JP4624583B2 - Heavy metal solidifying agent and waste treatment method - Google Patents

Heavy metal solidifying agent and waste treatment method Download PDF

Info

Publication number
JP4624583B2
JP4624583B2 JP2001083446A JP2001083446A JP4624583B2 JP 4624583 B2 JP4624583 B2 JP 4624583B2 JP 2001083446 A JP2001083446 A JP 2001083446A JP 2001083446 A JP2001083446 A JP 2001083446A JP 4624583 B2 JP4624583 B2 JP 4624583B2
Authority
JP
Japan
Prior art keywords
heavy metal
water glass
water
solidifying agent
fly ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001083446A
Other languages
Japanese (ja)
Other versions
JP2002273379A (en
Inventor
高 鉄 次 金
原 行 治 宮
田 富 男 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toso Sangyo Co Ltd
Original Assignee
Toso Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toso Sangyo Co Ltd filed Critical Toso Sangyo Co Ltd
Priority to JP2001083446A priority Critical patent/JP4624583B2/en
Publication of JP2002273379A publication Critical patent/JP2002273379A/en
Application granted granted Critical
Publication of JP4624583B2 publication Critical patent/JP4624583B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、ゴミ処理施設で発生する飛灰や焼却灰、または溶融飛灰などの廃棄物から有害な重金属が溶出しないように固定化する重金属固化剤および処理時に有毒な二硫化炭素ガスなどが発生せず、1液で利用できることから設備の簡素化が図れる重金属固化剤および該固化剤を用いた廃棄物処理方法に関するものである。
【0002】
【従来の技術】
都市ゴミや産業廃棄物などの焼却灰や飛灰中には人体に有害な重金属が多量に含まれており、特に焼却時に発生する塩酸ガスを抑制するために、アルカリ処理している飛灰ではPbおよびCdが大量に溶出してくる。これら重金属を無害化処理するため、セメントによる固化法、キレート剤などによる薬液処理、鉱酸等により金属を抽出する酸抽出処理が行われている。また、近年ダイオキシン対策及びゴミの減容化を図るため、1500℃以上の高温で飛灰と焼却灰の混合物またはゴミそのものを溶融する溶融固化処理が行われている。
【0003】
しかし、単にセメントのみの処理では、処理後に酸性雨や空気中の炭酸ガスによりセメントの中性化が進み、セメントの崩壊により鉛が再溶出する。また、鉛の溶出量が多い飛灰ではセメントの添加量も多くなり最終処分場の短命化につながってしまう。
キレート剤処理では多くの場合ジチオカルバミン酸系の重金属固定剤を用いるために、多量の二硫化炭素が発生し、作業環境の面で問題がある。また、最終処分場でキレート剤の分解が起こり(特に酸性条件下では不安定)鉛が再溶出することが指摘されている。
【0004】
酸抽出法は、抽出作業が煩雑であり、脱水ケーキとともに多量の排水が発生するため別途その処理が必要になる。
溶融固化処理は焼却灰が発生しないためゴミの減溶化は図れるが、飛灰は発生し、重金属は濃縮されて飛灰に集まる。そのため別途飛灰の処理が必要になる。
また、水ガラスを用いた廃棄物処理方法が特開平9−308871に公開されているが、
本発明の実施例でも明らかのように、鉛溶出量が30mg/Lを超えるような飛灰に対して、水ガラスのみでは十分な重金属固化作用が発揮できない。
【0005】
これとは別に、塩化カルシウムや塩化バリウム、または硫酸アルミニウムなどのゲル化剤を水ガラスに加えて養生する方法や粉体アルミニウムシリケートとの併用がそれぞれ特開平8−155416と特開平9−155317で公開されているが、片一方が粉体であるためタンクが2つ必要なことと、熱を40〜80℃かけるなど作業面や設備の面で問題がある。
【0006】
【本発明が解決しようとする課題】
本発明は、上記に示した問題点を解消し、複雑な液の調整を行わずに、重金属の固定化を行う、重金属固化剤の提供およびそれを用いた簡便な処理方法を提供する。
【0007】
【課題を解決するための手段】
本発明に係る重金属固化剤は、水ガラスとカルボニル基含有鎖式炭化水素系化合物の混合液からなることを特徴としている。
ここで、水ガラスとしては、A2O・nSiO2(A:アルカリ金属、n:モル数)で表され、そのモル比(SiO2/A2O)が0.5〜4.2、アルカリの酸化物換算の含有量が6.00〜21.50重量%、SiO2が9.50〜38.00重量%のものが好ましく用いられる。
【0008】
また、カルボニル基含有鎖式炭化水素系化合物としては、R1-CHO、R1-CO-R2、CHO(R3)mCHO(R1、R2はそれぞれ独立に水素原子、アルキル基またはカルボキシル基を表し、R3はアルキル基であり、mは0〜3の整数を示す)で表される水溶性化合物が好ましく用いられる。
また、本発明の重金属固化剤においては、水ガラスとカルボニル基含有鎖式炭化水素系化合物の混合比が、SiO2濃度が9.50〜38.00重量%の水ガラス100重量部に対してカルボニル基含有鎖式炭化水素系化合物が0.5〜40.0重量部であることが好ましい。
【0009】
本発明に係る廃棄物処理方法は、上記重金属固化剤と水と廃棄物とを混合および混練することを特徴としている。
本発明において処理の対象となる廃棄物としては、ストーカ式、流動床式、回転式焼却炉の炉底から排出される焼却灰または排ガスとともに排出される灰分、例えばバグフィルター、電気集塵器、マルチサイクロンなどで収集された飛灰、または近年ダイオキシン対策として実施されている焼却灰と飛灰の混合物もしくはゴミそのものを1500℃以上の高温で溶融スラグ化したときに排出される溶融飛灰などが挙げられるがこれらに限定されない。
【0010】
【発明の実施形態】
本発明に係る重金属固化剤は、上述したように水ガラスとカルボニル基含有鎖式炭化水素系化合物とを主成分としている。
本発明に使用される水ガラスとしては、メタけい酸ナトリウム、オルトけい酸ナトリウム、溶液型の水ガラスなど特に限定されるものでない。
【0011】
これらの水ガラスのなかでも、A2O・nSiO2(A:アルカリ金属、n:モル数)で表される水ガラスが特に好ましい。ここで、アルカリ金属としては、リチウム、ナトリウム、カリウムを例示できる。工業的入手の容易さ、価格の点からけい酸ナトリウムが好ましい。
モル比(SiO2/A2O)は、ケイ素の酸化物換算(SiO2)と、アルカリの酸化物換算(A2O)との比として定義され、その値は、0.5〜4.2の範囲にあることが望ましい。
【0012】
アルカリの酸化物換算(A2O)としての含量は6.00〜21.50重量%、ケイ素の酸化物換算(SiO2)としての含量は9.50〜38.00重量%範囲で任意に選択できる。
一般に、水ガラスなどのけい酸塩類はアルカリ成分の多いもの、モル比が低いものほど金属塩との反応性は良くなるが、あまり多くなりすぎると粘性が高くなり処理物との混練が困難になる。またモル比が1.5以下になると結晶が析出してくる場合があるため、モル比は2.10〜3.20、酸化物換算のアルカリ(A2O)含量が9.00〜15.30重量%、SiO2とケイ素含量が28.00〜34.00重量%の範囲である水ガラスが好ましい。また、これらの水ガラスは必要に応じて希釈して使用することもできる。
【0013】
水ガラスと混合するカルボニル基含有鎖式炭化水素系化合物はR1-CHO、R1-CO-R2、CHO(R3)mCHO(R1、R2はそれぞれ独立した水素原子、アルキル基またはカルボキシル基を表し、R3はメチレン基であり、mは0〜3の整数を示す)で表され、特に水溶性が高いもの、即ち炭素数の少ない低分子量の化合物が好ましい。
このようなカルボニル基含有鎖式炭化水素系化合物としては、例えば、ホルムアルデヒド、アセトアルデヒド、アセトン、プロピオンアルデヒド、n-ブチルアルデヒド、メチルエチルケトン、メチルグリオキザール、メチルイソブチルケトン、グリオキザール、グリオキシル酸、n-ヘキスルアルデヒド、パラホルムアルデヒド、グリセルアルデヒド、ジエチルケトン、ピルビン酸、アセト酢酸、アセト酢酸エチル、アセチルアセトン、バレロアルデヒド、グリコールアルデヒド、グルタルアルデヒド、1,3-プロパジアール,1,4-ヘキサジアール,1,5-ペンタジアールなどが示される。特には、ジアルデヒド化合物であるグリオキザール(1,2-エタジアール)、1,3-プロパジアール,1,4-ヘキサジアール,1,5-ペンタジアールが好ましく、工業的入手の容易さ、価格の点から最も単純なグリオキザールが好ましい。
【0014】
SiO2濃度が9.50〜38.00重量%の水ガラスを用いた場合を例にとると、該水ガラス(W)とカルボニル基含有鎖式炭化水素系化合物(C)との混合比(C/W(重量比))は、0.5/100〜40/100が好ましく、特に好ましくは1/100〜20/100、さらに好ましくは3/100〜10/100である。混合比がこの範囲以下になると有機物の効果が十分に発揮されなくなり、この範囲以上になると水ガラス単独使用よりも溶出量が増加し、また保管時に固化する場合がある。水ガラスとカルボニル基含有鎖式炭化水素系化合物との混合に際しては、使用直前に混合しても良いしあらかじめ混合しておいてもかまわない。設備の簡素化を考えた場合、あらかじめ混合しておいた方が好ましい。
【0015】
本発明の重金属固化剤の廃棄物に対する添加量としては、流動床炉やスートカ炉などの一般飛灰で5〜20重量部程度加え、同時にカルボニル基含有鎖式炭化水素系化合物の添加量が飛灰100重量部に対して0.3〜1.0重量部になるようにすれば重金属の溶出量を埋め立て環境基準値以下、例えば鉛なら0.3mg/L以下にすることができる。鉛の溶出量が極めて多い溶融飛灰においては50〜80重量%程度加えれば重金属の溶出量を埋め立て環境基準値以下にすることができる。
【0016】
上記のような廃棄物を処理する際には、上記重金属固化剤と水と廃棄物とを混合および混練する。
一般に飛灰(溶融飛灰を含む)を薬液処理する場合、搬出時の飛散防止と混練時のハンドリングのし易さを考え水を添加する。本発明の重金属固化剤においても水を併用することが好ましい。水の添加量は飛灰の性質(吸水性の良さなど)によって異なるが、10〜30重量部加える。これ以上の水を加えても、重金属溶出量が著しく減少するなどの効果が現れないため、廃棄物の総重量が増え処理コストがかさむだけになる。この混練水は、予め水ガラスと混合して使用することも可能である。
【0017】
本発明の重金属固化剤にかかわる飛灰(溶融飛灰を含む)の処理方法としては、水と重金属固化剤をあらかじめ混合しておき飛灰に添加する。または、飛灰に水を添加後、重金属固化剤を改めて添加する。または、飛灰に重金属固化剤を添加後、水を改めて添加する。これらいずれかの方法で添加した後、混合および混練し排出する。また、水および重金属固化剤に飛灰を添加し、混合および混練する方法もとることができる。
【0018】
【実施例】
以下に、本発明の実施例を挙げて具体的に説明するが、本発明はこれに限定されるものではない。
【0019】
【比較例1】
都市ゴミ焼却施設で発生した飛灰A50gを1000mlのポリ容器にとり、そこに純水500g入れ、6時間振とうし環境庁告示第13号の溶出試験(以下単に溶出試験とする)を行った。
【0020】
【比較例2】
飛灰A50gに水10g(飛灰100重量部(以下単に部とする)に対して20部)と添加剤2.5g(飛灰100部に対して5部)を混合した液を加え混練したものを24時間養生固化した。固化後粉砕し、目開き5mmのふるいで分級し、ふるいを通過したもの50gを採取し比較例1と同様の溶出試験を行った。
【0021】
添加剤は、無機系の薬剤として炭酸ソーダ、炭酸カリウム、硫酸ナトリウム、水酸化アルミニウム、燐酸、PAC、硫酸アルミニウムの7種類、有機系の薬剤としてジエチレングリコール、トリエチルアミン、ポリエチレングリコール、グリオキザール40%液、クエン酸ナトリウム、CMC(カルボキシメチルセルロース)、EDTA・2Na、メタノール、デキストリン9種類を用いた。
【0022】
このうち、炭酸ナトリウム、炭酸カリウム、硫酸ナトリウム、水酸化アルミニウム、硫酸アルミニウム、クエン酸ナトリウム、CMC、EDTA・2Na、デキストリンは粉末のまま水と混ぜ合わせた。
【0023】
【比較例3】
飛灰A50gに水10gを添加し混合および混練したものを24時間養生固化した。固化後粉砕し、比較例2と同様の溶出試験を行った。
【0024】
【比較例4】
飛灰A50gに水10gと水ガラス2.5gを混合した液を加え混合および混練した以外は、比較例2と同様の溶出試験を行った。
水ガラスは東曹産業株式会社製1号けい酸ソーダC2、2号けい酸ソーダH3、3号けい酸ソーダT2、4号けい酸ソーダを用いた。
【0025】
各水ガラスの成分表を表1に示す。
また、比較例1〜4の結果を表2に示す。
表2より水ガラスが優れた重金属固化作用があることが確認された。特にアルカリの高い1号水ガラスまたは2号水ガラスでの効果が高いことが確認された。しかし、同時に水ガラスだけでは鉛の埋め立て環境基準値0.3mg/L以下にできないことも確認された。
【0026】
【比較例5】
飛灰A50gに水10gと2号けい酸ソーダH32.5gと添加剤0.25gを事前に混ぜておいた混合液を加え混合および混練した以外は比較例2と同様の溶出試験を行った。添加剤は炭酸ナトリウム、硫酸ナトリウム、水酸化アルミニウム、PAC、ジエチレングリコール、CMC、EDTA・2Na、メタノール、デキストリンを用いた。
【0027】
1号けい酸ソーダC2ではなくて2号けい酸ソーダH3を用いたのは1号品では粘性が極端に高くハンドリングが悪いため。
【0028】
【実施例1】
飛灰A50gに水10gと2号けい酸ソーダH32.5g(対飛灰5部)とグリオキザール40%液0.25g(対飛灰0.5部)をあらかじめ混合しておいた混合液を加え混合および混練した以外は比較例2と同様の溶出試験を行った。
比較例5および実施例1の結果を表3に示す。
【0029】
表3よりグリオキザールと水ガラスの混合液は明らかな重金属固化作用が見られ、鉛の埋め立て環境基準値0.3mg/L以下になることが確認された。
【0030】
【比較例6】
都市ゴミ処理施設で発生した飛灰Bについて比較例1と同様の溶出試験を行った。
【0031】
【比較例7】
飛灰B50gに対して2号けい酸ソーダH32.5gまたは5.0gと水10gをあらかじめ混練しておいた液を加え、混合および混練した以外は比較例2と同様の溶出試験を行った。
【0032】
【実施例2】
飛灰B50gに2号けい酸ソーダH32.5gと水10gおよびグリオキザール40%液をあらかじめ混合しておいた液を加えて混合および混練したい以外は比較例2と同様の溶出試験を行った。
グリオキザール40%液の量は0.01,0.03,0.05,0.1,0.2g使用した。
【0033】
【実施例3】
実施例2の2号けい酸ソーダH3の添加量を3gに変えた以外は同様の操作を行った。
比較例6および7と実施例2および3の結果を表4に示す。
表4よりグリオキザールの添加量としては、飛灰100重量部に対して0.3〜1重量部が好ましく、尚且つ水ガラスに対するグリオキザールの混合比は水ガラス100重量部に対して1〜20重量部であることが好ましく、特に好ましくは3〜10重量部である。
【0034】
【比較例8】
都市ゴミ処理施設で発生した飛灰Cについて比較例1と同様の溶出試験を行った。
【0035】
【比較例9】
飛灰C50gにジチオカルバミン酸系の有機キレート剤1.5gまたは2.5gと水10gを予め混合していた液を加え混合および混練した以外は比較例2と同様の溶出試験を行った。
【0036】
【比較例10】
飛灰C50gに水ガラス10gと水10gを予め混合しておいた液を加え、混合および養生した以外は比較例2と同様の試験を行った。
水ガラスは比較例4と同様の3種類を用いた。
【0037】
【実施例4】
飛灰C50gに水ガラス10gと水10gおよびグリオキザール40%液0.25gまたは0.5gを予め混合しておいた液を加え、混合および混練した以外は比較例2と同様の溶出試験を行った。
水ガラスは比較例4と同様の3種類を用いて行った。
【0038】
比較例8〜比較例10および実施例4の結果を表5に示す。
表5より2号品以外の水ガラスでもグリオキザールと混合することで鉛の固定化に効果があることが確認された。即効性を考えた場合、2号品が好ましいことが確認される。また、比較例9のキレート剤との比較から、添加量としては4倍必要であるが価格の面から本発明の重金属固化剤が非常に有効であることが確認される。また、実施例7-1および実施例7-2の処理で行った処理灰を1ヶ月後再び溶出試験した結果、鉛は検出されなかった。
このことより、長期的に安定な重金属固化剤であることが確認された。
【0039】
参考例5】
飛灰C50gに2号けい酸ソーダH310gとグリオキザール以外の鎖式炭化水素系カルボニル化合物0.5gと水10gを予め混合しておいた液を加え混合および混練した以外は比較例2と同様の溶出試験を行った。用いた鎖式炭化水素系カルボニル化合物は、アセトン、メチルエチルケトン、アセチルアセトン、メチルグリオキザールを用いた。
【0040】
参考例5の結果を表6に示す。表6よりグリオキザール以外でも鉛の固定化に効果は認められるが、メチルグリオキザールをはじめ独特の刺激臭があるため作業環境に問題があると思われる。
【0041】
【比較例11】
産業廃棄物を焼却処理している溶融炉から排出された溶融飛灰Aに対して比較例2と同様の溶出試験を行った。
【0042】
【比較例12】
溶融飛灰A50gに水15g(溶融飛灰に対して30重量部)とジチオカルバミン酸系の有機キレート剤15gを予め混合しておいた液を加え混合および混練した以外は比較例2と同様の溶出試験を行った。
【0043】
【実施例6】
溶融飛灰A50gに2号けい酸ソーダ15gと水15gおよびグリオキザール40%液0.75gを予め混合した液を加え混合および養生した以外は、比較例2と同様の溶出試験を行った。
【0044】
【実施例7】
溶融飛灰A50gに2号けい酸ソーダ25gと水15gおよびグリオキザール40%液1.25gを予め混合した液を加え混合および養生した以外は、比較例2と同様の溶出試験を行った。
【0045】
【実施例8】
溶融飛灰A50gに2号けい酸ソーダ40gと水15gおよびグリオキザール40%液2.00gを予め混合した液を加え混合および養生した以外は、比較例2と同様の溶出試験を行った。
比較例11と比較例12および実施例6〜実施例8の結果を表7に示す。
【0046】
表7より本発明の重金属固化剤がキレート剤の2倍量の添加で鉛の溶出量を埋め立て環境基準値以下にできることが確認された。
以上の結果から、本発明の廃棄物処理方法が有効であることが示された。
【0047】
【表1】

Figure 0004624583
【0048】
【表2】
Figure 0004624583
【0049】
【表3】
Figure 0004624583
【0050】
【表4】
Figure 0004624583
【0051】
【表5】
Figure 0004624583
【0052】
【表6】
Figure 0004624583
【0053】
【表7】
Figure 0004624583
[0001]
[Industrial application fields]
The present invention includes a heavy metal solidifying agent for immobilizing so as not to elute harmful heavy metals from wastes such as fly ash, incineration ash, or molten fly ash generated at a waste disposal facility, and a toxic carbon disulfide gas during treatment. The present invention relates to a heavy metal solidifying agent capable of simplifying equipment because it does not occur and can be used in one liquid, and a waste treatment method using the solidifying agent.
[0002]
[Prior art]
Incineration ash and fly ash, such as municipal waste and industrial waste, contain a large amount of heavy metals that are harmful to the human body. In particular, fly ash that has been treated with alkali to suppress hydrochloric acid gas generated during incineration. Pb and Cd are eluted in large quantities. In order to detoxify these heavy metals, a solidification method using cement, a chemical treatment using a chelating agent, and an acid extraction treatment for extracting the metal using mineral acid or the like are performed. In recent years, in order to prevent dioxins and to reduce the volume of waste, a melting and solidifying process for melting a mixture of fly ash and incinerated ash or the waste itself at a high temperature of 1500 ° C. or higher is performed.
[0003]
However, in the case of simply treating cement, neutralization of the cement proceeds with acid rain or carbon dioxide in the air after the treatment, and lead re-elutes due to the decay of the cement. Also, fly ash with a large amount of lead elution increases the amount of cement added, leading to a shorter life of the final disposal site.
In many cases, the chelating agent treatment uses a dithiocarbamic acid-based heavy metal fixing agent, so that a large amount of carbon disulfide is generated, which is problematic in terms of the working environment. In addition, it has been pointed out that decomposition of the chelating agent occurs at the final disposal site (especially unstable under acidic conditions) and lead is eluted again.
[0004]
In the acid extraction method, the extraction work is complicated, and a large amount of drainage is generated together with the dehydrated cake, so that a separate treatment is required.
Incineration ash is not generated in the melting and solidification treatment, so that waste can be reduced. However, fly ash is generated, and heavy metals are concentrated and collected in the fly ash. Therefore, it is necessary to treat fly ash separately.
In addition, a waste treatment method using water glass is disclosed in JP-A-9-308771.
As is apparent from the examples of the present invention, sufficient heavy metal solidifying action cannot be exhibited with water glass alone against fly ash having a lead elution amount exceeding 30 mg / L.
[0005]
Separately, a method of curing by adding a gelling agent such as calcium chloride, barium chloride, or aluminum sulfate to water glass and combined use with powdered aluminum silicate are disclosed in JP-A-8-155416 and JP-A-9-155317, respectively. Although it is open to the public, there are problems in terms of work and equipment, such as the fact that one tank is powder and two tanks are required, and heat is applied at 40 to 80 ° C.
[0006]
[Problems to be solved by the present invention]
The present invention provides a heavy metal solidifying agent and a simple treatment method using the same, which solve the above-mentioned problems and fix heavy metals without adjusting complex liquids.
[0007]
[Means for Solving the Problems]
The heavy metal solidifying agent according to the present invention is characterized by comprising a mixed liquid of water glass and a carbonyl group-containing chain hydrocarbon compound.
Here, the water glass is represented by A 2 O.nSiO 2 (A: alkali metal, n: number of moles), and the molar ratio (SiO 2 / A 2 O) is 0.5 to 4.2, alkali. Preferably, the content in terms of oxide is 6.00 to 21.50% by weight and SiO 2 is 9.50 to 38.00% by weight.
[0008]
The carbonyl group-containing chain hydrocarbon compounds include R 1 -CHO, R 1 -CO-R 2 , CHO (R 3 ) m CHO (R 1 and R 2 are each independently a hydrogen atom, an alkyl group or A water-soluble compound represented by the following is preferably used: a carboxyl group, R 3 is an alkyl group, and m is an integer of 0 to 3.
In the heavy metal solidifying agent of the present invention, the mixing ratio of water glass and carbonyl group-containing chain hydrocarbon compound is such that the carbonyl group-containing chain is 100 parts by weight of water glass having a SiO 2 concentration of 9.50 to 38.00% by weight. The formula hydrocarbon compound is preferably 0.5 to 40.0 parts by weight.
[0009]
The waste treatment method according to the present invention is characterized in that the heavy metal solidifying agent, water and waste are mixed and kneaded.
As wastes to be treated in the present invention, stoker type, fluidized bed type, incinerated ash discharged from the bottom of a rotary incinerator or ash discharged together with exhaust gas, such as a bag filter, an electric dust collector, Fly ash collected by a multi-cyclone, etc., or a mixture of incineration ash and fly ash, which has been implemented as a measure against dioxins in recent years, or molten fly ash discharged when molten slag is made at a high temperature of 1500 ° C or higher. Although it is mentioned, it is not limited to these.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
As described above, the heavy metal solidifying agent according to the present invention contains water glass and a carbonyl group-containing chain hydrocarbon compound as main components.
The water glass used in the present invention is not particularly limited, such as sodium metasilicate, sodium orthosilicate, and solution type water glass.
[0011]
Among these water glasses, a water glass represented by A 2 O · nSiO 2 (A: alkali metal, n: number of moles) is particularly preferable. Here, lithium, sodium, and potassium can be illustrated as an alkali metal. Sodium silicate is preferred from the viewpoint of industrial availability and price.
The molar ratio (SiO 2 / A 2 O) is defined as the ratio between the oxide equivalent of silicon (SiO 2 ) and the oxide equivalent of alkali (A 2 O), and its value is in the range of 0.5 to 4.2 It is desirable to be.
[0012]
The content of alkali in terms of oxide (A 2 O) is 6.00 to 21.50% by weight, and the content of silicon in terms of oxide (SiO 2 ) is arbitrarily in the range of 9.50 to 38.0% by weight. You can choose.
In general, silicates such as water glass have a higher alkali component and a lower molar ratio, the better the reactivity with the metal salt, but if it is too high, the viscosity becomes high and it becomes difficult to knead with the treated product. Become. When the molar ratio is 1.5 or less, crystals may precipitate. Therefore, the molar ratio is 2.10 to 3.20, and the alkali (A 2 O) content in terms of oxide is 9.00 to 15. Water glass with 30% by weight and SiO 2 and silicon content in the range of 28.00 to 34.00% by weight is preferred. Moreover, these water glasses can also be diluted and used as needed.
[0013]
Carbon-containing chain hydrocarbon compounds mixed with water glass are R 1 -CHO, R 1 -CO-R 2 , CHO (R 3 ) m CHO (R 1 and R 2 are independent hydrogen atoms and alkyl groups, respectively. Or a carboxyl group, R 3 is a methylene group, and m is an integer of 0 to 3). Particularly preferred is a compound having high water solubility, that is, a low molecular weight compound having a small number of carbon atoms.
Examples of such carbonyl group-containing chain hydrocarbon compounds include formaldehyde, acetaldehyde, acetone, propionaldehyde, n-butyraldehyde, methyl ethyl ketone, methyl glyoxal, methyl isobutyl ketone, glyoxal, glyoxylic acid, and n-hexaldehyde. , Paraformaldehyde, glyceraldehyde, diethyl ketone, pyruvic acid, acetoacetic acid, ethyl acetoacetate, acetylacetone, valeraldehyde, glycolaldehyde, glutaraldehyde, 1,3-propadial, 1,4-hexadial, 1,5-pentadial, etc. Is shown. In particular, the dialdehyde compound glyoxal (1,2-ethadial), 1,3-propadial, 1,4-hexadial, and 1,5-pentadial are preferred, and are the simplest in terms of industrial availability and price. Glyoxal is preferred.
[0014]
Taking the case of using a water glass having a SiO 2 concentration of 9.50 to 38.00% by weight as an example, the mixing ratio (C / W (C)) of the water glass (W) and the carbonyl group-containing chain hydrocarbon compound (C) The weight ratio)) is preferably from 0.5 / 100 to 40/100, particularly preferably from 1/100 to 20/100, more preferably from 3/100 to 10/100. When the mixing ratio is below this range, the effect of organic substances is not sufficiently exhibited. When the mixing ratio is above this range, the amount of elution increases compared to the case of using water glass alone, and it may solidify during storage. When mixing the water glass and the carbonyl group-containing chain hydrocarbon compound, they may be mixed immediately before use or may be mixed in advance. When considering the simplification of equipment, it is preferable to mix them in advance.
[0015]
The amount of the heavy metal solidifying agent of the present invention added to the waste is about 5 to 20 parts by weight in general fly ash such as a fluidized bed furnace or sootka furnace. If it is 0.3 to 1.0 parts by weight with respect to 100 parts by weight of ash, the elution amount of heavy metals can be reduced to a landfill environmental standard value or less, for example, 0.3 mg / L or less for lead. In molten fly ash with a very large amount of lead leaching, the amount of heavy metal leaching can be reduced to the landfill environmental standard or less by adding about 50 to 80% by weight.
[0016]
When processing the above waste, the heavy metal solidifying agent, water, and waste are mixed and kneaded.
In general, when chemical treatment of fly ash (including molten fly ash) is performed, water is added to prevent scattering during carry-out and ease of handling during kneading. Also in the heavy metal solidifying agent of the present invention, it is preferable to use water together. The amount of water added varies depending on the properties of fly ash (such as good water absorption), but is added in an amount of 10 to 30 parts by weight. Even if more water is added, the effect of significantly reducing the amount of elution of heavy metals does not appear, so the total weight of waste increases and the processing cost only increases. This kneaded water can be used by previously mixing with water glass.
[0017]
As a method for treating fly ash (including molten fly ash) related to the heavy metal solidifying agent of the present invention, water and a heavy metal solidifying agent are mixed in advance and added to the fly ash. Alternatively, after adding water to the fly ash, the heavy metal solidifying agent is added again. Alternatively, after adding the heavy metal solidifying agent to the fly ash, water is added again. After adding by any of these methods, mixing, kneading and discharging are performed. Also, a method of adding fly ash to water and heavy metal solidifying agent, mixing and kneading can be used.
[0018]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited thereto.
[0019]
[Comparative Example 1]
50 g of fly ash A generated at a municipal waste incineration facility was put in a 1000 ml plastic container, 500 g of pure water was placed therein, and the elution test (hereinafter simply referred to as the elution test) was conducted for 6 hours and shaken for 6 hours.
[0020]
[Comparative Example 2]
50 g of fly ash A was mixed with a mixture of 10 g of water (20 parts with respect to 100 parts by weight of fly ash (hereinafter simply referred to as “parts”)) and 2.5 g of additive (5 parts with respect to 100 parts of fly ash). The material was cured for 24 hours. After solidification, the mixture was pulverized, classified with a sieve having an opening of 5 mm, and 50 g of the sample that passed through the sieve was collected and subjected to the same elution test as in Comparative Example 1.
[0021]
There are seven types of additives: sodium carbonate, potassium carbonate, sodium sulfate, aluminum hydroxide, phosphoric acid, PAC, and aluminum sulfate as inorganic chemicals. Diethylene glycol, triethylamine, polyethylene glycol, glyoxal 40% solution, and citric acid as organic chemicals. Sodium acid, CMC (carboxymethylcellulose), EDTA · 2Na, methanol, and 9 types of dextrin were used.
[0022]
Of these, sodium carbonate, potassium carbonate, sodium sulfate, aluminum hydroxide, aluminum sulfate, sodium citrate, CMC, EDTA · 2Na, and dextrin were mixed with water as a powder.
[0023]
[Comparative Example 3]
A mixture obtained by adding 10 g of water to 50 g of fly ash A and mixing and kneading was cured for 24 hours. The solidified product was pulverized and subjected to the same dissolution test as in Comparative Example 2.
[0024]
[Comparative Example 4]
A dissolution test similar to Comparative Example 2 was performed, except that 50 g of fly ash A was mixed with kneaded water and 2.5 g of water glass and mixed and kneaded.
As the water glass, No. 1 sodium silicate C 2 , No. 2 sodium silicate H 3 , No. 3 sodium silicate T 2 , No. 4 sodium silicate manufactured by Toso Sangyo Co., Ltd. were used.
[0025]
The component table of each water glass is shown in Table 1.
The results of Comparative Examples 1 to 4 are shown in Table 2.
From Table 2, it was confirmed that water glass has an excellent heavy metal solidifying action. In particular, it was confirmed that the effect of No. 1 water glass or No. 2 water glass having high alkali was high. At the same time, however, it was also confirmed that lead-free landfill environmental standard values of 0.3 mg / L or less cannot be achieved with water glass alone.
[0026]
[Comparative Example 5]
The same elution test as in Comparative Example 2 was conducted except that 50 g of fly ash A was added with a mixture of 10 g of water, 2.5 g of No. 2 sodium silicate H 3 and 0.25 g of additive and mixed and kneaded. It was. Sodium carbonate, sodium sulfate, aluminum hydroxide, PAC, diethylene glycol, CMC, EDTA · 2Na, methanol, and dextrin were used as additives.
[0027]
The reason why No. 1 sodium silicate H 3 was used instead of No. 1 sodium silicate C 2 is that the No. 1 product has extremely high viscosity and poor handling.
[0028]
[Example 1]
50 g of fly ash A, 10 g of water, 2.5 g of sodium silicate H 3 2.5 g (5 parts of fly ash) and 0.25 g of glyoxal 40% solution (0.5 part of fly ash) were mixed in advance. Was added and mixed and kneaded, and the same dissolution test as in Comparative Example 2 was performed.
The results of Comparative Example 5 and Example 1 are shown in Table 3.
[0029]
From Table 3, it was confirmed that the mixed solution of glyoxal and water glass had a clear solid metal action, and the lead landfill environmental standard value was 0.3 mg / L or less.
[0030]
[Comparative Example 6]
The dissolution test similar to the comparative example 1 was done about the fly ash B which generate | occur | produced in the municipal waste disposal facility.
[0031]
[Comparative Example 7]
The same dissolution test as in Comparative Example 2 was conducted except that a solution prepared by previously kneading 2.5 g or 5.0 g of sodium silicate H 3 and 10 g of water was added to 50 g of fly ash B, and mixing and kneading were performed. It was.
[0032]
[Example 2]
The same elution test as Comparative Example 2 was conducted except that 2.5 g of No. 2 sodium silicate H 3 , 10 g of water and 40% glyoxal liquid were added to 50 g of fly ash B and mixed and kneaded. .
The amount of Glyoxal 40% solution was 0.01, 0.03, 0.05, 0.1, 0.2 g.
[0033]
[Example 3]
The same operation was performed except that the amount of No. 2 sodium silicate H 3 added in Example 2 was changed to 3 g.
The results of Comparative Examples 6 and 7 and Examples 2 and 3 are shown in Table 4.
From Table 4, the addition amount of glyoxal is preferably 0.3 to 1 part by weight with respect to 100 parts by weight of fly ash, and the mixing ratio of glyoxal to water glass is 1 to 20 parts by weight with respect to 100 parts by weight of water glass. Parts, preferably 3 to 10 parts by weight.
[0034]
[Comparative Example 8]
The same elution test as Comparative Example 1 was performed on fly ash C generated in a municipal waste treatment facility.
[0035]
[Comparative Example 9]
A dissolution test was performed in the same manner as in Comparative Example 2 except that 1.5 g or 2.5 g of a dithiocarbamic acid-based organic chelating agent and 10 g of water were added to 50 g of fly ash C and mixed and kneaded.
[0036]
[Comparative Example 10]
A test similar to Comparative Example 2 was conducted except that 50 g of fly ash C was added with a solution prepared by mixing 10 g of water glass and 10 g of water in advance and mixed and cured.
The same three types of water glass as in Comparative Example 4 were used.
[0037]
[Example 4]
A dissolution test was performed in the same manner as in Comparative Example 2 except that 10 g of water glass, 10 g of water and 0.25 g or 0.5 g of glyoxal 40% liquid were mixed in advance and mixed and kneaded. .
The same three kinds of water glass as in Comparative Example 4 were used.
[0038]
The results of Comparative Examples 8 to 10 and Example 4 are shown in Table 5.
From Table 5, it was confirmed that even water glass other than No. 2 was effective in fixing lead by mixing with glyoxal. In view of immediate effect, it is confirmed that the No. 2 product is preferable. Moreover, from the comparison with the chelating agent of Comparative Example 9, it is confirmed that the heavy metal solidifying agent of the present invention is very effective from the viewpoint of cost although it is necessary to add 4 times as much as the addition amount. In addition, as a result of the dissolution test of the treated ash performed in the treatments of Example 7-1 and Example 2-2 again after one month, lead was not detected.
From this, it was confirmed that it is a long-term stable heavy metal solidifying agent.
[0039]
[ Reference Example 5]
Comparative Example 2 except that 50 g of fly ash C was added with a mixture of 10 g of sodium silicate H 3 No. 2 and 0.5 g of a chain hydrocarbon carbonyl compound other than glyoxal and 10 g of water, mixed and kneaded. The dissolution test was conducted. As the chain hydrocarbon carbonyl compound used, acetone, methyl ethyl ketone, acetylacetone, and methylglyoxal were used.
[0040]
The results of Reference Example 5 are shown in Table 6. Table 6 shows that there is an effect on fixation of lead other than glyoxal, but there seems to be a problem in the working environment because of its unique irritating odor including methylglyoxal.
[0041]
[Comparative Example 11]
The dissolution test similar to the comparative example 2 was done with respect to the molten fly ash A discharged | emitted from the melting furnace which incinerates industrial waste.
[0042]
[Comparative Example 12]
Elution similar to Comparative Example 2 except that 50 g of molten fly ash A was mixed with a solution prepared by mixing 15 g of water (30 parts by weight with respect to molten fly ash) and 15 g of a dithiocarbamic acid-based organic chelating agent in advance. A test was conducted.
[0043]
[Example 6]
A dissolution test similar to Comparative Example 2 was conducted except that 50 g of molten fly ash A was mixed with 15 g of sodium silicate 2 and 15 g of water and 0.75 g of glyoxal 40% solution in advance and mixed and cured.
[0044]
[Example 7]
A dissolution test similar to Comparative Example 2 was performed, except that 50 g of molten fly ash A was mixed with 25 g of sodium silicate No. 2, 15 g of water and 1.25 g of glyoxal 40% in advance and mixed and cured.
[0045]
[Example 8]
A dissolution test similar to Comparative Example 2 was conducted except that 50 g of molten fly ash A was mixed with 40 g of No. 2 sodium silicate, 15 g of water and 2.00 g of glyoxal 40% in advance and mixed and cured.
Table 7 shows the results of Comparative Example 11, Comparative Example 12, and Examples 6 to 8.
[0046]
From Table 7, it was confirmed that the heavy metal solidifying agent of the present invention can reduce the lead elution amount to a landfill environmental standard value or less by adding twice the amount of the chelating agent.
From the above results, it was shown that the waste treatment method of the present invention is effective.
[0047]
[Table 1]
Figure 0004624583
[0048]
[Table 2]
Figure 0004624583
[0049]
[Table 3]
Figure 0004624583
[0050]
[Table 4]
Figure 0004624583
[0051]
[Table 5]
Figure 0004624583
[0052]
[Table 6]
Figure 0004624583
[0053]
[Table 7]
Figure 0004624583

Claims (5)

水ガラスとカルボニル基含有鎖式炭化水素系化合物の混合液からなり、
前記カルボニル基含有鎖式炭化水素系化合物がグリオキザールであり、
前記水ガラスのSiO 2 濃度が9.50〜38.00重量%であり、
水ガラス(W)とグリオキザール(C)との混合比(C/W(重量比))が0.4/100〜10/100であ
ことを特徴とする重金属固化剤。
Do from a mixture of water glass and a carbonyl group-containing chain hydrocarbon based compound Ri,
The carbonyl group-containing chain hydrocarbon compound is glyoxal,
The water glass has a SiO 2 concentration of 9.50 to 38.00% by weight,
The mixing ratio of the water glass and (W) and glyoxal (C) (C / W (weight ratio)) is a heavy metal solidifying agent characterized 0.4 / 100-10 / 100 der Rukoto.
前記水ガラス(W)とグリオキザール(C)との混合比(C/W(重量比))が3/100〜10/100であることを特徴とする請求項1に記載の重金属固化剤。The heavy metal solidifying agent according to claim 1, wherein a mixing ratio (C / W (weight ratio)) between the water glass (W) and glyoxal (C) is 3/100 to 10/100. 前記水ガラスがA2O・nSiO2(A:アルカリ金属、n:モル数)で表され、そのモル比(SiO2/A2O)が0.5〜4.2、アルカリの酸化物換算の含有量が6.00〜21.50重量%である請求項1または2に記載の重金属固化剤。The water glass is represented by A 2 O · nSiO 2 (A: alkali metal, n: number of moles), and its molar ratio (SiO 2 / A 2 O) is 0.5 to 4.2, converted to an alkali oxide. The heavy metal solidifying agent according to claim 1 or 2 , wherein the content of is 6.00 to 21.50 % by weight. 請求項1に記載の重金属固化剤と水と廃棄物とを混合および混練することを特徴とする廃棄物処理方法。  A waste treatment method comprising mixing and kneading the heavy metal solidifying agent according to claim 1, water and waste. 前記記載廃棄物がストーカ式、流動床式、回転式焼却炉の炉底から排出される焼却灰または排ガスとともに排出される灰分であることを特徴とする請求項に記載の廃棄物処理法。The described waste stoker, fluidized bed, waste treatment method according to claim 4, characterized in that the ash content is discharged together with the ash or flue gas is discharged from the furnace bottom of the rotary incinerator .
JP2001083446A 2001-03-22 2001-03-22 Heavy metal solidifying agent and waste treatment method Expired - Lifetime JP4624583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001083446A JP4624583B2 (en) 2001-03-22 2001-03-22 Heavy metal solidifying agent and waste treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001083446A JP4624583B2 (en) 2001-03-22 2001-03-22 Heavy metal solidifying agent and waste treatment method

Publications (2)

Publication Number Publication Date
JP2002273379A JP2002273379A (en) 2002-09-24
JP4624583B2 true JP4624583B2 (en) 2011-02-02

Family

ID=18939255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001083446A Expired - Lifetime JP4624583B2 (en) 2001-03-22 2001-03-22 Heavy metal solidifying agent and waste treatment method

Country Status (1)

Country Link
JP (1) JP4624583B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6306969B2 (en) * 2014-07-31 2018-04-04 株式会社フジタ Incineration residue treatment method
JP6400382B2 (en) * 2014-08-13 2018-10-03 東曹産業株式会社 Heavy metal solidifying agent and waste treatment method
CN116283180A (en) * 2022-12-02 2023-06-23 中交第二航务工程局有限公司 Heavy metal curing agent and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996009902A1 (en) * 1994-09-29 1996-04-04 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Waste treatment chemical and waste disposal method
JPH09122616A (en) * 1995-11-07 1997-05-13 Kanegafuchi Chem Ind Co Ltd Treatment agent and treatment method for harmful waste

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996009902A1 (en) * 1994-09-29 1996-04-04 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Waste treatment chemical and waste disposal method
JPH09122616A (en) * 1995-11-07 1997-05-13 Kanegafuchi Chem Ind Co Ltd Treatment agent and treatment method for harmful waste

Also Published As

Publication number Publication date
JP2002273379A (en) 2002-09-24

Similar Documents

Publication Publication Date Title
JP5504571B2 (en) Heavy metal treating agent and method for treating heavy metal contaminants
JPH07136615A (en) Treatment and treating method for making and stabilizing harmful metal-containing fly ash into harmless
JP4624583B2 (en) Heavy metal solidifying agent and waste treatment method
JP4529191B2 (en) Heavy metal stabilization treatment method, heavy metal stabilizer
JP2005288378A (en) Treatment method of contaminated medium including heavy metals and treatment agent
JP2006015290A (en) Fixing method for heavy metal in fly ash using no mixing nor kneading apparatus
JP2003181411A (en) Heavy metal elution preventing agent and treatment method of contaminated medium
JP3271534B2 (en) Method for treating ash containing lead, hexavalent chromium, arsenic and selenium
WO1997012662A1 (en) Waste gas and dust treatment method
KR100258773B1 (en) Method of waste treatment
JP3213054B2 (en) Treatment method for incinerated ash containing heavy metals
JP2012066158A (en) Method for stabilizing collected dust ash
JP3228192B2 (en) Treatment method for heavy metal-containing ash
JP3402535B2 (en) Treatment of alkaline fly ash
JP2004209372A (en) Heavy metal elution inhibitor and heavy metal elution inhibiting method
JPH0679254A (en) Treating method to make fly ash harmless
JP6400382B2 (en) Heavy metal solidifying agent and waste treatment method
JP3417026B2 (en) Dust treatment method
JPH10225672A (en) Stabilizing treatment of molten fly ash of municipal waste
JPS63111990A (en) Treatment for stabilizing heavy metals in flying cinder of refuse incineration
JP2003136039A (en) Improved heavy metal fixation agent comprising dithiocarbamic acid metal salt
JP2003154336A (en) Heavy metal fixing agent of fly ash comprising metal dithiocarbamate
JPH09239340A (en) Waste treating material and waste treating method
JP2006095409A (en) Method for treating heavy metal-containing ash and treating agent
JPH0975897A (en) Method for solidifying metal in waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090430

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101104

R150 Certificate of patent or registration of utility model

Ref document number: 4624583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term