JP4622885B2 - Combustion device and fuel supply method for combustion device - Google Patents

Combustion device and fuel supply method for combustion device Download PDF

Info

Publication number
JP4622885B2
JP4622885B2 JP2006049473A JP2006049473A JP4622885B2 JP 4622885 B2 JP4622885 B2 JP 4622885B2 JP 2006049473 A JP2006049473 A JP 2006049473A JP 2006049473 A JP2006049473 A JP 2006049473A JP 4622885 B2 JP4622885 B2 JP 4622885B2
Authority
JP
Japan
Prior art keywords
fuel
combustion
holding member
air
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006049473A
Other languages
Japanese (ja)
Other versions
JP2007225240A (en
Inventor
智広 浅井
浩美 小泉
洋 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006049473A priority Critical patent/JP4622885B2/en
Publication of JP2007225240A publication Critical patent/JP2007225240A/en
Application granted granted Critical
Publication of JP4622885B2 publication Critical patent/JP4622885B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gas Burners (AREA)

Description

本発明は、燃焼装置及び燃焼装置の燃料供給方法に関する。   The present invention relates to a combustion apparatus and a fuel supply method for the combustion apparatus.

環境保全の立場から、燃焼装置においてNOx排出量を低減することが重要な課題となっている。特に近年では、燃焼装置を使用する製品の一つであるガスタービンプラントは高出力化,高効率化していく傾向にある。それに伴い、ガスタービンに使用するガスタービン燃焼器の燃焼ガス温度も高温化している。そのため高温条件下で発生しやすいサーマルNOxの低減が重要課題となっている。そこで、燃料と燃焼用空気とを複数の同軸噴流として燃焼室に供給し、燃焼させることでNOxを抑制させる方法が特許文献1に開示されている。   From the standpoint of environmental conservation, reducing NOx emissions in combustion devices is an important issue. Particularly in recent years, gas turbine plants, which are one of the products that use combustion devices, tend to increase in output and efficiency. Accordingly, the combustion gas temperature of the gas turbine combustor used for the gas turbine is also increased. Therefore, the reduction of thermal NOx that is likely to occur under high temperature conditions is an important issue. Therefore, Patent Document 1 discloses a method of suppressing NOx by supplying fuel and combustion air as a plurality of coaxial jets to a combustion chamber and burning them.

また、サーマルNOxを抑制するには、燃料量に対し十分な量の燃焼用空気を供給する必要がある。しかし、燃焼器の高温部材を冷却するために燃焼用空気の一部を用いると、その分の燃焼用空気が減少して燃空比が減少しNOxが抑制できない可能性があった。そこで、燃焼器などのガスタービン高温部材を冷却するための冷却空気量を減少させ、その分の空気量を燃焼用空気として使用できる技術が特許文献2に開示されている。   Further, in order to suppress thermal NOx, it is necessary to supply a sufficient amount of combustion air with respect to the fuel amount. However, when a part of the combustion air is used to cool the high-temperature member of the combustor, there is a possibility that the combustion air is reduced by that amount, the fuel-air ratio is reduced, and NOx cannot be suppressed. Therefore, Patent Document 2 discloses a technique that can reduce the amount of cooling air for cooling a gas turbine high-temperature member such as a combustor and use the amount of air as combustion air.

特開2003−148734号公報JP 2003-148734 A 特開2001−271654号公報JP 2001-271654 A

ここで、燃焼室に燃料と燃焼用空気の同軸噴流を供給するバーナを複数備えたガスタービン燃焼器を考えた場合、燃焼室の上流側に配置され、同軸噴流を燃焼室に噴出する空気孔を形成した板状部材を保持する保持部材の冷却が必要となる。また、複数のバーナを備えた場合はガスタービン負荷によってバーナの使用を切り替えるため、保持部材の冷却箇所をガスタービン負荷に応じて変更することが望ましい。しかし、特許文献2には燃焼器の冷却箇所をガスタービン負荷に応じて変更する方法については開示されていない。   Here, when considering a gas turbine combustor provided with a plurality of burners for supplying a coaxial jet of fuel and combustion air to the combustion chamber, an air hole is arranged upstream of the combustion chamber and jets the coaxial jet into the combustion chamber. It is necessary to cool the holding member that holds the plate-like member formed. When a plurality of burners are provided, the use of the burner is switched depending on the gas turbine load. Therefore, it is desirable to change the cooling location of the holding member according to the gas turbine load. However, Patent Document 2 does not disclose a method for changing the cooling point of the combustor according to the gas turbine load.

そこで、本発明では負荷に応じて保持部材への適切な冷却が可能になるとともに、更なる低NOx化を図る燃焼装置及び燃焼装置の燃料供給方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a combustion apparatus and a fuel supply method for the combustion apparatus that can appropriately cool the holding member according to the load and further reduce NOx.

本発明では、板状部材を保持部材によって保持するとともに、保持部材の内部に冷却燃料流路を備え、冷却燃料流路を流れた燃料を燃料ノズルに供給することを特徴とする燃焼装置及び燃焼装置の燃料供給方法を提供する。   In the present invention, the plate-like member is held by the holding member, a cooling fuel channel is provided inside the holding member, and the fuel that has flowed through the cooling fuel channel is supplied to the fuel nozzle. A fuel supply method for an apparatus is provided.

