JP4625514B2 - Horizontally polarized antenna and characteristic adjustment method thereof - Google Patents

Horizontally polarized antenna and characteristic adjustment method thereof Download PDF

Info

Publication number
JP4625514B2
JP4625514B2 JP2008183728A JP2008183728A JP4625514B2 JP 4625514 B2 JP4625514 B2 JP 4625514B2 JP 2008183728 A JP2008183728 A JP 2008183728A JP 2008183728 A JP2008183728 A JP 2008183728A JP 4625514 B2 JP4625514 B2 JP 4625514B2
Authority
JP
Japan
Prior art keywords
horizontally polarized
arc
radiating element
polarized antenna
beam width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008183728A
Other languages
Japanese (ja)
Other versions
JP2010028193A (en
Inventor
泰子 木村
山口  良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Priority to JP2008183728A priority Critical patent/JP4625514B2/en
Publication of JP2010028193A publication Critical patent/JP2010028193A/en
Application granted granted Critical
Publication of JP4625514B2 publication Critical patent/JP4625514B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Aerials With Secondary Devices (AREA)

Description

この発明は、水平偏波を送受信するアンテナに係るものであり、特に、広い周波数帯域にわたって同程度のビーム幅を得ることが可能な水平偏波アンテナの実現技術に関する。   The present invention relates to an antenna that transmits and receives horizontally polarized waves, and particularly relates to a technology for realizing a horizontally polarized antenna that can obtain the same beam width over a wide frequency band.

移動通信では、複数の周波数帯域を用いたりセクタ分割をしたりすることで、多数のユーザを収容できるようにし、通信効率を高めている。例えば、IMT−2000方式(第三世代方式)では隣接ゾーンにおいて同一周波数を繰り返し使用するため、無線ゾーン間のオーバーラップ部分を減らすことで干渉を低減させ、加入者容量を増やしている。そのため、基地局用アンテナの水平方向のビーム幅(最大利得に対して利得が半値となる角度範囲)は、サービスエリアのセクタ分割角(3セクタ無線ゾーン構成の場合、1セクタあたりの分割角は120°)よりも狭いことが求められる。もっとも、狭すぎるとセクタ内に電波が届かない領域が生じてしまうため、ビーム幅は120°に近いこと(例えば100°±10°程度)が望ましい。これに関する実現技術として、特許文献1に素子を円弧形状にすることにより水平面内について無指向性とした上で、更に反射器を背後に挿入することにより120°程度のビーム幅を実現するダイポールアンテナが開示されている。   In mobile communication, a plurality of users can be accommodated by using a plurality of frequency bands or by dividing a sector, thereby improving communication efficiency. For example, in the IMT-2000 system (third generation system), since the same frequency is repeatedly used in adjacent zones, interference is reduced by reducing the overlap portion between the radio zones, and the subscriber capacity is increased. Therefore, the horizontal beam width of the base station antenna (angle range where the gain is half the maximum gain) is the sector division angle of the service area (in the case of a three-sector wireless zone configuration, the division angle per sector is Narrower than 120 °). However, since an area where radio waves do not reach within the sector is generated if it is too narrow, it is desirable that the beam width is close to 120 ° (for example, about 100 ° ± 10 °). As an implementation technique related to this, a dipole antenna that realizes a beam width of about 120 ° by making the element non-directional in a horizontal plane by making the element into an arc shape in Patent Document 1 and further inserting a reflector behind it. Is disclosed.

また、基地局用アンテナにおいては、設置スペースや導入コストの削減の観点からアンテナの数はできるだけ少ないことが望まれる。このような要望に対しては特許文献1に、円弧形状の給電素子に近接して更に当該給電素子より高い共振周波数を有する円弧形状の無給電素子を配することにより、2つの周波数帯で共振する水平偏波アンテナを構成する方法が開示されている。
特開平11−68446号公報 志村、苅込、恵比根、「800/1500MHz帯周波数・偏波共用120°ビーム移動通信基地局アンテナ」、電子情報通信学会総合大会、2001年、B−1−136
In addition, in the base station antenna, it is desired that the number of antennas is as small as possible from the viewpoint of reducing installation space and introduction cost. In response to such a request, Patent Document 1 discloses that an arc-shaped parasitic element having a resonance frequency higher than that of the feeding element is disposed in the vicinity of the arc-shaped feeding element, thereby resonating in two frequency bands. A method of constructing a horizontally polarized antenna is disclosed.
Japanese Patent Laid-Open No. 11-68446 Shimura, Kanome, Ebine, "800 / 1500MHz band frequency / polarization shared 120 ° beam mobile communication base station antenna", IEICE General Conference, 2001, B-1-136

IMT−2000で用いられている周波数帯は、800MHz帯、1.7GHz帯、2GHz帯の3つの周波数帯であり、今後更に異なる帯域が追加されることが想定される。複数の周波数帯において共振する水平偏波アンテナは、特許文献1に示された技術(円弧形状の給電素子に円弧形状の無給電素子を近接配置)により一応は実現可能である。しかし特許文献1に示された技術により構成した水平偏波アンテナは、共振周波数が異なる複数の素子で1つの反射器を共用することになるが、最適なビーム幅を得るための、素子と反射器との間の距離は各々の素子により異なるため、たとえ複数の周波数帯で共振するアンテナを構成できても周波数帯によりビーム幅にばらつきが生じてしまい、セクタ分割による効果を十分に享受できない。   The frequency bands used in IMT-2000 are three frequency bands of 800 MHz band, 1.7 GHz band, and 2 GHz band, and it is assumed that further different bands will be added in the future. A horizontally polarized antenna that resonates in a plurality of frequency bands can be realized by the technique disclosed in Patent Document 1 (an arc-shaped parasitic element is disposed close to an arc-shaped feeding element). However, the horizontally polarized antenna configured by the technique disclosed in Patent Document 1 shares a single reflector with a plurality of elements having different resonance frequencies. Since the distance to the device differs depending on each element, even if an antenna that resonates in a plurality of frequency bands can be configured, the beam width varies depending on the frequency band, and the effect of sector division cannot be fully enjoyed.

図1、図2は特許文献1にて開示された発明に基づき、円弧形状の給電素子の上下に当該給電素子より高い共振周波数を有する円弧形状の無給電素子を配した水平偏波アンテナ100の構成例である。図1(a)は斜視図、図1(b)は平面図、図2は図1(b)の平面図から無給電素子の表記を省略し、素子の形状に係る各パラメータに対応する符号を示したものである。   1 and 2 are diagrams of a horizontally polarized antenna 100 in which an arc-shaped parasitic element having a resonance frequency higher than that of the feed element is arranged above and below the arc-shaped feed element based on the invention disclosed in Patent Document 1. It is a structural example. 1 (a) is a perspective view, FIG. 1 (b) is a plan view, and FIG. 2 is a plan view of FIG. 1 (b), omitting parasitic elements, and symbols corresponding to the parameters relating to the shape of the element. Is shown.

水平偏波アンテナ100は、給電素子110と第1無給電素子120と第2無給電素子130と反射板150とからなり、給電素子110には給電素子110がなす円弧の線分の中点(給電点111)から給電される。給電素子110は地面と平行に配され、また、無給電素子120及び無給電素子130は給電素子110の上下に平行に配され、かつ、無給電素子120及び無給電素子130がなす円弧の線分のそれぞれの中点は、図1(b)に示すように給電素子110がなす円弧の線分の中点とz軸方向(地面に対して垂直方向)で一直線になるように配される。なお、給電素子110と無給電素子120、130とのz軸方向の間隔sはそれぞれ5mmである。反射板150は、給電素子110及び無給電素子120、130がなす円弧から所定の間隔dを隔てた外周部分に図1に示すように配される。   The horizontally polarized antenna 100 includes a feeding element 110, a first parasitic element 120, a second parasitic element 130, and a reflector 150, and the feeding element 110 has a midpoint of a circular line segment formed by the feeding element 110 ( Power is supplied from a power supply point 111). The feeding element 110 is arranged in parallel with the ground, and the parasitic element 120 and the parasitic element 130 are arranged in parallel above and below the feeding element 110, and the arc line formed by the parasitic element 120 and the parasitic element 130. As shown in FIG. 1B, the midpoints of the minutes are arranged so as to be in a straight line with the midpoint of the arc segment formed by the feed element 110 in the z-axis direction (perpendicular to the ground). . Note that the spacing s between the feeding element 110 and the parasitic elements 120 and 130 in the z-axis direction is 5 mm. The reflection plate 150 is disposed on the outer peripheral portion at a predetermined distance d from the arc formed by the feeding element 110 and the parasitic elements 120 and 130 as shown in FIG.

図3に水平偏波アンテナ100のビーム幅の周波数特性を例示する。ここで図1の各パラメータの値は、給電素子110がなす円弧の半径Reが40mm、中心角θeが120°、無給電素子120がなす円弧の半径Reが25mm、中心角θeが146°、無給電素子130がなす円弧の半径Reが20mm、中心角θeが160°であり、それぞれ800MHz、1.5GHz、2GHz帯において共振する素子長となっており、図4に示すようなVSWRの周波数特性を有する。また、反射器150がなす円弧の半径Rrは60mm、反射器150がなす円弧の中心角θrは160°、放射素子110と反射器150との距離dは50mm、反射器150のz軸方向の長さhは300mmである。   FIG. 3 illustrates the frequency characteristics of the beam width of the horizontally polarized antenna 100. Here, the values of the parameters in FIG. 1 are as follows: the radius Re of the arc formed by the feed element 110 is 40 mm, the center angle θe is 120 °, the radius Re of the arc formed by the parasitic element 120 is 25 mm, the center angle θe is 146 °, The radius Re of the arc formed by the parasitic element 130 is 20 mm, the center angle θe is 160 °, and the element lengths resonate in the 800 MHz, 1.5 GHz, and 2 GHz bands, respectively. The frequency of the VSWR as shown in FIG. Has characteristics. The radius Rr of the arc formed by the reflector 150 is 60 mm, the center angle θr of the arc formed by the reflector 150 is 160 °, the distance d between the radiating element 110 and the reflector 150 is 50 mm, and the z axis direction of the reflector 150 is The length h is 300 mm.

図3及び図4からわかるように、たとえ800MHz、1.5GHz、2GHzの3つの周波数帯で良好なVSWR特性が得られたとしても、ビーム幅は周波数帯により大きくばらついてしまう。   As can be seen from FIGS. 3 and 4, even if good VSWR characteristics are obtained in three frequency bands of 800 MHz, 1.5 GHz, and 2 GHz, the beam width varies greatly depending on the frequency band.

本発明は、複数の周波数帯において共振する水平偏波アンテナにおいて、広帯域にわたりビーム幅が同等程度(例えば100°±10°程度)となり、更に所望帯域で共振をとることができる特性調整方法を提供することを目的とする。   The present invention provides a characteristic adjustment method in which a horizontal polarization antenna that resonates in a plurality of frequency bands has a beam width that is approximately the same (eg, about 100 ° ± 10 °) over a wide band, and can further resonate in a desired band. The purpose is to do.

地面と平行に配された円弧形状の放射素子を備える水平偏波アンテナにおいて、円弧の半径を一定として円弧の中心角を変化させて放射素子の長さを変化させることにより、水平面内のビーム幅の周波数特性を調整する。更に、放射素子の長さを変化させたことによりずれてしまった共振周波数を、放射素子の両端に線状導体を接続することにより、所望帯域で共振するよう調整する。   In a horizontally polarized antenna with an arc-shaped radiating element arranged parallel to the ground, the beam width in the horizontal plane can be changed by changing the length of the radiating element by changing the center angle of the arc while keeping the radius of the arc constant. Adjust the frequency characteristics. Further, the resonance frequency shifted by changing the length of the radiating element is adjusted to resonate in a desired band by connecting linear conductors to both ends of the radiating element.

本発明の特性調整方法により、複数の周波数帯において共振する水平偏波アンテナにおいて、広帯域にわたりビーム幅を同等程度とすることが可能となるとともに、所望帯域で共振をとることが可能となる。   With the characteristic adjustment method of the present invention, in a horizontally polarized antenna that resonates in a plurality of frequency bands, the beam width can be made equal over a wide band, and resonance can be achieved in a desired band.

〔第1実施形態〕
まず、給電素子単体である場合のビーム幅の調整方法について明らかにする。
図5は、図1に示した水平偏波アンテナ100から無給電素子120、130を取り除いた水平偏波アンテナ200の外観図であり、図5(a)は斜視図、図5(b)は平面図である。素子の形状に係る各パラメータに対応する符号については図2と共通である。
[First Embodiment]
First, a method for adjusting the beam width in the case of a single feeding element will be clarified.
5 is an external view of the horizontally polarized antenna 200 in which the parasitic elements 120 and 130 are removed from the horizontally polarized antenna 100 shown in FIG. 1, FIG. 5 (a) is a perspective view, and FIG. 5 (b) is a perspective view. It is a top view. The symbols corresponding to the parameters related to the element shape are the same as those in FIG.

図6に水平偏波アンテナ200の給電素子110がなす円弧の半径Reを35mmで一定とし、中心角θeを80°、200°、246°の3通りに変化させたときのビーム幅の周波数特性を例示する。なお、円弧の半径Reを一定としているため、中心角θeを変化させることで給電素子の長さも変化し、中心角θe=80°は800MHz帯の共振長にあたり、中心角θe=200°は1.5GHz帯の共振長にあたり、中心角θe=246°は2GHz帯の共振長にあたる。また、その他のパラメータ値は、反射器150がなす円弧の半径Rrは60mm、中心角θrは160°、放射素子110と反射器150との距離dは45mm、反射器150のz軸方向の長さhは300mmである。   FIG. 6 shows the frequency characteristics of the beam width when the radius Re of the arc formed by the feed element 110 of the horizontally polarized antenna 200 is constant at 35 mm and the center angle θe is changed in three ways of 80 °, 200 °, and 246 °. Is illustrated. Since the radius Re of the arc is constant, the length of the feed element is also changed by changing the central angle θe. The central angle θe = 80 ° corresponds to the resonance length in the 800 MHz band, and the central angle θe = 200 ° is 1 The center angle θe = 246 ° corresponds to the resonance length in the 2 GHz band when the resonance length is in the 0.5 GHz band. The other parameter values are as follows: the radius Rr of the arc formed by the reflector 150 is 60 mm, the center angle θr is 160 °, the distance d between the radiating element 110 and the reflector 150 is 45 mm, and the length of the reflector 150 in the z-axis direction. The length h is 300 mm.

図6からわかるように、θeの値によりビーム幅の周波数特性は大きく異なり、逆に言えばθeを適宜変化させることによりビーム幅の周波数特性を調整することが可能であると言える。もっとも、このような単体素子において広帯域にわたり同等程度のビーム幅(例えば100°±10°程度)にすることは実質的には困難である。   As can be seen from FIG. 6, the frequency characteristic of the beam width varies greatly depending on the value of θe. Conversely, it can be said that the frequency characteristic of the beam width can be adjusted by appropriately changing θe. However, in such a single element, it is practically difficult to make the beam width comparable (for example, about 100 ° ± 10 °) over a wide band.

〔第2実施形態〕
次に、給電素子に加え、無給電素子を備えた場合のビーム幅の調整方法について明らかにする。なお、構成は図1、図2に示したものと同様であり、パラメータ値も給電素子の中心角を除いては「発明が解決しようとする課題」にて記したものと同様である。
[Second Embodiment]
Next, a method for adjusting the beam width when a parasitic element is provided in addition to the feeding element will be clarified. The configuration is the same as that shown in FIGS. 1 and 2, and the parameter values are the same as those described in “Problems to be Solved by the Invention” except for the central angle of the feed element.

水平偏波アンテナ100において給電素子110がなす円弧の半径Reを40mmに固定した時に、中心角θeを120°、180°、240°の3通りに変化させたときのビーム幅の周波数特性を、図7に例示する。ここで、θeが120°(800MHz帯における共振素子長に相当)のときの特性曲線は、図3に示したものと同じである。図7からわかるように、無給電素子がある場合においても、中心角θeの値によりビーム幅の周波数特性は大きく異なる。特に、この構成において中心角θeを180°とした場合には、1.7GHz付近を除き、500MHz〜2.1GHzの範囲でビーム幅が100°±10°となり、広帯域にわたり同等程度のビーム幅にすることができることがわかる。   When the radius Re of the circular arc formed by the feed element 110 in the horizontally polarized antenna 100 is fixed to 40 mm, the frequency characteristics of the beam width when the central angle θe is changed in three ways of 120 °, 180 °, and 240 °, This is illustrated in FIG. Here, the characteristic curve when θe is 120 ° (corresponding to the resonant element length in the 800 MHz band) is the same as that shown in FIG. As can be seen from FIG. 7, even when there is a parasitic element, the frequency characteristics of the beam width vary greatly depending on the value of the central angle θe. In particular, when the center angle θe is 180 ° in this configuration, the beam width is 100 ° ± 10 ° in the range of 500 MHz to 2.1 GHz, except for the vicinity of 1.7 GHz, and the beam width is almost the same over a wide band. You can see that you can.

上記では中心角θeの調整を給電素子に対して行ったが、無給電素子に対して行うことによってもビーム幅の周波数特性を調整することは可能である。   In the above description, the center angle θe is adjusted with respect to the feed element. However, the frequency characteristic of the beam width can be adjusted also with respect to the parasitic element.

なお、上記では円弧の半径Reを40mmで固定して中心角θeを変化させることにより給電素子110の素子長を変化させたが、給電素子110の素子長を一定にして中心角θeを変化させることにより給電素子110がなす円弧の半径Reを35mm、40mm、45mmと変化させた場合のビーム幅の周波数特性を図8に示す。図8から、給電素子110の素子長を一定にして中心角θeを変化させることによっては、ビーム幅の周波数特性はほとんど変化しないことがわかる。   In the above description, the element length of the feed element 110 is changed by fixing the arc radius Re at 40 mm and changing the center angle θe. However, the center angle θe is changed by keeping the element length of the feed element 110 constant. FIG. 8 shows the frequency characteristics of the beam width when the radius Re of the arc formed by the feeding element 110 is changed to 35 mm, 40 mm, and 45 mm. FIG. 8 shows that the frequency characteristics of the beam width hardly change by changing the central angle θe while keeping the element length of the feed element 110 constant.

〔第3実施形態〕
第2実施形態で示したように、中心角θeを調整することによって広帯域にわたり同等程度のビーム幅にすることは可能となるが、給電素子の半径Reを一定として中心角θeを変化させているため、素子の長さが変化して共振周波数も変化してしまうという新たな問題が生じる。具体的には、給電素子110は中心角θeが120°の場合には、図9に示すように800MHz帯で共振するが、中心角θeを180°に広げることで素子長が短くなり、800MHz帯にあった共振点が高周波側に移動してしまう。そこで、本発明においては短くなった素子の両端に、例えば図10に示すように線状導体140を接続する。
[Third Embodiment]
As shown in the second embodiment, by adjusting the central angle θe, it is possible to make the beam width approximately the same over a wide band, but the central angle θe is changed with the radius Re of the feeder element being constant. Therefore, there arises a new problem that the element frequency changes and the resonance frequency also changes. Specifically, when the central angle θe is 120 °, the feeding element 110 resonates in the 800 MHz band as shown in FIG. 9, but the element length is shortened by widening the central angle θe to 180 °, and 800 MHz. The resonance point in the band moves to the high frequency side. Therefore, in the present invention, for example, a linear conductor 140 is connected to both ends of the shortened element as shown in FIG.

図11に線状導体140を接続していない場合と接続した場合のビーム幅の周波数特性を、図12に線状導体140を接続していない場合と接続した場合のVSWRの周波数特性をそれぞれ例示する。なお、線状導体140を接続した場合については「図10(a)のように素子と直角に接続し全長L=35mmの場合」、「図10(a)のように素子と直角に接続しL=40mmの場合」、「図10(b)のように素子がなす円弧の内側に傾けて接続しL=40mmの場合」、「図10(c)のように素子がなす円弧の外側に傾けて接続しL=40mmの場合」の4通りについてシミュレーションを行った。ここで、線状導体140は両端からそれぞれ長さL1、L2の位置で素子と接続され、L1の長さ:L2の長さ=3:1としている。   FIG. 11 shows the frequency characteristics of the beam width when the linear conductor 140 is not connected and when it is connected, and FIG. 12 shows the frequency characteristics of the VSWR when the linear conductor 140 is not connected and when it is connected. To do. For the case where the linear conductor 140 is connected, “when connected at a right angle to the element as shown in FIG. 10A and the total length L = 35 mm”, “when connected at a right angle with the element as shown in FIG. 10A. L = 40 mm ”,“ when tilted inside the arc formed by the element as shown in FIG. 10B and L = 40 mm connected ”,“ when outside the arc formed by the element as shown in FIG. 10C ” The simulation was performed for the four cases of “inclined connection and L = 40 mm”. Here, the linear conductor 140 is connected to the element at the positions of lengths L1 and L2 from both ends, and the length of L1: the length of L2 = 3: 1.

図11よりいずれの場合も、1.7GHz付近を除き、500MHz〜2.1GHzで概ねビーム幅が100°±10°の範囲に入っており、線状導体140を接続してもビーム幅にはほとんど影響を与えていないことがわかる。一方、図12より「図10(a)のL=35mm」の場合以外は、θeを180°に広げる前の800MHz帯の共振周波数近辺で共振していることがわかる。   In any case from FIG. 11, except for the vicinity of 1.7 GHz, the beam width is generally in the range of 100 ° ± 10 ° at 500 MHz to 2.1 GHz. Even if the linear conductor 140 is connected, the beam width is It turns out that there is almost no influence. On the other hand, it can be seen from FIG. 12 that, except for the case of “L = 35 mm in FIG.

このように、線状導体140を接続することで、ビーム幅の周波数特性を維持しつつ、所望帯域で共振させることができる。なお、線状導体140の接続形態は上記に限られず、図10では直線状の導体を示したが、例えば、素子との接続部分でくの字型に折れ曲げることによりよっても調整が可能である。   Thus, by connecting the linear conductor 140, it is possible to resonate in a desired band while maintaining the frequency characteristics of the beam width. Note that the connection form of the linear conductor 140 is not limited to the above, and a linear conductor is shown in FIG. 10. However, for example, the linear conductor 140 can be adjusted by bending it into a square shape at the connection portion with the element. is there.

本発明は上述の実施例に限定されるものではない。その他、本発明の趣旨を逸脱しない範囲で適宜変更が可能である。   The present invention is not limited to the embodiments described above. In addition, it can change suitably in the range which does not deviate from the meaning of this invention.

本発明は、水平偏波を送受信する基地局において、少ないアンテナ数で複数の周波数帯域を用い、かつセクタ分割を行いたい場合に特に有効である。   The present invention is particularly effective when a base station that transmits and receives horizontally polarized waves uses a plurality of frequency bands with a small number of antennas and wants to perform sector division.

水平偏波アンテナ100の構成例を示した斜視図及び平面図。The perspective view and top view which showed the structural example of the horizontal polarization antenna 100. FIG. 水平偏波アンテナ100の素子の形状に係る各パラメータに対応する符号を記した平面図。The top view which described the code | symbol corresponding to each parameter which concerns on the shape of the element of the horizontal polarization antenna. 水平偏波アンテナ100のビーム幅の周波数特性の例を示した図。The figure which showed the example of the frequency characteristic of the beam width of the horizontal polarization antenna. 水平偏波アンテナ100のVSWRの周波数特性の例を示した図。The figure which showed the example of the frequency characteristic of VSWR of the horizontal polarization antenna. 水平偏波アンテナ200の構成例を示した斜視図及び平面図。The perspective view and top view which showed the structural example of the horizontal polarization antenna 200. FIG. 水平偏波アンテナ200の中心角θeごとのビーム幅の周波数特性の相違の例を示した図。The figure which showed the example of the difference in the frequency characteristic of the beam width for every center angle (theta) e of the horizontally polarized wave antenna 200. FIG. 水平偏波アンテナ100の中心角θeごとのビーム幅の周波数特性の相違の例を示した図。The figure which showed the example of the difference in the frequency characteristic of the beam width for every center angle (theta) e of the horizontal polarization antenna. 水平偏波アンテナ100の給電素子110の半径Reごとのビーム幅の周波数特性の相違の例を示した図。The figure which showed the example of the difference in the frequency characteristic of the beam width for every radius Re of the feed element 110 of the horizontal polarization antenna 100. 水平偏波アンテナ100の中心角θeごとのVSWRの周波数特性の相違の例を示した図。The figure which showed the example of the difference in the frequency characteristic of VSWR for every center angle (theta) e of the horizontal polarization antenna. 線状導体140の素子への接続イメージを示す図。The figure which shows the connection image to the element of the linear conductor 140. FIG. 水平偏波アンテナ100に線状導体140を接続した場合のビーム幅の周波数特性の例を示した図。The figure which showed the example of the frequency characteristic of the beam width at the time of connecting the linear conductor 140 to the horizontal polarization antenna 100. FIG. 水平偏波アンテナ100に線状導体140を接続した場合のVSWRの周波数特性の例を示した図。The figure which showed the example of the frequency characteristic of VSWR at the time of connecting the linear conductor 140 to the horizontal polarization antenna 100. FIG.

Claims (5)

地面と平行に配された円弧形状の放射素子を備える水平偏波アンテナの特性調整方法であって、当該円弧の半径を一定として当該円弧の中心角を変化させて当該放射素子の長さを変化させることにより水平面内のビーム幅の周波数特性を調整する水平偏波アンテナの特性調整方法。   A method of adjusting characteristics of a horizontally polarized antenna having an arc-shaped radiating element arranged in parallel with the ground, and changing the length of the radiating element by changing the center angle of the arc while keeping the radius of the arc constant The method of adjusting the characteristics of a horizontally polarized antenna that adjusts the frequency characteristics of the beam width in a horizontal plane 請求項1に記載の水平偏波アンテナの特性調整方法において、
更に、上記放射素子の両端にそれぞれ線状導体を接続することによって、共振周波数の調整を行うことを特徴とする水平偏波アンテナの特性調整方法。
In the horizontal polarization antenna characteristic adjustment method according to claim 1,
Furthermore, the resonance frequency is adjusted by connecting linear conductors to both ends of the radiating element to adjust the characteristic of the horizontally polarized antenna.
地面と平行に配された円弧形状の放射素子を備える水平偏波アンテナであって、当該放射素子の両端にそれぞれ線状導体が接続されていることを特徴とする水平偏波アンテナ。   A horizontal polarization antenna comprising an arc-shaped radiating element arranged in parallel with the ground, wherein linear conductors are connected to both ends of the radiating element, respectively. 請求項3に記載の水平偏波アンテナにおいて、
上記放射素子は給電素子であり、
更に、上記放射素子と平行に配され、当該放射素子より高い共振周波数で共振する円弧形状の無給電素子を1本以上備える
ことを特徴とする水平偏波アンテナ。
The horizontally polarized antenna according to claim 3,
The radiating element is a feeding element,
The horizontal polarization antenna further comprising at least one arc-shaped parasitic element that is arranged in parallel with the radiating element and resonates at a higher resonance frequency than the radiating element.
請求項3又は4に記載の水平偏波アンテナにおいて、
更に、上記放射素子から所定の間隔を隔てた外周部分に反射板を備える
ことを特徴とする水平偏波アンテナ。
The horizontally polarized antenna according to claim 3 or 4,
The horizontal polarization antenna according to claim 1, further comprising a reflector on an outer peripheral portion spaced a predetermined distance from the radiating element.
JP2008183728A 2008-07-15 2008-07-15 Horizontally polarized antenna and characteristic adjustment method thereof Expired - Fee Related JP4625514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008183728A JP4625514B2 (en) 2008-07-15 2008-07-15 Horizontally polarized antenna and characteristic adjustment method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008183728A JP4625514B2 (en) 2008-07-15 2008-07-15 Horizontally polarized antenna and characteristic adjustment method thereof

Publications (2)

Publication Number Publication Date
JP2010028193A JP2010028193A (en) 2010-02-04
JP4625514B2 true JP4625514B2 (en) 2011-02-02

Family

ID=41733650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008183728A Expired - Fee Related JP4625514B2 (en) 2008-07-15 2008-07-15 Horizontally polarized antenna and characteristic adjustment method thereof

Country Status (1)

Country Link
JP (1) JP4625514B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1168446A (en) * 1997-08-19 1999-03-09 Nippon Dengiyou Kosaku Kk Half-wave dipole antenna, horizontally polarized antenna and array antenna
JP2000124733A (en) * 1998-10-16 2000-04-28 Ntt Mobil Communication Network Inc Base station antenna device
JP2006060829A (en) * 2004-08-21 2006-03-02 Samsung Electronics Co Ltd Small planar antenna with enhanced bandwidth and small strip radiator
JP2008153855A (en) * 2006-12-15 2008-07-03 Toppan Forms Co Ltd Dipole antenna

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1168446A (en) * 1997-08-19 1999-03-09 Nippon Dengiyou Kosaku Kk Half-wave dipole antenna, horizontally polarized antenna and array antenna
JP2000124733A (en) * 1998-10-16 2000-04-28 Ntt Mobil Communication Network Inc Base station antenna device
JP2006060829A (en) * 2004-08-21 2006-03-02 Samsung Electronics Co Ltd Small planar antenna with enhanced bandwidth and small strip radiator
JP2008153855A (en) * 2006-12-15 2008-07-03 Toppan Forms Co Ltd Dipole antenna

Also Published As

Publication number Publication date
JP2010028193A (en) 2010-02-04

Similar Documents

Publication Publication Date Title
JP4223564B2 (en) Microstrip antenna and array antenna
JP5956582B2 (en) antenna
JP2011507432A (en) Dual-polarized radiating element for cellular base station antenna
JP4073130B2 (en) Cross dipole antenna
EP0820116B1 (en) Mobile radio antenna
JP2009188737A (en) Plane antenna
KR101252244B1 (en) Multi antenna
JP4212613B2 (en) Dual polarization antenna
JP5593278B2 (en) Multi-frequency shared antenna and antenna device
JP2009130451A (en) Antenna system
JP3510598B2 (en) Dual-polarization antenna device
JP4927921B2 (en) Antenna and array antenna
JP4732321B2 (en) Antenna device
JP4027950B2 (en) Omnidirectional antenna
JP4625514B2 (en) Horizontally polarized antenna and characteristic adjustment method thereof
JP2005117493A (en) Frequency sharing nondirectional antenna and array antenna
JP2009111661A (en) Array antenna
JP4950155B2 (en) Dipole horizontal array antenna device
JP3822607B2 (en) Array antenna
JP5071903B2 (en) Variable device loaded antenna with multiple antennas superimposed
JP2008079246A (en) Multiple-frequency common monopole antenna
JP3701578B2 (en) Horizontal and vertical polarization antenna device
JP2002026642A (en) Antenna system
JP4950264B2 (en) antenna
JP4332168B2 (en) antenna

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101105

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees