させることにより2つの筒状体の対向面間の距離を周期的に可変にして、対向面間に介在する測定試料の吸光度を測定する発明をしている。この発明は、対向面間の距離が最短距離及び最長距離の場合を利用して、それら2点の光強度信号を比較することにより測定試料の吸光度を測定するというものである。  With regard to this photometric analyzer, as shown in Patent Document 1, the present applicant arranges two cylindrical bodies in a measurement sample so as to be spaced apart from each other in parallel, and rotates two cylinders by rotating at least one cylindrical body. The present invention has been invented to measure the absorbance of the measurement sample interposed between the opposing surfaces by periodically changing the distance between the opposing surfaces of the cylindrical body. The present invention measures the absorbance of a measurement sample by comparing the light intensity signals of these two points using the shortest distance and the longest distance between the opposing surfaces.

しかしながら、このようなものでは対向面間の可変幅、つなわち、最長距離と最短距離との差が一定であることから、測光分析計の測定レンジが一意的に定まってしまい、そのレンジを超えた低濃度から高濃度の測定試料では、濃度によっては充分な測定結果を得ることができないという問題がある。そして、従来は是を解決するために、前記可変幅が物理的に異なる複数種類の装置を用意せざるを得ないのが実情である。
特開 昭56−10233号公報
However, in such a case, since the variable width between the opposing surfaces, that is, the difference between the longest distance and the shortest distance is constant, the measurement range of the photometric analyzer is uniquely determined. There is a problem that sufficient measurement results cannot be obtained depending on the concentration of the measurement sample having a low concentration to a high concentration. Conventionally, in order to solve the problem, a plurality of types of apparatuses having physically different variable widths must be prepared.
JP-A-56-10233

そこで本発明は、上記問題点を一挙に解決するためになされたものであり、物理的な変更を施すことなく無理なく測定レンジを広げて、低濃度の測定試料から高濃度の測定試料まで測定することができる測光分析計を提供することをその主たる所期課題とするものである。  Therefore, the present invention has been made to solve the above-mentioned problems all at once, and it is possible to measure from a low-concentration measurement sample to a high-concentration measurement sample by expanding the measurement range without any physical changes. Providing a photometric analyzer that can be performed is the main intended task.

すなわち本発明に係る測光分析計は、光源を内部に有する筒状体と、前記光源からの光を検出する光検出器を内部に有する筒状体とを測定試料中において離間して配置し、少なくとも一方の筒状体を回転させて前記2つの筒状体の対向面間の距離を周期的に拡縮して、その対向面間に介在する測定試料を分析する測光分析計であって、前記筒状体の回転の位相を検出する位相検出部と、前記対向面間の距離が最小となるときの位相と前記対向面間の距離が最大となるときの位相との間で、前記光検出器からの光強度信号をサンプリングする複数の位相を変更可能に設定する位相設定部と、前記位相検出部からの位相検出信号に基づいて、前記位相設定部により設定された複数の位相における光強度信号を受け付ける信号受付部と、前記信号受付部が受け付けた各位相における光強度信号を比較することにより前記測定対象を分析する比較分析部と、を備えていることを特徴とする。ここで、対向面間の距離が最小となるときの位相と前記対向面間の距離が最大となるときの位相との間とは、対向面間の距離が最小となるときの位相、及び対向面間の距離が最大となるときの位相もその範囲内に含むものとする。
That is, the photometric analyzer according to the present invention, the cylindrical body having a light source inside, and the cylindrical body having a photodetector for detecting light from the light source is arranged in the measurement sample apart from each other, A photometric analyzer for analyzing a measurement sample interposed between the opposing surfaces by rotating at least one cylindrical member to periodically expand and contract the distance between the opposing surfaces of the two cylindrical members, The light detection between a phase detection unit that detects a phase of rotation of the cylindrical body, and a phase when the distance between the opposing surfaces is minimum and a phase when the distance between the opposing surfaces is maximum a phase setting section for changeably setting a plurality of phase for sampling the light intensity signal from the vessel, based on the phase detection signal from the phase detector, the light intensity at a plurality of phases that have been set by the phase setting unit A signal receiving unit for receiving a signal and the signal receiving unit; Characterized in that the part is provided with a comparative analysis section for analyzing the measurement target by comparing the light intensity signals at each phase of the reception. Here, between the phase when the distance between the opposing surfaces is minimum and the phase when the distance between the opposing surfaces is maximum is the phase when the distance between the opposing surfaces is minimum, and the opposing The phase when the distance between the surfaces is maximum is also included in the range.

このようなものであれば、対向面間の距離が最小となるときの位相と対向面間の距離が最大となるときの位相との間で、前記光検出器からの光強度信号をサンプリングする位相を変更可能に設定できるので、物理的な変更を施すことなく測定レンジを広げることができ、低濃度の測定試料から高濃度の測定試料まで測定することができる測光分析計を提供することができる。  If this is the case, the light intensity signal from the photodetector is sampled between the phase when the distance between the opposing surfaces is minimum and the phase when the distance between the opposing surfaces is maximum. Since the phase can be set to be changeable, it is possible to provide a photometric analyzer that can widen the measurement range without physically changing it, and can measure from low-concentration measurement samples to high-concentration measurement samples. it can.

具体的な実施の態様としては、前記筒状体が、ステッピングモータにより回転されるものであり、前記位相検出部が、前記ステッピングモータへのパルス列入力信号を用いて、前記筒状体の回転の位相を検出することが好ましい。  As a specific embodiment, the cylindrical body is rotated by a stepping motor, and the phase detector uses a pulse train input signal to the stepping motor to rotate the cylindrical body. It is preferable to detect the phase.

このようなものであれば、ステッピングモータを用いているので、インダクションモータのように電源周波数影響を受けず、回転速度を正確にすることができ、測定精度を確保することができる。  In such a case, since the stepping motor is used, the rotational speed can be made accurate without being affected by the power supply frequency unlike the induction motor, and the measurement accuracy can be ensured.

ステッピングモータの他に、回転数の制御が可能となる他のモータを使用しても良い。  In addition to the stepping motor, another motor capable of controlling the rotation speed may be used.

その他には、前記位相検出部が、エンコーダからの信号を用いて、前記筒状体の回転の位相を検出するものであることが考えられる。  In addition, it is conceivable that the phase detection unit detects a phase of rotation of the cylindrical body using a signal from an encoder.

このように本発明によれば、対向面間の距離が最小となるときの位相と対向面間の距離が最大となるときの位相との間で、前記光検出器からの光強度信号をサンプリングする位相を変更可能に設定できるので物理的な変更を施すことなく測定レンジを広げることができ、低濃度の測定試料から高濃度の測定試料まで測定することができる測光分析計を提供することができる。 Thus, according to the present invention, the light intensity signal from the photodetector is sampled between the phase when the distance between the opposing surfaces is minimum and the phase when the distance between the opposing surfaces is maximum. Providing a photometric analyzer that can expand the measurement range without making a physical change and can measure from low to high concentration measurement samples. Can do.

<第1実施形態>  <First Embodiment>

次に、本発明の測光分析計の第1実施形態について図面を参照して説明する。  Next, a first embodiment of the photometric analyzer of the present invention will be described with reference to the drawings.

本実施形態に係る測光分析計1は、測定試料(排水)W中の有機性汚濁物質を測定するためのものであり、図1に示すように、光源2を内部に有する第1筒状体21と、前記光源2からの光を検出する光検出器3を内部に有する第2筒状体31と、これら2つの筒状体21、31が平行に離間して配置され、測定試料Wを収容する分析漕4と、当該分析槽4内で2つの筒状体21、31の対向面21A、31A間の距離Lを周期的に拡縮させる駆動部5と、光検出器3から光強度信号を受け付け、所定の演算を行い測定試料Wを分析する情報処理装置6とからなる。  A photometric analyzer 1 according to the present embodiment is for measuring organic pollutants in a measurement sample (drainage) W. As shown in FIG. 1, a first tubular body having a light source 2 therein. 21, a second cylindrical body 31 having a photodetector 3 for detecting light from the light source 2 inside, and these two cylindrical bodies 21, 31 are arranged in parallel and spaced apart, and the measurement sample W is The analysis cage 4 to be accommodated, the drive unit 5 that periodically expands and contracts the distance L between the opposing surfaces 21A and 31A of the two cylindrical bodies 21 and 31 in the analysis tank 4, and the light intensity signal from the photodetector 3 And an information processing device 6 that performs a predetermined calculation and analyzes the measurement sample W.

各部を説明する。  Each part will be described.

第1筒状体21及び第2筒状体31は、測定試料W中に平行に離間して配置される有底の円筒形状をなすものである。その側周壁は測定波長透過材料により形成され、本実施形態では、透過率の良い石英を用いている。  The first cylindrical body 21 and the second cylindrical body 31 have a bottomed cylindrical shape that is spaced apart in parallel in the measurement sample W. The side peripheral wall is formed of a measurement wavelength transmission material, and in this embodiment, quartz having a high transmittance is used.

第1筒状体21内には、その筒状体21の中心軸から偏心した位置に光源2を設けており、本実施形態では、光源2として低圧水銀放電管を用いている。第2筒状体31内には、その筒状体31の中心軸から偏心した位置に2つの光検出器3a、3bを中心軸に沿って配置しており、本実施形態では、光検出器3a、3bとしてシリコンフォトダイオードを用いている。  In the first cylindrical body 21, a light source 2 is provided at a position eccentric from the central axis of the cylindrical body 21, and in this embodiment, a low-pressure mercury discharge tube is used as the light source 2. In the second cylindrical body 31, two photodetectors 3a and 3b are arranged along the central axis at positions eccentric from the central axis of the cylindrical body 31, and in this embodiment, the photodetector Silicon photodiodes are used as 3a and 3b.

そして、それぞれの光検出器3a、3bを紫外線検出用及び可視光線検出用とするために、光検出器3a、3bの光源2側前方にはそれぞれ紫外線検出用干渉フィルタ(254nm)7a及び可視光線検出用干渉フィルタ(546nm)7bを設けている。  In order to use the photodetectors 3a and 3b for ultraviolet detection and visible light detection, an ultraviolet detection interference filter (254 nm) 7a and visible light are respectively provided in front of the light detectors 2 on the photodetectors 3a and 3b. A detection interference filter (546 nm) 7b is provided.

第1筒状体21及び第2筒状体31の外部には、その外周面を洗浄するための洗浄機構を設けている。この洗浄機構は、第1筒状体及び第2筒状体の対向面21A、31Aの反対側の外周面に摺接するワイパ22、32と、このワイパ22、32を筒状体21、31の偏心回転に追従させて往復運動をさせるワイパ取付板221、321とから構成される。  A cleaning mechanism for cleaning the outer peripheral surface is provided outside the first cylindrical body 21 and the second cylindrical body 31. This cleaning mechanism includes wipers 22 and 32 that are in sliding contact with the outer peripheral surfaces of the first and second cylindrical bodies opposite to the opposed surfaces 21A and 31A, and the wipers 22 and 32 are connected to the cylindrical bodies 21 and 31. It is composed of wiper mounting plates 221 and 321 that reciprocate following the eccentric rotation.

駆動部5は、筒状体21、31を回転駆動させるためのモータ51と、第1筒状体21の上端部に延設され、光源2の同心軸上にある第1回転軸52と、第2筒状体31の上端部に延設され、光検出器3a、3bの同心軸上にある第2回転軸53と、モータ51の回転運動を2つの筒状体21、31に伝達して、第1筒状体21をその中心軸線から偏心した回転軸を中心に偏心回転させ、第2筒状体31をその中心軸線から偏心した回転軸を中心に偏心回転させるギヤ54とからなる。なお、この実施形態では、第1筒状体21の回転軸上に光源2を配置し、この光源2を中心に偏心回転させ、第2筒状体の回転軸上に光検出器3a、3bを配置し、この光検出器3a、3bを中心に偏心回転させるようにしている。  The drive unit 5 includes a motor 51 for rotationally driving the cylindrical bodies 21, 31, a first rotation shaft 52 that extends from the upper end of the first cylindrical body 21 and is on the concentric axis of the light source 2, The rotation of the motor 51 is transmitted to the two cylindrical bodies 21 and 31, extending from the upper end of the second cylindrical body 31 and on the second rotating shaft 53 on the concentric shaft of the photodetectors 3a and 3b. The first cylindrical body 21 includes a gear 54 that rotates eccentrically about a rotation axis that is eccentric from the central axis, and a second gear 31 that rotates eccentrically about the rotation axis that is eccentric from the central axis. . In this embodiment, the light source 2 is arranged on the rotation axis of the first cylindrical body 21, is eccentrically rotated around the light source 2, and the photodetectors 3 a and 3 b are arranged on the rotation axis of the second cylindrical body. Are arranged and rotated eccentrically around the photodetectors 3a and 3b.

モータ51を駆動させることにより、図2に示すように、第1筒状体21及び第2筒状体31が偏心回転をして、光検出器3a、3bが検出する光強度信号及び対向面21A、31A間の距離が周期的に変化する。モータ51は、48ステップで一回転するステッピングモータである。そして、ステッピングモータ51の回転位置(位相θ51)、すなわち第1筒状体21と第2筒状体31との対向面21A、31A間の距離Lと光検出器3a、3bが受光する光強度信号のサンプリングを同期させる必要があるため原点検出部たるフォトインタラプタ8を第2回転軸53に設けている。なお、フォトインタラプタ8を第1回転軸52に設けても良い。By driving the motor 51, as shown in FIG. 2, the first cylindrical body 21 and the second cylindrical body 31 rotate eccentrically, and the light intensity signal detected by the photodetectors 3a and 3b and the opposing surface are detected. The distance between 21A and 31A changes periodically. The motor 51 is a stepping motor that rotates once in 48 steps. Then, the rotational position (phase θ 51 ) of the stepping motor 51, that is, the distance L between the opposing surfaces 21A, 31A of the first cylindrical body 21 and the second cylindrical body 31, and the light received by the photodetectors 3a, 3b. Since it is necessary to synchronize the sampling of the intensity signal, the photointerrupter 8 serving as the origin detection unit is provided on the second rotating shaft 53. Note that the photo interrupter 8 may be provided on the first rotation shaft 52.

情報処理装置6は、ステッピングモータ51を制御するとともに、光検出器3a、3bから光強度信号を受け付けて、所定の演算を行い測定試料Wを分析するものである。その機器構成は図3に示すように、CPU601、内部メモリ602、入出力インタフェース603、AD変換器604等からなる汎用又は専用のコンピュータであり、前記内部メモリ602の所定領域に格納してあるプログラムに基づいてCPU601やその周辺機器等が作動することにより、図4に示すように、モータ制御部61、位相検出部62、位相設定部63、信号受付部64、距離算出部65、比較分析部66等として機能する。  The information processing apparatus 6 controls the stepping motor 51, receives light intensity signals from the photodetectors 3a and 3b, performs a predetermined calculation, and analyzes the measurement sample W. As shown in FIG. 3, the device configuration is a general purpose or dedicated computer comprising a CPU 601, an internal memory 602, an input / output interface 603, an AD converter 604, etc., and a program stored in a predetermined area of the internal memory 602. As shown in FIG. 4, the CPU 601 and its peripheral devices are operated based on the motor control unit 61, the phase detection unit 62, the phase setting unit 63, the signal reception unit 64, the distance calculation unit 65, and the comparison analysis unit. 66 and so on.

以下に各部61〜66について説明する。  Below, each part 61-66 is demonstrated.

モータ制御部61は、ステッピングモータ51にパルス列信号を出力することによりステッピングモータ51を回転させるものである。また、回転誤差が生じないように、原点検出部8から原点検出信号を受け付けステッピングモータ51の回転位相を制御する。さらに、ステッピングモータ51に出力するパルス列信号を位相検出部62にも出力する。  The motor control unit 61 rotates the stepping motor 51 by outputting a pulse train signal to the stepping motor 51. Further, an origin detection signal is received from the origin detection unit 8 to control the rotation phase of the stepping motor 51 so that no rotation error occurs. Further, the pulse train signal output to the stepping motor 51 is also output to the phase detector 62.

位相検出部62は、第1筒状体21及び第2筒状体31の位相θ21、θ31を検出するものである。本実施形態では、ステッピングモータ51の回転により第1筒状体21及び第2筒状体31がギヤ54により連動して回転するので、ステッピングモータ51の回転の位相θ51を知ることができれば第1筒状体21及び第2筒状体31の回転位相θ21、θ31を検出することができる。ゆえに、位相検出部62は、モータ制御部61からステッピングモータ51へのパルス列信号を受け付けて、そのパルス列信号に基づいてステッピングモータ51の位相θ51を検出するものである。The phase detector 62 detects the phases θ 21 and θ 31 of the first cylindrical body 21 and the second cylindrical body 31. In the present embodiment, since the first cylindrical member 21 and the second cylindrical body 31 by rotation of the stepping motor 51 rotates in conjunction with the gear 54, the Knowing the phase theta 51 of rotation of the stepping motor 51 The rotational phases θ 21 and θ 31 of the first cylindrical body 21 and the second cylindrical body 31 can be detected. Therefore, the phase detector 62 receives a pulse train signal from the motor controller 61 to the stepping motor 51 and detects the phase θ 51 of the stepping motor 51 based on the pulse train signal.

位相設定部63は、第1筒状体21と第2筒状体31との対向面21A、31A間の距離Lが最小となるときの位相θ21、θ31と対向面21A、31A間の距離Lが最大となるときの位相θ21、θ31との間で、光検出器からの光強度信号をサンプリングする複数の位相、すなわち、複数のサンプリングポイントである位相θを変更可能に設定し、その設定信号を信号受付部64に出力するものである。The phase setting unit 63 is configured so that the phase θ 21 , θ 31 and the opposing surfaces 21A, 31A when the distance L between the opposing surfaces 21A, 31A between the first cylindrical body 21 and the second cylindrical body 31 is the minimum. A plurality of phases for sampling the light intensity signal from the photodetector, that is, a plurality of sampling points, phase θ S , can be changed between the phases θ 21 and θ 31 when the distance L is maximum. The setting signal is output to the signal receiving unit 64.

具体的には、本実施形態では図5に示すように、対向面21A、31A間の距離Lが最小となるときのステッピングモータ51の回転位相θ51と、対向面21A、31A間の距離Lが最大となるときのステッピングモータ51の回転位相θ51との間に複数(図5では2つ)のサンプリングポイントである位相θを変更可能に設定するものである。なお、対向面21A、31A間の距離Lが最小となるときの位相θ51と前記対向面21A、31A間の距離Lが最大となるときの位相θ51との間とは、対向面21A、31A間の距離Lが最小となるときの位相θ51、及び対向面21A、31A間の距離Lが最大となるときの位相θ51もその範囲内に含むものとする。Specifically, in the present embodiment, as shown in FIG. 5, the rotational phase θ 51 of the stepping motor 51 when the distance L between the opposing surfaces 21A and 31A is minimum and the distance L between the opposing surfaces 21A and 31A. The phase θ S that is a plurality of (two in FIG. 5) sampling points is set so as to be changeable between the rotation phase θ 51 of the stepping motor 51 when the maximum value is. The counter surface 21A, the phase theta 51 and the facing surface 21A when the distance L between 31A is minimized, and between the phase theta 51 when the distance L between 31A is maximum, the facing surface 21A, phase theta 51 when the distance L between 31A is minimized, and also the phase theta 51 when facing surface 21A, the distance L between 31A becomes maximum is intended to include within their scope.

ここでサンプリングポイントである位相θとは、後述する信号受付部64が光検出器3a、3bから光強度信号を受け付けるときの筒状体21、31の回転の位相θ21、θ31(本実施形態ではステッピングモータ51の位相θ51)である。位相設定部63は、オペレータからの入力信号に基づいて複数のサンプリングポイントである位相θを設定できるようにしても良い。Here, the phase θ S that is a sampling point is the phase θ 21 , θ 31 of rotation of the cylindrical bodies 21, 31 when the signal receiving unit 64 described later receives a light intensity signal from the photodetectors 3 a, 3 b. In the embodiment, it is the phase θ 51 ) of the stepping motor 51. The phase setting unit 63 may be configured to set the phase θ S that is a plurality of sampling points based on an input signal from the operator.

また、他に選択可能な複数のサンプリングポイントである位相θについて演算により濃度を求めて、複合的に処理することも可能である。Further, it is also possible to obtain a density by calculation for the phase θ S which is a plurality of other sampling points that can be selected, and to process them in a composite manner.

信号受付部64は、位相検出部62からの位相検出信号が示すステッピングモータ51の位相θ51が、位相設定部63が設定した各位相θと同一であるときに、光検出器3a、3bから光強度信号を受け付け、その光強度信号を比較分析部66に出力するものである。When the phase θ 51 of the stepping motor 51 indicated by the phase detection signal from the phase detection unit 62 is the same as each phase θ S set by the phase setting unit 63, the signal receiving unit 64 detects the photodetectors 3a and 3b. Is received, and the light intensity signal is output to the comparative analysis unit 66.

距離算出部65は、位相設定部63が設定した2つの位相θにおける筒状体21、31の対向面21A、31A間の距離Lを、その位相θに基づいて算出するものである。The distance calculation unit 65 calculates the distance L between the opposing surfaces 21A and 31A of the cylindrical bodies 21 and 31 at the two phases θ S set by the phase setting unit 63 based on the phase θ S.

比較分析部66は、信号受付部64が紫外線検出用の光検出器3aから受け付けた光強度信号を受信し、さらに距離算出部65が算出した距離Lに基づいて、測定試料Wの紫外線吸光度を算出するものである。また、信号受付部64が可視光線検出用の光検出器3bから受け付けた光強度信号を受信し、さらに距離算出部が算出した距離Lに基づいて、測定試料Wの可視光線吸光度を算出するものである。さらに、算出した紫外線吸光度及び可視光線吸光度を用いて、COD(化学的酸素要求量)を算出するものである。  The comparative analysis unit 66 receives the light intensity signal received by the signal receiving unit 64 from the photodetector 3a for ultraviolet detection, and further calculates the ultraviolet absorbance of the measurement sample W based on the distance L calculated by the distance calculating unit 65. Is to be calculated. Further, the signal reception unit 64 receives the light intensity signal received from the visible light detection photodetector 3b, and further calculates the visible light absorbance of the measurement sample W based on the distance L calculated by the distance calculation unit. It is. Furthermore, COD (chemical oxygen demand) is calculated using the calculated ultraviolet absorbance and visible light absorbance.

具体的な吸光度の算出方法について以下に説明する。  A specific method for calculating absorbance will be described below.

一般に、測定試料Wの吸光度、光源2からの発光量及び光検出器3a、3bの受光量の関係は、  In general, the relationship between the absorbance of the measurement sample W, the amount of light emitted from the light source 2, and the amount of light received by the photodetectors 3a and 3b is

(数1)
LOG[Io/Ic]=Ac*Cc*L=吸光度(Abs.)
(Equation 1)
LOG [Io / Ic] = Ac * Cc * L = Absorbance (Abs.)

となる。ここで、Iは光源2の発光量であり、その光の吸収が無い場合の受光量を等しい。Icは光検出器3a、3bが受光した光量である。Aは対向面21A、31A間の距離Lの係数であり、対向面21A、31A間の距離Lが決まれば決定する。Cは測定試料Wの吸収物質の濃度である。Lは筒状体21、31の対向面21A、31A間の距離である。It becomes. Here, I 2 O is the light emission amount of the light source 2 and is equal to the light reception amount when there is no light absorption. Ic is the amount of light received by the photodetectors 3a and 3b. A C is a coefficient of the distance L between the opposed surfaces 21A, 31A, opposed surface 21A, the distance L between 31A determines if Kimare. C C is the concentration of the absorbing substance in the measurement sample W. L is the distance between the opposing surfaces 21A, 31A of the cylindrical bodies 21, 31.

本実施形態に係る測光分析計は、対向面21A、31A間の距離Lが周期的に変化しているので、ある位相θ51における状態(サンプリングポイントである位相θ)をnを用いて表すと、In the photometric analyzer according to the present embodiment, since the distance L between the opposed surfaces 21A and 31A is periodically changed, the state at a certain phase θ 51 (the phase θ S which is a sampling point) is expressed using n. When,

(数2)
LOG[Io/Ic(n)]=Ac*Cc*L(n)=吸光度(Abs.)
(Equation 2)
LOG [Io / Ic (n)] = Ac * Cc * L (n) = Absorbance (Abs.)

となる。ここで、対向面21A、31A間の距離Lが変化しても、光源2の強度、測定試料Wの濃度及び対向面21A、31A間の距離Lの係数が変わらないものとする。  It becomes. Here, even if the distance L between the opposing surfaces 21A and 31A changes, the intensity of the light source 2, the concentration of the measurement sample W, and the coefficient of the distance L between the opposing surfaces 21A and 31A do not change.

次に、n=1の場合と、n=2の場合のIc(1)、Ic(2)を測定して、差を取ると、  Next, when Ic (1) and Ic (2) are measured when n = 1 and n = 2,

(数3)
LOGIc(2)−LOGIc(1)=Ac*C*(L(1)−L(2))
(Equation 3)
LOGIc (2) −LOGIc (1) = Ac * C C * (L (1) −L (2))

となる。この結果によれば、Iの項がなくなり、吸光度が光源2の発光量とは関係が無くなることがわかる。It becomes. According to this result, it is understood that the I 2 O term disappears, and the absorbance has no relation to the light emission amount of the light source 2.

したがって、対向面21A、31A間の距離Lが例えば10mmのときの吸光度(A*C*10)は、Therefore, the absorbance (A C * C C * 10) when the distance L between the opposing surfaces 21A and 31A is 10 mm, for example, is

(数4)
*C*10=10*(LOGI(2)−LOGI(1))/(L(1)−L(2)) ・・・(式1)
(Equation 4)
A C * C C * 10 = 10 * (LOGI C (2) -LOGI C (1)) / (L (1) -L (2)) ··· ( Equation 1)

となる。つまり、対向面21A、31A間の距離Lが10mmのときの吸光度は、2つのサンプリングポイントである位相θにおける対向面21A、31A間の距離Lと、光検出器3a、3bの受光強度により測定することができる。It becomes. That is, the absorbance when the distance L between the opposing surfaces 21A and 31A is 10 mm depends on the distance L between the opposing surfaces 21A and 31A at the phase θ S that is two sampling points and the received light intensity of the photodetectors 3a and 3b. Can be measured.

次に、本実施形態の測光分析計1の動作について説明する。  Next, the operation of the photometric analyzer 1 of this embodiment will be described.

測定試料Wを分析槽に収容して、第1筒状体21及び第2筒状体31を測定試料W中に浸漬させる。  The measurement sample W is accommodated in the analysis tank, and the first cylindrical body 21 and the second cylindrical body 31 are immersed in the measurement sample W.

そして、ステッピングモータ51を駆動させることにより、第1筒状体21と第2筒状体31を偏心回転させて、対向面21A、31A間の距離を周期的に変化させる。このとき、光検出器3a、3bが対向面21A、31A間に介在する測定試料Wを透過した透過光を検出している。ここで、信号受付部64が光検出器3a、3bから光強度信号を受け付けるサンプリングポイントである位相θは、測定前にオペレータが予め定めたものであるとする。And by driving the stepping motor 51, the 1st cylindrical body 21 and the 2nd cylindrical body 31 are eccentrically rotated, and the distance between 21 A of opposing surfaces and 31A is changed periodically. At this time, the light detectors 3a and 3b detect the transmitted light transmitted through the measurement sample W interposed between the opposing surfaces 21A and 31A. Here, it is assumed that the phase θ S that is a sampling point at which the signal receiving unit 64 receives the light intensity signal from the photodetectors 3a and 3b is predetermined by the operator before the measurement.

サンプリングポイントである位相θにおいて信号受付部64が光強度信号を受け付けて、比較分析部66に出力する。信号受付部64から光強度信号を受け付けた比較分析部は、2つのサンプリングポイントである位相θにおける光強度信号及び距離算出部65が算出した対向面21A、31A間の距離Lを用いて紫外線吸光度及び可視光線吸光度を算出する。さらに、これら吸光度から測定試料WのCOD(化学的酸素要求量)を算出する。At the phase θ S that is the sampling point, the signal receiving unit 64 receives the light intensity signal and outputs it to the comparative analysis unit 66. The comparative analysis unit that has received the light intensity signal from the signal reception unit 64 uses the light intensity signal at the phase θ S that is two sampling points and the distance L between the facing surfaces 21A and 31A calculated by the distance calculation unit 65. Absorbance and visible light absorbance are calculated. Further, the COD (chemical oxygen demand) of the measurement sample W is calculated from these absorbances.

このように構成した本実施形態の測光分析計1によれば、対向面21A、31A間の距離Lが最小となるときの位相θ51と対向面21A、31A間の距離Lが最大となるときの位相θ51との間で光強度信号をサンプリングする位相θを変更可能に設定できるので、物理的な変更を施すことなく安価に測定レンジを広くすることができ、低濃度の測定試料Wから高濃度の測定試料Wまで測定することができる。According to the photometric analyzer 1 of the present embodiment configured as described above, when the distance θ between the phase θ 51 and the opposing surfaces 21A and 31A is maximized when the distance L between the opposing surfaces 21A and 31A is minimized. Since the phase θ S for sampling the light intensity signal can be set so as to be changeable with respect to the phase θ 51 , the measurement range can be widened at low cost without any physical change, and the low-concentration measurement sample W To a high-concentration measurement sample W.

また、駆動部5のモータ51としてステッピングモータを用いているので、角度誤差が小さいので、高い測定精度を確保することができる。  In addition, since a stepping motor is used as the motor 51 of the drive unit 5, since the angle error is small, high measurement accuracy can be ensured.

<第2実施形態>  Second Embodiment

次に、本発明の測光分析計の第2実施形態について図面を参照して説明する。なお、前記第1実施形態に対応するものには同一の符号を付している。  Next, a second embodiment of the photometric analyzer of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the thing corresponding to the said 1st Embodiment.

本実施形態に係る測光分析計1は、前記第1実施形態とは異なり、情報処理装置6の機能構成が異なる。つまり、本実施形態に係る情報処理装置6は、図6に示すように、モータ制御部61、位相検出部62、位相設定部63、信号受付部64、係数算出部67、比較分析部66等として機能する。  The photometric analyzer 1 according to this embodiment differs from the first embodiment in the functional configuration of the information processing apparatus 6. That is, the information processing apparatus 6 according to the present embodiment includes a motor control unit 61, a phase detection unit 62, a phase setting unit 63, a signal reception unit 64, a coefficient calculation unit 67, a comparison analysis unit 66, and the like as illustrated in FIG. Function as.

位相設定部63は、第1筒状体21と第2筒状体31との対向面21A、31A間の距離Lが最小となるときの位相θ21、θ31と対向面21A、31A間の距離Lが最大となるときの位相θ21、θ31との間で、光検出器からの光強度信号をサンプリングする複数のサンプリングポイントである位相θを変更可能に設定し、その設定信号を信号受付部64に出力するとともに、係数算出部67に出力するものである。The phase setting unit 63 is configured so that the phase θ 21 , θ 31 and the opposing surfaces 21A, 31A when the distance L between the opposing surfaces 21A, 31A between the first cylindrical body 21 and the second cylindrical body 31 is the minimum. The phase θ S that is a plurality of sampling points for sampling the light intensity signal from the photodetector is set to be changeable between the phases θ 21 and θ 31 when the distance L is maximum, and the setting signal is The signal is output to the signal receiving unit 64 and is also output to the coefficient calculating unit 67.

係数算出部67は、位相設定部63が予め設定した位相θにおいて、濃度が既知の測定試料(例えば校正液)Wを測定した結果を受信して、その測定結果から対向面21A、31A間の距離Lを算出し、さらに、2つのサンプリングポイントである位相θにおける算出した対向面21A、31A間の距離Lを用いて前記第1実施形態の(式1)における係数K(=10/(L(1)−L(2)))を算出するものである。The coefficient calculation unit 67 receives a result of measuring a measurement sample (for example, a calibration solution) W having a known concentration in the phase θ S set in advance by the phase setting unit 63, and determines between the facing surfaces 21A and 31A from the measurement result. The distance L between the opposing surfaces 21A and 31A calculated at the phase θ S as two sampling points is further used to calculate the coefficient K (= 10 / (L (1) -L (2))) is calculated.

比較分析部66は、信号受付部64が光検出器3a、3bから受け付けた光強度信号を受信し、さらに係数算出部67が算出した係数Kに基づいて、前記第1実施形態の(式1)により測定試料Wの紫外線吸光度、可視光線吸光度及びCODを算出するものである。  The comparative analysis unit 66 receives the light intensity signal received by the signal receiving unit 64 from the photodetectors 3a and 3b, and further, based on the coefficient K calculated by the coefficient calculating unit 67, (Equation 1) of the first embodiment. ) To calculate the ultraviolet absorbance, visible light absorbance and COD of the measurement sample W.

次に、本実施形態の測光分析計1の動作について説明する。  Next, the operation of the photometric analyzer 1 of this embodiment will be described.

まず、分析槽4に濃度が既知の測定試料(例えば校正液)Wを収容して、第1筒状体21及び第2筒状体を測定試料W中に浸漬させる。そして、前記第1実施形態と同様に、位相設定部63が予め設定した位相θにおいて吸光度の測定を行う。その測定結果に基づいて係数算出部67が係数Kを算出する。First, a measurement sample (for example, calibration solution) W having a known concentration is stored in the analysis tank 4, and the first cylindrical body 21 and the second cylindrical body are immersed in the measurement sample W. As in the first embodiment, the absorbance is measured at the phase θ S set in advance by the phase setting unit 63. Based on the measurement result, the coefficient calculator 67 calculates the coefficient K.

その後、分析槽4から校正液Wを取り除き、濃度が未知の測定試料Wを収容して、第1筒状体21及び第2筒状体を測定試料W中に浸漬させる。  Thereafter, the calibration liquid W is removed from the analysis tank 4, the measurement sample W having an unknown concentration is accommodated, and the first cylindrical body 21 and the second cylindrical body are immersed in the measurement sample W.

そして、前記第1実施形態と同様にして、信号受付部64がサンプリングポイントである位相θにおいて光強度信号を受け付けて、比較分析部66に出力する。比較分析部66は、2つのサンプリング位相θにおける光強度信号及び係数算出部67が算出した係数Kを用いて紫外線吸光度及び可視光線吸光度を算出する。さらに、これら吸光度から測定試料WのCOD(化学的酸素要求量)を算出する。In the same manner as in the first embodiment, the signal receiving unit 64 receives the light intensity signal at the phase θ S that is the sampling point, and outputs it to the comparative analysis unit 66. The comparative analysis unit 66 calculates the ultraviolet absorbance and the visible light absorbance using the light intensity signals at the two sampling phases θ S and the coefficient K calculated by the coefficient calculation unit 67. Further, the COD (chemical oxygen demand) of the measurement sample W is calculated from these absorbances.

このように構成した本実施形態によれば、前記第1実施形態と同様に、物理的な変更を施すことなく安価に測定レンジを広くすることができ、低濃度の測定試料Wから高濃度の測定試料Wまで測定することができる。  According to the present embodiment configured as described above, as in the first embodiment, the measurement range can be widened at low cost without any physical change, and the low concentration measurement sample W can be expanded to a high concentration. It is possible to measure up to the measurement sample W.

なお、本発明は前記実施形態に限られるものではない。  The present invention is not limited to the above embodiment.

例えば、前記実施形態では、駆動部のモータにはステッピングモータを用いたが、ステッピングモータ以外のモータ、例えばACモータを用いても良い。この場合には、エンコーダを用いてACモータの回転位相を検出する。  For example, in the embodiment, a stepping motor is used as the motor of the driving unit. However, a motor other than the stepping motor, for example, an AC motor may be used. In this case, the rotational phase of the AC motor is detected using an encoder.

また、他のモータであっても位相との関係がわかるものであれば使用することができる。  Also, other motors can be used as long as the relationship with the phase is known.

また、ステッピングモータへのパルス列信号を用いて位相を検出したが、それぞれの筒状体の位相を個別に検出するようにしても良い。  Further, although the phase is detected using the pulse train signal to the stepping motor, the phase of each cylindrical body may be detected individually.

さらに、前記実施形態では、第1筒状体及び第2筒状体を偏心回転させることにより対向面間の距離を周期的に変化させるようにしているが、一方の筒状体を偏心回転させ、他方の筒状体を固定させて、対向面間の距離を周期的に変化させるようにしても良い。  Furthermore, in the said embodiment, although the distance between opposing surfaces is periodically changed by rotating eccentrically the 1st cylindrical body and the 2nd cylindrical body, one cylindrical body is eccentrically rotated. The other cylindrical body may be fixed and the distance between the opposing surfaces may be changed periodically.

その上、前記実施形態の筒状体は円筒形状であるが、楕円筒形状等であっても良い。  In addition, the cylindrical body of the embodiment has a cylindrical shape, but may have an elliptical cylindrical shape or the like.

加えて、前記実施形態では、光検出器を紫外線検出用及び可視光線検出用の2つ用いたが、1つの光検出器を用いて紫外線及び可視光線を検出するようにしても良い。この場合には、紫外線検出用干渉フィルタと可視光線検出用干渉フィルタとを交互に切り換えることにより紫外線及び可視光線を検出する。  In addition, in the above-described embodiment, two photodetectors for ultraviolet detection and visible light detection are used, but ultraviolet light and visible light may be detected using one photodetector. In this case, ultraviolet rays and visible rays are detected by alternately switching between the ultraviolet ray detecting interference filter and the visible ray detecting interference filter.

その他、前述した各実施形態や変形実施形態の一部又は全部を適宜組み合わせてよいし、本発明は前記各実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。  In addition, a part or all of the above-described embodiments and modified embodiments may be combined as appropriate, and the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit thereof. Needless to say.

本発明の第1実施形態に係る測光分析計の概略構成図。1 is a schematic configuration diagram of a photometric analyzer according to a first embodiment of the present invention. 同実施形態における筒状体の偏心回転及びそのときの光強度信号及び対向面間の距離の変化を示す図。The figure which shows the change of the eccentric rotation of the cylindrical body in the same embodiment, the light intensity signal at that time, and the distance between opposing surfaces. 同実施形態における情報処理装置の機器構成図。The equipment block diagram of the information processing apparatus in the embodiment. 同実施形態における情報処理装置の機能構成図。The function block diagram of the information processing apparatus in the embodiment. 同実施形態におけるサンプリングポイントである位相の設定範囲を示す図。The figure which shows the setting range of the phase which is a sampling point in the embodiment. 本発明の第2実施形態に係る測光分析計の情報処理装置の機能構成図。The function block diagram of the information processing apparatus of the photometry analyzer which concerns on 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1・・・測光分析計
2・・・光源
3・・・光検出器
21、31・・・筒状体(第1筒状体、第2筒状体)
W・・・測定試料
21A、31A・・・対向面
L・・・対向面間の距離
62・・・位相検出部
θ・・・位相
θ・・・サンプリングポイントである位相
63・・・位相設定部
64・・・信号受付部
66・・・比較分析部
51・・・ステッピングモータ
DESCRIPTION OF SYMBOLS 1 ... Photometric analyzer 2 ... Light source 3 ... Photodetector 21, 31 ... Cylindrical body (1st cylindrical body, 2nd cylindrical body)
W ... Samples 21A, 31A ... Opposing surface L ... Distance between opposing surfaces 62 ... Phase detector θ ... Phase θ S ... Sampling point phase 63 ... Phase Setting unit 64... Signal receiving unit 66... Comparative analysis unit 51.

Claims (4)

光源を内部に有する筒状体と、前記光源からの光を検出する光検出器を内部に有する筒状体とを測定試料中において離間して配置し、少なくとも一方の筒状体を回転させて前記2つの筒状体の対向面間の距離を周期的に拡縮して、その対向面間に介在する測定試料を分析する測光分析計であって、
前記筒状体の回転の位相を検出する位相検出部と、
前記対向面間の距離が最小となるときの位相と前記対向面間の距離が最大となるときの位相との間で、前記光検出器からの光強度信号をサンプリングする複数の位相を変更可能に設定する位相設定部と、
前記位相検出部からの位相検出信号に基づいて、前記位相設定部により設定された複数の位相における光強度信号を受け付ける信号受付部と、
前記信号受付部が受け付けた各位相における光強度信号を比較することにより前記測定対象を分析する比較分析部と、を備えている測光分析計。
A cylindrical body having a light source therein and a cylindrical body having a photodetector for detecting light from the light source are disposed in the measurement sample so as to be spaced apart, and at least one of the cylindrical bodies is rotated. A photometric analyzer that periodically expands and contracts the distance between opposing surfaces of the two cylindrical bodies and analyzes a measurement sample interposed between the opposing surfaces,
A phase detector for detecting the phase of rotation of the cylindrical body;
Multiple phases for sampling the light intensity signal from the photodetector can be changed between the phase when the distance between the opposing surfaces is minimum and the phase when the distance between the opposing surfaces is maximum. A phase setting unit to be set to
Based on the phase detection signal from the phase detection unit, a signal reception unit that receives light intensity signals in a plurality of phases set by the phase setting unit;
A photometric analyzer comprising: a comparison analysis unit that analyzes the measurement object by comparing light intensity signals at each phase received by the signal reception unit.
前記信号受付部が、前記位相検出部からの位相検出信号が示す前記筒状体の回転位相と、前記位相設定部が設定した各位相とが同一であるときに、前記回転位相の光強度信号を受け付けるものである請求項1記載の測光分析計。When the signal reception unit has the same rotation phase of the cylindrical body indicated by the phase detection signal from the phase detection unit and each phase set by the phase setting unit, the light intensity signal of the rotation phase The photometric analyzer according to claim 1, wherein 前記筒状体が、ステッピングモータにより回転されるものであり、
前記位相検出部が、前記ステッピングモータへのパルス列信号を用いて、前記筒状体の回転の位相を検出する請求項1又は2記載の測光分析計。
The cylindrical body is rotated by a stepping motor,
The photometric analyzer according to claim 1 or 2 , wherein the phase detection unit detects a phase of rotation of the cylindrical body using a pulse train signal to the stepping motor.
前記位相検出部が、エンコーダからの信号を用いて、前記筒状体の回転の位相を検出する請求項1又は2記載の測光分析計。
The phase detector, using a signal from the encoder, the photometric analyzer according to claim 1 or 2 wherein detecting the rotation phase of the tubular body.
JP2005244975A 2005-07-29 2005-07-29 Photometric analyzer Active JP4627022B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005244975A JP4627022B2 (en) 2005-07-29 2005-07-29 Photometric analyzer
CN2006101109308A CN101046441B (en) 2005-07-29 2006-07-31 Photometric analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005244975A JP4627022B2 (en) 2005-07-29 2005-07-29 Photometric analyzer

Publications (2)

Publication Number Publication Date
JP2007040943A JP2007040943A (en) 2007-02-15
JP4627022B2 true JP4627022B2 (en) 2011-02-09

Family

ID=37799041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005244975A Active JP4627022B2 (en) 2005-07-29 2005-07-29 Photometric analyzer

Country Status (2)

Country Link
JP (1) JP4627022B2 (en)
CN (1) CN101046441B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10429255B2 (en) 2014-08-22 2019-10-01 Murata Manufacturing Co., Ltd. Piezoelectric sensor and detecting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5171586B2 (en) * 2008-12-09 2013-03-27 中国電力株式会社 UV measuring device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5610233A (en) * 1979-07-07 1981-02-02 Horiba Ltd Continuous photometric analyzer
JPH03134544A (en) * 1989-10-20 1991-06-07 Nishihara Neo Kogyo Kk Automatic measuring method and apparatus of transparency
JPH04323532A (en) * 1991-04-22 1992-11-12 Olympus Optical Co Ltd Refractive index distribution measurement and device therefore
JPH10165167A (en) * 1996-09-27 1998-06-23 Becton Dickinson & Co Blood culture apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6911820B2 (en) * 2002-09-20 2005-06-28 Matsushita Electric Industrial Co., Ltd. Phase detection device, dial type detection device, and phase detection method
JP2004264146A (en) * 2003-02-28 2004-09-24 Horiba Ltd Optical device and analyzer having simple functions for preventing contamination and for correction

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5610233A (en) * 1979-07-07 1981-02-02 Horiba Ltd Continuous photometric analyzer
JPH03134544A (en) * 1989-10-20 1991-06-07 Nishihara Neo Kogyo Kk Automatic measuring method and apparatus of transparency
JPH04323532A (en) * 1991-04-22 1992-11-12 Olympus Optical Co Ltd Refractive index distribution measurement and device therefore
JPH10165167A (en) * 1996-09-27 1998-06-23 Becton Dickinson & Co Blood culture apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10429255B2 (en) 2014-08-22 2019-10-01 Murata Manufacturing Co., Ltd. Piezoelectric sensor and detecting device

Also Published As

Publication number Publication date
JP2007040943A (en) 2007-02-15
CN101046441A (en) 2007-10-03
CN101046441B (en) 2010-12-15

Similar Documents

Publication Publication Date Title
EP2044418B1 (en) Multiple path length transmittance measuring device
US10126246B2 (en) Lab-on-a-chip for alkalinity analysis
US20040051043A1 (en) Method for detecting a gas using an infrared gas analyser and gas analyser suitable for carrying out said method
JP2015518157A (en) Method and apparatus for measuring absorbance of substances in solution
WO2004025281A1 (en) Double optical path cell for automatic analyzing device and analyzing method using the double optical path cell
CN106461539A (en) Spectrophotometer with variable optical path length cell
JP2007040814A (en) Absorbance measuring sensor and method
Pinto et al. A low-cost lab-on-a-chip device for marine pH quantification by colorimetry
JP2007198739A (en) Autoanalyzer
JP2007256242A (en) Infrared gas detector
JP4627022B2 (en) Photometric analyzer
Ibarlucea et al. PDMS based photonic lab-on-a-chip for the selective optical detection of heavy metal ions
US20120287422A1 (en) System for measuring properties of test samples in fluid
EP3403087B1 (en) Wide range gas detection using an infrared gas detector
JP2007093492A (en) Differential refractive index detector and its adjusting method
JPH06265471A (en) Mixed acid content measuring method and device thereof
KR100840034B1 (en) Photometry Analyzer
JP2004279339A (en) Concentration measuring instrument
Palma et al. A simplified measurement procedure and portable electronic photometer for disposable sensors based on ionophore-chromoionophore chemistry for potassium determination
JP2009162719A (en) Automatic analysis apparatus
Zhang et al. A portable spectrophotometer for water quality analysis
CN209372694U (en) A kind of sewage monitoring system
JP4793413B2 (en) Differential refractive index detector
KR200230292Y1 (en) The Simultaneous Measuring Sensor of High and Low Concentration Ozone
JP2013104715A (en) Rotary type measuring cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101102

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4627022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250