本発明によって、負荷に応じて保持部材への適切な冷却が可能になるとともに、更なる低NOx化を図る燃焼装置及び燃焼装置の燃料供給方法を提供することが可能である。   According to the present invention, it is possible to appropriately cool the holding member according to the load, and to provide a combustion apparatus and a fuel supply method for the combustion apparatus that further reduce NOx.

本発明の実施例を以下に示す。   Examples of the present invention are shown below.

以下、燃焼装置の一例としてガスタービン燃焼器を説明する。図1は、バーナを燃焼室から見た図である。また、図2は燃焼器の縦断面を含むガスタービンの系統図である。   Hereinafter, a gas turbine combustor will be described as an example of a combustion apparatus. FIG. 1 is a view of the burner as seen from the combustion chamber. FIG. 2 is a system diagram of a gas turbine including a longitudinal section of the combustor.

ガスタービンは、外部から供給された空気25を圧縮する圧縮機1と、圧縮機1からの燃焼用空気26と燃料を混合燃焼させるガスタービン燃焼器5と、ガスタービン燃焼器5が排出する燃焼ガス27により回転駆動するタービン28とを備える。圧縮機1とタービン28は一つの回転軸で連結されており、当該回転軸には発電機29も連結されている。そのため、タービン28の回転により圧縮機1と発電機29を駆動する。   The gas turbine includes a compressor 1 that compresses air 25 supplied from the outside, a gas turbine combustor 5 that mixes and burns combustion air 26 from the compressor 1 and fuel, and combustion that is discharged from the gas turbine combustor 5. And a turbine 28 that is rotationally driven by the gas 27. The compressor 1 and the turbine 28 are connected by a single rotating shaft, and a generator 29 is also connected to the rotating shaft. Therefore, the compressor 1 and the generator 29 are driven by the rotation of the turbine 28.

ガスタービン燃焼器5は、燃焼器外筒2の内側に燃焼器ライナ3を備え、燃焼器外筒2と燃焼器ライナ3との間の流路に燃焼用空気26が流れる。燃焼用空気26は、圧縮機1からの圧縮空気である。燃焼器外筒2の上流側は、閉止板6により密閉されている。ここで、燃焼器ライナ3の内部を流れる燃焼ガス27が流れる方向を下流方向とし、燃料と空気を噴出する空気孔9を設置した側を上流側と規定する。   The gas turbine combustor 5 includes a combustor liner 3 inside the combustor outer cylinder 2, and combustion air 26 flows through a flow path between the combustor outer cylinder 2 and the combustor liner 3. The combustion air 26 is compressed air from the compressor 1. The upstream side of the combustor outer cylinder 2 is sealed by a closing plate 6. Here, the direction in which the combustion gas 27 flowing inside the combustor liner 3 flows is defined as the downstream direction, and the side where the air holes 9 for ejecting fuel and air are installed is defined as the upstream side.

燃焼器ライナ3の上流側には、燃料と燃焼用空気を噴射するバーナが複数個備えられている。図1はバーナを7個備えた場合の図であり、その一部のバーナが図2に示されている。このようなバーナ配置により、各バーナに燃料を別々に供給することができ、ガスタービンの様々な部分負荷運転に対応できる。なお、本実施例では、中央部のバーナを中央バーナ、外周部のバーナを外周バーナと称する。   A plurality of burners for injecting fuel and combustion air are provided on the upstream side of the combustor liner 3. FIG. 1 shows a case where seven burners are provided, and some of the burners are shown in FIG. With such a burner arrangement, fuel can be separately supplied to each burner, and various partial load operations of the gas turbine can be handled. In the present embodiment, the central burner is referred to as a central burner, and the outer peripheral burner is referred to as an outer peripheral burner.

燃焼器ライナ3の上流側には、それぞれのバーナを構成する板状部材11,10A,
10B,10C,10D,10E,10Fを備え、当該板状部材11,10A,10B,10C,10D,10E,10Fには複数の空気孔9が設けられている。そして、7つの板状部材11,10A,10B,10C,10D,10E,10Fは保持部材12により保持されており、板状部材11,10A,10B,10C,10D,10E,10Fと保持部材12により燃焼室4の上流側を区画する。なお、板状部材11,10A,10B,10C,10D,10E,10Fと保持部材12は一体部材であっても構わない。それぞれの板状部材11,10A,10B,10C,10D,10E,10Fの上流側には、燃料ノズル8を備えた燃料分配器7を設置しており、燃料分配器7は閉止板6により保持されている。燃料分配器7の下流側には複数の燃料ノズル8が設けられ、複数の空気孔9に対応するように当該燃料ノズル8が設けられている。そして、空気が燃料を包み込む同軸噴流が空気孔9から燃焼室4へ噴出するように、燃料ノズル8が空気孔9に対して設けられる。
On the upstream side of the combustor liner 3, plate-like members 11, 10 </ b> A constituting each burner are provided.
10B, 10C, 10D, 10E, and 10F are provided, and a plurality of air holes 9 are provided in the plate-like members 11, 10A, 10B, 10C, 10D, 10E, and 10F. The seven plate members 11, 10A, 10B, 10C, 10D, 10E, and 10F are held by the holding member 12, and the plate members 11, 10A, 10B, 10C, 10D, 10E, and 10F and the holding member 12 are held. To partition the upstream side of the combustion chamber 4. The plate-like members 11, 10A, 10B, 10C, 10D, 10E, 10F and the holding member 12 may be an integral member. A fuel distributor 7 having a fuel nozzle 8 is installed on the upstream side of each plate member 11, 10 A, 10 B, 10 C, 10 D, 10 E, 10 F. The fuel distributor 7 is held by a closing plate 6. Has been. A plurality of fuel nozzles 8 are provided on the downstream side of the fuel distributor 7, and the fuel nozzles 8 are provided so as to correspond to the plurality of air holes 9. And the fuel nozzle 8 is provided with respect to the air hole 9 so that the coaxial jet flow in which the air wraps the fuel is ejected from the air hole 9 to the combustion chamber 4.

次に、燃料供給系統について説明する。燃料供給設備16から供給された燃料は、燃料遮断弁17を通過した後にそれぞれのバーナに分岐される。そして、流量調節弁18,
19,20を通過した燃料は、中央バーナおよび外周バーナに供給される。例えば板状部材10Dを備えた外周バーナの場合、流量調節弁18を通過した燃料21は、閉止板6を貫通する冷却燃料供給系統13を流下し、保持部材12の内部に設けられた冷却燃料流路14Dに導かれる。冷却燃料流路14Dは、後述のように保持部材12の冷却に適した流路で設けられる。この冷却燃料流路14Dによって保持部材12を冷却した燃料は、再度、閉止板6を貫通するように設けられた分配器供給系統15を流れ、燃料分配器7に供給される。このように、外周バーナに燃料を供給する燃料供給系統は、外周バーナに燃料を供給する流量を調整する流量調節弁18と、冷却燃料供給系統13と、冷却燃料流路14Dと、分配器供給系統15とによって構成される。中央バーナと他の外周バーナにおける燃料供給系統も同様である。また、本実施例におけるバーナとは、燃料を燃料ノズル8に分配する燃料分配器7と、燃焼室に燃料を噴射する燃料ノズル8と、燃料と空気を燃焼室に噴出する空気孔9と、当該空気孔9を備えた板状部材を備える。
Next, the fuel supply system will be described. The fuel supplied from the fuel supply facility 16 passes through the fuel cutoff valve 17 and then branches to each burner. And the flow control valve 18,
The fuel that has passed through 19 and 20 is supplied to the central burner and the outer peripheral burner. For example, in the case of the outer peripheral burner provided with the plate-like member 10D, the fuel 21 that has passed through the flow rate control valve 18 flows down the cooling fuel supply system 13 that penetrates the closing plate 6 and is supplied to the inside of the holding member 12. It is guided to the flow path 14D. The cooling fuel channel 14D is provided as a channel suitable for cooling the holding member 12 as described later. The fuel having cooled the holding member 12 by the cooling fuel flow path 14 </ b> D again flows through the distributor supply system 15 provided so as to penetrate the closing plate 6 and is supplied to the fuel distributor 7. As described above, the fuel supply system that supplies fuel to the outer peripheral burner includes the flow rate adjusting valve 18 that adjusts the flow rate of supplying fuel to the outer peripheral burner, the cooling fuel supply system 13, the cooling fuel flow path 14D, and the distributor supply. It is comprised by the system | strain 15. The same applies to the fuel supply system in the central burner and the other peripheral burners. The burner in the present embodiment includes a fuel distributor 7 that distributes fuel to the fuel nozzle 8, a fuel nozzle 8 that injects fuel into the combustion chamber, an air hole 9 that ejects fuel and air into the combustion chamber, A plate-like member provided with the air holes 9 is provided.

このように構成されたバーナにより、燃料分配器7に供給された燃料24は燃料ノズル8から空気孔9に噴射される。また、燃焼器外筒2と燃焼器ライナ3との間の流路を流れた燃焼用空気26も、閉止板6まで到達した後に空気孔9に引き込まれる。従って、燃焼室4に燃料と空気の同軸噴流が空気孔9から噴射され、燃焼室4で火炎を形成し、燃焼ガス27が発生する。当該燃焼ガス27は、燃焼室4の下流で連通している燃焼器尾筒を通過して前述のタービン28に供給される。   The fuel 24 supplied to the fuel distributor 7 is injected from the fuel nozzle 8 into the air hole 9 by the burner configured as described above. Also, the combustion air 26 that has flowed through the flow path between the combustor outer cylinder 2 and the combustor liner 3 reaches the closing plate 6 and is then drawn into the air hole 9. Therefore, a coaxial jet of fuel and air is injected from the air hole 9 into the combustion chamber 4 to form a flame in the combustion chamber 4 and a combustion gas 27 is generated. The combustion gas 27 passes through a combustor tail pipe communicating with the downstream of the combustion chamber 4 and is supplied to the turbine 28 described above.

本実施例では、板状部材11を保持部材12によって保持するとともに、保持部材12の内部に冷却燃料流路14を備え、冷却燃料流路14を流れた燃料を燃料ノズル8に供給する。このように、燃料を用いて保持部材12を冷却するため、保持部材12を冷却する冷却空気が不要となる。したがって、冷却用に用いていた空気を燃焼用空気26として使用でき、燃焼用空気量を増やすことができる。このような燃焼用空気量の増加によりNOx排出量が低減される。   In the present embodiment, the plate-like member 11 is held by the holding member 12, and the cooling fuel channel 14 is provided inside the holding member 12, and the fuel that has flowed through the cooling fuel channel 14 is supplied to the fuel nozzle 8. Thus, since the holding member 12 is cooled using fuel, the cooling air for cooling the holding member 12 becomes unnecessary. Therefore, the air used for cooling can be used as the combustion air 26, and the amount of combustion air can be increased. Such an increase in the amount of combustion air reduces NOx emissions.

図7は、本実施例によるNOx排出量の低減効果を示す。図7のグラフの横軸は、燃焼室4に供給される燃料と燃焼用空気について、燃焼用空気流量に対する燃料流量の比(燃空比)を表し、縦軸はNOx排出量を表す。   FIG. 7 shows the NOx emission reduction effect of this embodiment. The horizontal axis of the graph of FIG. 7 represents the ratio of the fuel flow rate to the combustion air flow rate (fuel air ratio) for the fuel and combustion air supplied to the combustion chamber 4, and the vertical axis represents the NOx emission amount.

点Pは、保持部材12を空気で冷却する場合(以下、比較例という)の燃空比(F/A)とNOx排出量を示す。一方、本実施例のように燃料を用いて保持部材12を冷却する方法では、比較例に比べて燃焼用空気量を増やすことができる。そのため、本実施例における燃空比は点Pに比べ小さくなり、火炎温度が低下する。従って、火炎温度の低下によりNOx排出量も下がる(図中の点Q)。このように、燃料を用いて保持部材を冷却する方法により、比較例に比べNOx排出量が低減される。   Point P indicates the fuel-air ratio (F / A) and NOx emission when the holding member 12 is cooled with air (hereinafter referred to as a comparative example). On the other hand, in the method of cooling the holding member 12 using fuel as in this embodiment, the amount of combustion air can be increased compared to the comparative example. Therefore, the fuel-air ratio in the present embodiment is smaller than the point P, and the flame temperature is lowered. Therefore, the NOx emission amount also decreases due to the decrease in the flame temperature (point Q in the figure). As described above, the method of cooling the holding member using the fuel reduces the NOx emission amount as compared with the comparative example.

さらに、本実施例では次の効果も得られる。燃料22は、冷却燃料流路14を通過する間に保持部材12から熱を奪うため、燃料の温度は上昇する。その結果、空気孔9から燃焼室4に供給される燃料の温度も上昇する。燃焼速度は燃焼室4に供給された燃料と燃焼用空気の温度とともに増加する性質を有する。そのため、本実施例のように燃料を保持部材12の冷却用として用いた場合、比較例と比べ燃焼速度が増加する。このような燃焼速度の増加は火炎の安定化に寄与するため、本実施例により火炎安定化の効果も得られる。   Furthermore, the following effects are also obtained in this embodiment. Since the fuel 22 takes heat from the holding member 12 while passing through the cooling fuel flow path 14, the temperature of the fuel rises. As a result, the temperature of the fuel supplied from the air hole 9 to the combustion chamber 4 also increases. The combustion speed has the property of increasing with the temperature of the fuel and combustion air supplied to the combustion chamber 4. Therefore, when the fuel is used for cooling the holding member 12 as in the present embodiment, the combustion speed increases as compared with the comparative example. Since such an increase in the burning rate contributes to the stabilization of the flame, the effect of stabilizing the flame can also be obtained by this embodiment.

本実施例では、板状部材11,10A,10B,10C,10D,10E,10Fを保持するために設けられた保持部材12と、保持部材12の内部であって、バーナ毎に形成された複数の冷却燃料流路14,14A,14B,14C,14D,14E,14Fと、バーナに対応する複数の燃料供給系統とを備え、燃料供給系統からの燃料が保持部材12の冷却燃料流路14,14A,14B,14C,14D,14E,14Fを流れ、燃料ノズル8に供給している。   In the present embodiment, the holding members 12 provided for holding the plate-like members 11, 10A, 10B, 10C, 10D, 10E, and 10F, and a plurality of members formed inside the holding member 12 for each burner. Cooling fuel flow paths 14, 14A, 14B, 14C, 14D, 14E, 14F, and a plurality of fuel supply systems corresponding to the burners, and the fuel from the fuel supply system is supplied to the cooling fuel flow paths 14, 14A, 14B, 14C, 14D, 14E, 14F flows and is supplied to the fuel nozzle 8.

ここで、板状部材11,10A,10B,10C,10D,10E,10Fは空気孔9が形成され、圧縮機1からの燃焼用空気26が供給されるため、更に冷却する必要性は少ない。しかし、燃焼室4の上流側を区画する板状部材11,10A,10B,10C,
10D,10E,10Fと保持部材12において、中央バーナを構成する板状部材11および外周バーナを構成する板状部材10A,10B,10C,10D,10E,10F以外の領域(即ち、保持部材12)では、その下流に再循環流領域が形成される。この再循環流領域により、燃焼室4で形成される高温の燃焼ガス27が上流の保持部材12に運ばれる。さらに保持部材12は燃焼ガス27からの放射熱も受ける。その結果、保持部材12のメタル温度が高くなるため、保持部材12の信頼性を確保するために保持部材12を冷却する必要が生じる。
Here, since the plate-shaped members 11, 10A, 10B, 10C, 10D, 10E, and 10F are formed with the air holes 9 and the combustion air 26 is supplied from the compressor 1, there is little need for further cooling. However, the plate-like members 11, 10A, 10B, 10C, which partition the upstream side of the combustion chamber 4,
10D, 10E, 10F and the holding member 12 are regions other than the plate-like member 11 constituting the central burner and the plate-like members 10A, 10B, 10C, 10D, 10E, 10F constituting the outer peripheral burner (that is, the holding member 12). Then, a recirculation flow region is formed downstream thereof. Due to this recirculation flow region, the high-temperature combustion gas 27 formed in the combustion chamber 4 is carried to the upstream holding member 12. Further, the holding member 12 also receives radiant heat from the combustion gas 27. As a result, since the metal temperature of the holding member 12 becomes high, it is necessary to cool the holding member 12 in order to ensure the reliability of the holding member 12.

また、本実施例では、各バーナにつきそれぞれ別々の燃料供給系統を設けている。そのため、ガスタービン負荷に応じてそれぞれの燃料供給系統に設けられた流量調節弁18,19,20を調整することにより、燃料を供給するバーナの数を制御することが可能である。   In this embodiment, a separate fuel supply system is provided for each burner. Therefore, the number of burners that supply fuel can be controlled by adjusting the flow rate control valves 18, 19, and 20 provided in the respective fuel supply systems in accordance with the gas turbine load.

具体的には、ガスタービン負荷を定格まで上昇させる途中の部分負荷運転では、例えば、以下のような運転方法を採用する。まず、中央バーナに燃料を供給し、次に、板状部材10Aを備えた外周バーナに燃料を供給する。そして、板状部材10B,10C,10D,10E,10Fを備えた外周バーナの順に燃料を順次供給していくことで、ガスタービン負荷を定格まで導く。このような運転方法では、中央バーナにのみ燃料を供給している間は、主に中央バーナを構成する板状部材11の周囲における保持部材12のメタル温度が上昇する。しかし、冷却燃料流路14を通過する燃料により、メタル温度が上昇した領域のみを冷却することが出来る。   Specifically, in the partial load operation in the middle of raising the gas turbine load to the rating, for example, the following operation method is adopted. First, fuel is supplied to the central burner, and then fuel is supplied to the outer peripheral burner provided with the plate-like member 10A. Then, the fuel is sequentially supplied in the order of the outer peripheral burners provided with the plate-like members 10B, 10C, 10D, 10E, and 10F, thereby leading the gas turbine load to the rating. In such an operation method, while the fuel is supplied only to the central burner, the metal temperature of the holding member 12 mainly increases around the plate-like member 11 constituting the central burner. However, only the region where the metal temperature has risen can be cooled by the fuel passing through the cooling fuel channel 14.

これに対し、保持部材12を一律に冷却した場合、一部のバーナのみに燃料を供給する部分負荷運転では、燃料を供給していないバーナ周辺の保持部材12が冷却され過ぎる可能性が生じる。燃料を供給したバーナのみから燃焼室4に火炎が発生し、燃料を供給しないバーナからは火炎が発生しないためである。そこで本実施例では、バーナ毎に形成された複数の冷却燃料流路14,14A,14B,14C,14D,14E,14Fと、バーナに対応する複数の燃料供給系統とを備えることにより、燃料を供給しないバーナに対応する冷却燃料流路には燃料が流れないため、保持部材12が一律に冷却され過ぎることを抑制することができる。そして、部分負荷の状態に応じて冷却が必要となるバーナ付近の保持部材12のみを適切に冷却することが可能となる。   On the other hand, when the holding member 12 is uniformly cooled, there is a possibility that the holding member 12 around the burner to which fuel is not supplied is excessively cooled in the partial load operation in which fuel is supplied to only a part of the burners. This is because a flame is generated in the combustion chamber 4 only from the burner supplied with fuel, and no flame is generated from the burner not supplied with fuel. Therefore, in this embodiment, the fuel is provided by providing a plurality of cooling fuel flow paths 14, 14A, 14B, 14C, 14D, 14E, 14F formed for each burner and a plurality of fuel supply systems corresponding to the burners. Since the fuel does not flow through the cooling fuel flow path corresponding to the burner that is not supplied, it is possible to prevent the holding member 12 from being uniformly cooled. Then, only the holding member 12 near the burner that needs to be cooled according to the state of the partial load can be appropriately cooled.

なお、図1では、バーナ以外の領域(デッドスペース)である保持部材12に、波状の冷却燃料流路14A,14B,14C,14D,14E,14Fを設けたが、流路形状はこれに限る必要はない。板状部材や保持部材12の形状などの条件に応じて、最適の流路形状を設定することができる。   In FIG. 1, the holding member 12 that is an area (dead space) other than the burner is provided with the wave-like cooling fuel flow paths 14A, 14B, 14C, 14D, 14E, and 14F, but the flow path shape is limited to this. There is no need. An optimal flow path shape can be set according to conditions such as the shape of the plate-like member and the holding member 12.

図3は、実施例2においてバーナを燃焼室から見た図である。実施例1では、各バーナにつきそれぞれ別々の燃料供給系統を設けているが、実施例2では、2つ、あるいは複数のバーナの燃料供給系統をひとつにまとめている。燃料供給系統の数を減らすことにより、燃料供給系統の簡素化が図れる。   FIG. 3 is a view of the burner as viewed from the combustion chamber in the second embodiment. In the first embodiment, a separate fuel supply system is provided for each burner, but in the second embodiment, two or a plurality of burner fuel supply systems are combined into one. By reducing the number of fuel supply systems, the fuel supply system can be simplified.

例えば、図3に示すように、6つの外周バーナについて、互いに隣接する2つのバーナを構成する板状部材10の周辺にそれぞれ共通の冷却燃料流路14Gと、それらに燃料を供給する燃料供給系統を設ける。その結果、6つの外周バーナに対して必要な燃料供給系統数は3つとなり、燃料供給系統の簡素化が図れる。   For example, as shown in FIG. 3, for six outer peripheral burners, a common cooling fuel flow path 14 </ b> G around each of plate members 10 constituting two adjacent burners, and a fuel supply system that supplies fuel to them Is provided. As a result, the number of fuel supply systems required for the six outer peripheral burners is three, and the fuel supply system can be simplified.

図4は実施例3においてバーナを燃焼室から見た図、図5はバーナおよび燃料供給系統部分の縦断側面図である。実施例3の保持部材12は、実施例1の保持部材において、厚さ方向に貫通する冷却空気孔30も設けた構造となっている。したがって、燃料と冷却空気31との併用により保持部材12を冷却するので、冷却効果が増す。   4 is a view of the burner as viewed from the combustion chamber in Embodiment 3, and FIG. 5 is a longitudinal side view of the burner and the fuel supply system. The holding member 12 of Example 3 has a structure in which the cooling air hole 30 penetrating in the thickness direction is also provided in the holding member of Example 1. Therefore, since the holding member 12 is cooled by the combined use of the fuel and the cooling air 31, the cooling effect is increased.

ただし、冷却空気31は圧縮機1から供給された燃焼用空気26の一部を用いるため、その分燃焼用空気量が減少してしまうが、保持部材12の冷却効果を増強させたい場合に実施例3は効果的である。   However, since a part of the combustion air 26 supplied from the compressor 1 is used as the cooling air 31, the amount of combustion air is reduced by that amount, but this is implemented when it is desired to enhance the cooling effect of the holding member 12. Example 3 is effective.

図6は、実施例4におけるバーナを燃焼室から見た図である。実施例4の保持部材12は、実施例2の保持部材12において、厚さ方向に貫通する冷却空気孔30も設けた構造となっている。この実施例の効果は基本的には実施例3と同様であるが、複数のバーナへの燃料供給系統をひとつにまとめているため、燃料供給系統の簡素化を図ることが可能である。   FIG. 6 is a view of the burner in Example 4 as viewed from the combustion chamber. The holding member 12 of the fourth embodiment has a structure in which the cooling air hole 30 penetrating in the thickness direction is also provided in the holding member 12 of the second embodiment. Although the effect of this embodiment is basically the same as that of Embodiment 3, the fuel supply system can be simplified because the fuel supply systems to a plurality of burners are combined into one.

実施例1においてバーナを燃焼室から見た図である。It is the figure which looked at the burner in Example 1 from the combustion chamber. 実施例1において燃焼器の縦断面を含むガスタービンの系統図である。1 is a system diagram of a gas turbine including a longitudinal section of a combustor in Embodiment 1. FIG. 実施例2においてバーナを燃焼室から見た図である。It is the figure which looked at the burner in Example 2 from the combustion chamber. 実施例3においてバーナを燃焼室から見た図である。It is the figure which looked at the burner from Example 3 in the combustion chamber. 実施例3においてバーナおよび燃料供給系統部分の縦断側面図である。In Example 3, it is a vertical side view of a burner and a fuel supply system part. 実施例4におけるバーナを燃焼室から見た図である。It is the figure which looked at the burner in Example 4 from the combustion chamber. 実施例1によるNOx排出量の低減効果を示す。The reduction effect of the NOx emission amount by Example 1 is shown.

符号の説明Explanation of symbols

1…圧縮機、2…燃焼器外筒、3…燃焼器ライナ、4…燃焼室、5…ガスタービン燃焼器、6…閉止板、7…燃料分配器、8…燃料ノズル、9…空気孔、10,10A,10B,10C,10D,10E,10F,11…板状部材、12…保持部材、13…冷却燃料供給系統、14,14A,14B,14C,14D,14E,14F,14G…冷却燃料流路、15…分配器供給系統、16…燃料供給設備、17…燃料遮断弁、18,19,
20…流量調節弁、21,22,23,24…燃料、25…空気、26…燃焼用空気、
27…燃焼ガス、28…タービン、29…発電機、30…冷却空気孔、31…冷却空気。

DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Combustor outer cylinder, 3 ... Combustor liner, 4 ... Combustion chamber, 5 ... Gas turbine combustor, 6 ... Closure plate, 7 ... Fuel distributor, 8 ... Fuel nozzle, 9 ... Air hole DESCRIPTION OF SYMBOLS 10,10A, 10B, 10C, 10D, 10E, 10F, 11 ... Plate-like member, 12 ... Holding member, 13 ... Cooling fuel supply system, 14, 14A, 14B, 14C, 14D, 14E, 14F, 14G ... Cooling Fuel flow path, 15 ... distributor supply system, 16 ... fuel supply equipment, 17 ... fuel shut-off valve, 18, 19,
20 ... Flow control valve 21, 22, 23, 24 ... Fuel, 25 ... Air, 26 ... Combustion air,
27 ... Combustion gas, 28 ... Turbine, 29 ... Generator, 30 ... Cooling air hole, 31 ... Cooling air.

Claims (5)

燃料と燃焼用空気とを燃焼させる燃焼室及び、該燃焼室の上流側の板状部材に設けられた該燃焼用空気を供給する複数の空気孔と、該空気孔から燃焼用空気と燃料の同軸噴流が前記燃焼室に供給されるように配置された燃料ノズルとを備えたバーナを備えた燃焼装置であって、
前記板状部材を保持部材によって保持するとともに、該保持部材の内部に冷却燃料流路を備え、
該冷却燃料流路を流れた燃料を前記燃料ノズルに供給することを特徴とする燃焼装置。
A combustion chamber for burning fuel and combustion air; a plurality of air holes for supplying the combustion air provided in a plate-like member upstream of the combustion chamber; and the combustion air and the fuel through the air holes A combustion apparatus comprising a burner with a fuel nozzle arranged so that a coaxial jet is supplied to the combustion chamber;
While holding the plate-like member by a holding member, a cooling fuel flow path is provided inside the holding member,
A combustion apparatus for supplying fuel flowing through the cooling fuel flow path to the fuel nozzle.
燃料と燃焼用空気とを燃焼させる燃焼室及び、該燃焼室の上流側の板状部材に設けられた該燃焼用空気を供給する複数の空気孔と、該空気孔から燃焼用空気と燃料の同軸噴流が前記燃焼室に供給されるように配置された燃料ノズルとを備えたバーナを複数備えた燃焼装置であって、
前記板状部材を保持するために設けられた保持部材と、
該保持部材の内部であって、前記バーナ毎に形成された複数の冷却燃料流路と、
前記バーナに対応する複数の燃料供給系統とを備え、
該燃料供給系統からの燃料が前記保持部材の前記冷却燃料流路を流れ、前記燃料ノズルに供給されることを特徴とする燃焼装置。
A combustion chamber for burning fuel and combustion air; a plurality of air holes for supplying the combustion air provided in a plate-like member upstream of the combustion chamber; and the combustion air and the fuel through the air holes A combustion apparatus comprising a plurality of burners each having a fuel nozzle disposed so that a coaxial jet is supplied to the combustion chamber;
A holding member provided to hold the plate-like member;
A plurality of cooling fuel passages formed inside the holding member for each of the burners;
A plurality of fuel supply systems corresponding to the burner,
A combustion apparatus, wherein fuel from the fuel supply system flows through the cooling fuel flow path of the holding member and is supplied to the fuel nozzle.
燃料と燃焼用空気とを燃焼させる燃焼室及び、該燃焼室の上流側の板状部材に設けられた該燃焼用空気を供給する複数の空気孔と、該空気孔から燃焼用空気と燃料の同軸噴流が前記燃焼室に供給されるように配置された燃料ノズルとを備えたバーナを複数備えた燃焼装置であって、
前記板状部材を保持するために設けられた保持部材と、
該保持部材の内部であって、前記バーナ毎に形成された複数の燃料流路と、
前記バーナに対応する複数の燃料供給系統を備え、
ガスタービンが部分負荷運転の場合に、一部の該燃料供給系統からの燃料が前記保持部材の前記燃料流路を流れ、前記燃料ノズルに供給されることを特徴とする燃焼装置。
A combustion chamber for burning fuel and combustion air; a plurality of air holes for supplying the combustion air provided in a plate-like member upstream of the combustion chamber; and the combustion air and the fuel through the air holes A combustion apparatus comprising a plurality of burners each having a fuel nozzle disposed so that a coaxial jet is supplied to the combustion chamber;
A holding member provided to hold the plate-like member;
A plurality of fuel flow paths formed inside the holding member for each of the burners;
A plurality of fuel supply systems corresponding to the burners;
When the gas turbine is in partial load operation, the combustion apparatus is characterized in that fuel from a part of the fuel supply system flows through the fuel flow path of the holding member and is supplied to the fuel nozzle.
請求項1乃至3記載の燃焼装置であって、前記保持部材の厚さ方向に貫通する冷却孔を設けたことを特徴とする燃焼装置。   4. The combustion apparatus according to claim 1, further comprising a cooling hole penetrating in the thickness direction of the holding member. 燃料と燃焼用空気とを燃焼させる燃焼室の上流側に設けられた板状部材より、燃焼用空気と燃料の同軸噴流を供給するバーナを備えた燃焼装置の燃料供給方法であって、
前記板状部材を保持する保持部材の内部に設けられた冷却燃料流路に燃料が流れた後に、該燃料を前記燃焼室に供給することを特徴とする燃焼装置の燃料供給方法。
A fuel supply method for a combustion apparatus comprising a burner for supplying a coaxial jet of combustion air and fuel from a plate-like member provided upstream of a combustion chamber for burning fuel and combustion air,
A fuel supply method for a combustion apparatus, comprising: supplying fuel to the combustion chamber after the fuel flows into a cooling fuel flow path provided inside a holding member that holds the plate-like member.
JP2006049473A 2006-02-27 2006-02-27 Combustion device and fuel supply method for combustion device Expired - Fee Related JP4622885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006049473A JP4622885B2 (en) 2006-02-27 2006-02-27 Combustion device and fuel supply method for combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006049473A JP4622885B2 (en) 2006-02-27 2006-02-27 Combustion device and fuel supply method for combustion device

Publications (2)

Publication Number Publication Date
JP2007225240A JP2007225240A (en) 2007-09-06
JP4622885B2 true JP4622885B2 (en) 2011-02-02

Family

ID=38547217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006049473A Expired - Fee Related JP4622885B2 (en) 2006-02-27 2006-02-27 Combustion device and fuel supply method for combustion device

Country Status (1)

Country Link
JP (1) JP4622885B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4906689B2 (en) * 2007-11-29 2012-03-28 株式会社日立製作所 Burner, combustion device, and method for modifying combustion device
US9140454B2 (en) * 2009-01-23 2015-09-22 General Electric Company Bundled multi-tube nozzle for a turbomachine
JP5514163B2 (en) * 2011-07-25 2014-06-04 株式会社日立製作所 Gas turbine combustor
US9650958B2 (en) * 2014-07-17 2017-05-16 General Electric Company Combustor cap with cooling passage

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59108052U (en) * 1983-01-12 1984-07-20 株式会社日立製作所 gas turbine combustor
JP2002257344A (en) * 2001-02-26 2002-09-11 Hitachi Ltd Gas turbine combustor
JP2003148734A (en) * 2001-08-29 2003-05-21 Hitachi Ltd Gas turbine combustor and method for operating gas turbine combustor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59108052U (en) * 1983-01-12 1984-07-20 株式会社日立製作所 gas turbine combustor
JP2002257344A (en) * 2001-02-26 2002-09-11 Hitachi Ltd Gas turbine combustor
JP2003148734A (en) * 2001-08-29 2003-05-21 Hitachi Ltd Gas turbine combustor and method for operating gas turbine combustor

Also Published As

Publication number Publication date
JP2007225240A (en) 2007-09-06

Similar Documents

Publication Publication Date Title
US8769955B2 (en) Self-regulating fuel staging port for turbine combustor
JP6708380B2 (en) Combustion turbine engine fuel injector assembly
CN102901125B (en) Combustor, burner, and gas turbine
US8117846B2 (en) Gas turbine burner and method of mixing fuel and air in a swirling area of a gas turbine burner
KR101627523B1 (en) Sequential combustion with dilution gas mixer
JP5458121B2 (en) Gas turbine combustor and method of operating gas turbine combustor
US9151227B2 (en) End-fed liquid fuel gallery for a gas turbine fuel injector
JP4659543B2 (en) Gas turbine combustor, method for preventing carbonization of fuel, and purge method
KR20150074155A (en) Sequential combustion with dilution gas mixer
US11965654B2 (en) Cooling in staged fuel system
US10215417B2 (en) Sequential combustor arrangement with a mixer
JP2014044044A (en) Method for mixing dilution air in sequential combustion system of gas turbine
JP5072640B2 (en) Gas combustion equipment
US20180187563A1 (en) Gas turbine transition duct with late lean injection having reduced combustion residence time
JP2015132462A (en) Sequential combustion arrangement with dilution gas
JP4961415B2 (en) Gas turbine combustor
JP4622885B2 (en) Combustion device and fuel supply method for combustion device
CN104315541A (en) Duty-stage spray nozzle of combustion chamber and use method of spray nozzle
EP3088802A1 (en) Nozzle for a gas turbine combustor
JP2020079685A (en) Gas turbine combustor
JP5926118B2 (en) Burner, combustor, gas turbine equipment and combustor control method
JP2008082590A (en) Gas turbine combustor
JP2011190785A (en) Gas turbine combustor
JP2011058758A (en) Gas turbine combustor
JP2013064563A (en) Gas turbine combustor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees