JP4621083B2 - Multi-carrier light source - Google Patents

Multi-carrier light source Download PDF

Info

Publication number
JP4621083B2
JP4621083B2 JP2005201327A JP2005201327A JP4621083B2 JP 4621083 B2 JP4621083 B2 JP 4621083B2 JP 2005201327 A JP2005201327 A JP 2005201327A JP 2005201327 A JP2005201327 A JP 2005201327A JP 4621083 B2 JP4621083 B2 JP 4621083B2
Authority
JP
Japan
Prior art keywords
optical
light source
light
chromatic dispersion
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005201327A
Other languages
Japanese (ja)
Other versions
JP2006209067A (en
Inventor
貴司 山本
秀彦 高良
拓也 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2005201327A priority Critical patent/JP4621083B2/en
Publication of JP2006209067A publication Critical patent/JP2006209067A/en
Application granted granted Critical
Publication of JP4621083B2 publication Critical patent/JP4621083B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、複数の光キャリアを一括に発生することができるマルチキャリア光源に関し、特にWDM(波長分割多重)システムに用いる、等間隔で多数の光キャリアを発生する技術に関する。   The present invention relates to a multicarrier light source capable of generating a plurality of optical carriers at once, and more particularly to a technique for generating a large number of optical carriers at regular intervals, which is used in a WDM (wavelength division multiplexing) system.

近年、マルチキャリア光源として、図6に示すように、一定のパルス繰り返し周波数frepのパルス光源601と非線形光学媒質603とを組み合わせた構成の光源の研究開発が進められている(非特許文献1〜3)。繰り返し周波数frepの光パルス列は、そのスペクトルにおいては周波数軸上に間隔frepで光キャリア(線スペクトル)が並んでいる。パルス光源601から発生したこの光パルス列を非線形光学媒質603中に入射すると、非線形効果によりスペクトル幅が拡大して光キャリアの数が増大する。その結果、非線形光学媒質603から出力される光を周波数間隔frepのマルチキャリア光として応用することが可能となる。 In recent years, as a multicarrier light source, as shown in FIG. 6, research and development of a light source having a configuration in which a pulse light source 601 having a constant pulse repetition frequency f rep and a nonlinear optical medium 603 are combined (Non-Patent Document 1). ~ 3). In an optical pulse train having a repetition frequency f rep , optical carriers (line spectra) are arranged at intervals f rep on the frequency axis in the spectrum. When this optical pulse train generated from the pulse light source 601 enters the nonlinear optical medium 603, the spectrum width is expanded due to the nonlinear effect, and the number of optical carriers is increased. As a result, the light output from the nonlinear optical medium 603 can be applied as multicarrier light having a frequency interval f rep .

従来、マルチキャリア光源用パルス光源601としては主に、モード同期LD(レーザダイオード)が用いられていた(非特許文献1,2)。このモード同期LD単体ではスペクトル幅がせいぜい数nm程度と狭いため、光キャリア数もせいぜい10〜30程度と少ない(キャリア間隔25〜50GHz程度の場合)が、光ファイバなどの非線形光学媒質603に光パルス列を入射して、自己位相変調や四光波混合等の非線形光学効果を利用することにより、そのスペクトル幅が拡大し(数10〜数100nm)、光キャリア数も100〜1000へと増大する。   Conventionally, a mode-locked LD (laser diode) has been mainly used as the pulse light source 601 for a multicarrier light source (Non-Patent Documents 1 and 2). The mode-locked LD alone has a narrow spectral width of about several nanometers at most, so the number of optical carriers is as small as about 10 to 30 (when the carrier interval is about 25 to 50 GHz), but light is applied to the nonlinear optical medium 603 such as an optical fiber. By entering a pulse train and utilizing a nonlinear optical effect such as self-phase modulation or four-wave mixing, the spectrum width is expanded (several tens to several hundreds of nm), and the number of optical carriers is increased to 100 to 1,000.

このようなマルチキャリア光源は、光キャリア周波数間隔が均一な100以上の光キャリアを一括に発生することができるため、多波長WDMシステム用光源の応用へ有望である(非特許文献3)。WDM用光源の場合、正確に規定の光周波数間隔に配置されて高いSNR(信号対雑音比)を有する光キャリアを発生することが必要である。   Such a multi-carrier light source is promising for the application of a light source for a multi-wavelength WDM system because it can collectively generate 100 or more optical carriers having a uniform optical carrier frequency interval (Non-patent Document 3). In the case of a WDM light source, it is necessary to generate an optical carrier having a high SNR (signal-to-noise ratio) that is precisely arranged at a prescribed optical frequency interval.

K. Sato, A. Hirano, and H. Ishii, “Chirp-compensated 40-GHz mode-locked lasers integrated with electroabsorption modulators and chirped gratings”, IEEE J. Selected Topics in Quantum Electron. 5(1999) 590.:モード同期LDに関する文献。K. Sato, A. Hirano, and H. Ishii, “Chirp-compensated 40-GHz mode-locked lasers integrated with electroabsorption modulators and chirped gratings”, IEEE J. Selected Topics in Quantum Electron. 5 (1999) 590 .: Mode Literature on synchronous LD.

E. Yamada, H. Takara, T. Ohara, K. Sato, T. Morioka, K. Jinguji, M. Itoh, and M. Ishii,“150 channel Supercontinuum CW optical source with high SNR and precise 25 GHz spacing for 10 Gbit/s DWDM systems”, Electron. Lett. 37(2001) 304.:マルチキャリア光源(LD)に関する文献。E. Yamada, H. Takara, T. Ohara, K. Sato, T. Morioka, K. Jinguji, M. Itoh, and M. Ishii, “150 channel Supercontinuum CW optical source with high SNR and precise 25 GHz spacing for 10 Gbit / s DWDM systems ", Electron. Lett. 37 (2001) 304 .: Literature on multi-carrier light sources (LD).

H. Takara, E. Yamada, T. Ohara, K. Sato, K. Jinguji, Y. Inoue, T. Shibata, and T. Morioka,“106 channel x 10 Gbit/s,640km DWDM transmission with 25 GHz spacing with Supercontinuum multi-carrier source”, Electron. Lett. 37(2001) 1534. :マルチ光源を用いたWDM伝送実験に関する文献。H. Takara, E. Yamada, T. Ohara, K. Sato, K. Jinguji, Y. Inoue, T. Shibata, and T. Morioka, “106 channel x 10 Gbit / s, 640km DWDM transmission with 25 GHz spacing with Supercontinuum multi-carrier source ", Electron. Lett. 37 (2001) 1534.: Literature on WDM transmission experiments using multiple light sources.

M. Suzuki, H. Tanaka, N. Edagawa, K. Utaka, and Y. Matsushima,“Transform-limited optical pulse generation up to 20-GHz repetition rate by a sinusoidally driven InGaAsP electroabsorption modulator”, J. Lightwave Technol., vol.11, pp.468-473.:CW光源+強度変調に関する文献。M. Suzuki, H. Tanaka, N. Edagawa, K. Utaka, and Y. Matsushima, “Transform-limited optical pulse generation up to 20-GHz repetition rate by a sinusoidally driven InGaAsP electroabsorption modulator”, J. Lightwave Technol., vol.11, pp.468-473 .: Literature on CW light source + intensity modulation.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation”, IEEE J. of Quantum Electron., 24,(1988) pp. 382-387.:CW光源+位相変調+波長分散に関する文献。T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation”, IEEE J. of Quantum Electron., 24, (1988 pp. 382-387. Literature on CW light source + phase modulation + chromatic dispersion.

しかしながら、モード同期LDは、パルス繰り返し周波数が共振器長で決まり、可変域が10MHz程度と狭いため、WDMシステムで規定されている光周波数間隔(12.5GHz,25GHz,50GHz,100GHz)に正確に一致させるのは容易ではない。共振器周波数がずれたモード同期LDを規定周波数で駆動すると、出力光のSNR等の劣化につながる。また、モード同期LDには、モード分配雑音が生じることで、光キャリアのSNRが劣化する場合もあった。また、モード同期LDは、出力光パワーが一般的に数mW程度であり、この中に含まれる各光キャリアの光パワーは数分の一の1mW以下となり、SNRもこの光パワーで決まる値に制限されていた。   However, in mode-locked LD, the pulse repetition frequency is determined by the resonator length, and the variable range is as narrow as about 10 MHz. Therefore, the mode-locked LD is precisely at the optical frequency interval (12.5 GHz, 25 GHz, 50 GHz, 100 GHz) defined by the WDM system. It is not easy to match. Driving a mode-locked LD with a shifted resonator frequency at a specified frequency leads to degradation of SNR and the like of output light. In addition, mode-synchronized LD may deteriorate the SNR of the optical carrier due to mode distribution noise. In addition, the mode-locked LD generally has an output optical power of about several mW, and the optical power of each optical carrier included in the mode-locked LD is 1 mW or less of a fraction, and the SNR is also determined by this optical power. It was restricted.

このモード同期LDをパルス光源として使用して、非線形光学媒質でスペクトル拡大した場合、このスペクトルに含まれる光キャリアのSNRも、共振周波数と駆動周波数のずれ、モード分配雑音により劣化する場合があった。これらの劣化要因がなくても、拡大された光スペクトル内の光キャリアのSNRは、モード同期LD直後の光キャリアのSNR程度に制限されていた。   When this mode-locked LD is used as a pulsed light source and the spectrum is expanded with a nonlinear optical medium, the SNR of the optical carrier included in this spectrum may also deteriorate due to the difference between the resonance frequency and the drive frequency and the mode distribution noise. . Even without these deterioration factors, the SNR of the optical carrier in the expanded optical spectrum is limited to the SNR of the optical carrier immediately after the mode-locking LD.

また、通常の非線形光学媒質で十分なスペクトル拡大を起こすためには、その非線形光学媒質にパルス幅10ps(ピコ秒)以下の光パルス列を入射する必要がある。しかしながら、モード同期LDではデューティが1/5〜1/10程度であるため、パルス幅10ps以下の光パルス列を発生することができる繰り返し周波数は10GHz以上となる。従って、光キャリア周波数間隔を10GHzよりも狭くすることは困難であった。   In addition, in order to cause sufficient spectrum expansion with a normal nonlinear optical medium, it is necessary to make an optical pulse train having a pulse width of 10 ps (picoseconds) or less incident on the nonlinear optical medium. However, since the duty of the mode-locked LD is about 1/5 to 1/10, the repetition frequency at which an optical pulse train having a pulse width of 10 ps or less can be generated is 10 GHz or more. Therefore, it has been difficult to make the optical carrier frequency interval narrower than 10 GHz.

一方、パルス繰り返し周波数が可変であるパルス光源として、CW(持続波、連続波)光源と外部光変調手段を組み合わせたパルス光源がある(非特許文献4,5)。図7、8にこれらの光源の基本構成を示す。   On the other hand, as a pulse light source having a variable pulse repetition frequency, there is a pulse light source that combines a CW (continuous wave, continuous wave) light source and external light modulation means (Non-Patent Documents 4 and 5). 7 and 8 show the basic configuration of these light sources.

図7に示すCW光源701と強度光変調手段703からなる従来のパルス光源の場合、強度光変調手段703として主に電界吸収型変調器が用いられている(非特許文献4)。この光源は強度変調手段703への駆動周波数によりパルス繰り返し周波数を制御することができる。しかし、この電界吸収型変調器703は損傷のない入射光パワー限界が10mW以下と低く、変調器損失が10dB以上と大きいため、この中に含まれる各光キャリアの光パワーは0.1mW以下となり、SNRがモード同期LDよりも低い値しか得られない。   In the case of the conventional pulse light source including the CW light source 701 and the intensity light modulation means 703 shown in FIG. 7, an electroabsorption modulator is mainly used as the intensity light modulation means 703 (Non-Patent Document 4). This light source can control the pulse repetition frequency by the drive frequency to the intensity modulation means 703. However, this electroabsorption modulator 703 has a low incident light power limit with no damage of 10 mW or less and a large modulator loss of 10 dB or more. Therefore, the optical power of each optical carrier contained therein is 0.1 mW or less. , The SNR is only lower than that of the mode-locked LD.

図8に示すCW光源801と、位相変調手段803と、波長分散付与手段805とからなる従来のパルス光源では、外部位相変調手段803への駆動周波数と波長分散付与手段805の波長分散値とにより、パルス繰り返し周波数を制御することができる(非特許文献5)。この方法によるパルス光発生は、以下の動作原理によるものである。CW光源801から発生するCW光に、位相変調手段803で正弦波位相変調を施すことにより、光強度は一定でCW光のままだが、その瞬時周波数が正弦波的に変化するチャープ光が得られる。このチャープ光を波長分散付与手段805に通すことにより、光周波数成分ごとに異なる遅延が与えられる。その結果、CW光のエネルギーの一部が時間軸上の一点に周期的に集中する。その結果、CW光は、位相変調周波数に等しい繰り返し周波数を有する光パルス列へと変化する。   In the conventional pulse light source including the CW light source 801, the phase modulation unit 803, and the chromatic dispersion applying unit 805 shown in FIG. 8, the drive frequency to the external phase modulating unit 803 and the chromatic dispersion value of the chromatic dispersion applying unit 805 are determined. The pulse repetition frequency can be controlled (Non-patent Document 5). The generation of pulsed light by this method is based on the following operation principle. By applying sinusoidal phase modulation to the CW light generated from the CW light source 801 by the phase modulation means 803, chirped light whose intensity is constant and remains CW light but whose instantaneous frequency changes sinusoidally is obtained. . By passing this chirped light through the chromatic dispersion providing means 805, a different delay is given for each optical frequency component. As a result, part of the energy of the CW light is periodically concentrated at one point on the time axis. As a result, the CW light changes to an optical pulse train having a repetition frequency equal to the phase modulation frequency.

位相変調手段803としてLiNbO位相変調器を用いた場合には、このパルス光源は、100mW以上の光パワーが入射でき、損失も3dB以下であるため、出力光として50mW以上が得られる。また、このパルス光源は繰り返し周波数が10GHz以下であっても、10ps以下の光パルスを発生することができる。しかしながら、図9の(A)、(B)に示すように、このパルス光源からの出力光キャリアは、レベルの違いが大きく、SNRの波長依存性も大きいという点があった。即ち、位相変調器803の出力において、図9の(A)に示すような各光キャリアの強度レベルのばらつき(中心の5本の光キャリア間で5dB以上)があることにより、SNRは図9の(B)に示すような波長依存性を持ってしまう。 When a LiNbO 3 phase modulator is used as the phase modulation means 803, this pulsed light source can receive an optical power of 100 mW or more, and the loss is 3 dB or less, so that an output light of 50 mW or more can be obtained. Further, this pulse light source can generate an optical pulse of 10 ps or less even when the repetition frequency is 10 GHz or less. However, as shown in FIGS. 9A and 9B, the output optical carrier from the pulse light source has a large level difference and a large SNR wavelength dependency. That is, in the output of the phase modulator 803, the SNR is as shown in FIG. 9 due to the variation in the intensity level of each optical carrier (5 dB or more between the five central optical carriers) as shown in FIG. (B) has a wavelength dependency as shown in FIG.

上記の理由により、これまで、CW光源と外部光変調手段を組み合わせたパルス光源をWDM用光源へ適用することはできなかった。そのため従来、この位相変調手段803を用いたパルス光源と、非線形光学媒質703との組み合わせを、WDM用マルチキャリア光源として使用することは検討されていなかった。   For the above reasons, a pulse light source combining a CW light source and an external light modulation means cannot be applied to a WDM light source. Therefore, conventionally, the use of a combination of the pulse light source using the phase modulation means 803 and the nonlinear optical medium 703 as a WDM multi-carrier light source has not been studied.

本発明の目的は、上述の課題を解決するため、100波長以上のWDM用光源において、SNRが高く、光キャリア周波数間隔が容易に調整できる、マルチキャリア光源を提供することにある。   In order to solve the above-described problems, an object of the present invention is to provide a multicarrier light source that has a high SNR and can easily adjust an optical carrier frequency interval in a WDM light source having 100 wavelengths or more.

上記目的を達成するため、本発明のマルチキャリア光源は、CW光を発生するCW光源と、前記CW光をパルス繰り返し周波数frepで位相変調する位相変調手段と、位相変調されたCW光に波長分散を与えてパルス繰り返し周波数frepの光パルス列に変換する波長分散付与手段と、前記光パルス列を入射してスペクトル幅を拡大する非線形光学媒質として、長手方向に波長分散が異常分散から正常分散に減少する光ファイバとを有前記非線形光学媒質としての前記光ファイバにおいて光スペクトル拡大が起きる光パワーしきい値を、該光ファイバに入射する光パルス列のピークパワーよりも低く、且つ該光パルス列のペデスタルのパワーよりも高くしたことを特徴とする。 In order to achieve the above object, a multicarrier light source of the present invention includes a CW light source that generates CW light, phase modulation means that phase-modulates the CW light at a pulse repetition frequency f rep , and wavelength of the phase-modulated CW light. As chromatic dispersion providing means for applying dispersion and converting it into an optical pulse train having a pulse repetition frequency f rep , and as a nonlinear optical medium for injecting the optical pulse train to expand the spectrum width, the chromatic dispersion in the longitudinal direction is changed from anomalous dispersion to normal dispersion. It possesses a decreasing optical fiber, the optical power threshold for optical spectral broadening occurs in the optical fiber as the nonlinear optical medium, lower than the peak power of the optical pulse train entering the optical fiber, and optical pulse train It is characterized by higher than the power of the pedestal .

ここで、前記波長分散付与手段として、光ファイバ、ファイバグレイティング、または平面型光波回路を用いたことを特徴とすることができる。   Here, an optical fiber, a fiber grating, or a planar lightwave circuit can be used as the chromatic dispersion providing means.

また、前記波長分散付与手段と、前記非線形光学媒質としての前記光ファイバとの間に、光増幅器および光バンドパスフィルタを配置したことを特徴とすることができる。   In addition, an optical amplifier and an optical bandpass filter may be disposed between the chromatic dispersion providing unit and the optical fiber as the nonlinear optical medium.

また、前記位相変調手段と、前記波長分散付与手段との間に、光増幅器および光バンドパスフィルタを配置したことを特徴とすることができる。   Further, an optical amplifier and an optical bandpass filter may be disposed between the phase modulation unit and the chromatic dispersion providing unit.

上記構成により、本発明によれば、広波長域においてキャリア光源を提供することができる。さらに、本発明のマルチキャリア光源は、広波長域においてばらつきが少なく、かつ高いSNRの多数の光キャリアを発生することができる。また、本発明のマルチキャリア光源は、均一で狭い周波数間隔の多数の光キャリアを発生することができる。   With the above configuration, according to the present invention, a carrier light source can be provided in a wide wavelength region. Furthermore, the multi-carrier light source of the present invention can generate a large number of optical carriers with little variation in a wide wavelength range and a high SNR. In addition, the multicarrier light source of the present invention can generate a large number of optical carriers with uniform and narrow frequency intervals.

以下、図面を参照して本発明の実施形態を詳細に説明する。
(第1の実施形態)
図1は、本発明のマルチキャリア光源の第1の実施形態の構成を示す。本図に示すように、本実施形態のマルチキャリア光源は、パルス光源としてCW光を発生するCW光源101と、そのCW光を周波数frepで位相変調する位相変調手段103と、位相変調されたCW光に波長分散を与えてパルス繰り返し周波数frepの光パルス列に変換する波長分散付与手段105と、非線形光学媒質として、長手方向に波長分散が異常分散から正常分散に減少する光ファイバ(非線形光ファイバ)111とを有する。必要に応じて、その波長分散付与手段105と非線形光ファイバ111との間に、上記光パルス列を増幅する光増幅器107と、増幅された光パルス列をフィルタリングする光バンドパスフィルタ109とを接続しても好ましい。波長分散付与手段105としては、光ファイバ、ファイバグレイティングまたは平面型光波回路を用いることができる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(First embodiment)
FIG. 1 shows a configuration of a first embodiment of a multicarrier light source of the present invention. As shown in this figure, the multicarrier light source of this embodiment includes a CW light source 101 that generates CW light as a pulse light source, phase modulation means 103 that phase-modulates the CW light at a frequency f rep , and phase-modulated light. A chromatic dispersion providing means 105 for applying chromatic dispersion to the CW light and converting it into an optical pulse train having a pulse repetition frequency f rep , and an optical fiber (nonlinear light) that reduces the chromatic dispersion from anomalous dispersion to normal dispersion in the longitudinal direction as a nonlinear optical medium. Fiber) 111. If necessary, an optical amplifier 107 that amplifies the optical pulse train and an optical bandpass filter 109 that filters the amplified optical pulse train are connected between the chromatic dispersion providing means 105 and the nonlinear optical fiber 111. Is also preferable. As the chromatic dispersion providing means 105, an optical fiber, a fiber grating, or a planar lightwave circuit can be used.

前述したように、CW光源と位相変調手段と波長分散付与手段とからなる従来のパルス光源は、出力された光キャリア間でレベルやSNRのばらつきが大きいという課題があり、WDM光源へ適用することができなかった。これに対し、本発明では、この従来と同様な構成101,103,105のパルス光源と、長手方向に波長分散が異常分散から正常分散に減少する光ファイバ111とを組み合わせて構成しているので、従来技術の上記課題を解決し、広い波長域で、高いSNRの光キャリアを発生することができる。以下、本発明のこの作用原理について説明する。   As described above, the conventional pulse light source including the CW light source, the phase modulation unit, and the chromatic dispersion providing unit has a problem that the level and SNR vary greatly between the output optical carriers, and is applied to the WDM light source. I could not. On the other hand, in the present invention, the pulse light source having the same configurations 101, 103, and 105 as the conventional one is combined with the optical fiber 111 in which the chromatic dispersion decreases from the anomalous dispersion to the normal dispersion in the longitudinal direction. Thus, the above-described problems of the prior art can be solved, and a high SNR optical carrier can be generated in a wide wavelength range. Hereinafter, this operation principle of the present invention will be described.

CW光源101と位相変調手段103と波長分散付与手段105とからなるパルス光源の時間領域でのパルス波形を図2に示す。CW光源101と位相変調手段103と波長分散付与手段105とからなるパルス光源の場合には、モード同期LDやCW光源+電界吸収型変調器と異なり、光パルス間にCW光成分が存在しており、各光パルスのすその部分に小さな山(ペデスタル)が生じる。   FIG. 2 shows a pulse waveform in the time domain of a pulse light source composed of the CW light source 101, the phase modulation means 103, and the chromatic dispersion imparting means 105. In the case of a pulse light source composed of the CW light source 101, the phase modulation means 103, and the chromatic dispersion imparting means 105, unlike a mode-locked LD or CW light source + electroabsorption modulator, there is a CW light component between optical pulses. Thus, a small mountain (pedestal) is formed at the base of each light pulse.

一方、長手方向に波長分散が異常分散から正常分散に減少する光ファイバ111は、図3の(A)に示すように、入射する光パルスのピークパワーと拡大したスペクトル幅の関係は非線形特性を持つ。光パルスのピークパワーが図3の(A)で示したしきい値Pth、までは、スペクトルはほとんど広がらず(図3の(B)参照)、光パルスのピークパワーがしきい値Pthを超えると、スペクトルは急激に拡大する(図3の(C)参照)。 On the other hand, in the optical fiber 111 in which the chromatic dispersion decreases in the longitudinal direction from anomalous dispersion to normal dispersion, as shown in FIG. 3A, the relationship between the peak power of the incident optical pulse and the expanded spectrum width has a nonlinear characteristic. Have. (A) threshold P th shown in the peak power of the optical pulses is 3, to the spectral hardly spread (see (B) in FIG. 3), the peak power of the optical pulse threshold P th If it exceeds, the spectrum expands rapidly (see FIG. 3C).

上記のCW光源101と位相変調手段103と波長分散付与手段105とからなるパルス光源から出力された光パルス列を、長手方向に波長分散が異常分散から正常分散に減少する光ファイバ111に入射して、ペデスタルのピークパワーをしきい値Pthよりも低く設定することで、光パルス間のCW光成分と各光パルスのすそののペデスタルはスペクトル拡大に寄与せずに、所望のスペクトル拡大を行うことができる。   The optical pulse train output from the pulse light source composed of the CW light source 101, the phase modulation means 103, and the chromatic dispersion providing means 105 is incident on the optical fiber 111 in which the chromatic dispersion decreases from anomalous dispersion to normal dispersion in the longitudinal direction. By setting the peak power of the pedestal lower than the threshold value Pth, the CW light component between the light pulses and the pedestal of each light pulse do not contribute to the spectrum expansion, and the desired spectrum expansion is performed. Can do.

その結果、非線形光ファイバ111の出力は、図3の(C)に示すように、パルス光源がもともと有している励起光波長域(数nm程度)だけは多少のレベルばらつきが残るが、その他の広波長域(100nm以上)で光キャリア間のレベルばらつきが非常に少ないスペクトルとなる。   As a result, as shown in FIG. 3C, the output of the nonlinear optical fiber 111 has some level variations only in the pumping light wavelength region (about several nm) originally possessed by the pulse light source. In a wide wavelength range (100 nm or more), the spectrum has very little level variation between optical carriers.

従来例で既述したように、CW光源と位相変調手段と波長分散付与手段とからなるパルス光源は、モード同期LDやCW光源+電界吸収型変調器に比べて高パワーの光パルス列が発生できる利点がある。従って、このパルス光源に非線形光ファイバ111を付加した本発明の構成により、このパルス光源の持つ難点(レベル・SNRのばらつき)を無くして、利点(高パワーによる高SNR化)を活かすことができるため、励起光波長域以外の広波長域において、ばらつきが少なく、高いSNRのマルチ光キャリアの発生が実現できる。   As already described in the conventional example, the pulse light source including the CW light source, the phase modulation unit, and the chromatic dispersion imparting unit can generate a high-power optical pulse train as compared with the mode-locked LD or CW light source + electroabsorption modulator. There are advantages. Therefore, the configuration of the present invention in which the nonlinear optical fiber 111 is added to the pulse light source can eliminate the difficulty (variation in level and SNR) of the pulse light source and take advantage of the advantage (high SNR due to high power). Therefore, there is little variation in a wide wavelength range other than the excitation light wavelength range, and generation of a multi-optical carrier having a high SNR can be realized.

さらに、CW光源と位相変調手段と波長分散付与手段とからなるパワー光源は、既に従来例で説明したように、10GHz以下のパルス繰り返し周波数でも短光パルス列を発生することができるため、本発明のマルチキャリア光源により、低周波数間隔(10GHz以下)のマルチ光キャリア発生が実現できる。   Furthermore, since the power light source composed of the CW light source, the phase modulation means, and the chromatic dispersion imparting means can generate a short optical pulse train even at a pulse repetition frequency of 10 GHz or less, as already described in the conventional example, The multi-carrier light source can generate multi-optical carriers at low frequency intervals (10 GHz or less).

本発明(CW光源+位相変調手段+波長分散付与手段+長手方向に波長分散が異常分散から正常分散に減少する光ファイバ)における出力光キャリアと従来技術(図6のモード同期LD+長手方向に波長分散が異常分散から正常分散に減少する光ファイバ)における出力光キャリアのSNRの比較を行った結果を図4に示す。この場合、光キャリア周波数間隔は6.25GHzに設定している。本発明の場合は、図1の構成により、直接、周波数間隔6.25GHzのマルチ光キャリアを発生させている。   Output optical carrier in the present invention (CW light source + phase modulation means + wavelength dispersion providing means + optical fiber in which chromatic dispersion is reduced from anomalous dispersion to normal dispersion in the longitudinal direction) and the prior art (mode-locked LD in FIG. 6 + wavelength in the longitudinal direction) FIG. 4 shows the result of comparison of the SNR of the output optical carrier in an optical fiber whose dispersion decreases from anomalous dispersion to normal dispersion. In this case, the optical carrier frequency interval is set to 6.25 GHz. In the case of the present invention, the multi-optical carrier having a frequency interval of 6.25 GHz is directly generated by the configuration of FIG.

一方、従来技術の場合には、モード同期LD601から直接パルス繰り返し周波数6.25GHzの光パルス列が発生できないため、図5に示すように、光ゲート501をモード同期LD601の直後に配置して、パルス繰り返し周波数を25GHzから1/4の6.25GHzへ間引くことで、周波数間隔6.25GHzのマルチ光キャリアを発生させている。   On the other hand, in the case of the prior art, since an optical pulse train having a pulse repetition frequency of 6.25 GHz cannot be generated directly from the mode-synchronized LD 601, an optical gate 501 is arranged immediately after the mode-synchronized LD 601 as shown in FIG. By thinning the repetition frequency from 25 GHz to ¼ 6.25 GHz, a multi-optical carrier having a frequency interval of 6.25 GHz is generated.

図4から、本発明のSNRが従来技術のSNRよりも1〜4dB程度高いことより、本発明が従来技術よりも優れていることがわかる。   FIG. 4 shows that the SNR of the present invention is superior to that of the prior art because the SNR of the present invention is about 1 to 4 dB higher than the SNR of the prior art.

(第2の実施形態)
図10は、本発明のマルチキャリア光源の第2の実施形態の構成を示す。ここで、図1と同様な構成要素には同一符号を用いている。図10に示すように、本実施形態のマルチキャリア光源は、パルス光源としてCW光を発生するCW光源101と、そのCW光を周波数frepで位相変調する位相変調手段103と、位相変調されたCW光を増幅する光増幅器107と、波長分散を与えてパルス繰り返し周波数frepの光パルス列に変換する波長分散付与手段105と、非線形光学媒質として、長手方向に波長分散が異常分散から正常分散に減少する光ファイバ(非線形光ファイバ)111とを有する。必要に応じて、その光増幅器107の後段に、増幅後の光から不要な波長成分を除去する光バンドパスフィルタ109を接続しても好ましい。ここで、光増幅器107は位相変調手段103と波長分散付与手段105の間に挿入する。この位置に光増幅器107を挿入することにより、CW光はパルス化される前に増幅されることになる。これにより、光増幅器107を波長分散付与手段105の後段に挿入した場合よりも、光増幅器107中における光のピークパワーが低くなる。その結果、光増幅器中の非線形現象により不要な光スペクトル変化が起こるのを防ぐことが可能となる。
(Second Embodiment)
FIG. 10 shows the configuration of the second embodiment of the multicarrier light source of the present invention. Here, the same reference numerals are used for the same components as in FIG. As shown in FIG. 10, the multi-carrier light source of this embodiment includes a CW light source 101 that generates CW light as a pulse light source, phase modulation means 103 that phase-modulates the CW light at a frequency f rep , and phase-modulated light. As an optical amplifier 107 that amplifies CW light, chromatic dispersion providing means 105 that converts chromatic dispersion into an optical pulse train having a pulse repetition frequency f rep , and a nonlinear optical medium, the chromatic dispersion is changed from anomalous dispersion to normal dispersion in the longitudinal direction. And a decreasing optical fiber (non-linear optical fiber) 111. If necessary, an optical bandpass filter 109 that removes unnecessary wavelength components from the amplified light may be connected to the subsequent stage of the optical amplifier 107. Here, the optical amplifier 107 is inserted between the phase modulation means 103 and the chromatic dispersion imparting means 105. By inserting the optical amplifier 107 at this position, the CW light is amplified before being pulsed. As a result, the peak power of light in the optical amplifier 107 becomes lower than when the optical amplifier 107 is inserted in the subsequent stage of the chromatic dispersion providing means 105. As a result, it is possible to prevent an unnecessary optical spectrum change from occurring due to a nonlinear phenomenon in the optical amplifier.

(他の実施の形態)
上記では、本発明の好適な実施形態を例示して説明したが、本発明の実施形態は上記例示に限定されるものではなく、特許請求の範囲に記載の範囲内であれば、その構成部材等の置換、変更、追加、個数の増減、形状の設計変更等の各種変形は、全て本発明の実施形態に含まれる。
(Other embodiments)
In the above, the preferred embodiment of the present invention has been described by way of example. However, the embodiment of the present invention is not limited to the above-described example, and the constituent members thereof are within the scope of the claims. Various modifications such as replacement, change, addition, increase / decrease in number, change in shape design, etc. are all included in the embodiments of the present invention.

本発明のマルチキャリア光源の第1の実施形態の構成を示すブロック図である。It is a block diagram which shows the structure of 1st Embodiment of the multicarrier light source of this invention. 図1のCW光源と位相変調手段と波長分散付与手段とからなるパルス光源の時間領域でのパルス波形を示す図である。It is a figure which shows the pulse waveform in the time domain of the pulse light source which consists of a CW light source of FIG. 1, a phase modulation means, and a wavelength dispersion provision means. 図1の長手方向に波長分散が異常分散から正常分散に減少する光ファイバの特性を示し、(A)は入射する光パルスのピークパワーと拡大したスペクトル幅の関係を示す図、(B)は光パルスのピークパワーがしきい値Pthまでの光周波数と光強度の関係を示す図、(C)は光パルスのピークパワーがしきい値Pthを超えたときの光周波数と光強度の関係を示す図である。FIG. 1 shows the characteristics of an optical fiber in which chromatic dispersion decreases from anomalous dispersion to normal dispersion in the longitudinal direction of FIG. 1, (A) shows the relationship between the peak power of the incident optical pulse and the expanded spectrum width, and (B) The figure which shows the relationship between the optical frequency and optical intensity until the peak power of an optical pulse reaches threshold value Pth , (C) is the optical frequency and optical intensity when the peak power of an optical pulse exceeds threshold value Pth . It is a figure which shows a relationship. 本発明における出力光キャリアと従来技術における出力光キャリアのSNRの比較を行った結果を示す図である。It is a figure which shows the result of having compared SNR of the output optical carrier in this invention, and the output optical carrier in a prior art. 従来技術のモード同期LD+非線形光ファイバからなるマルチキャリア光源の詳細構成を示すブロック図である。It is a block diagram which shows the detailed structure of the multicarrier light source which consists of a mode synchronous LD + nonlinear optical fiber of a prior art. 従来技術のパルス光源と非線形光学媒質からなるパルス光源の構成とその出力特性を示す図である。It is a figure which shows the structure of the pulse light source which consists of a pulse light source of a prior art, and a nonlinear optical medium, and its output characteristic. 従来技術のCW光源と強度変調器からなるパルス光源の構成とその出力特性を示す図である。It is a figure which shows the structure of the pulse light source which consists of a conventional CW light source, and an intensity modulator, and its output characteristic. 従来技術のCW光源と位相変調手段と波長分散付与手段とからなるパルス光源の構成とその出力特性を示す図である。It is a figure which shows the structure of the pulse light source which consists of a CW light source of a prior art, a phase modulation means, and a wavelength dispersion provision means, and its output characteristic. 図8のパルス光源の特性を示し、(A)はパルス光源からの出力光キャリアの光周波数と光強度の関係を示す図で、(B)はその光周波数とSNRの関係を示す図である。The characteristics of the pulsed light source of FIG. 8 are shown, (A) is a diagram showing the relationship between the optical frequency and optical intensity of the output optical carrier from the pulsed light source, and (B) is a diagram showing the relationship between the optical frequency and SNR. . 本発明のマルチキャリア光源の第2の実施形態の構成を示すブロック図である。It is a block diagram which shows the structure of 2nd Embodiment of the multicarrier light source of this invention.

符号の説明Explanation of symbols

101 CW光源
103 位相変調手段
105 波長分散付与手段
107 光増幅器
109 光フィルタ
111 非線形光ファイバ
(長手方向に波長分散が異常分散から正常分散に減少する光ファイバ)
501 光ゲート
503 光増幅器
507 光フィルタ
601 光パルス光源
603 非線形光学媒質(非線形光ファイバ)
701 CW光源
703 強度変調器
801 CW光源
803 位相変調手段
805 波長分散付与手段
DESCRIPTION OF SYMBOLS 101 CW light source 103 Phase modulation means 105 Wavelength dispersion provision means 107 Optical amplifier 109 Optical filter 111 Nonlinear optical fiber (Optical fiber in which chromatic dispersion decreases from anomalous dispersion to normal dispersion in the longitudinal direction)
501 Optical gate 503 Optical amplifier 507 Optical filter 601 Optical pulse light source 603 Nonlinear optical medium (nonlinear optical fiber)
701 CW light source 703 Intensity modulator 801 CW light source 803 Phase modulation means 805 Wavelength dispersion providing means

Claims (4)

CW光を発生するCW光源と、
前記CW光をパルス繰り返し周波数frepで位相変調する位相変調手段と、
位相変調されたCW光に波長分散を与えてパルス繰り返し周波数frepの光パルス列に変換する波長分散付与手段と、
前記光パルス列を入射してスペクトル幅を拡大する非線形光学媒質として、長手方向に波長分散が異常分散から正常分散に減少する光ファイバと
を有
前記非線形光学媒質としての前記光ファイバにおいて光スペクトル拡大が起きる光パワーしきい値を、該光ファイバに入射する光パルス列のピークパワーよりも低く、且つ該光パルス列のペデスタルのパワーよりも高くしたことを特徴とするマルチキャリア光源。
A CW light source that generates CW light;
Phase modulation means for phase modulating the CW light at a pulse repetition frequency f rep ;
Chromatic dispersion providing means for applying chromatic dispersion to the phase-modulated CW light and converting it to an optical pulse train having a pulse repetition frequency f rep ;
As the nonlinear optical medium to expand the spectral width enters the optical pulse train, it possesses an optical fiber whose wavelength dispersion in the longitudinal direction decreases from anomalous dispersion to normal dispersion,
The optical power threshold at which optical spectrum expansion occurs in the optical fiber as the nonlinear optical medium is set lower than the peak power of the optical pulse train incident on the optical fiber and higher than the power of the pedestal of the optical pulse train. Multi-carrier light source characterized by
前記波長分散付与手段として、光ファイバ、ファイバグレイティング、または平面型光波回路を用いたことを特徴とする請求項1に記載のマルチキャリア光源。   The multicarrier light source according to claim 1, wherein an optical fiber, fiber grating, or a planar lightwave circuit is used as the chromatic dispersion imparting means. 前記波長分散付与手段と、前記非線形光学媒質としての前記光ファイバとの間に、光増幅器および光バンドパスフィルタを配置したことを特徴とする請求項1または2に記載のマルチキャリア光源。   3. The multicarrier light source according to claim 1, wherein an optical amplifier and an optical bandpass filter are disposed between the chromatic dispersion imparting unit and the optical fiber as the nonlinear optical medium. 前記位相変調手段と、前記波長分散付与手段との間に、光増幅器および光バンドパスフィルタを配置したことを特徴とする請求項1または2に記載のマルチキャリア光源。   The multicarrier light source according to claim 1, wherein an optical amplifier and an optical bandpass filter are disposed between the phase modulation unit and the chromatic dispersion providing unit.
JP2005201327A 2004-12-27 2005-07-11 Multi-carrier light source Expired - Fee Related JP4621083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005201327A JP4621083B2 (en) 2004-12-27 2005-07-11 Multi-carrier light source

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004377419 2004-12-27
JP2005201327A JP4621083B2 (en) 2004-12-27 2005-07-11 Multi-carrier light source

Publications (2)

Publication Number Publication Date
JP2006209067A JP2006209067A (en) 2006-08-10
JP4621083B2 true JP4621083B2 (en) 2011-01-26

Family

ID=36965943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005201327A Expired - Fee Related JP4621083B2 (en) 2004-12-27 2005-07-11 Multi-carrier light source

Country Status (1)

Country Link
JP (1) JP4621083B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5198833B2 (en) * 2007-11-09 2013-05-15 日本電信電話株式会社 Optical frequency comb stabilized light source
JP2011135497A (en) * 2009-12-25 2011-07-07 Nippon Telegr & Teleph Corp <Ntt> Optical transmission system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09244076A (en) * 1996-03-08 1997-09-19 Toshiba Corp Multiple wavelength light source
JP2004023383A (en) * 2002-06-14 2004-01-22 Nippon Telegr & Teleph Corp <Ntt> Optical transmitter and optical transmission system
JP2004062153A (en) * 2002-06-03 2004-02-26 Nippon Telegr & Teleph Corp <Ntt> Standard radio frequency signal generating method and standard radio frequency signal generating device
JP2006243191A (en) * 2005-03-01 2006-09-14 Nippon Telegr & Teleph Corp <Ntt> Optical pulse generating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09244076A (en) * 1996-03-08 1997-09-19 Toshiba Corp Multiple wavelength light source
JP2004062153A (en) * 2002-06-03 2004-02-26 Nippon Telegr & Teleph Corp <Ntt> Standard radio frequency signal generating method and standard radio frequency signal generating device
JP2004023383A (en) * 2002-06-14 2004-01-22 Nippon Telegr & Teleph Corp <Ntt> Optical transmitter and optical transmission system
JP2006243191A (en) * 2005-03-01 2006-09-14 Nippon Telegr & Teleph Corp <Ntt> Optical pulse generating device

Also Published As

Publication number Publication date
JP2006209067A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
US7256930B2 (en) High power pulse shaping fiber laser for high data rate free space telecommunication systems
US6671298B1 (en) Photonic arbitrary waveform generation and RF and microwave synthesis with a modelocked external cavity semi-conductor laser
US8724204B2 (en) System and method for generating an optical comb
Pudo et al. Actively mode-locked tunable dual-wavelength erbium-doped fiber laser
JP2009177641A (en) Optical signal processing apparatus, optical receiving apparatus, and optical relay apparatus
US20010053008A1 (en) Optical pulse generating apparatus and optical signal apparatus using the same
US20080170858A1 (en) Optical Pulse Source for Use in Broadband Photonic Communication Systems
JP4621083B2 (en) Multi-carrier light source
JP2004287074A (en) Wavelength variable optical pulse generating device
JP2006293215A (en) Light waveform shaping unit and optical signal generating unit using the same
JP2004258411A (en) Wavelength converter
Boivin et al. A supercontinuum source based on an electroabsorption-modulated laser for long distance DWDM transmission
Guy et al. A duration-tunable, multiwavelength pulse source for OTDM and WDM communications systems
JP2007094143A (en) Multi-wavelength light source
JP2013025284A (en) Short-pulse light generating device and method
Simos et al. Regenerative properties of wavelength converters based on FWM in a semiconductor optical amplifier
CN110989210A (en) Tunable optical frequency comb generation device and method based on EAM and pulse signal
JP2007178681A (en) Multi-wavelength light source
Sanjoh et al. Time-domain filtering to reduce signal-spontaneous beat noise for a pulse-type multiwavelength light source
JP2005241732A (en) Optical pulse amplification apparatus
Mazlan et al. Cross gain modulation (XGM) based on wavelength conversion using semiconductor optical amplifier and filter
EP1575194A2 (en) Pulse generating apparatus and method
Wiberg et al. RZ pulse source for optical time division multiplexing based on self-phase modulation and four wave mixing
Fukuchi et al. Stable and wavelength-tunable high-speed short pulse generation from a rational harmonic mode-locked short-cavity fiber laser using a bismuth-based erbium-doped fiber and a bismuth-based nonlinear fiber
Dahan et al. A multiwavelength short pulse source based on saturated optical fiber parametric amplification

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100419

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100511

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100511

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101022

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees