JP4625747B2 - Piping inspection device and piping inspection method - Google Patents
Piping inspection device and piping inspection method Download PDFInfo
- Publication number
- JP4625747B2 JP4625747B2 JP2005295827A JP2005295827A JP4625747B2 JP 4625747 B2 JP4625747 B2 JP 4625747B2 JP 2005295827 A JP2005295827 A JP 2005295827A JP 2005295827 A JP2005295827 A JP 2005295827A JP 4625747 B2 JP4625747 B2 JP 4625747B2
- Authority
- JP
- Japan
- Prior art keywords
- ultrasonic
- amplitude
- pipe
- ultrasonic probe
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Description
本発明は、配管の減肉や傷を超音波を用いて非破壊的に検出する配管検査方法および装置に関する。 The present invention relates to a pipe inspection method and apparatus for nondestructively detecting pipe thinning and scratches using ultrasonic waves.
発電プラントや化学プラントの配管は、長期間が経過すると、配管の内外面からの腐食や侵食が配管の劣化を進行させ、ついには配管の肉厚を貫通するまでに至る。このように成ると、液体や蒸気といった配管内部流体の漏洩につながる。このため、配管の肉厚の状態を、非破壊的な手段により評価し、漏洩に至る以前に、配管の交換や補修といった対策を施す必要がある。 When a long time elapses in the piping of a power plant or chemical plant, corrosion and erosion from the inner and outer surfaces of the piping cause the piping to deteriorate, and finally reaches the thickness of the piping. If it becomes like this, it will lead to leakage of fluid inside a pipe, such as liquid and steam. For this reason, it is necessary to evaluate the thickness of the pipe by non-destructive means and to take measures such as replacement and repair of the pipe before leakage.
配管の肉厚の状態を評価する非破壊測定手段の代表的なものに、超音波厚み計がある。超音波厚み計は、一般には、電気と音響を相互に変換する圧電素子から成る超音波センサを用いて、対象配管中にバルク波(縦波や横波といった弾性波)を励起して、配管底面で反射した弾性波を同一もしくは別の超音波センサで受信して、配管の肉厚を測定する装置である。 A typical example of a nondestructive measuring means for evaluating the thickness state of a pipe is an ultrasonic thickness gauge. An ultrasonic thickness gauge generally uses an ultrasonic sensor composed of a piezoelectric element that converts electricity and sound to each other, and excites bulk waves (elastic waves such as longitudinal waves and transverse waves) in a target pipe, thereby This is a device that receives the elastic wave reflected at the point by the same or another ultrasonic sensor and measures the wall thickness of the pipe.
この超音波厚み計は、受信波の受信時間を肉厚に換算するという原理であって、高い精度で配管の肉厚を測定することができるが、検査範囲は、センサの配管との接触範囲とほぼ同等程度に限られる。長尺の配管のように検査要求範囲が広くなると、超音波厚み計による測定点の増加が想定されるから、検査に長時間を要する欠点がある。 This ultrasonic thickness meter is based on the principle of converting the reception time of the received wave to the wall thickness, and can measure the wall thickness of the pipe with high accuracy, but the inspection range is the contact range of the sensor with the pipe. Is limited to almost the same level. When the inspection requirement range becomes wide like a long pipe, an increase in the number of measurement points by the ultrasonic thickness gauge is assumed, so there is a drawback that inspection takes a long time.
また、保温材が巻かれている配管や、コンクリート等に埋設されている埋設配管や、高所にまで垂直に立ち上がっている垂直配管など検査のためのアクセス性に問題のある配管においては、検査の準備・片付けに要する時間も多大である。 Also, inspect pipes with insulation problems, such as pipes wrapped with heat insulation, buried pipes embedded in concrete, etc., or vertical pipes standing upright to high places. It takes a lot of time to prepare and clean up.
このように時間がかかる問題に対する一つの対応策として、ガイド波(配管や板のように境界面を有する物体中を、反射やモード変換しながら進行する縦波・横波の干渉によって形成される弾性波)を用いて配管の長距離区間を一括して検査する方法がある。図12は、特許文献1に記載されているガイド波の送信方法を説明するための説明図であり、
121は検査対象の配管、122は励振アセンブリであって、複数の励振デバイス3A,3B,3Cからなる。これらの励振デバイス3A,3B,3Cは、配管の周方向に配置された複数の超音波探触子からなる。
As one countermeasure against such a time-consuming problem, a guide wave (elasticity formed by interference of longitudinal and transverse waves traveling in an object having a boundary surface such as a pipe or a plate while reflecting or mode-converting. There is a method for inspecting long-distance sections of piping in a lump using waves. FIG. 12 is an explanatory diagram for explaining the guide wave transmission method described in
121 is a pipe to be inspected, 122 is an excitation assembly, and includes a plurality of
図12で、励振デバイス3A中の複数の超音波探触子を同時に駆動し、時間遅延を与えて3B,3Cを同様に駆動することで、配管121の軸方向に沿う単一方向に、単一モードのラム波を送信する。配管121の途中に減肉あるいは欠陥があると、その位置でガイド波が反射するので、その反射波を励振アセンブリ3A,3B,3Cで受信して、受信波の波高値や受信時間から減肉あるいは欠陥の大きさと軸方向位置を測定する。
In FIG. 12, a plurality of ultrasonic probes in the
しかしながら、複数の超音波探触子が配管121に均等に接触していないと、軸対称の振動のみを送信することができず、非軸対称振動の影響によりノイズ(擬似信号)が発生するという欠点があった。
However, if a plurality of ultrasonic probes are not evenly in contact with the
この改善策として、複数の送受信子群から一つの送受信子群を送信用として選択し、一つ以上の送受信子群を受信用として選択して送受信を行い、送信用と受信用の送受信子群の組み合わせを変えて複数回の送受信を行い、受信信号に補正をかけて補正後のデータを合成することで、軸対称のガイド波を送信するのと等価な作用を得る方法がある。図13は、この方法による超音波探傷装置の構成を示す模式図であって、131は検査対象の配管、134は送受信子群、135は送受信部、136は信号処理部、137は表示部、
138は制御部、9a,9bは配管131の傷である。
As an improvement measure, one transmitter / receiver group is selected for transmission from a plurality of transmitter / receiver groups, one or more transmitter / receiver groups are selected for reception, and transmission / reception is performed. There is a method of obtaining an operation equivalent to transmitting an axially symmetric guide wave by performing a plurality of times of transmission / reception by changing the combination of the above, correcting the received signal and synthesizing the corrected data. FIG. 13 is a schematic diagram showing the configuration of an ultrasonic flaw detector according to this method, wherein 131 is a pipe to be inspected, 134 is a transceiver group, 135 is a transceiver, 136 is a signal processor, 137 is a display,
しかしながら、この方法では、送信用として常に一つの送受信子群しか選択しないので、ガイド波が配管の軸に沿った双方向に伝播する。受信信号を合成して逆方向からの信号を打ち消す処理を備えることにより、単一方向からの反射信号のみを抽出するが、逆方向に管端のような大きな反射源がある場合には、完全に打ち消すことができずにノイズ(擬似信号)として残る場合がある。 However, in this method, since only one transceiver group is always selected for transmission, the guide wave propagates in both directions along the pipe axis. By combining the received signals and canceling the signal from the reverse direction, only the reflected signal from a single direction is extracted, but if there is a large reflection source such as the tube end in the reverse direction, In some cases, it cannot be canceled out and remains as noise (pseudo signal).
以上の背景技術で述べましたように、配管の周囲に配置した複数の探触子を用いて配管にガイド波を伝播させて配管を非破壊的に検査する技術においては、各探触子の配管への接触状態の不均一さが原因となってノイズ(擬似信号)が発生することが問題点である。 As described in the background art above, in the technology that non-destructively inspects pipes by propagating guide waves to the pipes using a plurality of probes arranged around the pipes, The problem is that noise (pseudo signal) is generated due to non-uniformity of the contact state with the pipe.
したがって、本発明の目的は、配管の周囲に配置した複数の探触子を用いて配管にガイド波を伝播させて配管を非破壊的に検査する技術において、各探触子の配管への接触状態の不均一さが原因となって発生するノイズ(擬似信号)を低減することにある。 Accordingly, an object of the present invention is to contact each probe with a pipe in a technique for non-destructively inspecting a pipe by propagating a guide wave to the pipe using a plurality of probes arranged around the pipe. It is to reduce noise (pseudo signal) generated due to non-uniformity of the state.
本発明の課題を解決するための配管検査装置は、配管の周方向に配列される複数の第一の超音波探触子を有した第一の超音波探触子環状群と、前記第一の超音波探触子環状群から前記配管の軸方向に離れた位置にて、前記配管の円周方向に配列される複数の第二の超音波探触子を有した第二の超音波探触子環状群と、前記配管の検査領域の方向へ伝播するガイド波の振幅を増幅させ、前記方向と反対方向へ伝播するガイド波の振幅を減幅させるように、前記第一の超音波探触子に送信信号を印加する印加時期と、前記第二の超音波探触子に送信信号を印加する印加時期とを相対的にずらす手段と、前記第一と第二の各超音波探触子で前記ガイド波の反射波を受けて得られた電気的な受信信号を信号処理手段へ伝送する手段とを備え、前記受信信号に基づいて前記配管の傷または減肉を検出する配管検査装置において、前記各超音波探触子の個々にガイド波を送受信させる手段と、前記個々に送受信して得られた送信信号の振幅と受信信号の振幅に基づいて求めた送受信振幅補正係数によって前記発信信号を補正する送信信号の補正手段と、前記送受信振幅補正係数によって前記第一と前記第二の超音波探触子の受信信号の振幅を、前記第一と第二の超音波探触子の受信信号の合成によって振幅が増幅される遅延時間を前記第一と第二の超音波探触子の受信信号の少なくともいずれか一方に与える受信信号の補正手段と、前記補正後の前記受信信号を合成する信号処理手段とを備えた配管検査装置である。 A pipe inspection apparatus for solving the problems of the present invention includes a first ultrasonic probe annular group having a plurality of first ultrasonic probes arranged in a circumferential direction of a pipe, and the first A second ultrasonic probe having a plurality of second ultrasonic probes arranged in a circumferential direction of the pipe at a position distant from the annular group of ultrasonic probes in the axial direction of the pipe. The first ultrasonic probe is adapted to amplify the amplitude of the guide wave propagating in the direction of the inspection ring group and the inspection region of the pipe and reduce the amplitude of the guide wave propagating in the direction opposite to the direction. Means for relatively shifting an application timing for applying a transmission signal to the transducer and an application timing for applying a transmission signal to the second ultrasonic probe; and the first and second ultrasonic probes. Means for transmitting an electrical reception signal obtained by receiving a reflected wave of the guide wave at a child to a signal processing means, In the pipe inspection apparatus for detecting flaws or thinning of the pipe based on the number, means for transmitting / receiving a guide wave to each of the ultrasonic probes, and the amplitude of the transmission signal obtained by transmitting / receiving individually And a transmission signal correction means for correcting the transmission signal by a transmission / reception amplitude correction coefficient obtained based on the amplitude of the reception signal, and reception signals of the first and second ultrasonic probes by the transmission / reception amplitude correction coefficient. The delay time during which the amplitude is amplified by the synthesis of the reception signals of the first and second ultrasonic probes is at least one of the reception signals of the first and second ultrasonic probes A pipe inspection apparatus comprising a correction means for the received signal applied to the signal and a signal processing means for synthesizing the corrected received signal.
本発明の課題を解決するための配管検査方法は、複数の第一の超音波探触子を環状に配置して有する第一の超音波探触子環状群と、複数の第二の超音波探触子を環状に配置して有する第二の超音波探触子環状群とを、検査対象の配管の周囲に前記配管の軸方向に間隔を開けて配置し、次に、前記第一の超音波探触子と前記第二の超音波探触子とに相互に発信信号の印加時期をずらすことで前記配管内にガイド波を検査領域方向に振幅を増強して伝播させ、反検査領域方向へのガイド波の振幅を抑制し、次に、配管の傷もしくは減肉個所で反射した前記ガイド波に基づく超音波を前記第一の超音波探触子と前記第二の超音波探触子で受信する配管検査方法において、前記第一と第二の各超音波探触子から超音波を前記配管に対して送受信し、その際の受信信号の振幅によって、前記第一と第二の各超音波探触子の前記配管への接触状態を測定し、前記接触状態に基づいて、前記第一と第二の各超音波探触子の個々に関する送受信振幅補正係数を算出し、前記第一と第二の各超音波探触子から前記配管への超音波の送信信号の振幅を、前記送受信振幅係数に基づき各々補正した送信信号の振幅とし、前記補正後の送信信号の振幅による前記超音波を前記第一と第二の各超音波探触子から前記配管へ送信して前記ガイド波を前記配管に伝播させ、次に、全ての前記第一の超音波探触子と全ての前記第二の超音波探触子で前記ガイド波の反射波に基づく超音波を受信し、前記第一と前記第二の超音波探触子の受信信号について、振幅を前記送受信振幅補正係数によって補正すると共に、前記第一と第二の超音波探触子の受信信号の合成によって振幅が増幅される遅延時間を前記第一と第二の超音波探触子の受信信号の少なくともいずれか一方に与えて受信信号の補正を施し、次に、補正を施した前記受信信号を合成することを特徴とする配管検査方法である。 A pipe inspection method for solving the problems of the present invention includes a first ultrasonic probe annular group having a plurality of first ultrasonic probes arranged in an annular shape, and a plurality of second ultrasonic waves. A second ultrasonic probe ring group having probes arranged in a ring, and arranged around the pipe to be inspected at intervals in the axial direction of the pipe; A guide wave is propagated in the pipe with an increased amplitude in the direction of the inspection region by shifting the application time of the transmission signal between the ultrasonic probe and the second ultrasonic probe, and the anti-inspection region The amplitude of the guide wave in the direction is suppressed, and then the ultrasonic wave based on the guide wave reflected at a flaw or a thinning portion of the pipe is changed to the first ultrasonic probe and the second ultrasonic probe. In the pipe inspection method received by a child, ultrasonic waves are transmitted / received to / from the pipes from the first and second ultrasonic probes. The contact state of the first and second ultrasonic probes to the pipe is measured according to the amplitude of the received signal at the time, and the first and second ultrasonic probes are measured based on the contact state. A transmission / reception amplitude correction coefficient for each of the transducers is calculated, and the transmission amplitudes of the ultrasonic transmission signals from the first and second ultrasonic probes to the pipe are corrected based on the transmission / reception amplitude coefficients, respectively. The amplitude of the signal, the ultrasonic wave according to the amplitude of the transmission signal after the correction is transmitted from the first and second ultrasonic probes to the pipe, and the guide wave is propagated to the pipe, The first ultrasonic probe and all the second ultrasonic probes receive ultrasonic waves based on the reflected waves of the guide wave, and the first and second ultrasonic probes. For the received signal of the tentacle, the amplitude is corrected by the transmission / reception amplitude correction coefficient, and A delay time in which the amplitude is amplified by combining the reception signals of the first and second ultrasonic probes is given to at least one of the reception signals of the first and second ultrasonic probes, and The pipe inspection method is characterized by performing correction and then combining the corrected reception signals.
本発明の配管検査方法及び装置は、探触子の接触状態の不均一さとガイド波の双方向伝播により発生するノイズ(擬似信号)を低減できるので、表面状態が悪い配管や、止端部や溶接線などの構造上の反射源がある配管に対しても良いSN比で検査が可能になる利点がある。 The pipe inspection method and apparatus of the present invention can reduce noise (pseudo signal) generated by non-uniformity of the contact state of the probe and bidirectional propagation of the guide wave. There is an advantage that inspection with a good S / N ratio is possible even for a pipe having a structural reflection source such as a weld line.
本発明の配管検査装置の一形態は、探触子の接触状態の不均一さとガイド波の双方向伝播により発生するノイズ(擬似信号)の問題を解決するために、被検査体である配管の円周方向に複数の第一の超音波探触子を配列した第一の超音波探触子環状群と、前記第一の超音波探触子環状群から前記配管の軸方向に離れた位置で前記配管の円周方向に複数の第二の超音波探触子を配列した第二の超音波探触子環状群と、前記第一の超音波探触子環状群から選択した第一の超音波探触子と前記第二の超音波探触子環状群から選択した第二の超音波探触子に対して信号を個別に送受信する送受信手段と、前記第一の超音波探触子環状群と前記第二の超音波探触子環状群で受信した複数の信号を加算する信号処理手段とを備えることを最も主要な構成としている。 One form of the pipe inspection apparatus of the present invention is to solve the problem of non-uniform contact state of the probe and noise (pseudo signal) generated by bidirectional propagation of the guide wave. A first ultrasonic probe annular group in which a plurality of first ultrasonic probes are arranged in the circumferential direction, and a position away from the first ultrasonic probe annular group in the axial direction of the pipe And a first ultrasonic probe annular group in which a plurality of second ultrasonic probes are arranged in the circumferential direction of the pipe, and a first ultrasonic probe annular group selected from the first ultrasonic probe annular group Transmission / reception means for individually transmitting / receiving signals to / from a second ultrasonic probe selected from the ultrasonic probe and the second ultrasonic probe annular group, and the first ultrasonic probe A signal processing means for adding a plurality of signals received by the annular group and the second ultrasonic probe annular group; To have.
はじめに、本発明の第1の実施形態における装置の構成を、図1と図2を用いて説明する。 First, the configuration of the apparatus according to the first embodiment of the present invention will be described with reference to FIGS. 1 and 2.
図1は、本実施形態に係わる配管検査装置の全体構成のブロック図であり、同図において、1,2は超音波探触子環状群、3はガイド波送受信器、4はA/D変換器、5はコンピュータ、6はガイド波、7は配管、8は表示装置である。 FIG. 1 is a block diagram of the overall configuration of a pipe inspection apparatus according to the present embodiment, in which 1 and 2 are ultrasonic probe ring groups, 3 is a guide wave transmitter / receiver, and 4 is A / D conversion. 5 is a computer, 6 is a guide wave, 7 is a pipe, and 8 is a display device.
超音波探触子環状群1は、超音波探触子1a,1b,1c,1dで構成される。超音波探触子1aは、単独の超音波探触子、もしくは複数の超音波探触子を並列接続したものである(図示せず)。超音波探触子1b,1c,1dも同様であるが、超音波探触子の数は超音波探触子1aと同一であることが望ましい。超音波探触子環状群2は、超音波探触子2a,2b,2c,2dで構成される。超音波探触子2a,2b,2c,2dは、各々超音波探触子1aと同様に単独の超音波探触子、もしくは複数の超音波探触子を並列接続したものである。なお、各超音波探触子環状群1,2の配置に関しては、後述する。
The ultrasonic probe
超音波探触子1a等を構成する超音波探触子は、配管7にガイド波を発生させるもので、例えば圧電素子で構成されており、配管7に接触して配置され、ガイド波送受信器3と同軸ケーブルを介して電気的に接続されている。ガイド波送受信器3は、ガイド波を送信するために超音波探触子1a等に送信波形を印加して、さらに超音波探触子1a等からの受信波形を増幅する手段で、コンピュータ5とデジタルデータを通信できるように接続され、また、受信波形を、A/D変換器4に送るように同軸ケーブルを介して接続されている。コンピュータ5には表示装置が接続されていて、その表示装置にコンピュータで処理した結果や処理前のデータを表示することが出来るように構成されている。
The ultrasonic probe constituting the
A/D変換器4は、アナログ信号をデジタル信号に変換する機能を有し、ガイド波送受信器3から出力されるガイド波の受信波形をデジタル波形としてコンピュータ5に通信するように接続される。このA/D変換器4は、例えば、市販の外付けA/D変換器やコンピュータ組み込み式のボードタイプが利用される。
The A / D converter 4 has a function of converting an analog signal into a digital signal, and is connected so as to communicate the received waveform of the guide wave output from the guide wave transmitter /
次に、ガイド波送受信器3の内部構成例を、図2を用いて説明する。同図において、
3a,3bは信号発生器であり、送信波形の周波数を任意に設定できるシンセサイザ、もしくは任意波形発生器で構成できる。3c,3dはそれらからの送信信号を増幅するパワーアンプ、3e,3fはパワーアンプからの送信信号をどの超音波探触子に送るかを決める送信側の素子切替器であって、3gはどの超音波探触子からの受信信号を受け入れるかを決める受信側の素子切替器である。3hは素子切替器3gから受けた受信信号を増幅する受信アンプである。
Next, an example of the internal configuration of the
次に、超音波探触子環状群1と超音波探触子環状群2の配置に関して、図3を用いて説明する。図3は、材質が炭素鋼(縦波音速=5940m/s,横波音速=3260m/s)で、外径114.3mm,肉厚6mm(肉厚と外径の比が0.052)の配管の場合の、周波数と肉厚の積とガイド波の音速の関係を示す。
Next, the arrangement of the ultrasonic probe
図3において、41はガイド波のT(0,1)モード、42はガイド波のT(0,2)モード、43はガイド波のT(0,3)モード、44はガイド波のT(0,4)モードと呼ばれ、T(0,m)で表すmの数字が大きいほど板厚方向の変位分布が複雑になる。複数のモードが混在すると信号が複雑になることから、T(0,1)モードを利用するのが望ましい。 In FIG. 3, 41 is a guide wave T (0,1) mode, 42 is a guide wave T (0,2) mode, 43 is a guide wave T (0,3) mode, and 44 is a guide wave T (0,3) mode. It is called a (0,4) mode, and the larger the m number represented by T (0, m), the more complicated the displacement distribution in the plate thickness direction. The use of the T (0,1) mode is desirable because the signal becomes complicated when a plurality of modes coexist.
いま、周波数を40kHzとすると、ガイド波のT(0,1)モードの位相速度が3260m/sなので、位相速度を周波数で除した波長λは81.5mm となる。図1において、配管の一方向に進行するガイド波の振幅を減少させ、逆方向に進行するガイド波の振幅を最大にする条件は、超音波探触子1a,1b,1c,1dと超音波探触子2a,2b,2c,2dの間の距離を(2n+1)λ/4(n=0,1,2‥)として、超音波探触子環状群1と超音波探触子環状群2に、(2n+1)τ/4(n=0,1,2‥、τは周期)の遅延を与えて同一信号を送信すれば良く、例えばn=0では超音波探触子環状群1と超音波探触子環状群2の間の距離は約20.4mmとなる。
Now, assuming that the frequency is 40 kHz, the phase velocity of the T (0,1) mode of the guide wave is 3260 m / s, so the wavelength λ obtained by dividing the phase velocity by the frequency is 81.5 mm. In FIG. 1, the conditions for reducing the amplitude of the guide wave traveling in one direction of the pipe and maximizing the amplitude of the guide wave traveling in the opposite direction are the
ここで、本発明の実施例1における配管検査装置の動作を、図1と図2,図4のフローチャート、及び図5から図9を用いて説明する。初めに、コンピュータ5は、超音波探触子を選択して反射波のデータを取得する(ステップS101)。
Here, the operation of the pipe inspection apparatus according to the first embodiment of the present invention will be described with reference to FIGS. 1, 2 and 4, and FIGS. 5 to 9. First, the
具体的には、コンピュータ5が送出した制御信号をガイド波送受信器3が受け、ガイド波送受信器3が素子切替器3eを切り替えて、例えばパワーアンプ3cと超音波探触子
1aを接続する。同様に、ガイド波送受信器3が素子切替器3gを切り替えて、受信アンプ3hと超音波探触子1aを接続する。
Specifically, the guide wave transmitter /
次に、ガイド波送受信器3は、信号発生器3aで生成した信号をパワーアンプ3cで増幅して、超音波探触子1aに印加する。信号が印加された超音波探触子1aは、配管7に振動を発生し、ガイド波6が配管7を伝播する。配管7に止端部7aや溶接線などがあると、ガイド波6は反射して、超音波探触子1aで再度受信される。受信信号は、素子切替器3gと受信アンプ3hを経て、A/D変換器4でデジタル信号に変換され、コンピュータ5にデータとして格納される。
Next, the guide wave transmitter /
次に、コンピュータ5は、全ての超音波探触子でデータ取得したかどうかを判断し、
YESであればステップS103に進み、NOであればステップS101に進む(ステップS102)。この繰り返し動作により、コンピュータ5は、全ての超音波探触子、すなわち超音波探触子1a,1b,1c,1dと、超音波探触子2a,2b,2c,2dに対して、同じ反射源(この場合、配管7の止端部7a)からの受信信号をデジタル化された受信信号データとして得る。
Next, the
If YES, the process proceeds to step S103, and if NO, the process proceeds to step S101 (step S102). By repeating this operation, the
次に、コンピュータ5は、送受信振幅補正係数を算出する(ステップS103)。ここでは、各超音波探触子が受信した受信信号の振幅を計算し、ある振幅(例えば、受信信号の最大振幅、もしくはユーザが時間ゲートを設定した範囲内での最大振幅)を基準として、超音波探触子の受信信号の相対振幅を算出する。
Next, the
例えば、超音波探触子1aを選択したときの受信信号の振幅A1aを基準とする。超音波探触子1bを選択したときの相対振幅がr1bとすると、接触状態による振幅の変化は、送信時と受信時の両方の影響を受けるから、超音波探触子1bの送受信振幅補正係数は、1/√r1bと算出できる。コンピュータ5は、以上の計算を全ての超音波探触子に対して行い、データを格納する。なお、基準とする受信信号は、超音波探触子1aに限ることはない。
For example, the amplitude A 1a of the received signal when the
次に、コンピュータ5は、超音波探触子の組を選択し、算出した送受信振幅補正係数で補正した信号を各超音波探触子に印加する(ステップS104)。具体的には、コンピュータ5が送出した制御信号をガイド波送受信器3が受け、ガイド波送受信器3は、素子切替器3eを切り替えてパワーアンプ3cと超音波探触子1aを接続し、次に素子切替器
3fを切り替えて、パワーアンプ3dと超音波探触子1aに隣接する超音波探触子2aを接続する。同様に、素子切替器3gを切り替えて、受信アンプ3hと超音波探触子1aを接続する。
Next, the
ステップS103の動作で、超音波探触子1aを選択したときの受信信号を基準としたとすると、超音波探触子1aへの印加信号(振幅B)に対して、超音波探触子2aへの印加信号振幅は、超音波探触子2aの送受信振幅補正係数1/√r2aを乗算した信号(振幅B/√r2a)となる(図5)。また、超音波探触子環状群1と2の間の距離が4分の1波長に相当する長さであれば、超音波探触子2aに与える信号の時間遅延を、超音波探触子1aに対して4分の1周期遅らせれば良い。このようにすることで、図1における右方に進行するガイド波の振幅を同位相で増大させ、左方に進行するガイド波の振幅を逆位相で減少させることが可能になる。また、図6のように、超音波探触子1aに与える信号に対して、超音波探触子2aに与える信号の符号を反転させて、時間遅延を4分の1周期進ませても良い。図6の信号印加方法は、図5に比べて、右方に進行するガイド波の振幅を増大する効果は相対的に低いが、左方に進行するガイド波の振幅を減少させる効果は相対的に大きい。
If the received signal when the
次に、コンピュータ5は、ガイド波の受信信号を得る(ステップS105)。ステップS104で、コンピュータ5の制御信号により、ガイド波送受信器3がA/D変換器4に対してトリガ信号を送出しており、A/D変換器4はこのトリガ信号を受けて、アナログ信号のデジタル化を開始している。受信アンプ3hと超音波探触子1aは接続された状態にあるので、超音波探触子1aで受信したガイド波信号は、素子切替器3gを経て受信アンプ3hで増幅され、A/D変換器4でデジタル信号に変換される。コンピュータ5は、デジタル信号を受信信号データとして格納する。
Next, the
次に、コンピュータ5は、全ての超音波探触子の組合せでデータ取得したかどうかを判断し、YESであればステップS107に進み、NOであればステップS104に進む
(ステップS106)。図7は、送信用超音波探触子と受信用超音波探触子の組合せを示した表である。この表の組合せ32通りを全て実施してステップS107に進む。なお、本実施例においては、受信用超音波探触子を一度に1つしか選択できないように、素子切替器3gが構成されているが、一度に複数の受信用超音波探触子の信号を収録できるように、素子切替器3gとA/D変換器4のチャンネル数を増やせば、より早い時間で検査を終了することができる。
Next, the
次に、コンピュータ5は、受信信号を合成する(ステップS107)。この時点で、コンピュータ5は、全ての組合せ32通りの受信信号を受信信号データとして格納している。コンピュータ5は、格納した受信信号データを読み出し、ステップS103で算定した送受信振幅補正係数をもとに、受信信号データの振幅と時間遅延を補正する。受信信号データの補正手順を、超音波探触子1aと2aの組合せで送信したときの超音波探触子1bと超音波探触子2bの受信信号データを例として、図8を用いて説明する。図8(a)は超音波探触子1bの受信信号データa1bである。超音波探触子1bの送受信振幅補正係数は、1/√r1bであるので、コンピュータ5は、この係数を乗算して受信信号データを補正して、受信信号データ(振幅補正後)a1b′とする(図8(b))。また、コンピュータ5は、超音波探触子2bの受信信号データa2b(図8(c))に、超音波探触子2bの送受信振幅補正係数1/√r2bを乗算して振幅を補正する。さらに、超音波探触子1bと2bの間の距離が4分の1波長に相当する長さであるので、振幅を補正した後の受信信号データを4分の1周期遅らせる。この処理による受信信号データ(振幅・時間遅延補正後)a2b′が、図8(d)の信号である。コンピュータ5は、これらの処理を、全ての格納した受信信号データに対して実施する。最後に、コンピュータ5は、振幅・時間遅延補正後の受信信号データを加算して合成信号のデータを生成する。
Next, the
本発明の実施例においては、各超音波探触子環状群を4つの超音波探触子で構成しているので、ガイド波の円周方向高次モードの抽出も可能であるが、ここでは、基本モードT(0,1)モードについて説明する。簡単の為に、送信用の超音波探触子の組が超音波探触子1xと超音波探触子2x(xはa,b,c,dのいずれか)のときに、受信用の超音波探触子が超音波探触子1y(yはa,b,c,dのいずれか)の場合の振幅補正後の受信信号データをx1y′とする。同様に、受信用の超音波探触子が超音波探触子2yの場合の振幅・時間遅延補正後の受信信号データをx2y′とする。 In the embodiment of the present invention, since each ultrasonic probe annular group is composed of four ultrasonic probes, it is possible to extract a higher-order mode in the circumferential direction of the guide wave. The basic mode T (0, 1) mode will be described. For the sake of simplicity, when the set of ultrasonic probes for transmission is an ultrasonic probe 1x and an ultrasonic probe 2x (x is any one of a, b, c, and d), The received signal data after amplitude correction when the ultrasonic probe is the ultrasonic probe 1y (y is any one of a, b, c, and d) is assumed to be x1y ′. Similarly, reception signal data after amplitude / time delay correction when the reception ultrasonic probe is the ultrasonic probe 2y is x2y ′.
このとき、基本モードT(0,1)は、配管の中心軸に対して対称に振動するモードなので、全ての受信信号データを同一符号で加算して得られる。すなわち、式1で表せる。
At this time, the basic mode T (0, 1) is a mode that vibrates symmetrically with respect to the central axis of the pipe, and thus is obtained by adding all received signal data with the same sign. That is, it can be expressed by
{(a1a′+a1b′+a1c′+a1d′+a2a′+a2b′+a2c′
+a2d′)+(b1a′+b1b′+b1c′+b1d′+b2a′+b2b′ +b2c′+b2d′)+(c1a′+c1b′+c1c′+c1d′+c2a′ +c2b′+c2c′+c2d′)+(d1a′+d1b′+d1c′+d1d′ +d2a′+d2b′+d2c′+d2d′)}/4 …式1
受信信号を合成する方法は、図9に示す方法もある。図8と異なり、超音波探触子2bの受信信号データに対して、送受信振幅補正係数1/√r2bを乗算して振幅を補正した後に、振幅を補正した後の受信信号データを4分の1周期進ませる。この処理による受信信号データ(振幅・時間遅延補正後)a2b′が、図9(d)の信号である。このときの基本モードT(0,1)は、式2で表せる。
{(A1a '+ a1b' + a1c '+ a1d' + a2a '+ a2b' + a2c '
+ A2d ′) + (b1a ′ + b1b ′ + b1c ′ + b1d ′ + b2a ′ + b2b ′ + b2c ′ + b2d ′) + (c1a ′ + c1b ′ + c1c ′ + c1d ′ + c2a ′ + c2b ′ + c2c ′ + d1 + d1 + d1 + d1 + d1 + d1 + d1 + d1 '+ D2a' + d2b '+ d2c' + d2d ')} / 4
There is also a method shown in FIG. 9 for synthesizing the received signals. Unlike FIG. 8, the received signal data of the ultrasound probe 2b is multiplied by the transmission / reception
{(a1a′+a1b′+a1c′+a1d′−a2a′−a2b′−a2c′
−a2d′)+(b1a′+b1b′+b1c′+b1d′−b2a′−b2b′ −b2c′−b2d′)+(c1a′+c1b′+c1c′+c1d′−c2a′ −c2b′−c2c′−c2d′)+(d1a′+d1b′+d1c′+d1d′ −d2a′−d2b′−d2c′−d2d′)}/4 …式2
なお、上記においては、第二の超音波探触子2a,2b,2c,2dで受信した受信信号データに対して、時間遅延をかけるようにしているが、第一の超音波探触子1a,1b,1c,1dで受信した受信信号データに対して、逆の時間遅延をかけるようにしても同じ効果が得られる。
{(A1a '+ a1b' + a1c '+ a1d'-a2a'-a2b'-a2c'
-A2d ') + (b1a' + b1b '+ b1c' + b1d'-b2a'-b2b'-b2c'-b2d ') + (c1a' + c1b '+ c1c' + c1d'-c2a'-c2b'-c2c'-c2d ') + (D1a '+ d1b' + d1c '+ d1d'-d2a'-d2b'-d2c'-d2d')} / 4
In the above description, the reception signal data received by the second
本発明の実施例1における効果を、図10と図11を用いて説明する。図10は、試験体系である。試験体としては、外径60.5mm,肉厚5.5mmの配管に、すり鉢状の模擬減肉を管端から500mmピッチで3箇所加工したものを用いた。模擬減肉T1,T2,T3は、いずれも配管7の断面積に対する比率が1%であるが、最大深さと表面開口幅(配管軸方向)は、各々図10中の表に示す通りである。超音波探触子環状群1,2を、模擬減肉T1,T2,T3を加工した側とは、反対側の端寄りに取付け、減肉のある方向(図の右側)に向かって、本発明の実施例1にて、ガイド波を送受信し、受信信号のデータを得た。受信信号のデータはコンピュータ5で処理されて合成され、合成信号として表示装置8に出力されて合成信号の波形が表示される。
The effect in Example 1 of this invention is demonstrated using FIG. 10 and FIG. FIG. 10 shows a test system. As a test body, a pipe having an outer diameter of 60.5 mm and a wall thickness of 5.5 mm and three mortar-shaped simulated thinnings processed at 500 mm pitch from the end of the pipe was used. Each of the simulated thinnings T1, T2, T3 has a ratio of 1% to the cross-sectional area of the pipe 7, but the maximum depth and the surface opening width (in the pipe axis direction) are as shown in the table of FIG. . Attach the ultrasonic
図11に、本発明の実施例1により得た合成信号の波形を、従来技術による合成信号の波形と比較して示す。(a)が従来の受信信号の波形であり、(b)が本発明の実施例1により得た合成信号の波形である。いずれの場合でも、模擬減肉T1,T2,T3からの反射信号を得ているが、本発明の実施例により得た合成信号は、従来技術による合成信号に比べて、ノイズが低減しており、SN比が向上する結果となった。 FIG. 11 shows the waveform of the synthesized signal obtained by Example 1 of the present invention in comparison with the waveform of the synthesized signal according to the prior art. (A) is the waveform of the conventional received signal, (b) is the waveform of the synthesized signal obtained by Example 1 of this invention. In either case, the reflected signals from simulated thinning T1, T2, T3 are obtained, but the synthesized signal obtained by the embodiment of the present invention has reduced noise compared to the synthesized signal by the prior art. As a result, the SN ratio was improved.
以上説明したように、本発明では、送受信振幅の調整により探触子の接触状態の不均一さを補正し、配管の軸方向に隣接した超音波探触子に遅延をかけて送信してガイド波を単一方向に伝播させるので、ガイド波の双方向伝播により発生するノイズ(擬似信号)を低減でき、配管の減肉や傷をSN比良く検出することが可能となる。 As described above, in the present invention, the non-uniformity of the contact state of the probe is corrected by adjusting the transmission / reception amplitude, and the ultrasonic probe adjacent in the axial direction of the pipe is transmitted with a delay to guide. Since the wave is propagated in a single direction, noise (pseudo signal) generated by bidirectional propagation of the guide wave can be reduced, and pipe thinning and flaws can be detected with a high SN ratio.
本発明は、配管を超音波を用いて非破壊的に検査する超音波探傷装置に適用される。 The present invention is applied to an ultrasonic flaw detector that inspects a pipe nondestructively using ultrasonic waves.
1,2…超音波探触子環状群、1a,1b,1c,1d,2a,2b,2c,2d…超音波探触子、3…ガイド波送受信器、4…A/D変換器、5…コンピュータ、6…ガイド波、7…配管、8…表示装置。
DESCRIPTION OF
Claims (4)
前記第一の超音波探触子環状群から前記配管の軸方向に離れた位置にて、前記配管の円周方向に配列される複数の第二の超音波探触子を有した第二の超音波探触子環状群と、
前記配管の検査領域の方向へ伝播するガイド波の振幅を増幅させ、前記方向と反対方向へ伝播するガイド波の振幅を減幅させるように、前記第一の超音波探触子に送信信号を印加する印加時期と、前記第二の超音波探触子に送信信号を印加する印加時期とを相対的にずらす手段と、前記第一と第二の各超音波探触子で前記ガイド波の反射波を受けて得られた電気的な受信信号を信号処理手段へ伝送する手段とを備え、
前記受信信号に基づいて前記配管の傷または減肉を検出する配管検査装置において、
前記各超音波探触子の個々にガイド波を送受信させる手段と、
前記個々に送受信して得られた送信信号の振幅と受信信号の振幅に基づいて求めた送受信振幅補正係数によって前記発信信号を補正する送信信号の補正手段と、
前記送受信振幅補正係数によって前記第一と前記第二の超音波探触子の受信信号の振幅を、前記第一と第二の超音波探触子の受信信号の合成によって振幅が増幅される遅延時間を前記第一と第二の超音波探触子の受信信号の少なくともいずれか一方に与える受信信号の補正手段と、
前記補正後の前記受信信号を合成する信号処理手段とを備えた配管検査装置。 A first ultrasonic probe annular group having a plurality of first ultrasonic probes arranged in the circumferential direction of the pipe;
A second ultrasonic probe having a plurality of second ultrasonic probes arranged in a circumferential direction of the pipe at a position away from the first annular group of ultrasonic probes in the axial direction of the pipe; An ultrasonic probe ring group,
A transmission signal is sent to the first ultrasonic probe so as to amplify the amplitude of the guide wave propagating in the direction of the inspection region of the pipe and reduce the amplitude of the guide wave propagating in the direction opposite to the direction. Means for relatively shifting an application time to be applied and an application time to apply a transmission signal to the second ultrasonic probe; and the first and second ultrasonic probes Means for transmitting an electrical reception signal obtained by receiving the reflected wave to the signal processing means,
In a pipe inspection device that detects a flaw or thinning of the pipe based on the received signal,
Means for transmitting and receiving guide waves individually to each of the ultrasonic probes;
Transmission signal correction means for correcting the transmission signal by a transmission / reception amplitude correction coefficient obtained based on the amplitude of the transmission signal and the reception signal obtained by individually transmitting and receiving;
A delay in which the amplitude of the reception signals of the first and second ultrasonic probes is amplified by the transmission / reception amplitude correction coefficient, and the amplitude is amplified by the combination of the reception signals of the first and second ultrasonic probes A received signal correcting means for giving time to at least one of the received signals of the first and second ultrasonic probes;
A pipe inspection device comprising signal processing means for synthesizing the received signal after correction.
次に、前記第一の超音波探触子と前記第二の超音波探触子とに相互に発信信号の印加時期をずらすことで前記配管内にガイド波を検査領域方向に振幅を増強して伝播させ、反検査領域方向へのガイド波の振幅を抑制し、
次に、配管の傷もしくは減肉個所で反射した前記ガイド波に基づく超音波を前記第一の超音波探触子と前記第二の超音波探触子で受信する配管検査方法において、
前記第一と第二の各超音波探触子から超音波を前記配管に対して送受信し、その際の受信信号の振幅によって、前記第一と第二の各超音波探触子の前記配管への接触状態を測定し、
前記接触状態に基づいて、前記第一と第二の各超音波探触子の個々に関する送受信振幅補正係数を算出し、
前記第一と第二の各超音波探触子から前記配管への超音波の送信信号の振幅を、前記送受信振幅係数に基づき各々補正した送信信号の振幅とし、
前記補正後の送信信号の振幅による前記超音波を前記第一と第二の各超音波探触子から前記配管へ送信して前記ガイド波を前記配管に伝播させ、
次に、全ての前記第一の超音波探触子と全ての前記第二の超音波探触子で前記ガイド波の反射波の基づく超音波を受信し、
前記第一と前記第二の超音波探触子の受信信号について、振幅を前記送受信振幅補正係数によって補正すると共に、前記第一と第二の超音波探触子の受信信号の合成によって振幅が増幅される遅延時間を前記第一と第二の超音波探触子の受信信号の少なくともいずれか一方に与えて受信信号の補正を施し、
次に、補正を施した前記受信信号を合成することを特徴とする配管検査方法。
A first ultrasonic probe annular group having a plurality of first ultrasonic probes arranged in an annular shape, and a second ultrasonic element having a plurality of second ultrasonic probes arranged in an annular shape An acoustic probe annular group is arranged around the pipe to be inspected at intervals in the axial direction of the pipe,
Next, the amplitude of the guide wave in the pipe is increased in the direction of the inspection region by shifting the timing of applying the transmission signal to the first ultrasonic probe and the second ultrasonic probe. To suppress the amplitude of the guide wave toward the anti-inspection area,
Next, in a pipe inspection method for receiving ultrasonic waves based on the guide wave reflected at a pipe flaw or a thinned portion with the first ultrasonic probe and the second ultrasonic probe,
The ultrasonic waves are transmitted / received to / from the pipes from the first and second ultrasonic probes, and the pipes of the first and second ultrasonic probes are changed depending on the amplitude of the received signal at that time. Measure the contact state to
Based on the contact state, a transmission / reception amplitude correction coefficient for each of the first and second ultrasonic probes is calculated,
The amplitude of the transmission signal of the ultrasonic wave from each of the first and second ultrasonic probes to the pipe is the amplitude of the transmission signal corrected based on the transmission / reception amplitude coefficient,
Transmitting the ultrasonic wave by the amplitude of the transmission signal after the correction from the first and second ultrasonic probes to the pipe and propagating the guide wave to the pipe;
Next, all the first ultrasonic probes and all the second ultrasonic probes receive ultrasonic waves based on the reflected wave of the guide wave,
For the received signals of the first and second ultrasonic probes, the amplitude is corrected by the transmission / reception amplitude correction coefficient, and the amplitude is obtained by combining the received signals of the first and second ultrasonic probes. Applying a delay time to be amplified to at least one of the reception signals of the first and second ultrasonic probes to correct the reception signal,
Next, a pipe inspection method characterized by combining the received signals subjected to correction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005295827A JP4625747B2 (en) | 2005-10-11 | 2005-10-11 | Piping inspection device and piping inspection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005295827A JP4625747B2 (en) | 2005-10-11 | 2005-10-11 | Piping inspection device and piping inspection method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007107885A JP2007107885A (en) | 2007-04-26 |
JP4625747B2 true JP4625747B2 (en) | 2011-02-02 |
Family
ID=38033875
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005295827A Expired - Fee Related JP4625747B2 (en) | 2005-10-11 | 2005-10-11 | Piping inspection device and piping inspection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4625747B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180103567A (en) * | 2017-03-10 | 2018-09-19 | 강원대학교산학협력단 | Apparatus and method for detecting defects of structures |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5531376B2 (en) * | 2007-10-31 | 2014-06-25 | 株式会社日立パワーソリューションズ | Nondestructive inspection apparatus and nondestructive inspection method |
JP2012127832A (en) * | 2010-12-16 | 2012-07-05 | Hitachi Engineering & Services Co Ltd | Non-destructive inspection method and device using guided wave |
JP6430923B2 (en) * | 2015-12-10 | 2018-11-28 | 日本電信電話株式会社 | Wave receiving method and receiving apparatus |
JP6764886B2 (en) * | 2018-02-02 | 2020-10-07 | 日本電信電話株式会社 | How to install the probe and how to drive the transmitting probe |
GB2577920A (en) * | 2018-10-10 | 2020-04-15 | Guided Ultrasonics Ltd | Determining thickness of an elongate or extended structure |
CN110568084B (en) * | 2019-09-19 | 2020-07-24 | 哈尔滨工业大学 | Method for extracting low signal-to-noise ratio guided wave signal reaching time suitable for guided wave transducer array |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004085370A (en) * | 2002-08-27 | 2004-03-18 | Hitachi Ltd | Pipe inspection method and system |
JP2005010055A (en) * | 2003-06-20 | 2005-01-13 | Hitachi Ltd | Non-destructive inspection apparatus and non-destructive inspection method using guide wave |
-
2005
- 2005-10-11 JP JP2005295827A patent/JP4625747B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004085370A (en) * | 2002-08-27 | 2004-03-18 | Hitachi Ltd | Pipe inspection method and system |
JP2005010055A (en) * | 2003-06-20 | 2005-01-13 | Hitachi Ltd | Non-destructive inspection apparatus and non-destructive inspection method using guide wave |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180103567A (en) * | 2017-03-10 | 2018-09-19 | 강원대학교산학협력단 | Apparatus and method for detecting defects of structures |
KR101949875B1 (en) * | 2017-03-10 | 2019-02-20 | 강원대학교산학협력단 | Apparatus and method for detecting defects of structures |
Also Published As
Publication number | Publication date |
---|---|
JP2007107885A (en) | 2007-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3747921B2 (en) | Nondestructive inspection apparatus and nondestructive inspection method using guide wave | |
JP4589280B2 (en) | Pipe inspection method using guide wave and pipe inspection apparatus | |
JP4625747B2 (en) | Piping inspection device and piping inspection method | |
JP4012237B2 (en) | Piping inspection method and apparatus | |
JP3913144B2 (en) | Piping inspection method and apparatus | |
JP5448030B2 (en) | Ultrasonic flaw detection method and apparatus | |
JP4686378B2 (en) | Pipe inspection device | |
JP5531376B2 (en) | Nondestructive inspection apparatus and nondestructive inspection method | |
CA3110818A1 (en) | Continuous wave ultrasound or acoustic non-destructive testing | |
JP5663319B2 (en) | Guide wave inspection method and apparatus | |
JP5530405B2 (en) | Nondestructive inspection method and nondestructive inspection device | |
JP5893538B2 (en) | Nondestructive inspection method and apparatus using guide wave | |
JPWO2017086150A1 (en) | Apparatus and method for measuring deposit thickness using ultrasonic waves | |
JP4602421B2 (en) | Ultrasonic flaw detector | |
JP5193720B2 (en) | Non-contact aerial ultrasonic tube ultrasonic inspection apparatus and method | |
JP4241529B2 (en) | Ultrasonic inspection method and ultrasonic inspection apparatus | |
JP2008070283A (en) | Ultrasonic guide wave non-destructive inspection method and apparatus | |
JP4405821B2 (en) | Ultrasonic signal detection method and apparatus | |
JP5059344B2 (en) | Plate thickness measuring apparatus and measuring method | |
JP4098070B2 (en) | Ultrasonic flaw detector | |
JPH10300565A (en) | Method and device for measuring surface wave sound velocity | |
JP2010048817A (en) | Nondestructive inspection device and method using guide wave | |
JP2007263956A (en) | Ultrasonic flaw detection method and apparatus | |
JP5393568B2 (en) | Ultrasonic imaging method and ultrasonic imaging apparatus | |
JP5109747B2 (en) | Ultrasonic flaw detection apparatus and ultrasonic flaw detection method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080908 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101026 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101108 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4625747 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131112 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131112 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131112 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |