JP4623267B2 - Can body inspection apparatus and can body inspection method - Google Patents

Can body inspection apparatus and can body inspection method Download PDF

Info

Publication number
JP4623267B2
JP4623267B2 JP2004175107A JP2004175107A JP4623267B2 JP 4623267 B2 JP4623267 B2 JP 4623267B2 JP 2004175107 A JP2004175107 A JP 2004175107A JP 2004175107 A JP2004175107 A JP 2004175107A JP 4623267 B2 JP4623267 B2 JP 4623267B2
Authority
JP
Japan
Prior art keywords
image
inspection
density
difference
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004175107A
Other languages
Japanese (ja)
Other versions
JP2005351829A (en
Inventor
隆之 栃木
一博 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2004175107A priority Critical patent/JP4623267B2/en
Publication of JP2005351829A publication Critical patent/JP2005351829A/en
Application granted granted Critical
Publication of JP4623267B2 publication Critical patent/JP4623267B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

本発明は、規則的に凹凸が形成された缶体を検査する缶体検査装置及び缶体検査方法に関する。   The present invention relates to a can body inspection apparatus and a can body inspection method for inspecting a can body in which irregularities are regularly formed.

製造された缶体の荷積み、輸送、荷解き、工場内での搬送の際等に缶体にへこみ等の欠陥が生ずる可能性がある。このため、従来、このような缶体のへこみ等の欠陥の有無を検査する装置が提案されている(例えば、特許文献1参照)。この従来の検査装置は、缶体の内面をカメラにより撮影して得られた画像(画像データ)の濃度変化、形状等を導出し、その画像の濃度変化、画像形状等に基づいて当該画像にへこみ等に相当する部分があるか否かを判定している。
特開平5−18909号公報
When the manufactured can is loaded, transported, unpacked, transported in the factory, etc., there is a possibility that defects such as dents may occur in the can. For this reason, conventionally, an apparatus for inspecting the presence or absence of defects such as dents in such a can has been proposed (see, for example, Patent Document 1). This conventional inspection apparatus derives the density change, shape, etc. of an image (image data) obtained by photographing the inner surface of the can with a camera, and applies the image based on the density change, image shape, etc. of the image. It is determined whether there is a portion corresponding to a dent or the like.
JP-A-5-18909

ところで、近年、軽量化を図りつつ強度を維持したり、注目度や美観の向上を図るべく、図1に示すように、胴部に規則的に凹凸510(いわゆる、ダイヤカット)が形成された缶体500が提案されている。   By the way, in recent years, irregularities 510 (so-called diamond cuts) have been regularly formed on the body as shown in FIG. 1 in order to maintain the strength while reducing the weight and to improve the degree of attention and aesthetics. A can 500 has been proposed.

しかしながら、前述した従来の検査装置は、胴部が均一な曲面形状となる缶体を検査対象としたものであって、図1に示すように、缶体500の胴部に形成された凹凸510内にへこみ等の欠陥がある場合、その欠陥となるへこみ等を正規の凹凸510と区別して検出することが困難であった。   However, the above-described conventional inspection apparatus is intended for inspection of a can body having a body portion with a uniform curved surface. As shown in FIG. 1, the unevenness 510 formed on the body portion of the can body 500. When there is a defect such as a dent, it is difficult to detect the dent or the like that is a defect separately from the regular unevenness 510.

本発明は従来の問題を解決するためになされたもので、規則的に凹凸が形成された缶体の胴部にあるへこみ等の欠陥を的確に検出することが可能な缶体検査装置及び缶体検査方法を提供することを目的とする。   The present invention has been made to solve the conventional problems, and a can inspection apparatus and can capable of accurately detecting defects such as dents in the body of a can body in which irregularities are regularly formed. The purpose is to provide a physical examination method.

本発明に係る缶体検査装置は、胴部に規則的に同じ形状が繰り返される凹凸がその外面及び内面に表れるように形成された缶体を検査する缶体検査装置であって、前記缶体の内面に光を照射する光照射手段と、口部を通して前記缶体の内面を撮影し、画像データを生成する撮影手段と、前記画像データに基づいて、前記缶体の凹凸が形成された部分に対応した画像部分を当該凹凸の規則性に基づいて該缶体の同じ凹凸形状に対応する画像を含むように等分割して得られる複数の小領域それぞれについて、当該小領域の全体としての画像濃度を導出する濃度導出手段と、前記濃度導出手段により導出される各小領域の画像濃度に基づいて前記缶体の凹凸が形成された部分に欠陥があるか否かを判定する判定手段とを有し、前記判定手段は、前記光照射手段及び撮影手段に基づいて決まる光学的条件が同一となる2つの小領域の画像濃度の差を算出する濃度差算出手段と、前記2つの小領域の組毎に得られる前記画像濃度の差の最大値が所定値以下であるか否かを判定する最大濃度差判定手段を有とを有し、前記最大濃度差判定手段での判定結果に基づいて前記缶体の凹凸が形成された部分に欠陥があるか否かを判定する構成となる。
The can body inspection apparatus according to the present invention is a can body inspection apparatus for inspecting a can body formed such that irregularities having the same shape regularly repeated on the body portion appear on the outer surface and the inner surface of the body. A light irradiating means for irradiating light on the inner surface of the light source, a photographing means for photographing the inner surface of the can body through the mouth and generating image data, and a portion in which the irregularities of the can body are formed based on the image data For each of a plurality of small areas obtained by equally dividing an image portion corresponding to the irregularities so as to include an image corresponding to the same irregular shape of the can body based on the regularity of the irregularities, an image of the entire small area Density deriving means for deriving density, and determination means for determining whether or not there is a defect in the uneven portion of the can body based on the image density of each small region derived by the density deriving means. Yes, and the determination means, the A density difference calculating means for calculating a difference in image density between two small areas having the same optical condition determined based on the irradiation means and the photographing means, and a difference in the image density obtained for each set of the two small areas. A portion having a maximum density difference determination means for determining whether or not the maximum value is less than or equal to a predetermined value, and the unevenness of the can body formed on the basis of the determination result of the maximum density difference determination means a configuration to determine whether there is a defect in.

このような構成により、缶体の胴部に規則的に同じ形状が繰り返される凹凸がその外面及び内面に表れるように形成された部分に凹み等の欠陥が生じた場合に、缶体に形成された凹凸の規則性に基づいてその凹凸が形成された缶体部分に対応した画像部分が該缶体の同じ凹凸形状に対応する画像を含むように複数に等分割されて得られる小領域のうち缶体の欠陥が生じた部分に対応する小領域の画像濃度が正常の場合(欠陥が無い場合)とは異なることを利用して、前記欠陥を検出することができる
With such a configuration, when a defect such as a dent is generated in a portion formed so that irregularities that are regularly repeated in the body shape of the can body appear on the outer surface and the inner surface thereof , the can body is formed on the can body. Among the small regions obtained by equally dividing the image portion corresponding to the can body portion on which the unevenness is formed based on the regularity of the unevenness into a plurality of equal parts so as to include an image corresponding to the same uneven shape of the can body The defect can be detected by utilizing the fact that the image density of the small area corresponding to the portion where the defect of the can body is normal is different from the case where there is no defect (when there is no defect) .

更に、本発明に係る缶体検査装置は、前記判定手段が、前記光照射手段及び撮影手段に基づいて決まる光学的条件が同一となる2つの小領域の画像濃度の差を算出する濃度差算出手段を有し、前記2つの小領域の組毎に得られる前記画像濃度の差に基づいて前記缶体の凹凸が形成された部分に欠陥があるか否かを判定する構成とすることができる。   Furthermore, in the can inspection apparatus according to the present invention, the determination means calculates a difference in image density between two small regions having the same optical condition determined based on the light irradiation means and the imaging means. Means for determining whether or not there is a defect in the uneven portion of the can body based on the difference in the image density obtained for each set of the two small regions. .

前述したように同じ凹凸形状に対応した画像となり、更に、光学的条件が同一となる2つの小領域の画像濃度は、缶体が正常であれば(欠陥がなければ)本来同じとなる。このことから、前記2つの小領域の組毎に得られる画像濃度の差に基づいて缶体の凹凸が形成された部分に欠陥があるか否かが判定される。   As described above, the images correspond to the same uneven shape, and furthermore, the image density of the two small regions having the same optical condition is essentially the same if the can body is normal (if there is no defect). From this, it is determined whether or not there is a defect in the portion where the unevenness of the can body is formed based on the difference in image density obtained for each set of the two small regions.

このように検査対象となる単一の缶体について2つの小領域の組毎に得られる画像濃度の差に基づいて当該缶体の凹凸が形成された部分に欠陥があるか否かが判定されるので、検査対象となる缶体について得られる各小領域の画像濃度を良品として決められた缶体について得られた対応する小領域の画像濃度と比較する必要がない。即ち、良品として決められた缶体について得られる各小領域の画像濃度を予め用意する必要がない。   Thus, based on the difference in image density obtained for each set of two small regions for a single can body to be inspected, it is determined whether or not there is a defect in the uneven portion of the can body. Therefore, it is not necessary to compare the image density of each small region obtained for the can body to be inspected with the image density of the corresponding small region obtained for the can body determined as a non-defective product. That is, it is not necessary to prepare in advance the image density of each small region obtained for a can determined as a good product.

また、本発明に係る缶体検査装置は、前記濃度差算出手段が、隣接しない2つの小領域の画像濃度の差を算出する構成することができる。   Further, the can inspection apparatus according to the present invention can be configured such that the density difference calculation means calculates a difference in image density between two non-adjacent small regions.

このような構成により、隣接しない2つの小領域に対応した缶体部分の双方にへこみ等の欠陥が生じる可能性は低いので、その2つの小領域の画像濃度の差に基づいてより正確に欠陥の有無を検出することが可能となる。   With such a configuration, it is unlikely that a defect such as a dent will occur in both of the can parts corresponding to two non-adjacent small areas. Therefore, the defect is more accurately determined based on the difference in image density between the two small areas. It is possible to detect the presence or absence of.

本発明にかかる缶体検査装置は、前記判定手段が、前記2つの小領域の組毎に得られる前記画像濃度の差の最大値が所定値以下であるか否かを判定する最大濃度差判定手段を有する構成とすることができる。   In the can inspection apparatus according to the present invention, the determination means determines whether or not a maximum value of the difference in image density obtained for each set of the two small regions is equal to or less than a predetermined value. It can be set as the structure which has a means.

このような構成により、2つの小領域の組毎に得られる画像濃度の差の最大値が所定値を越える場合に、前記缶体の凹凸が形成された部分にへこみ等の欠陥があるものと判定される。   With such a configuration, when the maximum value of the difference in image density obtained for each set of two small areas exceeds a predetermined value, there is a defect such as a dent in the portion where the unevenness of the can body is formed. Determined.

更に、本発明に係る缶体検査装置において、前記凹凸は、前記缶体の深さ方向及び前記缶体の周方向に規則的に繰返すように形成されるものであって、前記濃度導出手段は、前記缶体の凹凸が形成された部分に対応した画像部分を前記深さ方向に相当する方向に分割して得られる複数の前記光照射手段及び撮影手段に基づいて決まる光学的条件が同一となる検査領域のそれぞれを前記周方向に相当する方向にその規則性に基づいて等分割して得られる複数の小領域それぞれの画像濃度を導出し、前記濃度差算出手段は、前記検査領域毎に2つの小領域の画像濃度の差を算出する構成とすることができる。
Further, the can body inspection apparatus according to the present invention, the irregularities, there is formed to regularly repeat in the circumferential direction of the depth direction and the can body of the can body, the concentration deriving means The optical conditions determined based on the plurality of light irradiation means and photographing means obtained by dividing the image portion corresponding to the uneven portion of the can body in a direction corresponding to the depth direction are the same. each inspection area by deriving a plurality of small areas each of image density obtained by equally dividing, based on the regularity in the direction corresponding to the circumferential direction in which the density difference calculation means, for each of the inspection area The difference between the image densities of the two small areas can be calculated.

このような構成により、缶体の凹凸が形成された部分に対応した画像部分を缶体の深さ方向に相当する方向に分割して得られる複数の検査領域のそれぞれにおいて、2つの小領域の画像濃度の差に基づいて欠陥の有無が判定される。   With such a configuration, in each of the plurality of inspection regions obtained by dividing the image portion corresponding to the portion where the unevenness of the can body is formed in a direction corresponding to the depth direction of the can body, The presence or absence of a defect is determined based on the difference in image density.

また、本発明に係る缶体検査装置は、搬送路上を順次搬送される缶体が前記光照射手段による光の照射領域及び前記撮影手段による撮影領域に含まれる所定の検査位置にあることを検出する検査位置検出手段と、前記検査位置検出手段にて前記缶体が前記検査位置にあることが検出されたときに、前記撮影手段が前記缶体の内面を撮影する構成とすることができる。   Further, the can inspection apparatus according to the present invention detects that the cans sequentially transported on the transport path are at a predetermined inspection position included in the light irradiation area by the light irradiation means and the imaging area by the imaging means. When the inspection position detecting means and the inspection position detecting means detect that the can body is at the inspection position, the photographing means can photograph the inner surface of the can body.

このような構成により、搬送路上を缶体が搬送される過程で、当該缶体の凹凸が形成された部分にへこみ等の欠陥があるか否かが検査できるようになる。   With such a configuration, it is possible to inspect whether or not there is a defect such as a dent in a portion where the unevenness of the can body is formed in the process of transporting the can body on the transport path.

また、本発明に係る缶体検査装置は、前記判定手段にて前記缶体の凹凸が形成された部分に欠陥があるとの判定がなされたときに、前記搬送路から前記缶体を排出する排出手段を有する構成とすることができる。   Moreover, the can inspection apparatus according to the present invention discharges the can from the transport path when the determination means determines that there is a defect in a portion where the unevenness of the can is formed. It can be set as the structure which has a discharge means.

このような構成により、凹凸が形成された部分にへこみ等の欠陥の無い缶体だけを後段の処理工程(例えば、内容物の充填工程)に搬送することが可能となる。   With such a configuration, it is possible to transport only a can body that is free of defects such as dents in the uneven portion to a subsequent processing step (for example, a content filling step).

本発明に係る缶体検査方法は、胴部に規則的に同じ形状が繰り返される凹凸がその外面及び内面に表れるように形成された缶体を検査する缶体検査方法であって、前記缶体の内面に光が照射された状態で口部を通して前記缶体の内面を撮影し、画像データを生成する撮影ステップと、前記画像データに基づいて、前記缶体の凹凸が形成された部分に対応した画像部分を当該凹凸の規則性に基づいて該缶体の同じ凹凸形状に対応する画像を含むように等分割して得られる複数の小領域それぞれについて、当該小領域の全体としての画像濃度を導出する濃度導出ステップと、前記導出ステップにより導出される各小領域の画像濃度に基づいて前記缶体の凹凸が形成された部分に欠陥があるか否かを判定する判定ステップとを有し、前記判定ステップは、前記光の照射条件及び撮影条件に基づいて決まる光学的条件が同一となる2つの小領域の画像濃度の差を算出する濃度差算出ステップと、前記2つの小領域の組毎に得られる前記画像濃度の差の最大値が所定値以下であるか否かを判定する最大濃度差判定ステップとを有し、前記最大濃度差判定ステップでの判定結果に基づいて前記缶体の凹凸が形成された部分に欠陥があるか否かを判定する構成となる。 The can body inspection method according to the present invention is a can body inspection method for inspecting a can body formed such that irregularities in which the same shape is regularly repeated on the body portion appear on the outer surface and the inner surface of the body. The inner surface of the can body is photographed through the mouth in a state where light is irradiated on the inner surface of the, and a photographing step for generating image data, corresponding to the portion where the irregularities of the can body are formed based on the image data For each of a plurality of small regions obtained by equally dividing the image portion so as to include images corresponding to the same uneven shape of the can body based on the regularity of the unevenness , the image density as a whole of the small regions is determined. a density deriving step of deriving, possess a determination step of determining whether or not there is a defect in the unevenness formed portion of the can body on the basis of the image density of each small region that is derived by the deriving step, The judgment step Is obtained for each set of the two small areas, and a density difference calculating step for calculating a difference in image density between two small areas having the same optical condition determined based on the light irradiation condition and the photographing condition. A maximum density difference determination step for determining whether or not a maximum value of the difference in image density is equal to or less than a predetermined value, and the unevenness of the can body is formed based on a determination result in the maximum density difference determination step. a configuration to determine whether there is a defect in the portion.

更に、本発明に係る缶体検査方法は、前記判定ステップが、前記光の照射条件及び撮影条件に基づいて決まる光学的条件が同一となる2つの小領域の画像濃度の差を算出する濃度差算出ステップを有し、前記2つの小領域の組毎に得られる前記画像濃度の差に基づいて前記缶体の凹凸が形成された部分に欠陥があるか否かを判定する構成とすることができる。   Further, in the can inspection method according to the present invention, the determination step calculates a difference in image density between two small regions having the same optical condition determined based on the light irradiation condition and the imaging condition. A calculation step, and determining whether or not there is a defect in the uneven portion of the can body based on the difference in image density obtained for each set of the two small regions. it can.

また、本発明に係る缶体検査方法は、前記濃度差算出ステップが、隣接しない2つの小領域の画像濃度の差を算出する構成とすることができる。   The can inspection method according to the present invention may be configured such that the density difference calculating step calculates a difference in image density between two non-adjacent small regions.

更に、本発明に係る缶体検査方法は、前記判定ステップが、前記2つの小領域の組毎に得られる前記画像濃度の差の最大値が所定値以下であるか否かを判定する最大濃度差判定ステップを有する構成とすることができる。   Further, in the can inspection method according to the present invention, the determination step determines whether or not the maximum value of the difference in image density obtained for each set of the two small regions is equal to or less than a predetermined value. It can be set as the structure which has a difference determination step.

本発明によれば、缶体の胴部に規則的に凹凸が形成された部分にへこみ等の欠陥が生じた場合に、缶体の欠陥が生じた部分に対応する小領域の画像濃度が正常の場合(欠陥が無い場合)とは異なることを利用して、前記欠陥を的確に検出することが可能となる。   According to the present invention, when a defect such as a dent occurs in a portion where irregularities are regularly formed in the body of the can body, the image density of the small region corresponding to the portion where the defect of the can body is normal is normal. It is possible to accurately detect the defect by utilizing the difference from the above case (when there is no defect).

以下、本発明の実施の形態の缶体検査装置について、図面を用いて説明する。   Hereinafter, a can body inspection apparatus according to an embodiment of the present invention will be described with reference to the drawings.

本発明の実施の形態における缶体検査装置のブロック図を図2に、正面図を図3(a)に、側面図を図3(b)に示す。図2及び図3に示す缶体検査装置は、図1に示すように、いわゆるダイヤカット等の凹凸が側面に規則的に形成された検査対象の各缶体500−1乃至500−4(以下、これら缶体500−1乃至500−4をまとめて適宜「缶体500」と称する)について、その凹凸510が形成された部分における形状を検査するものである。この缶体500に形成される凹凸510は、具体的には、缶体500の深さ方向及び周方向に稜線及び谷線が三角形状に規則的に繰返されたものとなっている(図1参照)。   FIG. 2 is a block diagram of the can inspection apparatus according to the embodiment of the present invention, FIG. 3 (a) is a front view, and FIG. 3 (b) is a side view. As shown in FIG. 1, each of the can bodies 500-1 to 500-4 (hereinafter referred to as inspection objects) in which irregularities such as so-called diamond cuts are regularly formed on the side surface, as shown in FIG. These can bodies 500-1 to 500-4 are collectively referred to as “can body 500” as appropriate), and the shape of the portion where the irregularities 510 are formed is inspected. Specifically, the unevenness 510 formed on the can body 500 is such that ridge lines and valley lines are regularly repeated in a triangular shape in the depth direction and the circumferential direction of the can body 500 (FIG. 1). reference).

この缶体検査装置は、缶体500の内側面に光を照射する光照射装置100と、撮影を行って画像データを生成するカメラ200と、缶体検査装置の全体を制御するコントローラ300と、缶体500を搬送する搬送装置400と、缶体500が検査位置に到達したことを検出する缶体検出ユニット410と、形状に欠陥が生じている不良品の缶体500を搬送装置400から排出する排出装置420とを有する。コントローラ300は、フレームメモリ301、モニタ302、CPU303及びメモリ304を有する。   This can inspection apparatus includes a light irradiation apparatus 100 that irradiates light on the inner surface of the can 500, a camera 200 that performs image generation to generate image data, a controller 300 that controls the entire can inspection apparatus, The conveyance device 400 that conveys the can body 500, the can body detection unit 410 that detects that the can body 500 has reached the inspection position, and the defective can body 500 having a defect in shape are discharged from the conveyance device 400. And a discharge device 420 for performing the above operation. The controller 300 includes a frame memory 301, a monitor 302, a CPU 303, and a memory 304.

搬送装置400(搬送路を含む)は、検査対象の缶体500が光照射装置100による光の照射領域及びカメラ200による撮影領域に配置されるように、予め定められた検査位置へ缶体500を搬送する。光照射装置100は、光ファイバやキセノン管等による環状の光照射面を有し、前記検査位置にある缶体500の内側面に対して均一に光を照射するようになっている。この光照射装置100は、図3に示すように、調整機構102によって、位置及び光の照射角度が調整可能になっている。なお、缶体検査装置の筐体は、均一な光学的条件下での検査を行なうという観点から、缶体500の内側面に光照射装置100からの光以外の光(外光)が進入しないように、外光を遮断する構成であることが望ましい。   The conveyance device 400 (including the conveyance path) is configured such that the can body 500 to be inspected is set to a predetermined inspection position so that the inspection object can body 500 is arranged in the light irradiation region by the light irradiation device 100 and the photographing region by the camera 200. Transport. The light irradiation apparatus 100 has an annular light irradiation surface such as an optical fiber or a xenon tube, and uniformly irradiates light to the inner surface of the can 500 at the inspection position. As shown in FIG. 3, the light irradiation apparatus 100 can be adjusted in position and light irradiation angle by an adjustment mechanism 102. Note that the casing of the can inspection device does not allow light (external light) other than light from the light irradiation device 100 to enter the inner surface of the can 500 from the viewpoint of performing inspection under uniform optical conditions. Thus, it is desirable to have a configuration that blocks external light.

カメラ200は、環状の光照射面を有する光照射装置100の内孔及び缶体500の口部を通して缶体500の内側面を撮影し、画像データを生成する。このカメラ200は、図3に示すように、調整機構102によって、位置及び撮影角度が調整可能になっている。カメラ200として、例えば、所定の有効画素数となるCCDカメラを用いることができる。カメラ200によって生成された画像データは、コントローラ300内のCPU303へ送られる。   The camera 200 photographs the inner side surface of the can body 500 through the inner hole of the light irradiation apparatus 100 having an annular light irradiation surface and the mouth portion of the can body 500, and generates image data. As shown in FIG. 3, the camera 200 can be adjusted in position and shooting angle by an adjustment mechanism 102. As the camera 200, for example, a CCD camera having a predetermined effective number of pixels can be used. Image data generated by the camera 200 is sent to the CPU 303 in the controller 300.

缶体検出ユニット410は、搬送装置400によって搬送される缶体500が検査位置に到達すると、この缶体500を検出し、検出結果である缶検出タイミング信号をコントローラ300内のCPU303へ出力する。この缶体検出ユニット410は、搬送装置400を挟んで対向するレーザ光照射部とレーザ光受光部により構成されている。缶体500がレーザ光照射部とレーザ光受光部の間に到達すると、缶体500によってレーザ光が遮られ、レーザ光受光部はレーザ光照射部からのレーザ光を検出することができなくなる。缶体検出ユニット410は、この場合に、コントローラ300内のCPU303に対して缶検出タイミング信号を出力する。   When the can body 500 transported by the transport device 400 reaches the inspection position, the can body detection unit 410 detects the can body 500 and outputs a can detection timing signal as a detection result to the CPU 303 in the controller 300. The can detection unit 410 includes a laser beam irradiation unit and a laser beam receiving unit that are opposed to each other with the conveying device 400 interposed therebetween. When the can 500 reaches between the laser beam irradiation unit and the laser beam receiving unit, the laser beam is blocked by the can 500, and the laser beam receiving unit cannot detect the laser beam from the laser beam irradiation unit. In this case, the can detection unit 410 outputs a can detection timing signal to the CPU 303 in the controller 300.

コントローラ300内のフレームメモリ301は、カメラ200からの画像データを記憶する。モニタ302は、CPU303の制御によりフレームメモリ301から読み出された画像データに基づく画像表示を行う。   A frame memory 301 in the controller 300 stores image data from the camera 200. The monitor 302 performs image display based on image data read from the frame memory 301 under the control of the CPU 303.

CPU303は、缶体検出ユニット410からの缶検出タイミング信号が入力されると、検査対象となる缶体500の内側面の撮影画像を表すカメラ200からの画像データに基づいて、各画素の濃淡を多階調(例えば、黒を0、白を255とする256階調)で表す画像データ(検査画像データ)を生成する。CPU303は、前記検査画像データに基づいて缶体500の凹凸510が形成された部分にへこみ等の欠陥があるか否かの検査処理を行なう。   When the can detection timing signal is input from the can detection unit 410, the CPU 303 calculates the density of each pixel based on the image data from the camera 200 representing the photographed image of the inner surface of the can 500 to be inspected. Image data (inspection image data) represented by multiple gradations (for example, 256 gradations where black is 0 and white is 255) is generated. The CPU 303 performs an inspection process based on the inspection image data to determine whether or not there is a defect such as a dent in a portion where the unevenness 510 of the can body 500 is formed.

前記検査処理は、図4に示す手順に従ってなされる。   The inspection process is performed according to the procedure shown in FIG.

図4において、光照射装置100から検査位置を含む所定の領域に対して光が照射されている状態で、CPU303は、缶体検出ユニット410から缶検出タイミング信号が入力されるか否かを判定している(S101)。搬送装置400にて搬送される缶体500が検出位置に到達し、缶体検出ユニット410からの缶検出タイミング信号がCPU303に入力されると(S101でYES)、CPU303は、カメラ200からの撮影映像に対応した画像データを取得し、その画像データをフレームメモリ301に取り込む(S102)。そして、CPU303は、フレームメモリ301に取り込んだ画像データに基づいて、各画素の濃淡を多階調(例えば、黒を0、白を255とする256階調)で表す画像データ(検査画像データ)を生成する(S103)。   In FIG. 4, the CPU 303 determines whether or not a can detection timing signal is input from the can body detection unit 410 in a state where light is irradiated from the light irradiation device 100 to a predetermined region including the inspection position. (S101). When the can body 500 transported by the transport device 400 reaches the detection position and the can detection timing signal from the can body detection unit 410 is input to the CPU 303 (YES in S101), the CPU 303 captures the image from the camera 200. Image data corresponding to the video is acquired, and the image data is taken into the frame memory 301 (S102). Then, based on the image data captured in the frame memory 301, the CPU 303 represents image data (inspection image data) representing the gradation of each pixel in multiple gradations (for example, 256 gradations where black is 0 and white is 255). Is generated (S103).

この検査画像データは、例えば、図6に示すように、缶体500の口部から見た缶体500の内面の画像Iを表す。この画像Iにおいて、缶体500の口部の外周縁に対応した円形部分からその中心に向かう方向が缶体500の深さ方向に相当し、前記円形部分の周方向が缶体500の周方向に相当する。また、前記画像Iは、図1に示すような缶体500の凹凸(ダイヤカット)が形成された部分に対応する画像部分Iaを含んでいる。   This inspection image data represents, for example, an image I of the inner surface of the can body 500 viewed from the mouth of the can body 500 as shown in FIG. In this image I, the direction from the circular portion corresponding to the outer peripheral edge of the mouth of the can body 500 toward the center thereof corresponds to the depth direction of the can body 500, and the circumferential direction of the circular portion is the circumferential direction of the can body 500. It corresponds to. Further, the image I includes an image portion Ia corresponding to a portion where the unevenness (diamond cut) of the can 500 is formed as shown in FIG.

前述したような検査画像データを生成したCPU303は、図7(a)及び(b)に示すように、画像Iに対して、缶体500の凹凸が形成された部分に対応した画像部分Iaを缶体500の深さ方向に相当する方向(円形部分の外周縁から中心に向かう方向)に分割して得られる3つの検査領域(環状領域)600、610、620を設定し、更に、各検査領域600、610、620を缶体500の周方向に相当する方向(円形の円周方向)に缶体500に形成された凹凸(図1参照)の規則性に基づいて等分割して得られる複数の小領域を設定する(S104)。これにより、複数の小領域600(1)、・・・、600(4)、・・・に分割された検査領域600、複数の小領域610(1)、・・・、610(4)、・・・に分割された検査領域610及び小領域620(1)、・・・、620(4)、・・・に分割された検査領域620が画像I上に設定される。各検査領域における各小領域は、例えば、缶体500の凹凸の繰り返し単位に対応した領域となる。   As shown in FIGS. 7A and 7B, the CPU 303 that has generated the inspection image data as described above displays an image portion Ia corresponding to the portion where the unevenness of the can 500 is formed with respect to the image I. Three inspection regions (annular regions) 600, 610, 620 obtained by dividing in a direction corresponding to the depth direction of the can body 500 (a direction from the outer peripheral edge of the circular portion toward the center) are set, and each inspection is further performed. The regions 600, 610, and 620 are obtained by equally dividing the regions 600, 610, and 620 in accordance with the regularity of the unevenness (see FIG. 1) formed in the can body 500 in a direction corresponding to the circumferential direction of the can body 500 (circular circumferential direction). A plurality of small areas are set (S104). Accordingly, the inspection area 600 divided into a plurality of small areas 600 (1),..., 600 (4),..., A plurality of small areas 610 (1),. The inspection area 620 divided into the inspection area 610 and the small areas 620 (1), ..., 620 (4), ... are set on the image I. Each small region in each inspection region is, for example, a region corresponding to a repeating unit of unevenness of the can body 500.

なお、図7(a)と同図(b)とは、異なる向きにて検査位置に到達した缶体500についての画像Iに対して同じ検査領域及び小領域が設定されているが、双方とも、各検査領域における各小領域は、缶体500の同じ凹凸形状(例えば、凹凸の繰り返し単位分)に対応する画像を含むようになる。   7A and 7B, the same inspection region and small region are set for the image I of the can 500 that has reached the inspection position in different directions. Each small region in each inspection region includes an image corresponding to the same uneven shape of the can 500 (for example, a repeating unit of unevenness).

このようにして、検査画像データにて表される画像I上に複数の小領域に分割された3つの検査領域600、610、620が設定されると、CPU303は、図5に示す手順に従って処理を継続する。   When three inspection areas 600, 610, and 620 divided into a plurality of small areas are set on the image I represented by the inspection image data in this way, the CPU 303 performs processing according to the procedure shown in FIG. Continue.

図5において、CPU303は、前記3つの検査領域から1つの検査領域、例えば、検査領域600を選択し(S105)、その選択された検査領域600における各小領域の画像濃度Diを算出する(S106)。例えば、小領域に含まれる各画素の濃淡値(例えば、256階調で表される)の総和が画像濃度Diとして算出される。同一の検査領域に含まれる各小領域は、缶体500の深さ方向における同じ位置の部分、即ち、缶体500の軸上に設置された光照射装置100及びカメラ200にて決まる光学的条件が同一となる部分に対応している。また、各小領域は、前述したように、缶体500の同じ凹凸形状(例えば、凹凸の繰り返し単位分)に対応する画像を含むことから、同一の検査領域における各小領域の画像濃度Diは、缶体500にへこみ等の欠陥がなければ本来同一となるものである。   In FIG. 5, the CPU 303 selects one inspection area, for example, the inspection area 600 from the three inspection areas (S105), and calculates the image density Di of each small area in the selected inspection area 600 (S106). ). For example, the sum of the gray values (represented by, for example, 256 gradations) of each pixel included in the small area is calculated as the image density Di. Each small region included in the same inspection region is an optical condition determined by the light irradiation device 100 and the camera 200 installed at the same position in the depth direction of the can 500, that is, on the axis of the can 500. Corresponds to the same part. In addition, as described above, each small region includes an image corresponding to the same uneven shape (for example, the repeating unit of the unevenness) of the can 500, so that the image density Di of each small region in the same inspection region is If the can 500 has no defects such as dents, it is essentially the same.

選択された検査領域600における全ての小領域の画像濃度Diを算出すると、CPU303は、予め定めた規則に従って隣接しないように選択される2つの小領域(小領域対)の画像濃度Diの差ΔDjを演算する(S107)。例えば、検査領域600において2つおきに配置される2つの小領域600(1)、600(4)の画像濃度差ΔD1が演算される。CPU303は、その画像濃度差ΔDjが最大濃度差ΔDmax(初期値が例えば、ゼロ)を超えているか否かを判定し(S108)、当該画像濃度差ΔDjが最大濃度差ΔDmaxを超えている場合(S108でYES)、その最大濃度差Dmaxを前記画像濃度差ΔDjの値に更新する(S109)。そして、CPU303は、検査領域600における全ての小領域対についての処理が終了したか否かを判定する(S110)。   When the image density Di of all the small areas in the selected inspection area 600 is calculated, the CPU 303 determines the difference ΔDj between the image densities Di of the two small areas (small area pairs) selected not to be adjacent to each other according to a predetermined rule. Is calculated (S107). For example, the image density difference ΔD1 between two small areas 600 (1) and 600 (4) arranged every two in the inspection area 600 is calculated. The CPU 303 determines whether or not the image density difference ΔDj exceeds the maximum density difference ΔDmax (initial value is, for example, zero) (S108), and if the image density difference ΔDj exceeds the maximum density difference ΔDmax (S108). (YES in S108), the maximum density difference Dmax is updated to the value of the image density difference ΔDj (S109). Then, the CPU 303 determines whether or not the processing for all the small region pairs in the inspection region 600 has been completed (S110).

全ての小領域対についての処理が終了していなければ(S110でNO)、CPU303は、前記規則(例えば、2つおきに配置されるという規則)に従って次の小領域対を選択し、それら小領域対についての画像濃度差ΔDjを算出する(S107)。そして、CPU303は、その画像濃度差ΔDjが最大濃度差ΔDmaxを超えている場合に(S108でYES)、最大濃度差ΔDmaxを前記画像濃度差ΔDjの値に変更する(S109)。以後、同様の処理(S107、S108、S109、S110)が検査領域600から選択される全ての小領域対に対して実行される。   If the processing for all the small region pairs has not been completed (NO in S110), the CPU 303 selects the next small region pair according to the rule (for example, the rule that every other small region is arranged), and sets the small region pairs. An image density difference ΔDj for the region pair is calculated (S107). When the image density difference ΔDj exceeds the maximum density difference ΔDmax (YES in S108), the CPU 303 changes the maximum density difference ΔDmax to the value of the image density difference ΔDj (S109). Thereafter, the same processing (S107, S108, S109, S110) is executed for all small region pairs selected from the inspection region 600.

検査領域600から選択される全ての小領域に対する処理が終了すると、CPU303は、その時点で得られている最大濃度差ΔDmaxが基準値ΔDo以下であるか否かを判定する(S111)。前記最大濃度差ΔDmaxが前記基準値ΔDo以下であるとの判定がなされると(S111でYES)、CPU303は、最大濃度差ΔDmaxを初期化し(S112)、全ての検査領域についての処理が終了したか否かを判定する(S113)。   When the processing for all the small areas selected from the inspection area 600 is completed, the CPU 303 determines whether or not the maximum density difference ΔDmax obtained at that time is equal to or less than the reference value ΔDo (S111). When it is determined that the maximum density difference ΔDmax is equal to or less than the reference value ΔDo (YES in S111), the CPU 303 initializes the maximum density difference ΔDmax (S112), and the processing for all inspection areas is completed. It is determined whether or not (S113).

なお、前述したように、同一検査領域内の各小領域の画像濃度Diは、缶体500にへこみ等の欠陥がなければ本来同一となるものであるので、検査領域600に対応した缶体500の部分にへこみ等の欠陥がなければ、前記最大濃度差ΔDmaxは前記基準値ΔDo以下となる。   As described above, the image density Di of each small area in the same inspection area is essentially the same unless the can 500 has a defect such as a dent. Therefore, the can 500 corresponding to the inspection area 600 can be used. If there is no defect such as a dent, the maximum density difference ΔDmax is equal to or less than the reference value ΔDo.

全ての検査領域についての処理が終了していなければ(S113でNO)、CPU303は、次の検査領域、例えば、検査領域610を選択し(S105)、その検査領域610に対して前述したのと同様の処理(S106〜S112)を実行する。そして、CPU303は、前記最大濃度差ΔDmaxが前記基準値ΔDoを超えたとの判定(S111でNO)がなされない限り、全ての検査領域についての処理が終了するまで(S113でYES)、前述した処理を繰り返し実行する。その過程で、前記最大濃度差ΔDmaxが前記基準値ΔDoを超えているとの判定がなされると(S111でNO)、CPU303は、欠陥検出信号を出力する(S114)。例えば、図8に示すように、小領域610(1)に対応した缶体500の部分にへこみ650がある場合、缶体500のその部分と、小領域610(1)と対になる小領域610(4)に対応した缶体500の部分での光の反射条件が異なる。このため、小領域610(1)の画像濃度D1と小領域610(4)の画像濃度D4との差(画像濃度差)ΔD1が他の小領域対についての画像濃度差より大きくなる。この場合、検査領域610についての処理の過程で、前記画像濃度差ΔD1が最大濃度差ΔDmaxとして設定され(S108、S109)、その最大濃度差ΔDmaxが基準値ΔDoを超えているとの判定がなされる(S111でNO)。そして、CPU303から欠陥検出信号が出力される。   If the processing has not been completed for all the inspection areas (NO in S113), the CPU 303 selects the next inspection area, for example, the inspection area 610 (S105), and the above-described inspection area 610 has been described above. Similar processing (S106 to S112) is executed. The CPU 303 then performs the above-described processing until the processing for all the inspection areas is completed (YES in S113) unless the determination that the maximum density difference ΔDmax exceeds the reference value ΔDo (NO in S111) is made. Repeatedly. In the process, when it is determined that the maximum density difference ΔDmax exceeds the reference value ΔDo (NO in S111), the CPU 303 outputs a defect detection signal (S114). For example, as shown in FIG. 8, when there is a dent 650 in the portion of the can 500 corresponding to the small region 610 (1), that portion of the can 500 and the small region that is paired with the small region 610 (1) The light reflection conditions at the portion of the can 500 corresponding to 610 (4) are different. Therefore, the difference (image density difference) ΔD1 between the image density D1 of the small area 610 (1) and the image density D4 of the small area 610 (4) is larger than the image density difference for the other small area pairs. In this case, in the process of the inspection area 610, the image density difference ΔD1 is set as the maximum density difference ΔDmax (S108, S109), and it is determined that the maximum density difference ΔDmax exceeds the reference value ΔDo. (NO in S111). Then, a defect detection signal is output from the CPU 303.

缶体500の検査位置より下流に設置された排出装置420は、CPU303からの前記欠陥検出信号を受信すると、缶体500が搬送装置400により検査位置から排出装置420に対向する位置まで搬送されてきたタイミングにて圧縮空気を噴出し、缶体500が搬送装置400から所定の不良品収容箱に排出される。   Upon receiving the defect detection signal from the CPU 303, the discharge device 420 installed downstream from the inspection position of the can body 500 has been transported from the inspection position to the position facing the discharge device 420 by the transport device 400. Compressed air is ejected at the same timing, and the can 500 is discharged from the transfer device 400 to a predetermined defective product storage box.

このように、本実施形態の缶体検査装置は、検査対象の缶体500の内面に光を照射した状態でその内面を撮影して得られる画像Iにおける缶体500の凹凸が形成された部分に対応した画像部分Iaに対して前記凹凸の規則性に基づいて複数の小領域に等分割された複数の検査領域を設定し、各検査領域における隣接しない小領域対の画像濃度差と基準値との比較結果に基づいて缶体500の凹凸の形成部分にへこみ等の欠陥が生じたか否かを判定する。各小領域に対応した缶体500部分の凹凸形状(例えば、凹凸の繰り返し単位)は同じであり、前記凹凸の形成部分にへこみ等の欠陥が無い場合には、前記各小領域の画像濃度は本来同じとなるものである。このことを利用することにより、即ち、凹凸の形成部分にへこみ等の形状の欠陥が生じた場合に、各小領域の画像濃度が正常の場合とは異なることを利用することにより、その形状の欠陥を的確に検出することができる。   As described above, the can body inspection apparatus according to the present embodiment is a portion in which the unevenness of the can body 500 is formed in the image I obtained by photographing the inner surface of the can body 500 to be inspected with light irradiated. A plurality of inspection areas equally divided into a plurality of small areas based on the regularity of the unevenness are set for the image portion Ia corresponding to the image portion Ia, and the image density difference between the non-adjacent small areas in each inspection area and the reference value Based on the comparison result, it is determined whether or not a defect such as a dent has occurred in the uneven portion of the can 500. The concave / convex shape of the can body 500 corresponding to each small region (for example, the repeating unit of the concave / convex) is the same, and when there are no defects such as dents in the concave / convex formation portion, the image density of each small region is It is essentially the same. By utilizing this fact, that is, when a shape defect such as a dent is formed in the uneven portion, the fact that the image density of each small region is different from the normal case is utilized. Defects can be accurately detected.

特に、隣接しない2つの小領域の画像濃度を比較しているので、隣接する2つの小領域に対応する部分にへこみ等が跨っていても(比較的大きいへこみ等)、そのへこみ等を的確に検出することができる。   In particular, since the image densities of two non-adjacent small regions are compared, even if a dent or the like extends over a portion corresponding to two adjacent small regions (such as a relatively large dent), the dent or the like is accurately detected. Can be detected.

なお、前述した実施の形態に係る缶体検査装置では、各小領域は、缶体500の凹凸の繰り返し単位に対応させるようにしたが、これに限られず、各小領域に対応した缶体500部分の凹凸形状が同じであれば、任意に設定することができる。   In the can inspection apparatus according to the above-described embodiment, each small region is made to correspond to the repeating unit of the concave and convex portions of the can 500, but is not limited to this, and the can 500 corresponding to each small region. If the uneven | corrugated shape of a part is the same, it can set arbitrarily.

また、缶体500の深さ方向に対応する方向に、凹凸が形成された部分に対応した複数の検査領域600、610、620が設定されたが、缶体500の凹凸が形成された画像部分Ia全てを単一の検査領域としてもよい。ただし、欠陥検出に係る分解能の観点から、複数の検査領域を設定することが好ましい。   In addition, in the direction corresponding to the depth direction of the can body 500, a plurality of inspection regions 600, 610, and 620 corresponding to the portions where the unevenness is formed are set, but the image portion where the unevenness of the can body 500 is formed All of Ia may be a single inspection region. However, it is preferable to set a plurality of inspection areas from the viewpoint of resolution related to defect detection.

更に、前記複数の検査領域600、610、620の缶体500の深さ方向に対応する方向における幅は、同一であっても、異なっていてもよい。   Furthermore, the width | variety in the direction corresponding to the depth direction of the can 500 of the said some test | inspection area | region 600,610,620 may be the same, or may differ.

また、各小領域の画像濃度は、各小領域に含まれる画素の濃淡値の総和としたが、各画素の濃淡値の平均値であっても、小領域の全体的な濃度を表すものであれば他の演算手法により得られるものであってもよい。ただし、欠陥が生じた場合に、小領域対の画像濃度差をより大きく出現させることができるという観点から、即ち、欠陥検出に係る分解能の観点から、各小領域の画像濃度は、各画素の濃淡値の総和とすることが好ましい。   In addition, the image density of each small area is the sum of the gray values of the pixels included in each small area, but the average value of the gray values of each pixel represents the overall density of the small area. If it exists, it may be obtained by another calculation method. However, in the case where a defect occurs, the image density difference of each pair of small areas can be made to appear larger, that is, from the viewpoint of resolution related to defect detection, the image density of each small area is It is preferable to set the sum of the gray values.

また、上述した実施形態では、検査対象となる缶体500から得られた画像に設定された2つの小領域(小領域対)の画像濃度差に基づいてへこみ等の有無を判定したが、検査対象となる缶体500の撮影条件と同じ条件にて良品となる缶体500の内面を撮影して得られた画像データ(基準画像データ)をコントローラ300のメモリ304に予め記憶しておき、検査対象となる缶体500の前述したような画像と前記基準画像データで表される基準画像とを比較することにより欠陥の判定をおこなうこともできる。具体的には、基準画像における凹凸形成部分に対応する画像部分に設定された各小領域(図7参照)の画像濃度と、検査対象となる缶体から得られた画像Iにおける凹凸形成部分に対応する画像部分Iaに設定された対応する小領域(図7参照)の画像濃度と差が所定値以下であるか否かに基づいて欠陥の有無を判定することができる。この場合、各小領域は、基準画像と、検査対象となる缶体500から得られた画像とに対して同じように設定されるものであれば、缶体500に形成された凹凸の規則性に関係なく任意に設定することができる。ただし、正確な欠陥検出を行なうためには、検査対象となる缶体500の画像を得る際の光学的条件を常に基準画像(良品缶体に対応)を得た際の光学的条件に精度良く維持する必要がある。   In the above-described embodiment, the presence or absence of dents or the like is determined based on the image density difference between the two small regions (small region pairs) set in the image obtained from the can 500 to be inspected. Image data (reference image data) obtained by photographing the inner surface of a good can body 500 under the same conditions as the photographing conditions of the target can body 500 is stored in advance in the memory 304 of the controller 300 for inspection. It is also possible to determine the defect by comparing the above-described image of the target can 500 with the reference image represented by the reference image data. Specifically, the image density of each small region (see FIG. 7) set in the image portion corresponding to the uneven portion in the reference image and the uneven portion in the image I obtained from the can body to be inspected. Whether or not there is a defect can be determined based on whether or not the difference between the image density and the corresponding small area (see FIG. 7) set in the corresponding image portion Ia is equal to or less than a predetermined value. In this case, if each small region is set in the same way for the reference image and the image obtained from the can 500 to be inspected, the regularity of the irregularities formed on the can 500 is determined. It can be set arbitrarily regardless of. However, in order to accurately detect defects, the optical conditions for obtaining an image of the can 500 to be inspected are always the same as the optical conditions for obtaining a reference image (corresponding to a non-defective can). Need to be maintained.

以上のように、本発明にかかる缶体検査装置及び缶体検査方法は、側面に凹凸が形成された缶体に生じる形状の欠陥を的確に検査することが可能であるという効果を有し、缶体検査装置及び缶体検査方法として有用である。   As described above, the can inspection apparatus and the can inspection method according to the present invention have the effect that it is possible to accurately inspect defects in the shape that occurs in the can body having irregularities formed on the side surfaces, It is useful as a can body inspection device and a can body inspection method.

凹凸が形成された缶体の側面図である。It is a side view of the can in which the unevenness | corrugation was formed. 缶体検査装置のブロック図である。It is a block diagram of a can body inspection apparatus. 缶体検査装置の正面図及び側面図である。It is the front view and side view of a can inspection apparatus. 缶体検査装置のコントローラにおけるCPUの処理手順(その1)を示すフローチャートである。It is a flowchart which shows the process sequence (the 1) of CPU in the controller of a can body test | inspection apparatus. 缶体検査装置のコントローラにおけるCPUの処理手順(その2)を示すフローチャートである。It is a flowchart which shows the processing procedure (the 2) of CPU in the controller of a can body test | inspection apparatus. 缶体の内側面の撮影画像の一例を示す図である。It is a figure which shows an example of the picked-up image of the inner surface of a can. 缶体の凹凸が形成された部分に対応する画像部分に設定された検査領域及び小領域を示す図である。It is a figure which shows the test | inspection area | region and small area | region set to the image part corresponding to the part in which the unevenness | corrugation of the can was formed. 缶体の凹凸の形成された部分にへこみがある場合における各小領域の画像の状態を示す図である。It is a figure which shows the state of the image of each small area | region when there exists a dent in the part in which the unevenness | corrugation of the can was formed.

符号の説明Explanation of symbols

100 光照射装置
200 カメラ
300 コントローラ
301 フレームメモリ
302 モニタ
303 メモリ
304 CPU
400 搬送装置
410 缶体検出ユニット
420 排出装置
500−1〜500−4 缶体
600、610、620 検査領域
600(1)、600(4)、610(1)、610(4)、620(1)、620(4) 小領域
650 へこみ
DESCRIPTION OF SYMBOLS 100 Light irradiation apparatus 200 Camera 300 Controller 301 Frame memory 302 Monitor 303 Memory 304 CPU
400 Conveying device 410 Can body detection unit 420 Discharge device 500-1 to 500-4 Can body 600, 610, 620 Inspection area 600 (1), 600 (4), 610 (1), 610 (4), 620 (1 ), 620 (4) Small area 650 Dented

Claims (7)

胴部に規則的に同じ形状が繰り返される凹凸がその外面及び内面に表れるように形成された缶体を検査する缶体検査装置であって、
前記缶体の内面に光を照射する光照射手段と、
口部を通して前記缶体の内面を撮影し、画像データを生成する撮影手段と、
前記画像データに基づいて、前記缶体の凹凸が形成された部分に対応した画像部分を当該凹凸の規則性に基づいて該缶体の同じ凹凸形状に対応する画像を含むように等分割して得られる複数の小領域それぞれについて、当該小領域の全体としての画像濃度を導出する濃度導出手段と、
前記濃度導出手段により導出される各小領域の画像濃度に基づいて前記缶体の凹凸が形成された部分に欠陥があるか否かを判定する判定手段とを有し、
前記判定手段は、前記光照射手段及び撮影手段に基づいて決まる光学的条件が同一となる2つの小領域の画像濃度の差を算出する濃度差算出手段と、
前記2つの小領域の組毎に得られる前記画像濃度の差の最大値が所定値以下であるか否かを判定する最大濃度差判定手段を有とを有し、
前記最大濃度差判定手段での判定結果に基づいて前記缶体の凹凸が形成された部分に欠陥があるか否かを判定することを特徴とする缶体検査装置。
A can body inspection device that inspects a can body that is formed such that irregularities that are regularly repeated on the body portion appear on the outer surface and the inner surface thereof ,
A light irradiating means for irradiating the inner surface of the can with light;
Photographing means for photographing the inner surface of the can through the mouth and generating image data;
Based on the image data, the image portion corresponding to the portion where the unevenness of the can body is formed is equally divided so as to include an image corresponding to the same uneven shape of the can body based on the regularity of the unevenness. For each of the plurality of small areas obtained, density derivation means for deriving the image density as a whole of the small areas,
On the basis of the image density of each small area is derived by the concentration deriving means have a determination means for determining whether there is a defect in the unevenness formed portion of the can body,
The determination unit is a density difference calculation unit that calculates a difference in image density between two small regions having the same optical condition determined based on the light irradiation unit and the photographing unit;
Having maximum density difference determination means for determining whether or not the maximum value of the difference in image density obtained for each set of the two small areas is equal to or less than a predetermined value;
A can inspection apparatus characterized by determining whether or not there is a defect in a portion of the can where the irregularities are formed based on a determination result by the maximum density difference determination means .
前記濃度差算出手段は、隣接しない2つの小領域の画像濃度の差を算出することを特徴とする請求項記載の缶体検査装置。 The density difference calculation means can body inspection apparatus according to claim 1, wherein the calculating the difference in image density of the two small regions that are not adjacent. 前記凹凸は、前記缶体の深さ方向及び前記缶体の周方向に規則的に繰返すように形成されるものであって、
前記濃度導出手段は、前記缶体の凹凸が形成された部分に対応した画像部分を前記深さ方向に相当する方向に分割して得られる複数の前記光照射手段及び撮影手段に基づいて決まる光学的条件が同一となる検査領域のそれぞれを前記周方向に相当する方向にその規則性に基づいて等分割して得られる複数の小領域それぞれの画像濃度を導出し、
前記濃度差算出手段は、前記検査領域毎に2つの小領域の画像濃度の差を算出することを特徴とする請求項1または2に記載の缶体検査装置。
The irregularities are formed so as to repeat regularly in the depth direction of the can body and the circumferential direction of the can body,
The density derivation means is an optical determined based on a plurality of the light irradiation means and the photographing means obtained by dividing an image portion corresponding to the uneven portion of the can body in a direction corresponding to the depth direction. Deriving the image density of each of a plurality of small areas obtained by equally dividing each of the inspection areas having the same general condition in the direction corresponding to the circumferential direction based on the regularity thereof,
3. The can inspection apparatus according to claim 1, wherein the density difference calculation unit calculates a difference between image densities of two small areas for each of the inspection areas.
搬送路上を順次搬送される缶体が前記光照射手段による光の照射領域及び前記撮影手段による撮影領域に含まれる所定の検査位置にあることを検出する検査位置検出手段と、
前記検査位置検出手段にて前記缶体が前記検査位置にあることが検出されたときに、前記撮影手段が前記缶体の内面を撮影することを特徴とする請求項1乃至のいずれかに記載の缶体検査装置。
An inspection position detection means for detecting that the cans sequentially conveyed on the conveyance path are at a predetermined inspection position included in the light irradiation area by the light irradiation means and the imaging area by the imaging means;
When the can body at the test position detection means that is in the inspection position is detected, in any one of claims 1 to 3 wherein the imaging means is characterized by capturing the inner surface of the can body The can inspection apparatus as described.
前記判定手段にて前記缶体の凹凸が形成された部分に欠陥があるとの判定がなされたときに、前記搬送路から前記缶体を排出する排出手段を有することを特徴とする請求項記載の缶体検査装置。 5. The apparatus according to claim 4 , further comprising: a discharge unit that discharges the can body from the transport path when it is determined by the determination unit that there is a defect in the uneven portion of the can body. The can inspection apparatus as described. 胴部に規則的に同じ形状が繰り返される凹凸がその外面及び内面に表れるように形成された缶体を検査する缶体検査方法であって、
前記缶体の内面に光が照射された状態で口部を通して前記缶体の内面を撮影し、画像データを生成する撮影ステップと、
前記画像データに基づいて、前記缶体の凹凸が形成された部分に対応した画像部分を当該凹凸の規則性に基づいて該缶体の同じ凹凸形状に対応する画像を含むように等分割して得られる複数の小領域それぞれについて、当該小領域の全体としての画像濃度を導出する濃度導出ステップと、
前記導出ステップにより導出される各小領域の画像濃度に基づいて前記缶体の凹凸が形成された部分に欠陥があるか否かを判定する判定ステップとを有し、
前記判定ステップは、前記光の照射条件及び撮影条件に基づいて決まる光学的条件が同一となる2つの小領域の画像濃度の差を算出する濃度差算出ステップと、
前記2つの小領域の組毎に得られる前記画像濃度の差の最大値が所定値以下であるか否かを判定する最大濃度差判定ステップとを有し、
前記最大濃度差判定ステップでの判定結果に基づいて前記缶体の凹凸が形成された部分に欠陥があるか否かを判定することを特徴とする缶体検査方法。
A can body inspection method for inspecting a can body formed such that irregularities that are regularly repeated on the body portion appear on the outer surface and the inner surface thereof ,
Photographing the inner surface of the can body through the mouth in a state where light is irradiated on the inner surface of the can body, and generating an image data,
Based on the image data, the image portion corresponding to the portion where the unevenness of the can body is formed is equally divided so as to include an image corresponding to the same uneven shape of the can body based on the regularity of the unevenness. A density deriving step for deriving an image density as a whole of each of the obtained small areas;
Have a a determination step of determining whether or not on the basis of the image density of each small area is defective unevenness formed portion of the can body to be derived by the deriving step,
The determination step includes a density difference calculation step for calculating a difference in image density between two small regions having the same optical condition determined based on the light irradiation condition and the imaging condition;
A maximum density difference determining step for determining whether or not a maximum value of the difference in image density obtained for each set of the two small regions is equal to or less than a predetermined value;
A can body inspection method comprising: determining whether or not a portion of the can body where the irregularities are formed has a defect based on a determination result in the maximum density difference determination step .
前記濃度差算出ステップは、隣接しない2つの小領域の画像濃度の差を算出することを特徴とする請求項記載の缶体検査方法。 7. The can inspection method according to claim 6, wherein the density difference calculating step calculates a difference in image density between two non-adjacent small areas.
JP2004175107A 2004-06-14 2004-06-14 Can body inspection apparatus and can body inspection method Expired - Lifetime JP4623267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004175107A JP4623267B2 (en) 2004-06-14 2004-06-14 Can body inspection apparatus and can body inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004175107A JP4623267B2 (en) 2004-06-14 2004-06-14 Can body inspection apparatus and can body inspection method

Publications (2)

Publication Number Publication Date
JP2005351829A JP2005351829A (en) 2005-12-22
JP4623267B2 true JP4623267B2 (en) 2011-02-02

Family

ID=35586432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004175107A Expired - Lifetime JP4623267B2 (en) 2004-06-14 2004-06-14 Can body inspection apparatus and can body inspection method

Country Status (1)

Country Link
JP (1) JP4623267B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017178712A1 (en) * 2016-04-15 2017-10-19 Conexbird Oy A method, software, and an apparatus for inspection of shipments
DE102016125709A1 (en) * 2016-12-27 2018-06-28 Krones Ag Device for inspecting labels equipped with labels

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6031235A (en) * 1983-08-01 1985-02-18 Hitachi Ltd Pattern comparison inspecting device
JPH03194454A (en) * 1989-12-25 1991-08-26 Fuji Electric Co Ltd Container internal surface inspection device
JPH08247724A (en) * 1995-03-09 1996-09-27 Suzuki Motor Corp Method for evaluating wearing state of piston
JP2000155100A (en) * 1998-11-18 2000-06-06 Daiwa Can Co Ltd Inner face inspecting method for three-piece can
JP2001050716A (en) * 1999-08-05 2001-02-23 Hitachi Eng Co Ltd Device and method for sorting can seaming part

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6031235A (en) * 1983-08-01 1985-02-18 Hitachi Ltd Pattern comparison inspecting device
JPH03194454A (en) * 1989-12-25 1991-08-26 Fuji Electric Co Ltd Container internal surface inspection device
JPH08247724A (en) * 1995-03-09 1996-09-27 Suzuki Motor Corp Method for evaluating wearing state of piston
JP2000155100A (en) * 1998-11-18 2000-06-06 Daiwa Can Co Ltd Inner face inspecting method for three-piece can
JP2001050716A (en) * 1999-08-05 2001-02-23 Hitachi Eng Co Ltd Device and method for sorting can seaming part

Also Published As

Publication number Publication date
JP2005351829A (en) 2005-12-22

Similar Documents

Publication Publication Date Title
JP2010266430A (en) Method and apparatus for inspecting defect of steel plate surface
JP2009293999A (en) Wood defect detector
JP2005121546A (en) Defect inspection method
JP2012037425A (en) Method for inspecting polycrystal silicon wafer and device thereof
JP4623267B2 (en) Can body inspection apparatus and can body inspection method
US7528945B2 (en) Method to determine the optical quality of a glazing
JP2005106725A (en) Method and apparatus for visual inspection of object to be inspected
JP5116462B2 (en) Quality evaluation device for paper cut surface and quality evaluation method using the same
JP6566903B2 (en) Surface defect detection method and surface defect detection apparatus
JP6091285B2 (en) Image processing apparatus, inspection system using the same, sheet image correction method, and sheet inspection method using the same
JP5692790B2 (en) Tablet appearance inspection device and PTP packaging machine
JP4023295B2 (en) Surface inspection method and surface inspection apparatus
JP4030812B2 (en) Appearance inspection apparatus and appearance inspection method
JP2023001540A (en) Inspection method and inspection equipment
JP4397850B2 (en) Inspection device, correction data generation device, and PTP packaging machine
JP4563183B2 (en) Inspection method and apparatus for streaky unevenness defect
JP5266118B2 (en) Defect inspection method and defect inspection apparatus for object surface
KR20110020437A (en) Inspection method of patterned wafer for detecting defects
JP2009222611A (en) Inspection apparatus and inspection method
JP3015325B2 (en) Streak inspection method and device
JP3494552B2 (en) Tablet appearance inspection method and tablet appearance inspection device
JP2010281654A (en) X-ray inspection apparatus and inspection program for the same
JP3577194B2 (en) Tablet appearance inspection method and tablet appearance inspection device
JP2006189294A (en) Inspection method and device of irregular defect
JP4420602B2 (en) Appearance inspection apparatus and appearance inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101019

R150 Certificate of patent or registration of utility model

Ref document number: 4623267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350