JP2007040814A - Absorbance measuring sensor and method - Google Patents

Absorbance measuring sensor and method Download PDF

Info

Publication number
JP2007040814A
JP2007040814A JP2005224877A JP2005224877A JP2007040814A JP 2007040814 A JP2007040814 A JP 2007040814A JP 2005224877 A JP2005224877 A JP 2005224877A JP 2005224877 A JP2005224877 A JP 2005224877A JP 2007040814 A JP2007040814 A JP 2007040814A
Authority
JP
Japan
Prior art keywords
absorbance
chamber
measurement
chambers
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005224877A
Other languages
Japanese (ja)
Inventor
Masatake Hyodo
正威 兵頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005224877A priority Critical patent/JP2007040814A/en
Publication of JP2007040814A publication Critical patent/JP2007040814A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an absorbance measuring sensor and an absorbance measuring method capable of obtaining a precise measured result over a wide range from a low value of absorbance up to a high value thereof. <P>SOLUTION: The first measuring chamber 14 having the largest volume is arranged in a position nearest to an injection port 12, the second measuring chamber 15 having the second-large volume is connected consecutively to the first measuring chamber, the third measuring chamber 16 having the third-large volume is connected consecutively to the second measuring chamber, and the fourth measuring chamber 17 having the smallest volume is connected consecutively to the third measuring chamber 16. The same specimen is measured by the plurality of measuring chambers different in heights, and the absorbance of a change lowest in the absorbance to a transmittance is selected, based on an absorbance measured result to attain the precise measurement. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、検体と試薬とを反応させ、反応した検体の吸光度を測定する吸光度測定用センサ及び吸光度測定方法に関するものである。   The present invention relates to an absorbance measurement sensor and an absorbance measurement method for reacting a specimen with a reagent and measuring the absorbance of the reacted specimen.

従来、吸光度測定用センサは、図12に示すように、センサ本体1に検体を注入するための注入口2と、注入された検体を移送するための流路3と、移送された検体の吸光度を測定するための測定チャンバ4とから構成されていた。   Conventionally, as shown in FIG. 12, the absorbance measurement sensor has an inlet 2 for injecting a specimen into the sensor body 1, a flow path 3 for transferring the injected specimen, and the absorbance of the transferred specimen. And a measurement chamber 4 for measuring

また、この吸光度測定用センサを用いた測定装置は、図13に示すように、センサ本体1を回転させるための回転部8と、測定チャンバ4に光6を照射するための光源5と、測定チャンバ4を透過した光6を受光して電気信号に変換するための受光部7と、受光部7からの電気信号を処理する信号処理部8とから構成されていた。   Further, as shown in FIG. 13, the measuring apparatus using the absorbance measuring sensor includes a rotating unit 8 for rotating the sensor body 1, a light source 5 for irradiating the measurement chamber 4 with light 6, and a measurement. The light receiving unit 7 is configured to receive the light 6 transmitted through the chamber 4 and convert it into an electrical signal, and the signal processing unit 8 that processes the electrical signal from the light receiving unit 7.

測定方法は、まず注入口2に検体を流し込み、回転部9の回転によって比重に差がある検体を分離、分離された検体が測定チャンバ4に充填される。そして、検体が充填された測定チャンバ4に光源5が光6を照射。照射された光6が検体を透過し、受光部7によって受光され、電気信号に変換されて信号処理部8に送られる。信号処理部8では電気信号を処理し、検体中の各成分の定量測定を行なっていた。   In the measurement method, a sample is first poured into the injection port 2, a sample having a difference in specific gravity is separated by the rotation of the rotating unit 9, and the separated sample is filled in the measurement chamber 4. Then, the light source 5 irradiates the measurement chamber 4 filled with the specimen with the light 6. The irradiated light 6 passes through the specimen, is received by the light receiving unit 7, converted into an electrical signal, and sent to the signal processing unit 8. The signal processing unit 8 processes electric signals and performs quantitative measurement of each component in the specimen.

尚、この出願の発明に関する先行技術文献情報としては、例えば、特許文献1と特許文献2とが知られている。
特開平3−225276号公報 特開平2−269969号公報
For example, Patent Document 1 and Patent Document 2 are known as prior art document information relating to the invention of this application.
JP-A-3-225276 JP-A-2-269969

検体の各成分を定量測定する方法としては、測定したい成分と試薬を反応させ、反応した検体に対して光を照射し、その光の吸収度合い(吸光度)を測定することで求めることができる。そのときの吸光度ABSは、入射光をIo、出射光をIとすると式(1)で表される。   As a method for quantitatively measuring each component of the specimen, it can be obtained by reacting the component to be measured with a reagent, irradiating the reacted specimen with light, and measuring the light absorption degree (absorbance). The absorbance ABS at that time is expressed by Equation (1) where Io is incident light and I is outgoing light.

ABS = log(Io/I) ……… 式(1)
ここで、測定対象物となる検体の吸光度変化が例えば0〜2とし、Ioを1とした場合、Iは1〜0.01と100倍変化することになる。このとき変動係数CVを3%以下にしようとすると、吸光度0.02では標準偏差σ=±0.0006となり、IはI=0.95499、σ=±0.00132となる。また、吸光度2ではσ=±0.06となり、IはI=0.01、σ=+0.00148、−0.00129となる。
ABS = log (Io / I) ......... Formula (1)
Here, when the change in absorbance of the sample to be measured is 0 to 2, for example, and Io is 1, I changes 1 to 0.01 and 100 times. At this time, if the coefficient of variation CV is set to 3% or less, the standard deviation σ = ± 0.0006 is obtained at the absorbance 0.02, and I is 0.95499 and σ = ± 0.00132. Further, at absorbance 2, σ = ± 0.06, and I is I = 0.01, σ = + 0.00148, and −0.00129.

このように、精度を確保しようとした場合、特に吸光度の低い領域と高い領域で、装置側はIの微小な変化を読み取る必要がある。しかし、光源から出射される光量の安定性、Iの検出感度や検出精度は、部品の精度や温度変化、回路のノイズレベルによってある有限の値を持ち、極端に上げることは難しい。この場合、装置側はCVを下げる、もしくは所望のCVが確保できる吸光度範囲を絞る必要が出てくる。   Thus, when trying to ensure accuracy, it is necessary for the apparatus side to read minute changes in I, particularly in the low and high absorbance regions. However, the stability of the amount of light emitted from the light source, the detection sensitivity and detection accuracy of I have finite values depending on the accuracy of components, temperature changes, and circuit noise levels, and it is difficult to raise them extremely. In this case, the apparatus side needs to lower the CV or narrow the absorbance range in which a desired CV can be secured.

本発明は、前記従来の課題を解決するもので、吸光度の低値から高値まで広い範囲で高精度な測定結果が得られる吸光度測定用センサ及び吸光度測定方法を提供することを目的とする。   The present invention solves the above-described conventional problems, and an object thereof is to provide an absorbance measurement sensor and an absorbance measurement method capable of obtaining a highly accurate measurement result in a wide range from a low absorbance value to a high absorbance value.

前記従来の課題を解決するために、本発明の吸光度測定用センサは、ディスクに設けられた測定チャンバに収容された検体に照射された光が前記検体を透過して生ずる透過光を分析して前記検体の吸光度を測定する吸光度測定用センサにおいて、前記測定チャンバが前記透過光の光路長が異なる複数のチャンバを備えてなり、前記透過光の光路長が異なる複数のチャンバのうち測定に最適なチャンバを選択する選択手段を備え、前記選択手段により選択されたチャンバに収容された検体を透過する透過光を分析して前記検体の吸光度を測定してなる。   In order to solve the above-mentioned conventional problems, the absorbance measurement sensor according to the present invention analyzes the transmitted light generated by the light irradiated on the specimen contained in the measurement chamber provided on the disk passing through the specimen. In the absorbance measurement sensor for measuring the absorbance of the specimen, the measurement chamber includes a plurality of chambers having different optical path lengths of the transmitted light, and is optimal for measurement among the plurality of chambers having different optical path lengths of the transmitted light. Selection means for selecting a chamber is provided, and the absorbance of the specimen is measured by analyzing the transmitted light transmitted through the specimen contained in the chamber selected by the selection means.

さらに、本発明の吸光度測定用センサは、前記検体を受け入れる注入チャンバを備え、前記注入チャンバが受け入れた前記検体が流路を通じて前記測定チャンバに移送されてなる。   Furthermore, the absorbance measurement sensor of the present invention includes an injection chamber for receiving the sample, and the sample received by the injection chamber is transferred to the measurement chamber through a flow path.

さらに、本発明の吸光度測定用センサは、前記流路が分岐してなる複数の流路が形成され、前記測定チャンバを構成する前記透過光の光路長が異なる全てのチャンバに、前記複数の流路を通じて、前記注入チャンバから前記検体がチャンバごとに移送されてなる。   Furthermore, in the absorbance measurement sensor of the present invention, a plurality of flow paths formed by branching the flow paths are formed, and the plurality of flow paths are provided in all chambers having different optical path lengths of the transmitted light constituting the measurement chamber. Through the channel, the specimen is transferred from the injection chamber to each chamber.

さらに、本発明の吸光度測定用センサは、前記測定チャンバを構成する前記透過光の光路長の異なる全てのチャンバが一体に構成されてなる。   Furthermore, the absorbance measurement sensor of the present invention is configured such that all chambers having different optical path lengths of the transmitted light constituting the measurement chamber are integrally formed.

さらに、本発明の吸光度測定用センサは、前記測定チャンバを構成する前記透過光の光路長の異なる全てのチャンバが、流路を介してカスケード接続されてなる。   Furthermore, the absorbance measurement sensor of the present invention is formed by cascading all the chambers having different optical path lengths of the transmitted light that constitute the measurement chamber via the flow path.

さらに、本発明の吸光度測定用センサは、前記測定チャンバを構成する、前記透過光の光路長の異なる全てのチャンバが、前記検体を収容する部分の容積が大きいチャンバから順に、前記注入チャンバからの流路長が短い位置に配置されてなる。   Furthermore, the absorbance measurement sensor of the present invention is configured so that all the chambers constituting the measurement chamber having different optical path lengths of the transmitted light are separated from the injection chamber in order from the chamber in which the volume of the portion containing the specimen is large. The channel length is arranged at a short position.

さらに、本発明の吸光度測定用センサは、前記選択手段が、前記測定チャンバにおける前記透過光の光路長が異なる複数のチャンバのうち、前記チャンバに収容された検体の透過率に対する吸光度の変化が最小となるチャンバを選択してなる。   Furthermore, in the absorbance measurement sensor according to the present invention, the selection means has a minimum change in absorbance with respect to the transmittance of the sample contained in the chamber among the plurality of chambers having different optical path lengths of the transmitted light in the measurement chamber. Select the chamber to be

さらに、本発明の吸光度測定用センサは、前記選択手段が、前記チャンバの光路長と前記検体のモル吸光係数とに基づいて定められた、透過率に対する吸光度の変化が最も小さい吸光度範囲内にあるチャンバのうち、測定した吸光度が前記吸光度範囲内にあるチャンバを選択してなる。   Furthermore, in the absorbance measurement sensor of the present invention, the selection means is within an absorbance range in which the change in absorbance with respect to the transmittance is determined based on the optical path length of the chamber and the molar extinction coefficient of the specimen. Among the chambers, a chamber having a measured absorbance within the absorbance range is selected.

さらに、本発明の吸光度測定用センサは、前記透過光の光路長が異なる複数のチャンバが、収容する検体が流路を介して相互に移送可能に構成されてなり、さらに、前記ディスクの回転を制御する制御手段を備え、測定した吸光度が、前記チャンバの光路長と前記検体のモル吸光係数とに基づいて定められた、透過率に対する吸光度の変化が最も小さい吸光度範囲内にない場合、前記選択手段が、選択するチャンバを代えて透過光の光路長が異なる他のチャンバを選択し、前記制御手段が、前記ディスクの回転を制御することにより、前記検体を前記他のチャンバに移送してなる。   Further, the absorbance measurement sensor according to the present invention is configured such that the plurality of chambers having different optical path lengths of the transmitted light are configured such that the specimens to be accommodated can be transferred to each other via the flow path, and the disk is further rotated. A control means for controlling, wherein the measured absorbance is determined based on the optical path length of the chamber and the molar extinction coefficient of the sample, and when the change in absorbance with respect to the transmittance is not within the smallest absorbance range, the selection The means changes the selected chamber and selects another chamber having a different optical path length of the transmitted light, and the control means controls the rotation of the disk to transfer the specimen to the other chamber. .

さらに、本発明の吸光度測定用センサは、ディスクに設けられた、透過光の光路長が異なる複数のチャンバからなる測定チャンバに収容された検体に照射された光が、前記検体を透過して生ずる透過光を分析して前記検体の吸光度を測定する吸光度測定方法において、前記透過光の光路長が異なる複数のチャンバで吸光度を測定する第1工程と、前記第1工程において測定された吸光度が前記複数のチャンバのうち透過率に対する吸光度の変化が最も小さいチャンバにより測定されたか否かを判定する第2工程と、前記第1工程において測定された吸光度において透過率に対する吸光度の変化が最も小さいチャンバの測定値を出力する第3工程と、を有してなる。   Furthermore, in the absorbance measurement sensor of the present invention, the light irradiated to the specimen housed in the measurement chamber composed of a plurality of chambers provided on the disk and having different optical path lengths of the transmitted light is transmitted through the specimen. In the absorbance measurement method for analyzing the transmitted light and measuring the absorbance of the specimen, the first step of measuring the absorbance in a plurality of chambers having different optical path lengths of the transmitted light, and the absorbance measured in the first step A second step of determining whether or not a change in absorbance with respect to transmittance among the plurality of chambers is measured by a chamber having the smallest absorbance, and a chamber having the smallest change in absorbance with respect to transmittance in the absorbance measured in the first step. And a third step of outputting a measurement value.

さらに、本発明の吸光度測定用センサは、ディスクに設けられた、透過光の光路長が異なる複数のチャンバからなる測定チャンバに収容された検体に照射された光が、前記検体を透過して生ずる透過光を分析して前記検体の吸光度を測定する吸光度測定方法において、前記透過光の光路長が異なる複数のチャンバのうち第1チャンバで吸光度を測定する第1工程と、前記第1工程において測定された吸光度において前記複数のチャンバのうち透過率に対する吸光度の変化が最も小さいチャンバが前記第1チャンバであるか否かを判定する第2工程と、前記第1工程において測定された吸光度において透過率に対する吸光度の変化が最も小さいチャンバが前記第1チャンバであるとき前記第1チャンバの測定値を出力する第3工程と、を有してなる。   Furthermore, in the absorbance measurement sensor of the present invention, the light irradiated to the specimen housed in the measurement chamber composed of a plurality of chambers provided on the disk and having different optical path lengths of the transmitted light is transmitted through the specimen. In the absorbance measurement method for analyzing the transmitted light and measuring the absorbance of the specimen, the first step of measuring the absorbance in the first chamber among the plurality of chambers having different optical path lengths of the transmitted light, and the measurement in the first step A second step of determining whether the chamber having the smallest change in absorbance with respect to the transmittance among the plurality of chambers is the first chamber; and the transmittance in the absorbance measured in the first step. A third step of outputting a measurement value of the first chamber when the chamber having the smallest change in absorbance with respect to the first chamber is the first chamber; That.

本発明によれば、吸光度の低い領域、高い領域で高精度な測定結果が得られる吸光度測定用センサ及び吸光度測定方法を提供できる。   According to the present invention, it is possible to provide an absorbance measurement sensor and an absorbance measurement method capable of obtaining a highly accurate measurement result in a low absorbance region and a high absorbance region.

(実施の形態1)
以下、図面に基づいて本発明の実施の形態1における吸光度測定用センサと吸光度測定方法について説明する。
(Embodiment 1)
Hereinafter, an absorbance measurement sensor and an absorbance measurement method according to Embodiment 1 of the present invention will be described with reference to the drawings.

図1は、本実施の形態における吸光度測定用センサの概観図を示すものである。   FIG. 1 shows an overview of the absorbance measurement sensor according to the present embodiment.

図1において、11はセンサ本体であり、このセンサ本体11は透明又は半透明な材料で形成されている。12はセンサ本体11内部に形成された検体を注入するための注入チャンバで、上面の全部又は一部に検体注入用の穴が設けられている。14は第1の測定チャンバ、15は第2の測定チャンバ、16は第3の測定チャンバ、17は第4の測定チャンバである。   In FIG. 1, reference numeral 11 denotes a sensor body, and the sensor body 11 is formed of a transparent or translucent material. Reference numeral 12 denotes an injection chamber for injecting a specimen formed inside the sensor body 11, and a hole for specimen injection is provided in the whole or a part of the upper surface. Reference numeral 14 denotes a first measurement chamber, 15 denotes a second measurement chamber, 16 denotes a third measurement chamber, and 17 denotes a fourth measurement chamber.

13は注入された検体を測定チャンバに移送させるための流路Aで、一方が注入チャンバ12と接続され、もう一方は4つに分岐し、第1の測定チャンバ14、第2の測定チャンバ15、第3の測定チャンバ16、第4の測定チャンバ17にそれぞれ接続されている。尚、第1の測定チャンバ高さを3、第2の測定チャンバの高さを2、第3の測定チャンバの高さを1、第4の測定チャンバの高さを0.5とし、すべての測定チャンバは、センサ本体11の中心から同心円上に配置されている。   Reference numeral 13 denotes a flow path A for transferring the injected specimen to the measurement chamber, one of which is connected to the injection chamber 12 and the other branching into four, the first measurement chamber 14 and the second measurement chamber 15. Are connected to the third measurement chamber 16 and the fourth measurement chamber 17, respectively. The height of the first measurement chamber is 3, the height of the second measurement chamber is 2, the height of the third measurement chamber is 1, and the height of the fourth measurement chamber is 0.5. The measurement chamber is arranged concentrically from the center of the sensor body 11.

図2は、本実施の形態における他の吸光度測定用センサの概観図を示すものである。   FIG. 2 shows an overview of another absorbance measurement sensor according to the present embodiment.

図2において、19は第1の測定チャンバ14、第2の測定チャンバ15、第3の測定チャンバ16、第4の測定チャンバ17が一体になった測定チャンバで、18は注入チャンバ12と測定チャンバ19を一対一で接続する流路Bである。
他の吸光度測定用センサは、吸光度測定用センサの4つの測定チャンバを一体にしたもので、動作は吸光度測定用センサと全く同じであるが、測定チャンバが一体となっているため省スペースで実現できるメリットがある。
In FIG. 2, 19 is a measurement chamber in which a first measurement chamber 14, a second measurement chamber 15, a third measurement chamber 16, and a fourth measurement chamber 17 are integrated, and 18 is an injection chamber 12 and a measurement chamber. It is the flow path B which connects 19 one-on-one.
Other sensors for measuring absorbance are the ones that integrate the four measurement chambers of the sensor for measuring absorbance, and the operation is exactly the same as the sensor for measuring absorbance. There is a merit that can be done.

図3は、測定チャンバの断面図である。   FIG. 3 is a cross-sectional view of the measurement chamber.

図3において、21は高さLのチャンバで、20はチャンバ21に充填されているモル吸光係数εの検体である。   In FIG. 3, 21 is a chamber having a height L, and 20 is a specimen having a molar extinction coefficient ε filled in the chamber 21.

ここで、溶液濃度をCとすると、溶液における光路長Lと吸光度ABSの関係は、式(2)となる。更に式(1)と式(2)から、透過率は式(3)で表される。   Here, when the solution concentration is C, the relationship between the optical path length L and the absorbance ABS in the solution is expressed by Equation (2). Furthermore, the transmittance is expressed by equation (3) from equations (1) and (2).

ABS = εCL ……… 式(2)
I/Io = 10-εCL = 10-ABS ……… 式(3)
ここで、仮にε=1、L=0.5,1,2,3で、Cが0〜2まで変化するときの式(3)をグラフにすると図4になる。
また、図4の吸光度の低い領域を拡大したグラフが図5で、吸光度の高い領域を拡大したグラフが図6である。
ABS = εCL ......... Formula (2)
I / Io = 10 ε CL = 10− ABS Equation (3)
Here, if ε = 1, L = 0.5, 1, 2, 3 and C changes from 0 to 2, Equation (3) is graphed as shown in FIG.
4 is an enlarged graph of the low absorbance region in FIG. 4, and FIG. 6 is an enlarged graph of the high absorbance region.

吸光度の測定に際しては、吸光による出射光Iを測定し、予め測定しておいた入射光Ioと式(2)を用いて吸光度を算出する。このような場合において、吸光度をより精度よく測定するためには、透過率の測定精度を上げる必要があるが、上記でも述べたように、光源からの出射される光量の安定性、Iの検出感度や検出精度は、部品の精度や温度変化、回路のノイズレベルによってある有限の値を持ち、極端に上げることは難しい。しかし、根本的な透過率の測定精度が同じ場合でも、透過率を吸光度に変換する過程において、透過率に対する吸光度の変化を小さくすることで、最終結果である吸光度の測定精度を上げることは可能である。   In measuring the absorbance, the outgoing light I by absorption is measured, and the absorbance is calculated using the incident light Io measured in advance and the equation (2). In such a case, in order to measure the absorbance more accurately, it is necessary to increase the measurement accuracy of the transmittance. However, as described above, the stability of the amount of light emitted from the light source and the detection of I Sensitivity and detection accuracy have finite values depending on component accuracy, temperature change, and circuit noise level, and are difficult to raise extremely. However, even when the fundamental transmittance measurement accuracy is the same, it is possible to increase the measurement accuracy of the final absorbance by reducing the change in absorbance relative to the transmittance in the process of converting the transmittance to absorbance. It is.

図5において、4つのグラフの中で透過率に対する吸光度の変化が一番小さいものはL=3のグラフである。このことから、吸光度の低い領域では、L=0.5,1,2の測定チャンバよりL=3の測定チャンバを使用することで、吸光度の測定精度を上げることが可能である。   In FIG. 5, among the four graphs, the graph with L = 3 shows the smallest change in absorbance with respect to the transmittance. From this, in the region where the absorbance is low, the measurement accuracy of the absorbance can be increased by using the measurement chamber of L = 3 rather than the measurement chambers of L = 0.5, 1, and 2.

図6において、4つのグラフの中で透過率に対する吸光度の変化が一番小さいものはL=0.5のグラフである。このことから、吸光度の高い領域では、L=1,2,3の測定チャンバよりL=0.5の測定チャンバを使用することで、吸光度の測定精度を上げることが可能である。   In FIG. 6, among the four graphs, the graph with L = 0.5 has the smallest change in absorbance with respect to the transmittance. For this reason, in the region where the absorbance is high, it is possible to increase the measurement accuracy of the absorbance by using the measurement chamber with L = 0.5 rather than the measurement chamber with L = 1,2,3.

ここで、透過率に対する吸光度の変化はグラフの傾きで表され、図4、図5、図6では、この傾きが大きいほど透過率に対する吸光度の変化が小さく、吸光度の測定精度が良いと言える。   Here, the change in absorbance with respect to the transmittance is represented by the slope of the graph. In FIGS. 4, 5, and 6, the greater the slope, the smaller the change in absorbance with respect to the transmittance and the better the measurement accuracy of absorbance.

図7は、図4のグラフを微分して絶対値を求めたもので、吸光度に対する透過率の傾きの絶対値を示したグラフである。   FIG. 7 is a graph showing the absolute value of the slope of the transmittance with respect to the absorbance obtained by differentiating the graph of FIG. 4 to obtain the absolute value.

図7において、4つのグラフで傾きが大きくなる吸光度範囲が異なることが分かる。吸光度0〜0.15ではL=3が、吸光度0.15〜0.3ではL=2が、吸光度0.3〜0.6ではL=1が、吸光度0.6以上ではL=0.5が他のグラフに比べて傾きが最も大きくなっていることが分かる。このことから、測定対象物が取る吸光度値において、傾きが最も大きいグラフの光路長を有するチャンバで測定することで、より正確に吸光度の測定が可能になる。   In FIG. 7, it can be seen that the absorbance range in which the slope increases in the four graphs is different. L = 3 at an absorbance of 0 to 0.15, L = 2 at an absorbance of 0.15 to 0.3, L = 1 at an absorbance of 0.3 to 0.6, and L = 0. 5 shows that the slope is the largest compared to the other graphs. From this, the absorbance value taken by the measurement object can be measured more accurately by measuring in the chamber having the optical path length of the graph having the largest slope.

以下、図8を用いて、本実施の形態における測定装置について説明する。
図8において、22は指向性を持った光源、23は光源22をセンサ本体11の内外周方向に移動させるための移動部、24はセンサ本体11を回転させる回転部、25は光源22から発する光、26はセンサ本体11を透過した光25を受光しアナログ電気信号に変換する受光部、27は受光部26からのアナログ電気信号を増幅するアンプ、28はアナログ電気信号をディジタルデータに変換するためのADC、29はADC28からのディジタルデータを用いて吸光度計算をする吸光度計算部、30は吸光度計算部29の結果を参照し、その中から最適な値を選択する結果選択部、31は結果選択部31で選択された値を表示する表示部である。
Hereinafter, the measurement apparatus in the present embodiment will be described with reference to FIG.
In FIG. 8, 22 is a light source having directivity, 23 is a moving unit for moving the light source 22 in the inner and outer peripheral directions of the sensor body 11, 24 is a rotating unit for rotating the sensor body 11, and 25 is emitted from the light source 22. Light, 26 is a light receiving unit that receives the light 25 transmitted through the sensor body 11 and converts it into an analog electric signal, 27 is an amplifier that amplifies the analog electric signal from the light receiving unit 26, and 28 converts the analog electric signal into digital data. ADC 29 for calculating the absorbance using digital data from the ADC 28, 30 for referring to the result of the absorbance calculator 29, and selecting the optimum value from among them, 31 for the result It is a display unit that displays the value selected by the selection unit 31.

まず測定したい検体をピペット等で注入チャンバ12に注入。その後、センサ11を回転部24にセットする。セット後、センサ11が所定の回転数で回転し、その遠心力で検体が流路A13を通り第1の測定チャンバ14、第2の測定チャンバ15、第3の測定チャンバ16、第4の測定チャンバ17に等しく移送される。
ここで、試薬は流路A13内、又は図示しない試薬チャンバに塗られており、検体がそこを通ることで呈色反応や凝集反応等の化学的な反応が起こる。尚、必要な場合は流路A13に遠心分離用チャンバを設け、遠心分離用チャンバに検体があるときに回転部24が高速回転することにより、比重の違う検体を分離して必要成分を抽出することも可能である。
First, the sample to be measured is injected into the injection chamber 12 with a pipette or the like. Thereafter, the sensor 11 is set on the rotating unit 24. After the setting, the sensor 11 rotates at a predetermined rotational speed, and the specimen passes through the flow path A13 by the centrifugal force, and the first measurement chamber 14, the second measurement chamber 15, the third measurement chamber 16, and the fourth measurement. Equally transferred to the chamber 17.
Here, the reagent is applied in the flow path A13 or a reagent chamber (not shown), and a chemical reaction such as a color reaction or an agglutination reaction occurs when the specimen passes therethrough. If necessary, a centrifuge chamber is provided in the flow path A13, and when the sample is in the centrifuge chamber, the rotating unit 24 rotates at a high speed to separate samples having different specific gravity and extract necessary components. It is also possible.

また、注入チャンバ12や流路A13に濾紙又はフィルタを設け、必要成分のみ抽出することも可能である。また、検体液面の高さが変動すると光路長に差が生じ、吸光度に誤差が生じるため、常に一定な高さを保つ必要がある。そのためには、所定の回転数以上の回転を保って、遠心力で検体を常に測定チャンバに充填しておくか、若しくは、オーバーフローチャンバを設けて、ある高さ以上になるとそこに流れ込むような構造にして検体高さを一定に保つようにする必要がある。   It is also possible to provide filter paper or a filter in the injection chamber 12 or the flow path A13 and extract only necessary components. Further, if the height of the sample liquid surface varies, a difference occurs in the optical path length and an error occurs in the absorbance. Therefore, it is necessary to always maintain a constant height. For this purpose, the structure is such that the measurement chamber is always filled with centrifugal force while maintaining a rotation of a predetermined number of rotations or more, or an overflow chamber is provided and flows into the chamber when the height exceeds a certain level. Thus, it is necessary to keep the specimen height constant.

光源22は、移動部23によってセンサ本体11の内外周方向に移動が可能であり、測定の際には、所定回転数で回転しているセンサ本体11の中心から同心円上に配置された第1の測定チャンバ14、第2の測定チャンバ15、第3の測定チャンバ16、第4の測定チャンバ17と図示しないリファレンスチャンバの真下に位置し、すべての測定チャンバと図示しないリファレンスチャンバに対して同じ光量の光25を照射する。   The light source 22 can be moved in the inner and outer peripheral directions of the sensor main body 11 by the moving unit 23, and in measurement, the first light source 22 is arranged concentrically from the center of the sensor main body 11 rotating at a predetermined number of rotations. The measurement chamber 14, the second measurement chamber 15, the third measurement chamber 16, the fourth measurement chamber 17, and a reference chamber (not shown) are located immediately below, and the same amount of light is applied to all measurement chambers and a reference chamber (not shown). The light 25 is irradiated.

ここで、図示しないリファレンスチャンバとは、吸光度を計算するための基準となる入射光量Ioを測定するためのもので、チャンバ内は、空気、若しくは、検体と同じ屈折率をもつ物質で満たされている。   Here, the reference chamber (not shown) is for measuring the amount of incident light Io as a reference for calculating the absorbance, and the chamber is filled with air or a substance having the same refractive index as the specimen. Yes.

照射された光25は、検体で満たされたすべての測定チャンバとリファレンスチャンバを透過し、その透過光は光検出部26で受光される。光検出部26で受光された光は電気信号に変換され、アンプ27で測定に必要なダイナミックレンジが取れるレベルまで増幅されADC28に入力される。ADC28に入力された電気信号はディジタルデータに変換され吸光度計算部29に送られる。   The irradiated light 25 passes through all measurement chambers and reference chambers filled with the specimen, and the transmitted light is received by the light detection unit 26. The light received by the light detection unit 26 is converted into an electrical signal, amplified by an amplifier 27 to a level that can take a dynamic range necessary for measurement, and input to the ADC 28. The electrical signal input to the ADC 28 is converted into digital data and sent to the absorbance calculation unit 29.

ここで、図9を用いて、ADCデータ取得から結果表示までの流れを説明する。
図9において、吸光度計算部29は、ADC28からディジタルデータとして送られてくる第1の測定チャンバ14の透過光量I14、第2の測定チャンバ15の透過光量I15、第3の測定チャンバの透過光量I16、第4の測定チャンバの透過光量I17とリファレンスチャンバの透過光量Ioを受け取る。ここで、各測定チャンバの透過光量I1417とリファレンスチャンバの透過光量Ioは、式(2)におけるIとIoにそれぞれ相当するため、各測定チャンバ14〜17での吸光度計算式は、式(4)、式(5)、式(6)、式(7)で表される。吸光度計算部29は、式(4)、式(5)、式(6)、式(7)から第1の測定チャンバ14、第2の測定チャンバ15、第3の測定チャンバ16、第4の測定チャンバ17それぞれの吸光度ABS14、ABS15、ABS16、ABS17を計算し、結果選択部30に転送する。
Here, the flow from ADC data acquisition to result display will be described with reference to FIG.
9, the absorbance calculation section 29, transmitted light quantity I 14 of the first measurement chamber 14 transmitted as digital data from the ADC 28, the transmitted light quantity I 15 of the second measuring chamber 15, transmission of the third measurement chamber The light amount I 16 , the transmitted light amount I 17 of the fourth measurement chamber, and the transmitted light amount Io of the reference chamber are received. Here, the transmitted light amounts I 14 to 17 of each measurement chamber and the transmitted light amount Io of the reference chamber correspond to I and Io in the equation (2), respectively. It is represented by (4), formula (5), formula (6), and formula (7). The absorbance calculation unit 29 calculates the first measurement chamber 14, the second measurement chamber 15, the third measurement chamber 16, the fourth measurement from the expressions (4), (5), (6), and (7). The absorbances ABS 14 , ABS 15 , ABS 16 , and ABS 17 of each measurement chamber 17 are calculated and transferred to the result selection unit 30.

ABS14 = 1/3*log(Io/I14) ……… 式(4)
ABS15 = 1/2*log(Io/I15) ……… 式(5)
ABS16 = log(Io/I16) ……… 式(6)
ABS17 = 2*log(Io/I17) ……… 式(7)
次に結果選択部30は、ABS14が0〜0.15の範囲にあるか否かを見て、範囲内であれば計算したABS14を表示部31に送る。範囲外の場合、今度はABS15が0.15〜0.3の範囲にあるか否かを見て、範囲内であれば計算したABS15を表示部31に送る。更に範囲外の場合、今度はABS16が0.3〜0.6の範囲にあるか否かを見て、範囲内であれば計算したABS16を表示部31に送る。それでも範囲外の場合は、無条件にABS17を表示部31に送る。
ABS 14 = 1/3 * log (Io / I 14 ) Equation (4)
ABS 15 = 1/2 * log (Io / I 15 ) (5)
ABS 16 = log (Io / I 16 ) ……… Formula (6)
ABS 17 = 2 * log (Io / I 17 ) ......... Formula (7)
Next, the result selection unit 30 checks whether or not the ABS 14 is in the range of 0 to 0.15, and if it is within the range, sends the calculated ABS 14 to the display unit 31. If it is out of range, it is checked whether or not ABS 15 is in the range of 0.15 to 0.3, and if it is within range, the calculated ABS 15 is sent to the display unit 31. If it is outside the range, it is checked whether or not the ABS 16 is in the range of 0.3 to 0.6. If it is within the range, the calculated ABS 16 is sent to the display unit 31. If it is still out of range, the ABS 17 is unconditionally sent to the display unit 31.

以上のように、本実施の形態においては、同一検体を複数の高さの異なる測定チャンバで測定し、その吸光度結果から、透過率に対する吸光度の変化の小さい測定チャンバで得られた吸光度値を選択することで、より精度の高い測定が可能となる。   As described above, in the present embodiment, the same specimen is measured in a plurality of measurement chambers having different heights, and the absorbance value obtained in the measurement chamber having a small change in absorbance with respect to the transmittance is selected from the absorbance results. By doing so, measurement with higher accuracy becomes possible.

(実施の形態2)
図10は、本発明の実施の形態2における吸光度測定用センサの概観図である。実施の形態2において実施の形態1と同じものについては同一符号を付して説明を簡略化している。
(Embodiment 2)
FIG. 10 is an overview of the absorbance measurement sensor according to Embodiment 2 of the present invention. In the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description is simplified.

図10において、32は測定チャンバ同士をカスケード接続し、毛細管力によって検体を移送させるサイフォン構造を有した流路Cである。また、最も容積の大きい第1の測定チャンバ14が最も注入口12に近い位置に配置され、続いて2番目に容積の大きい第2の測定チャンバ15が第1の測定チャンバに接続され、続いて3番目に容積の大きい第3の測定チャンバ16が第2の測定チャンバに接続され、最後に最も容積の小さい第4の測定チャンバ17が第3の測定チャンバ14に接続されている。   In FIG. 10, reference numeral 32 denotes a flow path C having a siphon structure in which measurement chambers are cascade-connected and a specimen is transferred by capillary force. In addition, the first measurement chamber 14 having the largest volume is disposed at the position closest to the inlet 12, and then the second measurement chamber 15 having the second largest volume is connected to the first measurement chamber, and then The third measurement chamber 16 having the third largest volume is connected to the second measurement chamber, and finally the fourth measurement chamber 17 having the smallest volume is connected to the third measurement chamber 14.

次に、図11の吸光度測定フローチャートを用いて動作の説明を行う。   Next, the operation will be described using the absorbance measurement flowchart of FIG.

まず注入口12に入れた検体が、回転部24の回転による遠心力によって第1の測定チャンバ14に送られる。検体が第1の測定チャンバ14にあるとき、光源22が移動部23によって、第1の測定チャンバ14の真下に移動し、そこで第1の測定チャンバ14に対して光25を照射。その透過光は光検出部26で受光される。このとき、センサ本体11は光検出部26で受光された光は電気信号に変換され、アンプ27で測定に必要なダイナミックレンジが取れるレベルまで増幅されADC28に入力される。   First, the specimen placed in the injection port 12 is sent to the first measurement chamber 14 by the centrifugal force generated by the rotation of the rotating unit 24. When the specimen is in the first measurement chamber 14, the light source 22 is moved immediately below the first measurement chamber 14 by the moving unit 23, and the first measurement chamber 14 is irradiated with light 25 there. The transmitted light is received by the light detection unit 26. At this time, in the sensor body 11, the light received by the light detection unit 26 is converted into an electric signal, amplified by the amplifier 27 to a level at which a dynamic range required for measurement can be taken, and input to the ADC 28.

ADC28に入力された電気信号はディジタルデータに変換され吸光度計算部29に送られ、そこで透過光量I14と予め取得しておいた図示しないリファレンスチャンバの透過光量Ioと式(4)から吸光度ABS14が計算される。計算された吸光度ABS14は結果選択部30に送られる。次に結果選択部30は、ABS14が0〜0.15の範囲にあるか否かを見て、範囲内であれば計算したABS14を表示部31に送る。範囲外の場合、回転部23は所定回転数で回転していた回転を停止するか、回転数を落とす。それに伴って、毛細管力が遠心力を上回り、検体は流路C32を通って第1の測定チャンバ14から第2の測定チャンバ15に送られる。送られた後、回転部24は再度所定回転数で回転を行う。 The electrical signal input to the ADC 28 is converted into digital data and sent to the absorbance calculation unit 29, where the absorbance ABS 14 is calculated from the transmitted light amount I 14 , the transmitted light amount Io of a reference chamber (not shown) obtained in advance and the equation (4). Is calculated. The calculated absorbance ABS 14 is sent to the result selection unit 30. Next, the result selection unit 30 checks whether or not the ABS 14 is in the range of 0 to 0.15, and if it is within the range, sends the calculated ABS 14 to the display unit 31. When it is out of the range, the rotation unit 23 stops the rotation that has been rotated at the predetermined rotation number or reduces the rotation number. Accordingly, the capillary force exceeds the centrifugal force, and the specimen is sent from the first measurement chamber 14 to the second measurement chamber 15 through the flow path C32. After being sent, the rotating unit 24 rotates again at a predetermined rotational speed.

次に、光源22は第2の測定チャンバ15の真下に移動し、前回同様光25を照射し、透過光量I15を取得。吸光度計算部29は、透過光量I15とIoと式(5)を用いて吸光度ABS15を計算する。計算された吸光度ABS15は前回同様結果選択部30に送られる。次に結果選択部30は、ABS15が0.15〜0.3の範囲にあるか否かを見て、範囲内であれば計算したABS15を表示部31に送る。範囲外の場合、回転部23は所定回転数で回転していた回転を停止するか、回転数を落とす。それによって、検体は流路C32を通って第2の測定チャンバ15から第3の測定チャンバ16に送られる。 Next, the light source 22 moves directly below the second measurement chamber 15 and irradiates the light 25 as in the previous time to obtain the transmitted light amount I 15 . The absorbance calculation unit 29 calculates the absorbance ABS 15 using the transmitted light amounts I 15 and Io and equation (5). The calculated absorbance ABS 15 is sent to the result selection unit 30 as in the previous time. Next, the result selection unit 30 checks whether or not the ABS 15 is in the range of 0.15 to 0.3, and if it is within the range, sends the calculated ABS 15 to the display unit 31. When it is out of the range, the rotation unit 23 stops the rotation that has been rotated at the predetermined rotation number or reduces the rotation number. Thereby, the specimen is sent from the second measurement chamber 15 to the third measurement chamber 16 through the flow path C32.

次に光源22は第3の測定チャンバ16の真下に移動し、透過光量I16を取得、Ioと式(6)を用いて吸光度ABS16を計算する。計算された吸光度ABS16は前回同様結果選択部30に送られる。結果選択部30は、ABS16が0.3〜0.6の範囲にあるか否かを見て、範囲内であれば計算したABS16を表示部31に送る。範囲外の場合、回転部23は所定回転数で回転していた回転を停止するか、回転数を落とし、検体は流路C32を通って第3の測定チャンバ16から第4の測定チャンバ17に送られる。 Then light source 22 is moved directly below the third measurement chamber 16, the quantity of transmitted light I 16 acquired, calculating the absorbance ABS 16 by using the Io and Equation (6). The calculated absorbance ABS 16 is sent to the result selection unit 30 as in the previous time. The result selection unit 30 checks whether or not the ABS 16 is in the range of 0.3 to 0.6, and if it is within the range, sends the calculated ABS 16 to the display unit 31. When it is out of the range, the rotating unit 23 stops the rotation that has been rotated at the predetermined number of rotations or reduces the number of rotations, and the specimen passes from the third measurement chamber 16 to the fourth measurement chamber 17 through the flow path C32. Sent.

次に光源22は第4の測定チャンバ17の真下に移動し、透過光量I17を取得、Ioと式(7)を用いて吸光度ABS17を計算する。計算された吸光度ABS17は前回同様結果選択部30に送られる。結果選択部30は、ABS17表示部31に送る。 Next, the light source 22 moves directly below the fourth measurement chamber 17, acquires the transmitted light amount I 17 , and calculates the absorbance ABS 17 using Io and Equation (7). The calculated absorbance ABS 17 is sent to the result selection unit 30 as in the previous time. The result selection unit 30 sends the result to the ABS 17 display unit 31.

以上のように、本実施の形態においては、同一検体を複数の高さの異なる測定チャンバで測定し、その吸光度結果から、透過率に対する吸光度の変化の小さい測定チャンバで得られた吸光度値を選択することで、より精度の高い測定が可能となる。また、検体を移動させて順次測定を行うため、検体量は実施の形態1に比べてはるかに少なくて済む。   As described above, in the present embodiment, the same specimen is measured in a plurality of measurement chambers having different heights, and the absorbance value obtained in the measurement chamber having a small change in absorbance with respect to the transmittance is selected from the absorbance results. By doing so, measurement with higher accuracy becomes possible. In addition, since the sample is moved and sequentially measured, the amount of the sample is much smaller than that of the first embodiment.

本発明にかかる吸光度測定用センサと測定装置及び測定方法によれば、測定対象物の吸光度値において、透過率に対する吸光度の変化の小さな光路長を持った測定チャンバを選択することで、測定誤差を少なくできるため、精度の高い吸光度測定装置に適用できる。   According to the absorbance measurement sensor, measurement apparatus, and measurement method according to the present invention, the measurement error can be reduced by selecting a measurement chamber having an optical path length with a small change in absorbance with respect to the transmittance in the absorbance value of the measurement object. Since it can be reduced, it can be applied to a highly accurate absorbance measuring apparatus.

本発明の実施の形態1における吸光度測定用センサの概観図Overview of absorbance measurement sensor according to Embodiment 1 of the present invention 本発明の実施の形態1における他の吸光度測定用センサの概観図Overview of another absorbance measurement sensor according to Embodiment 1 of the present invention 本発明の実施の形態1における測定チャンバの断面図Sectional drawing of the measurement chamber in Embodiment 1 of this invention 本発明の実施の形態1における吸光度対透過率グラフAbsorbance vs. transmittance graph in Embodiment 1 of the present invention 本発明の実施の形態1における吸光度(吸光度低値)対透過率グラフAbsorbance (low absorbance value) vs. transmittance graph in Embodiment 1 of the present invention 本発明の実施の形態1における吸光度(吸光度高値)対透過率グラフAbsorbance (absorbance high value) vs. transmittance graph in Embodiment 1 of the present invention 本発明の実施の形態1における吸光度対透過率傾きグラフAbsorbance vs. transmittance slope graph in Embodiment 1 of the present invention 本発明の実施の形態1における測定装置ブロック図Measuring device block diagram in Embodiment 1 of the present invention 本発明の実施の形態1における吸光度測定フローチャートAbsorbance measurement flowchart in Embodiment 1 of the present invention 本発明の実施の形態2における吸光度測定用センサの概観図Overview of absorbance measuring sensor according to Embodiment 2 of the present invention 本発明の実施の形態2における吸光度測定フローチャートAbsorbance measurement flowchart in Embodiment 2 of the present invention 従来の吸光度測定用センサの概観図Overview of conventional absorbance measurement sensor 従来の吸光度測定装置のブロック図Block diagram of a conventional absorbance measurement device

符号の説明Explanation of symbols

11 センサ本体
12 注入チャンバ
13 流路A
14 第1の測定チャンバ
15 第2の測定チャンバ
16 第3の測定チャンバ
17 第4の測定チャンバ
18 流路B
19 一体型測定チャンバ
20 検体
21 測定チャンバ
22 光源
23 移動部
24 回転部
25 光
26 受光部
27 アンプ
28 ADC
29 吸光度計算部
30 結果選択部
31 表示部
32 流路C
11 Sensor body 12 Injection chamber 13 Flow path A
14 First measurement chamber 15 Second measurement chamber 16 Third measurement chamber 17 Fourth measurement chamber 18 Flow path B
19 Integrated measurement chamber 20 Sample 21 Measurement chamber 22 Light source 23 Moving unit 24 Rotating unit 25 Light 26 Light receiving unit 27 Amplifier 28 ADC
29 Absorbance calculation unit 30 Result selection unit 31 Display unit 32 Channel C

Claims (11)

ディスクに設けられた測定チャンバに収容された検体に照射された光が前記検体を透過して生ずる透過光を分析して前記検体の吸光度を測定する吸光度測定用センサにおいて、前記測定チャンバが前記透過光の光路長が異なる複数のチャンバを備えてなり、前記透過光の光路長が異なる複数のチャンバのうち測定に最適なチャンバを選択する選択手段を備え、前記選択手段により選択されたチャンバに収容された検体を透過する透過光を分析して前記検体の吸光度を測定してなる、吸光度測定用センサ。 In an absorbance measurement sensor for analyzing the transmitted light generated when light irradiated to a sample contained in a measurement chamber provided on a disk passes through the sample and measuring the absorbance of the sample, the measurement chamber transmits the transmission A plurality of chambers having different optical path lengths for light, and a selection means for selecting a chamber most suitable for measurement among the plurality of chambers having different optical path lengths for the transmitted light, and accommodated in the chamber selected by the selection means A sensor for measuring absorbance obtained by analyzing transmitted light transmitted through the sample and measuring the absorbance of the sample. 前記検体を受け入れる注入チャンバを備え、前記注入チャンバが受け入れた前記検体が流路を通じて前記測定チャンバに移送されてなる、請求項1に記載の吸光度測定用センサ。 The absorbance measurement sensor according to claim 1, further comprising an injection chamber that receives the specimen, wherein the specimen received by the injection chamber is transferred to the measurement chamber through a flow path. 前記流路が分岐してなる複数の流路が形成され、前記測定チャンバを構成する前記透過光の光路長が異なる全てのチャンバに、前記複数の流路を通じて、前記注入チャンバから前記検体がチャンバごとに移送されてなる、請求項2に記載の吸光度測定用センサ。 A plurality of flow paths formed by branching the flow paths are formed, and the analyte is chambered from the injection chamber to all the chambers having different optical path lengths of the transmitted light constituting the measurement chamber through the plurality of flow paths. The absorbance measurement sensor according to claim 2, wherein the absorbance measurement sensor is transferred every time. 前記測定チャンバを構成する前記透過光の光路長の異なる全てのチャンバが一体に構成されてなる、請求項3に記載の吸光度測定用センサ。 The absorbance measurement sensor according to claim 3, wherein all chambers having different optical path lengths of the transmitted light constituting the measurement chamber are integrally formed. 前記測定チャンバを構成する前記透過光の光路長の異なる全てのチャンバが、流路を介してカスケード接続されてなる、請求項2に記載の吸光度測定用センサ。 The absorbance measurement sensor according to claim 2, wherein all chambers having different optical path lengths of the transmitted light constituting the measurement chamber are cascade-connected through a flow path. 前記測定チャンバを構成する、前記透過光の光路長の異なる全てのチャンバが、前記検体を収容する部分の容積が大きいチャンバから順に、前記注入チャンバからの流路長が短い位置に配置されてなる、請求項5に記載の吸光度測定用センサ。 All the chambers having different optical path lengths of the transmitted light constituting the measurement chamber are arranged in a position where the flow path length from the injection chamber is short in order from the chamber having the larger volume of the portion for accommodating the specimen. The absorbance measurement sensor according to claim 5. 前記選択手段が、前記測定チャンバにおける前記透過光の光路長が異なる複数のチャンバのうち、前記チャンバに収容された検体の透過率に対する吸光度の変化が最小となるチャンバを選択してなる、請求項1に記載の吸光度測定用センサ。 The said selection means selects the chamber from which the change of the light absorbency with respect to the transmittance | permeability of the test substance accommodated in the said chamber becomes the minimum among several chambers from which the optical path length of the said transmitted light in the said measurement chamber differs. The absorbance measurement sensor according to 1. 前記選択手段が、前記チャンバの光路長と前記検体のモル吸光係数とに基づいて定められた、透過率に対する吸光度の変化が最も小さい吸光度範囲内にあるチャンバのうち、測定した吸光度が前記吸光度範囲内にあるチャンバを選択してなる、請求項7に記載の吸光度測定用センサ。 Among the chambers in which the selection means is within the absorbance range in which the change in absorbance with respect to the transmittance is determined based on the optical path length of the chamber and the molar extinction coefficient of the specimen, the measured absorbance is the absorbance range. The absorbance measuring sensor according to claim 7, wherein a chamber in the chamber is selected. 前記透過光の光路長が異なる複数のチャンバが、収容する検体が流路を介して相互に移送可能に構成されてなり、さらに、前記ディスクの回転を制御する制御手段を備え、測定した吸光度が、前記チャンバの光路長と前記検体のモル吸光係数とに基づいて定められた、透過率に対する吸光度の変化が最も小さい吸光度範囲内にない場合、前記選択手段が、選択するチャンバを代えて透過光の光路長が異なる他のチャンバを選択し、前記制御手段が、前記ディスクの回転を制御することにより、前記検体を前記他のチャンバに移送してなる、請求項7に記載の吸光度測定用センサ。 The plurality of chambers having different optical path lengths of the transmitted light are configured such that the specimens to be accommodated can be transferred to each other via the flow path, and further include control means for controlling the rotation of the disk, and the measured absorbance is If the change in absorbance with respect to transmittance is not within the smallest absorbance range determined based on the optical path length of the chamber and the molar extinction coefficient of the sample, the selection means replaces the chamber to be selected and transmits light. 8. The absorbance measurement sensor according to claim 7, wherein another chamber having a different optical path length is selected, and the control means controls the rotation of the disk to transfer the specimen to the other chamber. . ディスクに設けられた、透過光の光路長が異なる複数のチャンバからなる測定チャンバに収容された検体に照射された光が、前記検体を透過して生ずる透過光を分析して前記検体の吸光度を測定する吸光度測定方法において、前記透過光の光路長が異なる複数のチャンバで吸光度を測定する第1工程と、前記第1工程において測定された吸光度が前記複数のチャンバのうち透過率に対する吸光度の変化が最も小さいチャンバにより測定されたか否かを判定する第2工程と、前記第1工程において測定された吸光度において透過率に対する吸光度の変化が最も小さいチャンバの測定値を出力する第3工程と、を有してなる、吸光度測定方法。 Analyzing the transmitted light generated by the light irradiated on the specimen housed in the measurement chamber composed of a plurality of chambers with different optical path lengths of the transmitted light provided on the disk, and measuring the absorbance of the specimen. In the absorbance measurement method to be measured, a first step of measuring absorbance in a plurality of chambers having different optical path lengths of the transmitted light, and a change in absorbance with respect to transmittance of the plurality of chambers measured in the first step. A second step of determining whether or not is measured by the smallest chamber, and a third step of outputting the measured value of the chamber having the smallest change in absorbance with respect to the transmittance in the absorbance measured in the first step. An absorbance measurement method comprising: ディスクに設けられた、透過光の光路長が異なる複数のチャンバからなる測定チャンバに収容された検体に照射された光が、前記検体を透過して生ずる透過光を分析して前記検体の吸光度を測定する吸光度測定方法において、前記透過光の光路長が異なる複数のチャンバのうち第1チャンバで吸光度を測定する第1工程と、前記第1工程において測定された吸光度において前記複数のチャンバのうち透過率に対する吸光度の変化が最も小さいチャンバが前記第1チャンバであるか否かを判定する第2工程と、前記第1工程において測定された吸光度において透過率に対する吸光度の変化が最も小さいチャンバが前記第1チャンバであるとき前記第1チャンバの測定値を出力する第3工程と、を有してなる、吸光度測定方法。

Analyzing the transmitted light generated by the light irradiated on the specimen housed in the measurement chamber composed of a plurality of chambers with different optical path lengths of the transmitted light provided on the disk, and measuring the absorbance of the specimen. In the absorbance measurement method to be measured, a first step of measuring absorbance in a first chamber among a plurality of chambers having different optical path lengths of the transmitted light, and transmission of the plurality of chambers in the absorbance measured in the first step. A second step of determining whether or not the chamber having the smallest change in absorbance with respect to the rate is the first chamber; and the chamber having the smallest change in absorbance with respect to the transmittance in the absorbance measured in the first step. And a third step of outputting a measurement value of the first chamber when it is one chamber.

JP2005224877A 2005-08-03 2005-08-03 Absorbance measuring sensor and method Pending JP2007040814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005224877A JP2007040814A (en) 2005-08-03 2005-08-03 Absorbance measuring sensor and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005224877A JP2007040814A (en) 2005-08-03 2005-08-03 Absorbance measuring sensor and method

Publications (1)

Publication Number Publication Date
JP2007040814A true JP2007040814A (en) 2007-02-15

Family

ID=37798938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005224877A Pending JP2007040814A (en) 2005-08-03 2005-08-03 Absorbance measuring sensor and method

Country Status (1)

Country Link
JP (1) JP2007040814A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052893A (en) * 2007-08-23 2009-03-12 Otsuka Denshi Co Ltd Solution characteristic measuring instrument and solution characteristic measuring method
JP2009069152A (en) * 2007-09-10 2009-04-02 F Hoffmann La Roche Ag Method and apparatus for analyzing dry-chemical test element
WO2012081361A1 (en) * 2010-12-13 2012-06-21 シャープ株式会社 Analysis apparatus and analysis method
JPWO2012036296A1 (en) * 2010-09-17 2014-02-03 ユニバーサル・バイオ・リサーチ株式会社 Cartridge and automatic analyzer
WO2014038399A1 (en) * 2012-09-07 2014-03-13 シャープ株式会社 Measurement instrument, and measurement apparatus
WO2017109068A1 (en) * 2015-12-24 2017-06-29 Koninklijke Philips N.V. A method and a system for determinations of cell suspensions
WO2017195205A1 (en) * 2016-05-11 2017-11-16 S.D. Sight Diagnostics Ltd Sample carrier for optical measurements
US10093957B2 (en) 2013-07-01 2018-10-09 S.D. Sight Diagnostics Ltd. Method, kit and system for imaging a blood sample
US10176565B2 (en) 2013-05-23 2019-01-08 S.D. Sight Diagnostics Ltd. Method and system for imaging a cell sample
US10482595B2 (en) 2014-08-27 2019-11-19 S.D. Sight Diagnostics Ltd. System and method for calculating focus variation for a digital microscope
US10488644B2 (en) 2015-09-17 2019-11-26 S.D. Sight Diagnostics Ltd. Methods and apparatus for detecting an entity in a bodily sample
US10640807B2 (en) 2011-12-29 2020-05-05 S.D. Sight Diagnostics Ltd Methods and systems for detecting a pathogen in a biological sample
US10831013B2 (en) 2013-08-26 2020-11-10 S.D. Sight Diagnostics Ltd. Digital microscopy systems, methods and computer program products
US10843190B2 (en) 2010-12-29 2020-11-24 S.D. Sight Diagnostics Ltd. Apparatus and method for analyzing a bodily sample
US11099175B2 (en) 2016-05-11 2021-08-24 S.D. Sight Diagnostics Ltd. Performing optical measurements on a sample
US11609413B2 (en) 2017-11-14 2023-03-21 S.D. Sight Diagnostics Ltd. Sample carrier for microscopy and optical density measurements
US11733150B2 (en) 2016-03-30 2023-08-22 S.D. Sight Diagnostics Ltd. Distinguishing between blood sample components

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55125527A (en) * 1979-03-20 1980-09-27 Hitachi Maxell Ltd Magnetic head demagnetizing unit
JPH036553A (en) * 1989-06-05 1991-01-14 Asahi Chem Ind Co Ltd New recording material
JPH0397650A (en) * 1989-09-08 1991-04-23 Toto Ltd Production of ceramic compound
JPH1026584A (en) * 1995-06-23 1998-01-27 Inter Tec:Kk Flow cell
JPH11241987A (en) * 1998-02-24 1999-09-07 Shinko Electric Co Ltd Water quality measuring device
JP2001502793A (en) * 1996-09-28 2001-02-27 セントラル リサーチ ラボラトリーズ リミティド Apparatus and method for chemical analysis
JP2002503331A (en) * 1995-12-05 2002-01-29 ガメラ バイオサイエンス コーポレイション Apparatus and method for using centripetal acceleration to drive liquid transfer in a microfluidic device engineering system with onboard information science
JP2004101381A (en) * 2002-09-10 2004-04-02 Nittec Co Ltd Double path cell for automatic analyzer, and analysis method using the double path cell

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55125527A (en) * 1979-03-20 1980-09-27 Hitachi Maxell Ltd Magnetic head demagnetizing unit
JPH036553A (en) * 1989-06-05 1991-01-14 Asahi Chem Ind Co Ltd New recording material
JPH0397650A (en) * 1989-09-08 1991-04-23 Toto Ltd Production of ceramic compound
JPH1026584A (en) * 1995-06-23 1998-01-27 Inter Tec:Kk Flow cell
JP2002503331A (en) * 1995-12-05 2002-01-29 ガメラ バイオサイエンス コーポレイション Apparatus and method for using centripetal acceleration to drive liquid transfer in a microfluidic device engineering system with onboard information science
JP2001502793A (en) * 1996-09-28 2001-02-27 セントラル リサーチ ラボラトリーズ リミティド Apparatus and method for chemical analysis
JPH11241987A (en) * 1998-02-24 1999-09-07 Shinko Electric Co Ltd Water quality measuring device
JP2004101381A (en) * 2002-09-10 2004-04-02 Nittec Co Ltd Double path cell for automatic analyzer, and analysis method using the double path cell

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052893A (en) * 2007-08-23 2009-03-12 Otsuka Denshi Co Ltd Solution characteristic measuring instrument and solution characteristic measuring method
JP2009069152A (en) * 2007-09-10 2009-04-02 F Hoffmann La Roche Ag Method and apparatus for analyzing dry-chemical test element
JPWO2012036296A1 (en) * 2010-09-17 2014-02-03 ユニバーサル・バイオ・リサーチ株式会社 Cartridge and automatic analyzer
WO2012081361A1 (en) * 2010-12-13 2012-06-21 シャープ株式会社 Analysis apparatus and analysis method
JP2012127696A (en) * 2010-12-13 2012-07-05 Sharp Corp Analyzer and analyzing method
US10843190B2 (en) 2010-12-29 2020-11-24 S.D. Sight Diagnostics Ltd. Apparatus and method for analyzing a bodily sample
US10640807B2 (en) 2011-12-29 2020-05-05 S.D. Sight Diagnostics Ltd Methods and systems for detecting a pathogen in a biological sample
US11584950B2 (en) 2011-12-29 2023-02-21 S.D. Sight Diagnostics Ltd. Methods and systems for detecting entities in a biological sample
WO2014038399A1 (en) * 2012-09-07 2014-03-13 シャープ株式会社 Measurement instrument, and measurement apparatus
US11100634B2 (en) 2013-05-23 2021-08-24 S.D. Sight Diagnostics Ltd. Method and system for imaging a cell sample
US10176565B2 (en) 2013-05-23 2019-01-08 S.D. Sight Diagnostics Ltd. Method and system for imaging a cell sample
US11295440B2 (en) 2013-05-23 2022-04-05 S.D. Sight Diagnostics Ltd. Method and system for imaging a cell sample
US11803964B2 (en) 2013-05-23 2023-10-31 S.D. Sight Diagnostics Ltd. Method and system for imaging a cell sample
US10093957B2 (en) 2013-07-01 2018-10-09 S.D. Sight Diagnostics Ltd. Method, kit and system for imaging a blood sample
US11434515B2 (en) 2013-07-01 2022-09-06 S.D. Sight Diagnostics Ltd. Method and system for imaging a blood sample
US10831013B2 (en) 2013-08-26 2020-11-10 S.D. Sight Diagnostics Ltd. Digital microscopy systems, methods and computer program products
US11100637B2 (en) 2014-08-27 2021-08-24 S.D. Sight Diagnostics Ltd. System and method for calculating focus variation for a digital microscope
US10482595B2 (en) 2014-08-27 2019-11-19 S.D. Sight Diagnostics Ltd. System and method for calculating focus variation for a digital microscope
US11721018B2 (en) 2014-08-27 2023-08-08 S.D. Sight Diagnostics Ltd. System and method for calculating focus variation for a digital microscope
US11796788B2 (en) 2015-09-17 2023-10-24 S.D. Sight Diagnostics Ltd. Detecting a defect within a bodily sample
US10663712B2 (en) 2015-09-17 2020-05-26 S.D. Sight Diagnostics Ltd. Methods and apparatus for detecting an entity in a bodily sample
US11199690B2 (en) 2015-09-17 2021-12-14 S.D. Sight Diagnostics Ltd. Determining a degree of red blood cell deformity within a blood sample
US11262571B2 (en) 2015-09-17 2022-03-01 S.D. Sight Diagnostics Ltd. Determining a staining-quality parameter of a blood sample
US11914133B2 (en) 2015-09-17 2024-02-27 S.D. Sight Diagnostics Ltd. Methods and apparatus for analyzing a bodily sample
US10488644B2 (en) 2015-09-17 2019-11-26 S.D. Sight Diagnostics Ltd. Methods and apparatus for detecting an entity in a bodily sample
CN108431600A (en) * 2015-12-24 2018-08-21 皇家飞利浦有限公司 Method and system for determining cell suspension
WO2017109068A1 (en) * 2015-12-24 2017-06-29 Koninklijke Philips N.V. A method and a system for determinations of cell suspensions
US10782306B2 (en) 2015-12-24 2020-09-22 Koninklijke Philips N.V. Method and a system for determinations of cell suspensions
US11733150B2 (en) 2016-03-30 2023-08-22 S.D. Sight Diagnostics Ltd. Distinguishing between blood sample components
US11307196B2 (en) 2016-05-11 2022-04-19 S.D. Sight Diagnostics Ltd. Sample carrier for optical measurements
EP4177593A1 (en) * 2016-05-11 2023-05-10 S.D. Sight Diagnostics Ltd. Sample carrier for optical measurements
WO2017195205A1 (en) * 2016-05-11 2017-11-16 S.D. Sight Diagnostics Ltd Sample carrier for optical measurements
US11808758B2 (en) 2016-05-11 2023-11-07 S.D. Sight Diagnostics Ltd. Sample carrier for optical measurements
US11099175B2 (en) 2016-05-11 2021-08-24 S.D. Sight Diagnostics Ltd. Performing optical measurements on a sample
US11614609B2 (en) 2017-11-14 2023-03-28 S.D. Sight Diagnostics Ltd. Sample carrier for microscopy measurements
US11609413B2 (en) 2017-11-14 2023-03-21 S.D. Sight Diagnostics Ltd. Sample carrier for microscopy and optical density measurements
US11921272B2 (en) 2017-11-14 2024-03-05 S.D. Sight Diagnostics Ltd. Sample carrier for optical measurements

Similar Documents

Publication Publication Date Title
JP2007040814A (en) Absorbance measuring sensor and method
Smolka et al. A mobile lab-on-a-chip device for on-site soil nutrient analysis
CN102216784B (en) Automatic analysis device
KR101277140B1 (en) Apparatus and method for spectrophotometric analysis
RU2698818C2 (en) Paper sensitive element design
JP6445202B2 (en) System and method for integrated multiplexed photometric module
CN109863386B (en) Total protein measurement using whole blood refractometry
EP2813839A1 (en) Calibration method for photometry
US9494417B2 (en) Method for determining a shape correction value F for laboratory liquid-analysis cuvettes
US5455177A (en) Method for analysis of a medical sample
JP5946776B2 (en) Automatic analyzer
US20070190637A1 (en) Apparatus for handling fluids
JP2008076342A (en) Automatic analyzer
DK2777062T3 (en) Device and method for determining the amounts of two or more substances present in a liquid
US20230175966A1 (en) Wide-area-sample based reader design for diagnostic detection of bio-particles
JP2006275817A (en) Method and device for detecting formaldehyde
US8947668B2 (en) Method for determining the path length of a sample and validating the measurement obtained
WO1999047261A1 (en) Method and apparatus for measuring proteins
JP2014510930A (en) Optical equipment
JP4145892B2 (en) Thermal lens spectroscopic analysis system and thermal lens signal correction method
JP6957713B2 (en) Path length calibration system and method
JPS6252434A (en) Absorption photometric analytic method
KR20110031729A (en) Disc for testing blood and blood tester the same and control method thereof
RU2315976C1 (en) Multi-sensor device for analysis of multi-component aqueous media
WO2001004612A2 (en) A method of determining the content of a component in a fluid sample and an apparatus therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080707

RD01 Notification of change of attorney

Effective date: 20091126

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A977 Report on retrieval

Effective date: 20101008

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Effective date: 20101104

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111011