JP4622626B2 - Method for forming conductive pattern - Google Patents

Method for forming conductive pattern Download PDF

Info

Publication number
JP4622626B2
JP4622626B2 JP2005097447A JP2005097447A JP4622626B2 JP 4622626 B2 JP4622626 B2 JP 4622626B2 JP 2005097447 A JP2005097447 A JP 2005097447A JP 2005097447 A JP2005097447 A JP 2005097447A JP 4622626 B2 JP4622626 B2 JP 4622626B2
Authority
JP
Japan
Prior art keywords
printing
pattern
conductive
ink composition
printing blanket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005097447A
Other languages
Japanese (ja)
Other versions
JP2006278845A (en
Inventor
透 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2005097447A priority Critical patent/JP4622626B2/en
Publication of JP2006278845A publication Critical patent/JP2006278845A/en
Application granted granted Critical
Publication of JP4622626B2 publication Critical patent/JP4622626B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Printing Methods (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Manufacturing Of Electric Cables (AREA)

Description

本発明は、印刷法を用いて、微細な導電パターンを形成する方法に関するものである。   The present invention relates to a method for forming a fine conductive pattern using a printing method.

近年、電子機器の低コスト化および大面積化への要求から、導電性パターンの印刷法による形成が注目を集めており、スクリーン印刷やインクジェットを用いた例が数多く報告されている。   In recent years, formation of conductive patterns by a printing method has attracted attention due to demands for cost reduction and area increase of electronic devices, and many examples using screen printing and ink jet have been reported.

しかしながら、これらの印刷法は従来のフォトリソ法より一般にパターン解像度が小さく、適用範囲は限定されたものとなっている。
例えば、スクリーン印刷は、スクリーンメッシュの精細度の制約から、パターン微細度が例えばラインスペースで20μm以下となると、パターンの安定形成は困難である。また、パターンが微細となると、粘度が高く流動性の低い印刷ペーストを用いる必要があるため、印刷後のレべリング不足によりパターンにカスレや表面凹凸が残るという表面平滑性の問題も生じてくる。
However, these printing methods generally have a smaller pattern resolution than conventional photolithography methods, and their application range is limited.
For example, in screen printing, it is difficult to stably form a pattern when the pattern fineness is 20 μm or less in a line space, for example, due to restrictions on the fineness of the screen mesh. Also, when the pattern becomes fine, it is necessary to use a printing paste with high viscosity and low fluidity, which causes a problem of surface smoothness such as scumming or surface irregularities remaining in the pattern due to insufficient leveling after printing. .

一方、インクジェットは印刷版に関わる問題はなく表面平滑性の問題も小さいが、インクの着弾精度は微細パターン形成には十分とはいえず、さらにインクジェット用のインクは低粘度で流動性が大きいため、パターン解像度はスクリーン印刷より悪い。これに対し、あらかじめ基材表面にインクの流動を制限するための各種パターニング処理を施すことで、微細パターンを形成する例もあるが、工程が複雑となるため、低コスト化や大面積化に対する有効性は限られたものとなる。   On the other hand, inkjet has no problems with the printing plate and surface smoothness is small, but the ink landing accuracy is not sufficient for forming fine patterns, and ink for inkjet is low in viscosity and has high fluidity The pattern resolution is worse than screen printing. On the other hand, there is an example in which a fine pattern is formed by performing various patterning processes for restricting the flow of ink on the surface of the substrate in advance, but the process becomes complicated, so that the cost is reduced and the area is increased. Effectiveness is limited.

これに対し、微細なパターンが形成可能な方法として反転オフセット印刷法が知られている。反転オフセット印刷は、剥離性表面を有する印刷ブランケットの全面に転写物を塗布形成し、この印刷ブランケットを凸版に密着させ離すことで、転写物のうち凸版凸部に接触した部分を印刷ブランケットから除去し、続いてこの印刷ブランケットを被転写物に密着させ離すことで転写物を転写する印刷パターニング方法である。
反転オフセット印刷による導電性パターンの形成例はこれまで報告されていないが、オフセット印刷による導電性パターンの形成例はいくつか報告されている。それらの報告例における導電性インク組成物は、分散媒として有機溶剤系のものが用いられ、導電材として粒径が数μm程度の金属粒子が用いられている(特許文献1〜3参照)。
On the other hand, a reverse offset printing method is known as a method capable of forming a fine pattern. In the reverse offset printing, a transfer material is applied and formed on the entire surface of a printing blanket having a peelable surface, and this printing blanket is brought into close contact with the relief printing plate to remove the portion of the transfer material that has contacted the relief printing plate from the printing blanket. Subsequently, this printing blanket is a printing patterning method in which the transfer material is transferred by bringing the printing blanket into close contact with the transfer object.
Examples of forming conductive patterns by reverse offset printing have not been reported so far, but some examples of forming conductive patterns by offset printing have been reported. In the conductive ink compositions in these reported examples, an organic solvent-based one is used as a dispersion medium, and metal particles having a particle size of about several μm are used as a conductive material (see Patent Documents 1 to 3).

この従来の導電性インク組成物を反転オフセット印刷に用いた場合、いくつかの問題が生じる。すなわち、該導電性インク組成物は分散媒が有機溶剤であるため、前記印刷ブランケットが溶剤を吸収し膨潤するため、印刷物の寸法精度や位置精度が損なわれてしまう。また、導電材の粒子サイズが大きいため、微細なパターンの輪郭を鮮明に形成することができず、また、十分な平滑性を得ることもできない。   When this conventional conductive ink composition is used for reverse offset printing, several problems arise. That is, in the conductive ink composition, since the dispersion medium is an organic solvent, the printing blanket absorbs the solvent and swells, so that the dimensional accuracy and position accuracy of the printed matter are impaired. Further, since the particle size of the conductive material is large, it is not possible to form a fine pattern outline clearly and to obtain sufficient smoothness.

特開平11−305645号公報Japanese Patent Laid-Open No. 11-305645 特開2001−093326号公報JP 2001-093326 A 特開2001−515645号公報JP 2001-515645 A

本発明はこの問題点を鑑みてなされたものであり、より微細かつ平滑な導電パターンを単純で簡便な工程で形成可能な、導電性パターンの形成方法を提供することを課題とする。   This invention is made | formed in view of this problem, and makes it a subject to provide the formation method of a conductive pattern which can form a finer and smoother conductive pattern by a simple and easy process.

印刷用ブランケットの全面に導電性インク組成物を塗布し、導電性インク組成物が形成された印刷用ブランケットを凸版に密着させたのち剥離し、導電性インク組成物のうち凸版に接触した部分を印刷用ブランケットから除去し、印刷用ブランケットを被印刷物に密着させたのち剥離し、導電性インク組成物を転写した後、熱処理を行うことを特徴とする導電性パターンの形成方法であって、該導電性インク組成物が少なくとも平均粒子径が50nm以下の金属粒子と、と、水溶性樹脂を含むことを特徴とする導電性パターンの形成方法である。 The conductive ink composition is applied to the entire surface of the printing blanket, and the printing blanket on which the conductive ink composition is formed is adhered to the relief plate and then peeled off, and the portion of the conductive ink composition that is in contact with the relief plate is removed. A method for forming a conductive pattern, comprising: removing from a printing blanket, bringing the printing blanket into intimate contact with a substrate, peeling off, transferring the conductive ink composition, and then performing a heat treatment, The conductive ink composition includes at least metal particles having an average particle size of 50 nm or less, water, and a water-soluble resin.

請求項2記載の発明は、前記水溶性樹脂と前記金属粒子の配合比が、重量比(水溶性樹脂/金属粒子)=(1/20)〜(1/4)であることを特徴とする請求項1に記載の導電性パターンの形成方法である。   The invention according to claim 2 is characterized in that a mixing ratio of the water-soluble resin and the metal particles is a weight ratio (water-soluble resin / metal particles) = (1/20) to (1/4). It is a formation method of the electroconductive pattern of Claim 1.

請求項3記載の発明は、前記水溶性樹脂がポリエチレンオキサイドであることを特徴とする請求項1又は2に記載の導電性パターンの形成方法である。   A third aspect of the present invention is the method for forming a conductive pattern according to the first or second aspect, wherein the water-soluble resin is polyethylene oxide.

請求項4記載の発明は、前記金属粒子が銀を含むことを特徴とする請求項1〜3のいずれかに記載の導電性パターンの形成方法である。   The invention according to claim 4 is the method for forming a conductive pattern according to any one of claims 1 to 3, wherein the metal particles contain silver.

請求項5記載の発明は、前記熱処理における熱処理温度が120℃以上250℃以下であることを特徴とする請求項1〜4のいずれかに記載の導電性パターンの形成方法である。   A fifth aspect of the present invention is the conductive pattern forming method according to any one of the first to fourth aspects, wherein a heat treatment temperature in the heat treatment is 120 ° C. or higher and 250 ° C. or lower.

本発明によれば、従来の方法に比べ、より微細な導電性パターンを簡便な方法で形成することができる。具体的には、充分な導電性能を有する、線幅20μm以下の微細なパターンを得ることができる。   According to the present invention, a finer conductive pattern can be formed by a simple method compared to the conventional method. Specifically, it is possible to obtain a fine pattern having sufficient conductive performance and having a line width of 20 μm or less.

以下、本発明を詳細に説明する。
(導電性インク組成物)
本発明で用いる導電性インク組成物は導電成分として平均粒子径が50nm以下の金属粒子と、分散媒として水性溶媒と、水溶性樹脂を少なくとも含む。
金属粒子としては平均粒子径が50nm以下の粒子が用いられるが、好ましくは平均粒子径が20nm以下の粒子である。50nmより粒子径が大きいと、粒子の形状や表面処理を工夫することにより導電性が確保できることもあるが、パターニング解像度が低下するので好ましくない。一般にナノサイズの金属粒子においては、粒径を小さくすると粒子同士が融着する温度が低下することが知られている。そして、粒子同士が融着するとバルク導電性が発現する。そのため、粒子径はこの範囲であることが好ましい。特に低温熱処理時における導電性の確保において粒子径がこの範囲であることが好ましい。
また、粒子は1nm以上であることが好ましい。これより小さいと現実的に製造するのが非常に困難だからである。
Hereinafter, the present invention will be described in detail.
(Conductive ink composition)
The conductive ink composition used in the present invention contains at least metal particles having an average particle size of 50 nm or less as a conductive component, an aqueous solvent as a dispersion medium, and a water-soluble resin.
As the metal particles, particles having an average particle size of 50 nm or less are used, and particles having an average particle size of 20 nm or less are preferable. If the particle diameter is larger than 50 nm, the conductivity may be ensured by devising the particle shape or surface treatment, but this is not preferable because the patterning resolution is lowered. In general, in nano-sized metal particles, it is known that when the particle size is reduced, the temperature at which the particles are fused together decreases. When the particles are fused, bulk conductivity is exhibited. Therefore, the particle diameter is preferably within this range. In particular, the particle diameter is preferably in this range in order to ensure conductivity during low-temperature heat treatment.
The particles are preferably 1 nm or more. It is because it is very difficult to actually manufacture if it is smaller than this.

本発明の水性溶媒は分散媒として用いる。
分散媒は、水性溶媒であれば、印刷用ブランケットを膨潤させない、あるいは膨潤させても極めて軽微であるので好ましい。水性溶媒としては、水、各種極性有機溶媒のうち1種類以上を含む溶媒を挙げることができる。極性有機溶媒としては、メタノール、エタノール、イソプロパノールなどのアルコール類、アセトンなどのケトン類が挙げられるが、これらに限定されるものではない。
The aqueous solvent of the present invention is used as a dispersion medium.
The dispersion medium is preferably an aqueous solvent because it does not swell the printing blanket or is very slight even if it is swollen. As an aqueous solvent, the solvent containing 1 or more types among water and various polar organic solvents can be mentioned. Examples of the polar organic solvent include alcohols such as methanol, ethanol and isopropanol, and ketones such as acetone, but are not limited thereto.

金属粒子は、金属成分として金、銀、銅、ニッケル、白金、パラジウム、ロジウムなどが挙げられるが、導電性の観点から銀を主体とすることが好ましい。粒子の形態は、前記金属の単一成分粒子のほか、前記金属の合金粒子やコアシェル粒子としてもよい。   The metal particles include gold, silver, copper, nickel, platinum, palladium, rhodium and the like as the metal component, but it is preferable that silver is mainly used from the viewpoint of conductivity. The form of the particles may be alloy particles or core-shell particles of the metal in addition to the single component particles of the metal.

金属粒子はコロイド分散液として市販されているものを用いることができる。導電性インク組成物における粒子濃度は、特に限定されるものではないが、通常50wt%以下である。   As the metal particles, those commercially available as colloidal dispersions can be used. The particle concentration in the conductive ink composition is not particularly limited, but is usually 50 wt% or less.

本発明では、導電性インク組成物の含有成分として、金属粒子と水性溶媒に加え、水溶性樹脂を含むことを特徴としている。
水溶性樹脂は、印刷用ブランケットから被印刷物への導電材の転写性を付与するためのものであり、水溶性樹脂を含むことで、微細で十分な導電性を有するパターンを形成することができる。
水溶性樹脂としては、前記金属粒子分散液に可溶なものが用いられ、例えば、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリアクリレート、ポリビニルピロリドン、カルボキシビニルポリマー、セルロース、天然多糖類、ポリビニルアルコール、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等が挙げられるが、特に、ポリエチレンオキサイドを用いた場合にパターン転写性と導電性が良好である。
The present invention is characterized in that it contains a water-soluble resin in addition to metal particles and an aqueous solvent as a component of the conductive ink composition.
The water-soluble resin is for imparting transferability of the conductive material from the printing blanket to the printing material. By including the water-soluble resin, a fine and sufficient conductive pattern can be formed. .
As the water-soluble resin, those soluble in the metal particle dispersion liquid are used, for example, polyethylene oxide, polypropylene oxide, polyacrylate, polyvinyl pyrrolidone, carboxyvinyl polymer, cellulose, natural polysaccharide, polyvinyl alcohol, hydroxyethyl cellulose, Hydroxypropyl cellulose and the like can be mentioned. In particular, when polyethylene oxide is used, pattern transferability and conductivity are good.

水溶性樹脂と金属粒子の配合比は、重量比で(水溶性樹脂/金属粒子)=(1/20)〜(1/4)、好ましくは、(水溶性樹脂/金属粒子)=(1/10)〜(1/8)である。添加量が多いと導電性パターンに十分な導電性が発現せず、添加量が少ないと、前述の転写性が不十分となり、安定にパターン形成することができない。水溶性樹脂の分子量は、特に限定されるものではないが、前記コロイド分散液への溶解性、前記転写性および熱処理後の導電性を考慮し適当なものが選択される。
また、本発明で用いる導電性インク組成物は、印刷用ブランケットへ均一に塗布するために、必要に応じ界面活性剤やレベリング剤を添加しても良い。
The mixing ratio of the water-soluble resin and the metal particles is (water-soluble resin / metal particles) = (1/20) to (1/4) by weight, preferably (water-soluble resin / metal particles) = (1 / 10) to (1/8). When the addition amount is large, sufficient conductivity is not exhibited in the conductive pattern, and when the addition amount is small, the above-described transferability becomes insufficient and the pattern cannot be formed stably. The molecular weight of the water-soluble resin is not particularly limited, but an appropriate one is selected in consideration of solubility in the colloidal dispersion, transferability, and conductivity after heat treatment.
In addition, the conductive ink composition used in the present invention may be added with a surfactant or a leveling agent as necessary in order to uniformly apply it to a printing blanket.

(導電性パターンの形成)
次に、反転オフセット印刷による導電性パターンの形成方法について、一例として図1を例に説明する。
まず、剥離性表面を有する印刷用ブランケット11の全面に導電性インク組成物2を均一に塗布した後、後述の凸版による転写物の除去に必要な程度まで乾燥させ、転写物31が全面に形成されたブランケット12を得る(図1a)。
塗布方法としては、例えば、バーコート、ダイコート、スピンコートなどが挙げられるが、これに限定されるものではない。前記転写物31の厚さは、パターンの精細度にもよるが、通常10μm以下である。膜厚が大きいと転写時に転写物31の凝集破壊が生じやすくなり好ましくない。
(Formation of conductive pattern)
Next, a method for forming a conductive pattern by reverse offset printing will be described with reference to FIG. 1 as an example.
First, the conductive ink composition 2 is uniformly applied to the entire surface of the printing blanket 11 having a peelable surface, and then dried to the extent necessary for removal of the transferred material by a relief printing plate described later, whereby the transferred material 31 is formed on the entire surface. A blanket 12 is obtained (FIG. 1a).
Examples of the application method include, but are not limited to, bar coating, die coating, and spin coating. The thickness of the transferred material 31 is usually 10 μm or less, although it depends on the definition of the pattern. If the film thickness is large, the transfer material 31 is liable to cohesively break during transfer, which is not preferable.

次に、転写物31が全面に形成された印刷用ブランケット12を、凸版4の版面に密着させたのち剥離させる(図1b)。密着方法としては、例えば、凸版4の上に印刷用ブランケット12を若干傾斜させて一端側を接触させるように位置させ、この状態で、必要に応じ圧力を加えながら、接触側から非接触側へ連続的に密着させる方法がある。この工程により、転写体31のうち凸版4の凸部に接触した部分が印刷用ブランケット12から除去される。凸版4の凸部は、所望パターンに対する非画像部のパターンであり、従って、所望パターンの転写物32が形成された印刷用ブランケット13が得られる。   Next, the printing blanket 12 having the transfer material 31 formed on the entire surface is brought into close contact with the plate surface of the relief plate 4 and then peeled off (FIG. 1b). As an adhesion method, for example, the printing blanket 12 is slightly inclined on the relief plate 4 so as to be brought into contact with one end side, and in this state, pressure is applied as necessary from the contact side to the non-contact side. There is a method of continuous contact. By this step, the portion of the transfer body 31 that contacts the convex portion of the relief plate 4 is removed from the printing blanket 12. The convex portion of the relief plate 4 is a non-image portion pattern with respect to the desired pattern, and thus the printing blanket 13 on which the transfer product 32 of the desired pattern is formed is obtained.

印刷用ブランケット11の材料は、転写物31が形成可能かつ凸版4による除去および後述の被印刷物51への転写が可能なものが用いられるが、ある程度の柔軟性を有する材料が好ましい。このようなものとして、例えば、シリコーン系エラストマー、フッ素系エラストマー、ブチルゴム、エチレンプロピレンゴムなどが用いられる。また、この印刷用ブランケット1の表面に、フッ素樹脂処理、シリコーン処理等を施してもよい。   As the material of the printing blanket 11, a material that can form the transfer material 31 and can be removed by the relief printing plate 4 and transferred to the printing material 51 described later is used. A material having a certain degree of flexibility is preferable. Examples of such materials include silicone elastomers, fluorine elastomers, butyl rubber, and ethylene propylene rubber. Further, the surface of the printing blanket 1 may be subjected to fluorine resin treatment, silicone treatment, or the like.

凸版4は、転写物31を除去可能であれば特に限定されるものではなく、材料としては例えば、ガラス、ステンレス等の金属、各種レジスト材料が用いられ、サンドブラスト、フォトリソエッチング、FIB(収束イオンビーム)などの方法で加工される。   The relief printing plate 4 is not particularly limited as long as the transfer product 31 can be removed. Examples of the material include metals such as glass and stainless steel and various resist materials, and include sandblasting, photolithography etching, FIB (focused ion beam). ) And other methods.

次に、所望のパターンを有する転写物32が形成された印刷用ブランケット13を被印刷物51に密着させたのち剥離させる(図1c)。密着方法としては、例えば、前述の印刷用ブランケット12を凸版4に密着させる方法と同様の操作が挙げられる。これにより、被印刷物51の表面に接触した転写物32は、印刷用ブランケット13から除去されるとともに、被印刷物51に転写され、転写物32が形成された被印刷物52を得る。転写物32の転写および前述の転写物31の除去は、印刷用ブランケット11の剥離作用により生じるものである。   Next, the printing blanket 13 on which the transfer material 32 having a desired pattern is formed is brought into close contact with the substrate 51 and then peeled off (FIG. 1c). As an adhesion method, for example, the same operation as the method of bringing the printing blanket 12 into contact with the relief plate 4 can be mentioned. As a result, the transfer object 32 that has come into contact with the surface of the printing object 51 is removed from the printing blanket 13 and transferred to the printing object 51 to obtain the printing object 52 on which the transfer object 32 is formed. The transfer of the transfer product 32 and the removal of the transfer product 31 are caused by the peeling action of the printing blanket 11.

次に、転写物32が転写された被印刷物52を熱処理することにより、導電性を発現させ、所望の導電性パターン6を得る(図1c)。熱処理温度は高いほど導電性も高くなる傾向があるが、耐熱性の観点から被印刷物の限定も大きくなり、例えば、被印刷物としてプラスチックを用いる場合は、250℃以下であることが必要である。   Next, the printed material 52 to which the transferred material 32 has been transferred is heat-treated to develop conductivity, and the desired conductive pattern 6 is obtained (FIG. 1c). The higher the heat treatment temperature, the higher the electrical conductivity tends to be. However, the limitation of the printed material is increased from the viewpoint of heat resistance. For example, when plastic is used as the printed material, it is necessary to be 250 ° C. or lower.

被印刷物51は、転写物32が転写しかつ熱処理に耐えるものであれば何れも用いることが可能であるが、特に本発明の導電性パターンは250℃以下の温度でも高い導電率が発現するため、プラスチック基材のいくつかも用いることも可能である。
このようなものとして例えば、ソーダライムガラス、石英、シリコンウエハーや、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、シクロオレフィンポリマー、ポリイミド、ポリエーテルスルホン(PES)、ポリメチルメタクリレート(PMMA)、ポリカーボネート、ポリアリルレートなどを使用することができる。
Any material 51 can be used as long as the material to be printed 51 is transferred and can withstand heat treatment, but the conductive pattern of the present invention exhibits high conductivity even at a temperature of 250 ° C. or less. Some of the plastic substrates can also be used.
For example, soda lime glass, quartz, silicon wafer, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), cycloolefin polymer, polyimide, polyethersulfone (PES), polymethyl methacrylate (PMMA), Polycarbonate, polyallylate and the like can be used.

なお、本発明の反転オフセット印刷は、一般的な印刷装置を用いて実施することも可能である。例えば、円筒状のロールに巻きつけた印刷用ブランケット11に導電性インク組成物2を塗布乾燥し、転写物31が形成された印刷用ブランケット12とした後、印刷用ブランケットロール12が凸版4に接触するよう配置させた状態で円筒状ロールを凸版4上で転がすことで転写物32が形成された印刷用ブランケット13とし、続いて印刷用ブランケット13を被印刷物61に接触するよう配置させた状態で円筒状ロールを被印刷物51上で転がすことで転写物32が形成された被印刷物52が得られる。   Note that the reverse offset printing of the present invention can be performed using a general printing apparatus. For example, after the conductive ink composition 2 is applied and dried on a printing blanket 11 wound around a cylindrical roll to form a printing blanket 12 on which a transfer product 31 is formed, the printing blanket roll 12 is applied to the relief plate 4. The printing blanket 13 in which the transfer product 32 is formed by rolling the cylindrical roll on the relief plate 4 in a state where the printing blanket 13 is placed in contact, and then the printing blanket 13 is placed in contact with the substrate 61. Then, the printed material 52 on which the transfer material 32 is formed is obtained by rolling the cylindrical roll on the material 51 to be printed.

本発明の導電性パターンの形成方法は、配線基板、薄膜トランジスタなどのμmレベルの導電パターンの線幅を要する電子デバイスなどの用途に応用できる。   The method for forming a conductive pattern of the present invention can be applied to applications such as wiring boards, thin film transistors, and the like that require a line width of a conductive pattern of μm level.

(材料)
導電性インク組成物は、銀粒子水分散液(平均粒径20nm、住友電工製)にポリエチレンオキサイド(平均分子量10,000、アルドリッチ製)を、(ポリエチレンオキサイド/銀粒子/水)=(1/8/31)の重量比となるように溶解させ調製した。印刷用ブランケットは、東芝GE社製の2液型シリコーンゴムを、厚さ2mm、大きさが100mm×100mmに成形し作製した。
凸版は、ガラス板のフォトリソエッチング加工により作製した。凸版のパターン形状は凹部と凸部をストライプ状に形成したものとし(凹部幅/凸部幅=10μm/2μm)、凹部の深さは0.5μmとした。被印刷物は、厚さ0.7mm、大きさが100mm×100mmのソーダライムガラス基板とした。
(material)
The conductive ink composition is obtained by adding polyethylene oxide (average molecular weight 10,000, manufactured by Aldrich) to a silver particle aqueous dispersion (average particle diameter 20 nm, manufactured by Sumitomo Electric), (polyethylene oxide / silver particles / water) = (1 / 8/31) was prepared by dissolving in a weight ratio. The printing blanket was produced by molding a two-component silicone rubber manufactured by Toshiba GE into a thickness of 2 mm and a size of 100 mm × 100 mm.
The letterpress was produced by photolithography etching of a glass plate. The pattern shape of the relief plate was such that the recesses and projections were formed in stripes (recess width / projection width = 10 μm / 2 μm), and the depth of the recess was 0.5 μm. The substrate was a soda lime glass substrate having a thickness of 0.7 mm and a size of 100 mm × 100 mm.

(プロセス)
前述した発明の実施の形態における図1に示した方法で反転オフセット印刷を行った。まず、ブランケットに導電性インク組成物をバーコータ(#6)で全面に塗布した後、室温で数分間乾燥させ、転写物が全面に形成されたブランケットを得た。続いて、このブランケットを凸版に密着させたのち剥離し、転写物のうち凸部に接触した部分をブランケットから除去し、転写物がパターン形成されたブランケットを得た。続いて、このブランケットを被印刷物に密着させたのち剥離することで、被印刷物に転写物をパターン転写した。続いて、これを200℃で30分間熱処理することで導電性パターンを形成した。
(process)
Reverse offset printing was performed by the method shown in FIG. 1 in the embodiment of the invention described above. First, the conductive ink composition was applied to the blanket over the entire surface with a bar coater (# 6), and then dried at room temperature for several minutes to obtain a blanket with the transfer formed on the entire surface. Subsequently, the blanket was brought into intimate contact with the relief plate and then peeled off, and the portion of the transferred product that contacted the convex portion was removed from the blanket to obtain a blanket in which the transferred product was patterned. Subsequently, the blanket was brought into close contact with the printing material and then peeled off, whereby the transferred material was pattern-transferred onto the printing material. Subsequently, this was heat-treated at 200 ° C. for 30 minutes to form a conductive pattern.

(結果)
導電性パターンを光学顕微鏡で観察したところ、凸版の形状を正確に反映したラインスペース状のパターンが確認された(ライン/スペース=10μm/2μm)。また、導電性パターンの膜厚は400nmであった。膜厚と抵抗値から体積抵抗率を測定したところ4.0×10−5Ωcmであり、市販の導電性ペーストを熱処理したものと同程度の導電性を示すことがわかった。
(result)
When the conductive pattern was observed with an optical microscope, a line-space pattern that accurately reflected the shape of the relief was confirmed (line / space = 10 μm / 2 μm). Moreover, the film thickness of the conductive pattern was 400 nm. When the volume resistivity was measured from the film thickness and the resistance value, it was 4.0 × 10 −5 Ωcm, and it was found that the conductivity was comparable to that obtained by heat treating a commercially available conductive paste.

<比較例>
(材料)
平均粒子径10μmの銀粒子とポリエステル樹脂とトルエンを用い、重量比(ポリエステル樹脂/銀粒子/水)=(1/8/31)の導電性インク組成物を調製した。印刷用ブランケットおよび凸版は実施例と同様とした。
<Comparative example>
(material)
A conductive ink composition having a weight ratio (polyester resin / silver particles / water) = (1/8/31) was prepared using silver particles having an average particle diameter of 10 μm, a polyester resin, and toluene. The printing blanket and letterpress were the same as in the examples.

(プロセス)
実施例に示した方法と同様の方法で反転オフセット印刷を行った。
(process)
Reverse offset printing was performed by the same method as shown in the examples.

(結果)
ブランケットに導電性インク組成物を塗布したところ、ブランケットが膨潤し大きく変形した。導電インクの室温での乾燥工程で、ブランケットの膨潤も緩和されるが元の形状に戻らなかった。なお、ブランケット膨潤が復元するまで長時間乾燥すると転写性が完全に失われてしまう。
導電性パターンを光学顕微鏡で観察したところ、ライン状パターンの直線性が悪く、また、割れや欠けなどの欠陥が目立った。パターンの抵抗測定を試みたが、パターンの欠陥により導通が取れなかった。
(result)
When the conductive ink composition was applied to the blanket, the blanket swelled and deformed greatly. In the drying process of the conductive ink at room temperature, the swelling of the blanket was alleviated but did not return to its original shape. Note that the transferability is completely lost when drying for a long time until the blanket swelling is restored.
When the conductive pattern was observed with an optical microscope, the linearity of the line pattern was poor, and defects such as cracks and chips were conspicuous. An attempt was made to measure the resistance of the pattern, but conduction was not possible due to a defect in the pattern.

本発明に実施形態にかかる導電性パターンの形成例を工程順に説明するための断面図である。It is sectional drawing for demonstrating the formation example of the electroconductive pattern concerning embodiment to this invention to process order.

符号の説明Explanation of symbols

11 印刷用ブランケット
12 転写物31が形成された印刷用ブランケット
13 転写物32が形成された印刷用ブランケット
2 導電性インク組成物
31 印刷用ブランケットの全面に形成された転写物
32 印刷用ブランケットにパターン形成された転写物
4 凸版
51 被印刷物
52 転写物32が形成された被印刷物
6 導電性パターン
DESCRIPTION OF SYMBOLS 11 Printing blanket 12 Printing blanket in which transcription | transfer material 31 was formed 13 Printing blanket in which transcription | transfer material 32 was formed 2 Conductive ink composition 31 Transfer material formed in the whole surface of printing blanket 32 Pattern in printing blanket Formed transfer 4 Letterpress
51 to-be-printed object 52 to-be-printed object in which transfer material 32 was formed 6 conductive pattern

Claims (5)

印刷用ブランケットの全面に導電性インク組成物を塗布し、導電性インク組成物が形成された印刷用ブランケットを凸版に密着させたのち剥離し、導電性インク組成物のうち凸版に接触した部分を印刷用ブランケットから除去し、印刷用ブランケットを被印刷物に密着させたのち剥離し、導電性インク組成物を転写した後、熱処理を行うことを特徴とする導電性パターンの形成方法であって、該導電性インク組成物が少なくとも平均粒子径が50nm以下の金属粒子と、と、水溶性樹脂を含むことを特徴とする導電性パターンの形成方法。
The conductive ink composition is applied to the entire surface of the printing blanket, and the printing blanket on which the conductive ink composition is formed is adhered to the relief plate and then peeled off, and the portion of the conductive ink composition that is in contact with the relief plate is removed. A method for forming a conductive pattern, comprising: removing from a printing blanket, bringing the printing blanket into intimate contact with a substrate, peeling off, transferring the conductive ink composition, and then performing a heat treatment, A method for forming a conductive pattern, wherein the conductive ink composition contains at least metal particles having an average particle diameter of 50 nm or less, water, and a water-soluble resin.
前記水溶性樹脂と前記金属粒子の配合比が、重量比(水溶性樹脂/金属粒子)=(1/20)〜(1/4)であることを特徴とする請求項1に記載の導電性パターンの形成方法。   2. The conductivity according to claim 1, wherein a mixing ratio of the water-soluble resin and the metal particles is a weight ratio (water-soluble resin / metal particles) = (1/20) to (1/4). Pattern formation method. 前記水溶性樹脂がポリエチレンオキサイドであることを特徴とする請求項1又は2に記載の導電性パターンの形成方法。   The method for forming a conductive pattern according to claim 1, wherein the water-soluble resin is polyethylene oxide. 前記金属粒子が銀を含むことを特徴とする請求項1〜3のいずれかに記載の導電性パターンの形成方法。   The said metal particle contains silver, The formation method of the electroconductive pattern in any one of Claims 1-3 characterized by the above-mentioned. 前記熱処理における熱処理温度が120℃以上250℃以下であることを特徴とする請求項1〜4のいずれかに記載の導電性パターンの形成方法。   The method for forming a conductive pattern according to claim 1, wherein a heat treatment temperature in the heat treatment is 120 ° C. or more and 250 ° C. or less.
JP2005097447A 2005-03-30 2005-03-30 Method for forming conductive pattern Expired - Fee Related JP4622626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005097447A JP4622626B2 (en) 2005-03-30 2005-03-30 Method for forming conductive pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005097447A JP4622626B2 (en) 2005-03-30 2005-03-30 Method for forming conductive pattern

Publications (2)

Publication Number Publication Date
JP2006278845A JP2006278845A (en) 2006-10-12
JP4622626B2 true JP4622626B2 (en) 2011-02-02

Family

ID=37213260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005097447A Expired - Fee Related JP4622626B2 (en) 2005-03-30 2005-03-30 Method for forming conductive pattern

Country Status (1)

Country Link
JP (1) JP4622626B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11104813B2 (en) 2015-06-02 2021-08-31 Asahi Kasei Kabushiki Kaisha Dispersion

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007194174A (en) * 2006-01-23 2007-08-02 Seiko Epson Corp Ink for conductor pattern, conductor pattern, wiring board, electro-optical device and electronic equipment
WO2008111484A1 (en) * 2007-03-15 2008-09-18 Dic Corporation Conductive ink for letterpress reverse printing
JP4432993B2 (en) * 2007-04-16 2010-03-17 ソニー株式会社 Pattern forming method and semiconductor device manufacturing method
JP5041214B2 (en) * 2007-06-15 2012-10-03 ソニー株式会社 Method for forming metal thin film and method for manufacturing electronic device
JP2009039907A (en) * 2007-08-07 2009-02-26 Mitsumura Printing Co Ltd High aspect ratio printed matter formed by letterpress reverse printing method, and method for forming the same
US20120031656A1 (en) * 2009-04-24 2012-02-09 Yoshio Oka Substrate for printed wiring board, printed wiring board, and methods for producing same
JP2010272837A (en) * 2009-04-24 2010-12-02 Sumitomo Electric Ind Ltd Substrate for printed wiring board, printed wiring board, and method for producing substrate for printed wiring board
US20130068723A1 (en) * 2009-12-30 2013-03-21 Matthew S. Stay Method of Using a Mask to Provide a Patterned Substrate
KR101199676B1 (en) 2010-09-06 2012-11-08 하명석 Method of manufacturing conductive pattern transfer film method of transferring conductive pattern using the film
JP5177260B2 (en) * 2011-08-01 2013-04-03 ソニー株式会社 Pattern transfer method, metal thin film pattern transfer method, and electronic device manufacturing method
JP6484218B2 (en) 2014-03-20 2019-03-13 住友電気工業株式会社 Printed wiring board substrate and printed wiring board
JP6585032B2 (en) 2014-03-27 2019-10-02 住友電気工業株式会社 Printed wiring board substrate, printed wiring board, and printed wiring board manufacturing method
CN107211537A (en) 2015-01-22 2017-09-26 住友电气工业株式会社 The manufacture method of printed substrate base material, printed substrate and printed substrate
US20190235670A1 (en) * 2016-07-08 2019-08-01 Asahi Kasei Kabushiki Kaisha Electrically conductive film, electronic paper, touch panel, and flat panel display

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04122093A (en) * 1990-09-13 1992-04-22 Fujitsu Ltd Paste transfer method and transfer jig
JPH09199837A (en) * 1996-01-17 1997-07-31 Kawaguchiko Seimitsu Kk Formation of printed pattern
JPH09288911A (en) * 1996-04-22 1997-11-04 Dainippon Printing Co Ltd Pattern forming paste and method for forming pattern
JPH11251722A (en) * 1998-02-27 1999-09-17 Toppan Printing Co Ltd Heat-resistant wiring board
JP2001352152A (en) * 2000-06-07 2001-12-21 Matsushita Electric Ind Co Ltd Method for manufacturing ceramic substrate
JP2002117755A (en) * 2000-10-05 2002-04-19 Dainippon Screen Mfg Co Ltd Printing plate and printing method for transfer material
JP2004193323A (en) * 2002-12-11 2004-07-08 Mitsui Chemicals Inc Method for manufacturing circuit board and conductive paste
JP2004342650A (en) * 2003-05-13 2004-12-02 Ricoh Co Ltd Method and apparatus for forming wiring
JP2005503033A (en) * 2001-09-17 2005-01-27 チエツクポイント システムズ,インコーポレーテツド Security tag and its manufacturing process
JP2005064249A (en) * 2003-08-12 2005-03-10 Seiko Epson Corp Method of forming wiring pattern, method of manufacturing semiconductor device, electrooptic device, and electronic equipment

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04122093A (en) * 1990-09-13 1992-04-22 Fujitsu Ltd Paste transfer method and transfer jig
JPH09199837A (en) * 1996-01-17 1997-07-31 Kawaguchiko Seimitsu Kk Formation of printed pattern
JPH09288911A (en) * 1996-04-22 1997-11-04 Dainippon Printing Co Ltd Pattern forming paste and method for forming pattern
JPH11251722A (en) * 1998-02-27 1999-09-17 Toppan Printing Co Ltd Heat-resistant wiring board
JP2001352152A (en) * 2000-06-07 2001-12-21 Matsushita Electric Ind Co Ltd Method for manufacturing ceramic substrate
JP2002117755A (en) * 2000-10-05 2002-04-19 Dainippon Screen Mfg Co Ltd Printing plate and printing method for transfer material
JP2005503033A (en) * 2001-09-17 2005-01-27 チエツクポイント システムズ,インコーポレーテツド Security tag and its manufacturing process
JP2004193323A (en) * 2002-12-11 2004-07-08 Mitsui Chemicals Inc Method for manufacturing circuit board and conductive paste
JP2004342650A (en) * 2003-05-13 2004-12-02 Ricoh Co Ltd Method and apparatus for forming wiring
JP2005064249A (en) * 2003-08-12 2005-03-10 Seiko Epson Corp Method of forming wiring pattern, method of manufacturing semiconductor device, electrooptic device, and electronic equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11104813B2 (en) 2015-06-02 2021-08-31 Asahi Kasei Kabushiki Kaisha Dispersion

Also Published As

Publication number Publication date
JP2006278845A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
JP4622626B2 (en) Method for forming conductive pattern
TWI343405B (en) Conductive ink
CN102308365B (en) An conductive pattern and method for manufacturing same
TWI644809B (en) Printing plate, producing method of printing plate, producing method of functional element and printer
US6893966B2 (en) Method of patterning the surface of an article using positive microcontact printing
CN102308367B (en) Method for manufacturing insulated conductive pattern and laminate
US9977327B2 (en) Photosensitive coating composition, coating conductive film using photosensitive coating composition, and method for forming coating conductive film
KR20160084428A (en) Method for structuring a transparent conductive matrix comprising silver nano materials
JP2014072041A (en) Method for producing transparent conductive film, transparent conductive film and device element
JP2006222157A (en) Method of printing electrode and electrode plate having the same
JP2002184752A (en) Method of manufacturing pattern form
WO2013045424A1 (en) Aqueous ink formulation containing metal-based nanoparticles for usage in micro contact printing
JP4816873B2 (en) Thin film transistor manufacturing method
JP5168805B2 (en) Letterpress for letterpress reversal offset printing and method for producing the same, or printed matter production method using the same
JP2007012787A (en) Pattern forming method, electronic member, and optical member
JP5458469B2 (en) Letterpress for letterpress reversal offset printing, method for producing the same, and method for producing printed matter
JP2008084917A (en) Method of forming conductive pattern
JP4261162B2 (en) Circuit manufacturing method and circuit board including the circuit
JP2014514768A (en) Selective etching of polymer matrix on PET
JP2007005445A (en) Forming method of electrode circuit of semiconductor device and removal plate used therefor
JP2006523750A (en) Composition and method for printing a patterned resist layer
JP6482252B2 (en) Plating underlayer used when manufacturing fine line pattern plated products using photolithography
JP2017136782A (en) Printed matter production method
JP2016112800A (en) Relief reversal offset printer and manufacturing method of printed matter using the same
JPS5926286A (en) Pattern form printing method for etching liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

R150 Certificate of patent or registration of utility model

Ref document number: 4622626

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees