JP4027950B2 - Omnidirectional antenna - Google Patents

Omnidirectional antenna Download PDF

Info

Publication number
JP4027950B2
JP4027950B2 JP2005182932A JP2005182932A JP4027950B2 JP 4027950 B2 JP4027950 B2 JP 4027950B2 JP 2005182932 A JP2005182932 A JP 2005182932A JP 2005182932 A JP2005182932 A JP 2005182932A JP 4027950 B2 JP4027950 B2 JP 4027950B2
Authority
JP
Japan
Prior art keywords
antenna
dielectric substrate
omnidirectional
feeding
omnidirectional antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005182932A
Other languages
Japanese (ja)
Other versions
JP2007006062A (en
Inventor
英二 天川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denki Kogyo Co Ltd
Original Assignee
Denki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kogyo Co Ltd filed Critical Denki Kogyo Co Ltd
Priority to JP2005182932A priority Critical patent/JP4027950B2/en
Publication of JP2007006062A publication Critical patent/JP2007006062A/en
Application granted granted Critical
Publication of JP4027950B2 publication Critical patent/JP4027950B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、移動通信システム等の基地局で使用するのに好適なプリント化した無指向性アンテナに関する。   The present invention relates to a printed omnidirectional antenna suitable for use in a base station such as a mobile communication system.

移動通信システム等の基地局においては、円形の通信エリアを構成することが多く、その場合、基地局周辺に均一に電波を送信するため、水平面内において無指向性のアンテナが用いられる。
この種のアンテナとして、コリニアアンテナが周知である。しかし、このコリニアアンテナは、細径化が可能であるという利点を有する半面、使用可能な周波数帯域が狭いという欠点がある。例えば、誘電体基板に形成したコリニアアンテナでは、電圧定在波比が1.5以下となる帯域を使用可能周波数帯域とした場合、その帯域が使用中心周波数の約2%である。
A base station such as a mobile communication system often forms a circular communication area. In this case, an omnidirectional antenna is used in a horizontal plane in order to transmit radio waves uniformly around the base station.
As this kind of antenna, a collinear antenna is well known. However, this collinear antenna has the advantage that the diameter can be reduced, but has the disadvantage that the usable frequency band is narrow. For example, in a collinear antenna formed on a dielectric substrate, when a band where the voltage standing wave ratio is 1.5 or less is set as a usable frequency band, the band is about 2% of the use center frequency.

携帯電話の基地局では、送信と受信の周波数帯域が離れているので、送受信の各帯域の双方に適用可能な広帯域のアンテナを必要とする。しかし、上記コリニアアンテナは、上記のように使用可能周波数帯域が狭いので、携帯電話の基地局用アンテナとして有効でない。
一方、近年の移動通信システムでは、垂直面内におけるビームチルト可変機能が必須である。しかし、上記コリニアアンテナは、放射素子への給電方式が直列給電方式であることから、ビームチルトに必要である各放射素子に対しての給電位相および振幅の制御が困難である。
そこで、上記コリニアアンテナが有する問題点を解決するため、ダイポール素子を使用したプリント化無指向性アンテナが提案されている(例えば、特許文献1参照)。
In a mobile phone base station, the transmission and reception frequency bands are separated from each other, and therefore a broadband antenna applicable to both transmission and reception bands is required. However, since the collinear antenna has a narrow usable frequency band as described above, it is not effective as an antenna for a mobile phone base station.
On the other hand, in recent mobile communication systems, a beam tilt variable function in a vertical plane is essential. However, in the collinear antenna, since the feeding method to the radiating element is a series feeding method, it is difficult to control the feeding phase and amplitude for each radiating element necessary for beam tilt.
In order to solve the problems of the collinear antenna, a printed omnidirectional antenna using a dipole element has been proposed (see, for example, Patent Document 1).

特開2003−32034号公報JP 2003-32034 A

しかし、特許文献1に記載のプリント化無指向性アンテナは、一対のダイポールアンテナパターンを形成した2つの誘電体基板と、給電回路パターンを形成した1つの誘電体基板とを立体的に組み合わせた構成を有するので、外径寸法が大きくなるとともに、水平面内指向性に若干の偏りが生じる。   However, the printed omnidirectional antenna described in Patent Document 1 has a configuration in which two dielectric substrates formed with a pair of dipole antenna patterns and one dielectric substrate formed with a feed circuit pattern are three-dimensionally combined. Therefore, the outer diameter is increased, and the horizontal plane directivity is slightly biased.

移動通信システム等の基地局において使用する無指向性アンテナは、一層の細径化が可能で、かつ、並列給電によるビームチルトが可能であることが理想である。また、その内部構造の簡略化および低廉化を図れること、および、水平面内指向性の偏りの少ないことも重要となる。   Ideally, an omnidirectional antenna used in a base station such as a mobile communication system can be further reduced in diameter and can be beam tilted by parallel feeding. It is also important that the internal structure can be simplified and inexpensive, and that there is little deviation in directivity in the horizontal plane.

本発明は、このような状況に鑑み、無指向性アンテナとしての性能を損なうことなく一層の細径化と構造の簡略化および低廉化を図ることができる無指向性アンテナを提供することを目的としている。また本発明は、上記細径化等を図ることができるとともに、垂直面内におけるビームチルトを変化させることが可能なアレー構成の無指向性アンテナを提供することを目的としている。   In view of such circumstances, an object of the present invention is to provide an omnidirectional antenna capable of further reducing the diameter, simplifying the structure, and reducing the cost without impairing the performance as an omnidirectional antenna. It is said. It is another object of the present invention to provide an omnidirectional antenna having an array configuration capable of reducing the diameter and the like and changing the beam tilt in the vertical plane.

上記目的を達成するため、本発明に係る無指向性アンテナは、長尺の誘電体基板と、前記誘電体基板の長手軸線を中心とする左右対称な位置に、該長手軸線に平行する形態で、かつ、一方および他方の素子導体がそれぞれ前記誘電体基板の一方および他方の面に位置される形態でプリント形成された第1および第2のダイポール素子と、前記第1および第2のダイポール素子における前記一方の素子導体に接続され、前記誘電体基板の一方の面において前記長手軸線に沿って延びる給電線路導体と、前記第1および第2のダイポール素子における前記他方の素子導体に接続され、前記誘電体基板の他方の面において前記長手軸線に沿って延びる接地線路導体と、前記第1および第2のダイポール素子を上下に挟む形態で前記誘電体基板の他方の面にプリント形成され、それぞれ一端が前記接地線路導体に短絡された第1および第2のシュペルトップと、を備え、前記給電線路導体と前記接地線路導体とで構成される給電回路を介して前記第1および第2のダイポール素子に対し交差給電を行うように構成されている。   In order to achieve the above object, an omnidirectional antenna according to the present invention has a long dielectric substrate and a shape parallel to the longitudinal axis at a symmetrical position about the longitudinal axis of the dielectric substrate. And first and second dipole elements printed in a form in which one and the other element conductors are positioned on one and the other surfaces of the dielectric substrate, respectively, and the first and second dipole elements Connected to the one element conductor in the above, connected to the feeder line conductor extending along the longitudinal axis on one surface of the dielectric substrate, and to the other element conductor in the first and second dipole elements, A ground line conductor extending along the longitudinal axis on the other surface of the dielectric substrate and the other of the dielectric substrate in a form sandwiching the first and second dipole elements vertically First and second super tops, one end of which is printed on the surface and short-circuited to the ground line conductor, respectively, via a feed circuit configured by the feed line conductor and the ground line conductor The first and second dipole elements are configured to perform cross feeding.

また、本発明に係る無指向性アンテナは、アレー化のため、上述した構成の無指向性アンテナをアンテナブロックとして上下に2つ配列し、それらのアンテナブロックの前記給電回路によって2分配並列給電回路を構成している。   Further, the omnidirectional antenna according to the present invention has two omnidirectional antennas having the above-described configuration arranged vertically as an antenna block for arraying, and a two-distributed parallel feeding circuit by the feeding circuit of those antenna blocks. Is configured.

さらに、本発明に係る無指向性アンテナは、前記アレー化された前記無指向性アンテナをアンテナブロックとして上下に複数段配列し、それらのアンテナブロックの前記2分配並列給電回路に、給電位相と振幅を変更するための可変移相器をそれぞれ挿入している。
上記各無指向性アンテナは、とくに屋外にて使用する場合に、円筒状カバーに収容して使用することが好ましい。
Furthermore, in the omnidirectional antenna according to the present invention, the arrayed omnidirectional antennas are arranged in a plurality of stages as antenna blocks, and a feeding phase and amplitude are arranged in the two distributed parallel feeding circuits of the antenna blocks. A variable phase shifter is inserted for changing each.
Each of the omnidirectional antennas is preferably housed in a cylindrical cover and used particularly when used outdoors.

本発明に係る無指向性アンテナよれば、2つの半波長ダイポール素子の水平方向距離を限りなく近づけるために、誘電体基板の長手軸線上をそれぞれ通る給電線路導体および接地線路導体によって各ダイポール素子が交差給電され、かつ、各ダイポール素子を上下に挟む形態で設けられた第1および第2のシュペルトップによって該各ダイポール素子からの不要な電波の放射が抑制されるので、無指向性アンテナとしての性能を損なうことなく細径化を図ることができるとともに、その内部構造の簡略化および低廉化を図ることができる。   According to the omnidirectional antenna according to the present invention, in order to make the horizontal distance between the two half-wave dipole elements as close as possible, each dipole element is provided by a feed line conductor and a ground line conductor that respectively pass on the longitudinal axis of the dielectric substrate. Since the first and second super tops that are cross-fed and sandwiched between the dipole elements are prevented from emitting unnecessary radio waves from the dipole elements, The diameter can be reduced without impairing the performance, and the internal structure can be simplified and reduced in price.

また、上記無指向性アンテナからなるアンテナブロックを上下に2つ配列した本発明に係るアレー構成の無指向性アンテナによれば、各アンテナブロックのダイポール素子への給電の位相および振幅を並列給電回路によって適切に設定できるため、良好な特性の垂直面内指向性(低サイドローブ化、ビームチルト角の設定)が得られる。   In addition, according to the omnidirectional antenna having the array configuration according to the present invention in which two antenna blocks each including the omnidirectional antenna are arranged above and below, the phase and amplitude of power feeding to the dipole element of each antenna block Therefore, it is possible to obtain appropriate vertical in-plane directivity (low side lobe, setting of beam tilt angle).

さらに、上記アレー構成の無指向性アンテナからなるアンテナブロックを上下に複数段配列した本発明に係る無指向性アンテナによれば、可変移相器により各アンテナブロックのダイポール素子に対する給電位相を変化させることによって、垂直面内のビームチルト角を容易に変更することが可能である。   Furthermore, according to the omnidirectional antenna according to the present invention in which a plurality of antenna blocks each including the omnidirectional antenna having the above array configuration are arranged in a vertical direction, the feeding phase to the dipole element of each antenna block is changed by the variable phase shifter. Thus, it is possible to easily change the beam tilt angle in the vertical plane.

以下、図面を参照しながら本発明の実施形態を説明する。
図1の(a)、(b)および(c)は、それぞれ本発明に係る無指向性アンテナの一実施形態を示す正面図、側面図および背面図である。
この無指向性アンテナA1は、横幅wが約0.11λ(λは、使用周波数の波長)に設定された長尺の誘電体基板10−1に一対のダイポール素子20および一対のシュペルトップ30をプリント形成した構成を有する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1A, 1B, and 1C are a front view, a side view, and a rear view, respectively, showing an embodiment of an omnidirectional antenna according to the present invention.
This omnidirectional antenna A1 has a pair of dipole elements 20 and a pair of super-tops 30 on a long dielectric substrate 10-1 having a lateral width w set to about 0.11λ (λ is a wavelength of the used frequency). Is formed by printing.

各ダイポール素子20は、長さが約0.4λg(λgは、誘電体基板10−1上での使用周波数の波長)に設定され、誘電体基板10−1の長手軸線を中心とする左右対称位置に互いに約0.08λ離れるように平行に形成されている。
ダイポール素子20を構成する素子導体21,22のうち、一方の素子導体21は誘電体基板10−1の表面に、他方の素子導体21は該誘電体基板10−1の裏面にそれぞれ設けられている。
Each dipole element 20 is set to have a length of about 0.4λg (λg is a wavelength of a use frequency on the dielectric substrate 10-1), and is symmetric about the longitudinal axis of the dielectric substrate 10-1. The positions are formed in parallel so as to be separated from each other by about 0.08λ.
Of the element conductors 21 and 22 constituting the dipole element 20, one element conductor 21 is provided on the front surface of the dielectric substrate 10-1, and the other element conductor 21 is provided on the back surface of the dielectric substrate 10-1. Yes.

誘電体基板10−1の表面および裏面には、それぞれ該誘電体基板10−1の長手軸線上を通って延びる給電線路導体40および接地線路導体50がプリント形成されている。
給電線路導体40は、誘電体基板10−1の下端からダイポール素子20の中心点の高さ部位に至るように形成され、その上端より左右に延びる各給電線路導体41を介して左右のダイポール素子20の素子導体21の給電点に接続されている。一方、接地線路導体50は、電体基板10の下端から上端に至るように形成され、その上下中間点より左右に延びる各給電線路導体51を介して左右のダイポール素子20の素子導体22の給電点に接続されている。
A feed line conductor 40 and a ground line conductor 50 extending on the longitudinal axis of the dielectric substrate 10-1 are printed on the front surface and the back surface of the dielectric substrate 10-1.
The feed line conductor 40 is formed so as to extend from the lower end of the dielectric substrate 10-1 to the height portion of the center point of the dipole element 20, and the left and right dipole elements via the feed line conductors 41 extending left and right from the upper end. It is connected to the feeding point of 20 element conductors 21. On the other hand, the ground line conductor 50 is formed so as to extend from the lower end to the upper end of the electric substrate 10 and feeds the element conductors 22 of the left and right dipole elements 20 via the respective feed line conductors 51 extending left and right from the upper and lower intermediate points. Connected to a point.

上記各シュペルトップ30は、約0.3λgの長さを有し、それぞれ誘電体基板10−1の裏面に形成されている。
一方のシュペルトップ30は、ダイポール素子20の中心点の高さ部位から約0.22λ上方に離れた部位で上記接地線路導体60に短絡され、その短絡部位から接地線路導体60の両側に沿って上方に延びている。また、他方のシュペルトップ30は、ダイポール素子20の中心点の高さ部位から約0.22λ下方に離れた部位で上記接地線路導体60に短絡され、その短絡部位から接地線路導体50の両側に沿って下方に延びている。他方のシュペルトップ30は、ダイポール素子20の中心点の高さ部位から約0.22λ下方に離れた部位において上記接地線路導体60に一端が短絡され、その短絡部位から接地線路導体50の両側に沿って下方に延びている。
Each of the super tops 30 has a length of about 0.3λg, and is formed on the back surface of the dielectric substrate 10-1.
One super top 30 is short-circuited to the ground line conductor 60 at a position approximately 0.22λ above the height of the center point of the dipole element 20, and extends along both sides of the ground line conductor 60 from the short-circuited portion. Extending upward. Further, the other super top 30 is short-circuited to the ground line conductor 60 at a position separated by about 0.22λ from the height of the center point of the dipole element 20, and both sides of the ground line conductor 50 from the short-circuited part. Extending downward. The other super top 30 is short-circuited at one end to the ground line conductor 60 at a position about 0.22λ below the height of the center point of the dipole element 20, and both sides of the ground line conductor 50 from the short-circuited part. Extending downward.

この実施の形態に係る無指向性アンテナA1は、前記給電線路導体40に図示していない同軸給電線の中心導体を接続し、前記接地線路導体50に上記同軸給電線の外部導体を接続することによって送、受信動作させることができる。   In the omnidirectional antenna A <b> 1 according to this embodiment, a central conductor of a coaxial feed line (not shown) is connected to the feed line conductor 40, and an external conductor of the coaxial feed line is connected to the ground line conductor 50. Can be used to send and receive.

通常、ダイポールアンテナは、水平面内において無指向性である。ここで、水平方向に間隔を置いて2つのダイポール素子を平行に配列した2ダイポールアンテナを考えると、それらのダイポール素子の配列距離が使用周波数の波長λに対して限りなく小さくなれば、この2ダイポールアンテナの水平面内指向性もダイポール素子が一つのアンテナと同様に無指向性になる。   Usually, a dipole antenna is omnidirectional in a horizontal plane. Here, considering a two-dipole antenna in which two dipole elements are arranged in parallel at intervals in the horizontal direction, if the arrangement distance of these dipole elements becomes as small as possible with respect to the wavelength λ of the operating frequency, this 2 As for the dipole antenna in the horizontal plane, the dipole element becomes omnidirectional as well as one antenna.

上記実施の形態に係る無指向性アンテナA1では、2つの半波長ダイポール素子20の水平方向距離を限りなく近づけるために、それらの半波長ダイポール素子20の中央部分をそれぞれ通る(誘電体基板10−1の長手軸線上を通る)マイクロストリップラインからなる給電線路導体40および接地線路導体50によって給電回路を構成している。
そして、このアンテナA1の各半波長ダイポール素子20は、周波数に依存する平衡不平衡変換回路を使用することなく上記給電回路を介して交差給電され、そのさい、各半波長ダイポール素子20の上下に位置された前記シュペルトップ30が該ダイポール素子20からの不要な電波の放射を低減もしくは無くすように作用する。
In the omnidirectional antenna A1 according to the above-described embodiment, in order to make the horizontal distance between the two half-wavelength dipole elements 20 as close as possible, they pass through the central portions of the half-wavelength dipole elements 20 (dielectric substrate 10- A feed circuit is constituted by the feed line conductor 40 and the ground line conductor 50 formed of a microstrip line (passing on one longitudinal axis).
The half-wave dipole elements 20 of the antenna A1 are cross-fed through the feed circuit without using a frequency-dependent balanced / unbalanced conversion circuit. The positioned super-top 30 acts to reduce or eliminate unnecessary radiation of radio waves from the dipole element 20.

したがって、この実施の形態に係る無指向性アンテナA1によれば、無指向性アンテナとしての性能を損なうことなく細径化を図ることができる。
また、この実施の形態に係る無指向性アンテナは、無給電素子などの付属部品を持たず、しかも、誘電体基板10−1を用いて構成されるため、その構造が極めて単純化され、移動体通信システムにおける送信帯域と受信帯域をカバーすることができる性能が得られる。
Therefore, according to the omnidirectional antenna A1 according to this embodiment, the diameter can be reduced without impairing the performance as the omnidirectional antenna.
In addition, since the omnidirectional antenna according to this embodiment does not have accessory parts such as parasitic elements and is configured using the dielectric substrate 10-1, the structure thereof is greatly simplified and moved. Performance capable of covering the transmission band and the reception band in the body communication system is obtained.

本実施形態の無指向性アンテナA1を屋外で使用する場合は、繊維強化プラスチック等で製作された図示していないカバーに収納することが望ましい。このカバーは、上記無指向性アンテナA1の構造からして、内径約0.115λ、外径約0.13λの円筒状カバーで良く、したがって、受風荷重の小さい構造体にすることが可能である。   When the omnidirectional antenna A1 of this embodiment is used outdoors, it is desirable to store it in a cover (not shown) made of fiber reinforced plastic or the like. This cover may be a cylindrical cover having an inner diameter of about 0.115λ and an outer diameter of about 0.13λ in view of the structure of the omnidirectional antenna A1. is there.

図2の(a)、(b)および(c)は、それぞれアレー化した本発明に係る無指向性アンテナの実施形態を示す正面図、側面図および背面図である。このアレー化無指向性アンテナA2は、実質的に、図1に示す無指向性アンテナA1と同様の構成をもつ2つのアンテナブロックb1を縦方向に連結した構成を有する。したがって、このアンテナA2の誘電体基板10−2は、図1に示す誘電体基板10−1の長さの約2倍の長さを持つ。   2A, 2B, and 2C are a front view, a side view, and a rear view, respectively, showing an embodiment of an omnidirectional antenna according to the present invention that is arrayed. This arrayed omnidirectional antenna A2 has a configuration in which two antenna blocks b1 having substantially the same configuration as the omnidirectional antenna A1 shown in FIG. 1 are connected in the vertical direction. Therefore, the dielectric substrate 10-2 of the antenna A2 has a length that is approximately twice the length of the dielectric substrate 10-1 shown in FIG.

このアレー化無指向性アンテナA2においては、上段のアンテナブロックb1の給電線路導体40と下段のアンテナブロックb1の給電線路導体40とが誘電体基板10−2の上下方向略中央部の点Pにおいて結合され、同様に、両アンテナブロックb1の接地線路導体50相互も結合されている。   In this arrayed omnidirectional antenna A2, the feed line conductor 40 of the upper antenna block b1 and the feed line conductor 40 of the lower antenna block b1 are at a point P at the substantially central portion in the vertical direction of the dielectric substrate 10-2. Similarly, the ground line conductors 50 of both antenna blocks b1 are also coupled to each other.

このアレー構成の無指向性アンテナA2によれば、各アンテナブロックb1の給電線路導体40および接地線路導体50が上記結合点Pを給電端とする並列給電線路として機能する。したがって、上記結合点Pの位置を調整して、各アンテナブロックb1のダイポール素子20に対する給電の位相および振幅を適切に設定すれば、低サイドローブ化されしかも所望のビームチルト角をもつ良好な垂直面内指向性を得ることができる。   According to the omnidirectional antenna A2 having this array configuration, the feed line conductor 40 and the ground line conductor 50 of each antenna block b1 function as a parallel feed line having the coupling point P as a feed end. Therefore, by adjusting the position of the coupling point P and appropriately setting the phase and amplitude of power feeding to the dipole element 20 of each antenna block b1, it is possible to reduce the side lobe and achieve a good vertical angle with a desired beam tilt angle. In-plane directivity can be obtained.

図3の(a)、(b)および(c)は、それぞれ本発明に係るアレー化無指向性アンテナの他の例を示す正面図、側面図および背面図である。このアレー化無指向性アンテナA3は、実質的に、図1に示す無指向性アンテナA1と同様の構成をもつ4つのアンテナブロックb1を縦方向に連結した構成、換言すれば、図2に示す無指向性アンテナA2と同様の構成をもつ2つのアンテナブロックb2を縦方向に連結した構成を有する。したがって、このアンテナA3の誘電体基板10−3は、図2に示す誘電体基板10−2の長さの約2倍の長さを持つ。   3A, 3B, and 3C are a front view, a side view, and a rear view, respectively, showing another example of the arrayed omnidirectional antenna according to the present invention. This arrayed omnidirectional antenna A3 has a configuration in which four antenna blocks b1 having substantially the same configuration as the omnidirectional antenna A1 shown in FIG. 1 are connected in the vertical direction, in other words, shown in FIG. It has a configuration in which two antenna blocks b2 having the same configuration as the omnidirectional antenna A2 are connected in the vertical direction. Therefore, the dielectric substrate 10-3 of the antenna A3 has a length that is approximately twice the length of the dielectric substrate 10-2 shown in FIG.

このアレー化無指向性アンテナA3においては、両アンテナブロックb2の接地線路導体が相互に結合され、かつ、上段のアンテナブロックb2の給電端Pおよび下段のアンテナブロックb2の給電端Pがそれぞれケーブル60および70を介して分配器80もしくは可変移相器90に接続される。   In this arrayed omnidirectional antenna A3, the ground line conductors of both antenna blocks b2 are coupled to each other, and the feeding end P of the upper antenna block b2 and the feeding end P of the lower antenna block b2 are respectively connected to the cable 60. And 70 are connected to a distributor 80 or a variable phase shifter 90.

このアンテナA3において、上記分配器80を使用した場合には、その垂直面内指向性が固定される。一方、可変移相器90を使用した場合には、各アンテナブロックb2の並列給電回路にそれぞれこの可変移相器90が挿入されることになるので、この可変移相器90で各アンテナブロックb2の各ダイポール素子に対する給電位相を変化させることによって、垂直面内のビームチルト角を容易に変更することが可能になる。
なお、図2および図3に示すアレー化無指向性アンテナも、円筒状等のカバーに収容することができる。
In the antenna A3, when the distributor 80 is used, the directivity in the vertical plane is fixed. On the other hand, when the variable phase shifter 90 is used, the variable phase shifter 90 is inserted into the parallel feeding circuit of each antenna block b2. By changing the feeding phase for each of the dipole elements, the beam tilt angle in the vertical plane can be easily changed.
The arrayed omnidirectional antenna shown in FIGS. 2 and 3 can also be accommodated in a cylindrical cover or the like.

図4、図5および図6は、図3に示すアレー化無指向性アンテナのVSWR特性、水平面内指向性および垂直面内指向性をそれぞれ例示したものである。
図4から明らかなように、このアレー化無指向性アンテナによれば、VSWRが1.5以下となる周波数帯が約18%という広帯域特性を得ることができる。
また、図5から明らかなように、このアレー化無指向性アンテナは、水平面内指向性のレベル偏差が非常に少なくなる(偏差1dB以内)。
なお、図1に示したアンテナA1および図2に示したアンテナA2のVSWR特性と水平面内指向性も、図3に示したアンテナA3のそれに近似したものとなる。
4, 5 and 6 illustrate the VSWR characteristics, horizontal plane directivity and vertical plane directivity of the arrayed omnidirectional antenna shown in FIG. 3, respectively.
As is apparent from FIG. 4, according to this arrayed omnidirectional antenna, it is possible to obtain a wide band characteristic that the frequency band where the VSWR is 1.5 or less is about 18%.
Further, as apparent from FIG. 5, this arrayed omnidirectional antenna has a very small level deviation of the directivity in the horizontal plane (within a deviation of 1 dB).
The VSWR characteristics and horizontal directivity of the antenna A1 shown in FIG. 1 and the antenna A2 shown in FIG. 2 are also similar to those of the antenna A3 shown in FIG.

(a)、(b)および(c)は、それぞれ本発明に係る無指向性アンテナの一実施形態を示す正面図、側面図および背面図である。(A), (b) and (c) are the front view, the side view, and the rear view which respectively show one Embodiment of the omnidirectional antenna which concerns on this invention. (a)、(b)および(c)は、それぞれアレー化した本発明に係る無指向性アンテナの実施形態を示す正面図、側面図および背面図である。(A), (b) and (c) are the front view, the side view, and the rear view which respectively show embodiment of the omnidirectional antenna which concerns on the present invention made into the array. (a)、(b)および(c)は、それぞれ本発明に係るアレー化無指向性アンテナの他の例を示す正面図、側面図および背面図である。(A), (b) and (c) are the front view, side view, and back view which show the other example of the arrayed omnidirectional antenna based on this invention, respectively. 図3に示すアレー化無指向性アンテナのVSWR特性を例示したグラフである。It is the graph which illustrated the VSWR characteristic of the arrayed omnidirectional antenna shown in FIG. 図3に示すアレー化無指向性アンテナの水平面内指向性を例示したグラフである。It is the graph which illustrated the directivity in the horizontal surface of the arrayed omnidirectional antenna shown in FIG. 図3に示すアレー化無指向性アンテナの垂直面内指向性を例示したグラフである。4 is a graph illustrating the in-plane directivity of the arrayed omnidirectional antenna shown in FIG. 3.

符号の説明Explanation of symbols

10−1,10−2,10−3 誘電体基板
20 ダイポール素子
21,22 素子導体
30 シュペルトップ
40 給電線路導体
50 接地線路導体
60,70 ケーブル
80 分配器
90 可変移相器
10-1, 10-2, 10-3 Dielectric substrate 20 Dipole element 21, 22 Element conductor 30 Super top 40 Feed line conductor 50 Ground line conductor 60, 70 Cable 80 Divider 90 Variable phase shifter

Claims (4)

移動通信システム等における基地局用の無指向性アンテナであって、
長尺の誘電体基板と、
前記誘電体基板の長手軸線を中心とする左右対称な位置に、該長手軸線に平行する形態で、かつ、一方および他方の素子導体がそれぞれ前記誘電体基板の一方および他方の面に位置される形態でプリント形成された第1および第2のダイポール素子と、
前記第1および第2のダイポール素子における前記一方の素子導体に接続され、前記誘電体基板の一方の面において前記長手軸線に沿って延びる給電線路導体と、
前記第1および第2のダイポール素子における前記他方の素子導体に接続され、前記誘電体基板の他方の面において前記第1および第2のダイポール素子の間を貫通する形態で前記長手軸線に沿って延びる接地線路導体と、
前記第1および第2のダイポール素子を上下に挟む形態で前記誘電体基板の他方の面にプリント形成され、それぞれ一端が前記接地線路導体に短絡された第1および第2のシュペルトップと、を備え、
前記給電線路導体と前記接地線路導体とで構成される給電回路を介して前記第1および第2のダイポール素子に対し交差給電を行うように構成されていることを特徴とする無指向性アンテナ。
An omnidirectional antenna for a base station in a mobile communication system or the like,
A long dielectric substrate;
The first and second element conductors are positioned on one and the other surfaces of the dielectric substrate, respectively, in a form parallel to the longitudinal axis at symmetrical positions about the longitudinal axis of the dielectric substrate. First and second dipole elements printed in form;
A feed line conductor connected to the one element conductor in the first and second dipole elements and extending along the longitudinal axis on one surface of the dielectric substrate;
Connected to the other element conductor in the first and second dipole elements, and along the longitudinal axis in a form penetrating between the first and second dipole elements on the other surface of the dielectric substrate An extending ground line conductor;
First and second super tops printed on the other surface of the dielectric substrate in a form sandwiching the first and second dipole elements up and down, each having one end short-circuited to the ground line conductor; With
An omnidirectional antenna configured to perform cross-feeding with respect to the first and second dipole elements via a feeding circuit constituted by the feeding line conductor and the ground line conductor.
アレー化のため、請求項1に記載の無指向性アンテナをアンテナブロックとして上下に2つ配列し、それらのアンテナブロックの前記給電回路によって2分配並列給電回路を構成したことを特徴とする無指向性アンテナ。   For arraying, two omnidirectional antennas according to claim 1 are vertically arranged as antenna blocks, and a two-distributed parallel feeding circuit is constituted by the feeding circuits of these antenna blocks. Sex antenna. 請求項2に記載の無指向性アンテナをアンテナブロックとして上下に複数段配列し、それらのアンテナブロックの前記2分配並列給電回路に、給電位相と振幅を変更するための可変移相器をそれぞれケーブルを介して接続したことを特徴とする無指向性アンテナ。 A plurality of stages of omnidirectional antennas according to claim 2 arranged vertically as antenna blocks, and variable phase shifters for changing the feeding phase and amplitude are respectively connected to the two distributed parallel feeding circuits of the antenna blocks. An omnidirectional antenna characterized by being connected via a cable . 円筒状カバーに収容したことを特徴とする請求項1〜3のいずれかに記載の無指向性アンテナ。   The omnidirectional antenna according to any one of claims 1 to 3, wherein the omnidirectional antenna is housed in a cylindrical cover.
JP2005182932A 2005-06-23 2005-06-23 Omnidirectional antenna Active JP4027950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005182932A JP4027950B2 (en) 2005-06-23 2005-06-23 Omnidirectional antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005182932A JP4027950B2 (en) 2005-06-23 2005-06-23 Omnidirectional antenna

Publications (2)

Publication Number Publication Date
JP2007006062A JP2007006062A (en) 2007-01-11
JP4027950B2 true JP4027950B2 (en) 2007-12-26

Family

ID=37691243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005182932A Active JP4027950B2 (en) 2005-06-23 2005-06-23 Omnidirectional antenna

Country Status (1)

Country Link
JP (1) JP4027950B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102800953A (en) * 2012-08-07 2012-11-28 哈尔滨工业大学 Indirect feed type omnidirectional printed antenna with radiant load

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4878024B2 (en) * 2007-11-16 2012-02-15 Dxアンテナ株式会社 antenna
KR102405445B1 (en) * 2020-12-17 2022-06-03 동의대학교 산학협력단 Uwb antenna device and antenna module including the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0528922B2 (en) * 1985-10-16 1993-04-27 Nippon Dengyo Kosaku Kk
JPH0635529Y2 (en) * 1988-06-25 1994-09-14 日本電業工作株式会社 Wideband printed antenna
JP3324243B2 (en) * 1993-03-30 2002-09-17 三菱電機株式会社 Antenna device and antenna system
JPH0824245B2 (en) * 1993-08-30 1996-03-06 原田工業株式会社 Sleeve load type beam tilt antenna
JP3246643B2 (en) * 1995-01-25 2002-01-15 日本電信電話株式会社 Bidirectional printed circuit board antenna
JPH0936632A (en) * 1995-07-18 1997-02-07 Nippon Antenna Co Ltd Three-frequency shared on-vehicle antenna
JP3553032B2 (en) * 2001-07-16 2004-08-11 電気興業株式会社 Omnidirectional antenna
JP2003298347A (en) * 2002-04-05 2003-10-17 Hitachi Cable Ltd Nondirectional array antenna
JP2004282329A (en) * 2003-03-14 2004-10-07 Senyu Communication:Kk Dual band omnidirectional antenna for wireless lan
JP4170823B2 (en) * 2003-06-02 2008-10-22 電気興業株式会社 Multi-frequency dipole antenna

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102800953A (en) * 2012-08-07 2012-11-28 哈尔滨工业大学 Indirect feed type omnidirectional printed antenna with radiant load
CN102800953B (en) * 2012-08-07 2014-07-23 哈尔滨工业大学 Indirect feed type omnidirectional printed antenna with radiant load

Also Published As

Publication number Publication date
JP2007006062A (en) 2007-01-11

Similar Documents

Publication Publication Date Title
US11283165B2 (en) Antenna arrays having shared radiating elements that exhibit reduced azimuth beamwidth and increased isolation
EP3014705B1 (en) Broadband low-beam-coupling dual-beam phased array
CN106450690B (en) Low profile overlay antenna
US7193574B2 (en) Antenna for controlling a beam direction both in azimuth and elevation
US20150340770A1 (en) Antenna Assembly and System
US7242366B2 (en) Antenna apparatus
AU7245100A (en) A way of making a correction on the radiation pattern for a inear antenna
US10910700B2 (en) Omnidirectional antenna for mobile communication service
KR20130090770A (en) Directive antenna with isolation feature
KR20050111341A (en) Multi-band omni directional antenna
US9722321B2 (en) Full wave dipole array having improved squint performance
US10971802B2 (en) Multiband base station antenna
JP2005117493A (en) Frequency sharing nondirectional antenna and array antenna
Ji Dual-band pattern reconfigurable antenna for wireless MIMO applications
JP4027950B2 (en) Omnidirectional antenna
JP4133695B2 (en) Compound antenna
JP4927921B2 (en) Antenna and array antenna
US11239544B2 (en) Base station antenna and multiband base station antenna
JP4732321B2 (en) Antenna device
JPH07336133A (en) Antenna device
JP2020098999A (en) Antenna device and radio terminal
Lee et al. Planar ESPAR antenna based on Yagi-Uda array design for space diversity applications
JP4836142B2 (en) antenna
EP3118931A1 (en) An antenna apparatus having a selectively orientable directivity
JP4950155B2 (en) Dipole horizontal array antenna device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4027950

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250