JP2007178681A - Multi-wavelength light source - Google Patents

Multi-wavelength light source Download PDF

Info

Publication number
JP2007178681A
JP2007178681A JP2005376527A JP2005376527A JP2007178681A JP 2007178681 A JP2007178681 A JP 2007178681A JP 2005376527 A JP2005376527 A JP 2005376527A JP 2005376527 A JP2005376527 A JP 2005376527A JP 2007178681 A JP2007178681 A JP 2007178681A
Authority
JP
Japan
Prior art keywords
optical
pulse signal
optical pulse
light source
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005376527A
Other languages
Japanese (ja)
Inventor
Yuzo Miyagawa
裕三 宮川
Hidehiko Takara
秀彦 高良
Takuya Ohara
拓也 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2005376527A priority Critical patent/JP2007178681A/en
Publication of JP2007178681A publication Critical patent/JP2007178681A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate the deterioration in S/N of super-continuum light by reducing the noise component of a multi-wavelength light source used for wavelength multiplex transmission. <P>SOLUTION: Heretofore, when a short pulse light source (10) is formed into multi-wavelengths by using an optical amplifier (11) and a nonlinear optical medium (14), the noise component (ASE light component) generated thus far by the optical amplifier (11) is reduced by using a nonlinear optical effect of an extra-ordinary dispersion optical waveguide (12) interposed between the optical amplifier (11) and the nonlinear optical medium (14). In making a light pulse signal including the noise component incident on the extra-ordinary dispersion optical waveguide (12), the incident peak power thereof is so controlled as to be made greater than the fundamental soliton power and to be less than twice as large as the fundamental soliton power. The fiber length of the extra-ordinary dispersion optical waveguide (12) is so set as to be made longer than a soliton period. The fluctuating component (noise) of the spectrum width of the light power signal is cut off by a band-pass filter (13). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、波長多重伝送等に用いる多波長光源に関する。   The present invention relates to a multi-wavelength light source used for wavelength multiplexing transmission or the like.

通信トラヒックの増大に伴い、光通信システムにおいて伝送容量を増大するために波長多重伝送方式が適用されている。波長多重(Wavelength-division multiplexing : WDM)伝送を行うためには、その波長数分の光源が必要となる。このため光源の数だけ費用がかかり、また光源の波長の正確な調整が必要となる。そこで、1つの光源から多波長光を一括して発生させる多波長光源が検討されている。多波長光源としてスーパーコンティニウム(Super−continuum : SC)光発生技術を用いて多波長光を発生させる多波長光源が報告されている(たとえば、特許文献1、特許文献2)。図4にこの従来の多波長光源の構成とこの多波長光源の動作を説明するスペクトル図(図中の101、102、103)を示す。   As communication traffic increases, wavelength division multiplexing is applied to increase transmission capacity in an optical communication system. In order to perform wavelength-division multiplexing (WDM) transmission, light sources corresponding to the number of wavelengths are required. For this reason, the cost is the same as the number of light sources, and precise adjustment of the wavelength of the light sources is required. Therefore, multi-wavelength light sources that collectively generate multi-wavelength light from a single light source have been studied. Multi-wavelength light sources that generate multi-wavelength light using super-continuum (SC) light generation technology have been reported as multi-wavelength light sources (for example, Patent Document 1 and Patent Document 2). FIG. 4 shows a configuration of the conventional multi-wavelength light source and a spectrum diagram (101, 102, 103 in the figure) for explaining the operation of the multi-wavelength light source.

図4に示すように、短パルス光源30は繰り返し周波数に等しい周波数間隔の縦モードで構成された光パルス信号を発生する。この光パルス信号を光増幅器31により増幅して強い強度で非線形光ファイバ(非線形光学効果を有する光ファイバ)32に入射させると、その光パルス信号は非線形光ファイバ32を伝搬中に、光スペクトル相互の非線形光学効果により、もとの光パルス信号の光スペクトルの短波長側および長波長側に新たな光スペクトルが発生する。光パルス信号はさらに非線形光ファイバ32を伝搬するとその発生した光スペクトルのさらに短波長側および長波長側に新たな光スペクトルが発生する。これを繰り返すことにより非線形光ファイバ32を伝搬するうちに、入射した光スペクトルは広帯域な光スペクトルになる(図4の103)。この技術をスーパーコンティニウム光発生技術という。このスーパーコンティニウム光からなる多波長光源の1つ1つの縦モードをアレイ導波路回折格子(Arrayed waveguide grating : AWG)のような光フィルタにより取り出すことによって、単一縦モードの連続光が得られ、波長多重伝送用の光源などとして使用される。   As shown in FIG. 4, the short pulse light source 30 generates an optical pulse signal composed of a longitudinal mode having a frequency interval equal to the repetition frequency. When this optical pulse signal is amplified by an optical amplifier 31 and is incident on a nonlinear optical fiber (optical fiber having a nonlinear optical effect) 32 with a strong intensity, the optical pulse signal is transmitted through the nonlinear optical fiber 32 while the optical spectrum is mutually amplified. Due to this nonlinear optical effect, new optical spectra are generated on the short wavelength side and the long wavelength side of the optical spectrum of the original optical pulse signal. When the optical pulse signal further propagates through the nonlinear optical fiber 32, new optical spectra are generated on the shorter wavelength side and the longer wavelength side of the generated optical spectrum. By repeating this, while propagating through the nonlinear optical fiber 32, the incident optical spectrum becomes a broadband optical spectrum (103 in FIG. 4). This technology is called supercontinuum light generation technology. By extracting each longitudinal mode of this multi-wavelength light source composed of supercontinuum light with an optical filter such as an arrayed waveguide grating (AWG), continuous light in a single longitudinal mode can be obtained. Used as a light source for wavelength multiplexing transmission.

特開平8−29815号公報「白色超短パルス光源」Japanese Patent Application Laid-Open No. 8-29815 “White Ultrashort Pulse Light Source” 特願2005−201327号明細書「マルチキャリア光源」Japanese Patent Application No. 2005-201327 “Multi-carrier light source” 特開平11−284261号公報「低雑音光増幅装置」Japanese Patent Application Laid-Open No. 11-284261 “Low Noise Optical Amplifier”

上記の光増幅器31は、非線形光ファイバ32で非線形光学効果を起こし、スペクトル幅が拡大するために必要な光強度まで、光パルス信号の光強度を高めるために必要である。しかし、光増幅器31の出力には、増幅された光パルス信号と、広いスペクトル幅で増幅された自然放出光(ASE光)が混在することになる(図4の104)。ASE光は光増幅器31内でランダムに発生して信号光と干渉するために、増幅された光パルス信号のS/N(信号対雑音比)を劣化させる。図4の105のスペクトル図に示すように、最終的に発生するスーパーコンティニウム光にもASE光成分が重畳されることになり、スーパーコンティニウム光のS/Nの劣化につながる。   The optical amplifier 31 is required to increase the light intensity of the optical pulse signal to the light intensity necessary for causing the nonlinear optical effect in the nonlinear optical fiber 32 and expanding the spectrum width. However, the amplified optical pulse signal and spontaneous emission light (ASE light) amplified with a wide spectral width are mixed in the output of the optical amplifier 31 (104 in FIG. 4). Since the ASE light is randomly generated in the optical amplifier 31 and interferes with the signal light, the S / N (signal-to-noise ratio) of the amplified optical pulse signal is deteriorated. As shown in the spectrum diagram 105 in FIG. 4, the ASE light component is also superimposed on the finally generated supercontinuum light, leading to the degradation of the S / N of the supercontinuum light.

そこで、図5に示すように光増幅器31と非線形光ファイバ32の間にバンドパス光フィルタ33を挿入して光パルス信号のスペクトル帯域外のASE光成分を除去することが行われている(特許文献2、特許文献3)。このようにすることにより、図5の107、108のスペクトル図に示すように、光パルス信号のスペクトル帯域外のASE光成分によるスーパーコンティニウム光のS/Nの劣化は抑えられる。   Therefore, as shown in FIG. 5, a bandpass optical filter 33 is inserted between the optical amplifier 31 and the nonlinear optical fiber 32 to remove the ASE light component outside the spectrum band of the optical pulse signal (patent). Literature 2, Patent Literature 3). By doing so, as shown in the spectrum diagrams 107 and 108 in FIG. 5, the S / N degradation of the supercontinuum light due to the ASE light component outside the spectrum band of the optical pulse signal can be suppressed.

しかし、光パルス信号のスペクトル帯域内のASE光成分は依然として残り、これがスーパーコンティニウム光のS/Nを制限することになる。   However, the ASE light component in the spectral band of the optical pulse signal still remains, which limits the S / N of supercontinuum light.

本発明の目的は、さらにこの光パルス信号のスペクトル帯域内にある光増幅器のASE光成分を除去することにより、光増幅器のASE光によるスーパーコンティニウム光のS/Nの劣化を解消することにある。   An object of the present invention is to eliminate the S / N degradation of supercontinuum light due to the ASE light of the optical amplifier by removing the ASE light component of the optical amplifier within the spectrum band of the optical pulse signal. is there.

図1に本発明の多波長光源の基本構成を示す。本発明の多波長光源は、繰り返し周波数に等しい周波数間隔の縦モードで構成された光パルス信号を発生する光パルス信号発生手段としての短パルス光源10と、この光パルス光源10から発生する光パルス信号の光パワーを所定の値まで増幅する光増幅器11と、この光増幅器11により増幅された光パルス信号のスペクトル幅を拡大する非線形光学媒質14とを有する多波長光源において従来のピクセルと比べて、光増幅器11の後段に異常分散光導波路12とバンドパス光フィルタ13とを備え、異常分散光導波路12の長さおよび光パルス信号の入射ピークパワーを下記のように設定することを特徴とする。これにより光増幅器11のASE光を除去し、発生する多波長光のS/Nを改善することができる。以下にその原理について説明する。     FIG. 1 shows a basic configuration of the multi-wavelength light source of the present invention. The multi-wavelength light source of the present invention includes a short pulse light source 10 as an optical pulse signal generating means for generating an optical pulse signal configured in a longitudinal mode with a frequency interval equal to a repetition frequency, and an optical pulse generated from the optical pulse light source 10 Compared to a conventional pixel in a multi-wavelength light source having an optical amplifier 11 that amplifies the optical power of a signal to a predetermined value and a nonlinear optical medium 14 that expands the spectral width of the optical pulse signal amplified by the optical amplifier 11. The optical amplifier 11 is provided with an anomalous dispersion optical waveguide 12 and a bandpass optical filter 13 at the subsequent stage, and the length of the anomalous dispersion optical waveguide 12 and the incident peak power of the optical pulse signal are set as follows: . Thereby, the ASE light of the optical amplifier 11 can be removed, and the S / N of the generated multi-wavelength light can be improved. The principle will be described below.

図1において、符号1〜4は光パルス信号の時間波形を示し、符号6〜8は光パルス信号1〜4に対応するスペクトル波形(包絡線)を示し、符号9は発生するスーパーコンティニウム光(多波長光)のスペクトル波形(包絡線)を示す。短パルス光源10から発生した光パルス信号1は、光増幅器11においてASE光による強度雑音成分を含んで増幅されて光パルス信号2となる。この強度雑音成分を含む光パルス信号2を異常分散光導波路12に入射する際に、その入射ピークパワーを基本ソリトンパワーよりも大きくかつ基本ソリトンパワーの2倍以下になるように光増幅器11の利得を制御する。また、異常分散光導波路12のファイバ長は、ソリトン周期よりも長くなるように設定される。   In FIG. 1, reference numerals 1 to 4 denote time waveforms of optical pulse signals, reference numerals 6 to 8 denote spectral waveforms (envelopes) corresponding to the optical pulse signals 1 to 4, and reference numeral 9 denotes generated supercontinuum light. The spectrum waveform (envelope) of (multi-wavelength light) is shown. An optical pulse signal 1 generated from the short pulse light source 10 is amplified by an optical amplifier 11 including an intensity noise component due to ASE light, and becomes an optical pulse signal 2. When the optical pulse signal 2 including the intensity noise component is incident on the anomalous dispersion optical waveguide 12, the gain of the optical amplifier 11 is set so that the incident peak power is larger than the basic soliton power and less than twice the basic soliton power. To control. The fiber length of the anomalous dispersion optical waveguide 12 is set to be longer than the soliton period.

ここで、波長分散をD(s/m)、光導波路の有効コア断面積をAeff(m)、非線形屈折率をn(m/W)、光パルス信号のパルス幅(1/e半値の時間幅)をT(sec)、波長をλ(m)、光速C(m/sec)とすると、
基本ソリトンパワーP(W)は、次式(1)で表される。
Here, the chromatic dispersion is D (s / m 2 ), the effective core area of the optical waveguide is A eff (m 2 ), the nonlinear refractive index is n 2 (m 2 / W), and the pulse width of the optical pulse signal (1 / E half-value time width) is T 0 (sec), the wavelength is λ (m), and the speed of light C (m / sec).
The basic soliton power P 0 (W) is expressed by the following equation (1).

=λeffD/(4πCn ) ・・・(1)
また、基本ソリトン周期Z(m)は、次式(2)で表される。
P 0 = λ 3 A eff D / (4π 2 Cn 2 T 0 2 ) (1)
The basic soliton period Z 0 (m) is expressed by the following equation (2).

=πCT /(λD) ・・・(2) Z 0 = π 2 CT 0 2 / (λ 2 D) (2)

このようなソリトン周期Zよりも長い異常分散光導波路12に光パルス信号を入射すると、異常分散光導波路12の非線形光学効果である自己位相変調(Self-phase modulation : SPM)によるチャーピング(chirping)と分散によるチャーピングが逆方向になるので、両者が打ち消しあって基本ソリトンが発生する。ここでは、基本ソリトンパワーPよりも大きなピークパワーの光パルス信号2を異常分散光導波路12に入射するので、自己位相変調によるチャーピングの効果の方が大きくなり、光パルス信号2はパルス圧縮されて光パルス信号3になるとともに、スペクトル波形7のようなスペクトル広がりを生じる。 When an optical pulse signal is incident on the anomalous dispersion optical waveguide 12 longer than the soliton period Z 0, chirping by self-phase modulation (SPM) which is a nonlinear optical effect of the anomalous dispersion optical waveguide 12 is performed. ) And chirping due to dispersion are in the opposite direction, so that both cancel each other and a basic soliton is generated. Here, since the optical pulse signal 2 having a peak power larger than the basic soliton power P 0 is incident on the anomalous dispersion optical waveguide 12, the chirping effect by self-phase modulation becomes larger, and the optical pulse signal 2 is pulse-compressed. As a result, the optical pulse signal 3 is generated, and a spectrum broadening like a spectrum waveform 7 is generated.

このように、入力光パルス信号の強度揺らぎ(ASE光成分)は、自己位相変調によりスペクトル幅の揺らぎに変換される(スペクトル波形6,7)。このとき、入射ピークパワーが基本ソリトンパワーに近いために、スペクトルの中心部分は基本ソリトンに近い形に収束する。したがって、バンドパス光フィルタ13の透過帯域をこのスペクトルの中心部分に設定し、光パワー信号のスペクトル幅の揺らぎ成分(雑音)を切り落とすことにより、光パルス信号4およびそのスペクトル8に示すように、スペクトル幅の揺らぎに変換された強度雑音成分(ASE光成分)を取り除くことができる。   As described above, the intensity fluctuation (ASE light component) of the input optical pulse signal is converted into the fluctuation of the spectrum width by the self-phase modulation (spectrum waveforms 6 and 7). At this time, since the incident peak power is close to the basic soliton power, the central portion of the spectrum converges to a shape close to the basic soliton. Therefore, by setting the transmission band of the bandpass optical filter 13 at the center of this spectrum and cutting off the fluctuation component (noise) of the spectrum width of the optical power signal, as shown in the optical pulse signal 4 and its spectrum 8, The intensity noise component (ASE light component) converted into the fluctuation of the spectrum width can be removed.

このときバンドパス光フィルタ13の透過帯域幅δνを
δν=0.44/T(光パルスの波形をガウス分布とする場合)
δν=0.31/T(光パルスの波形をsechとする場合)
の関係を満たす値に設定すると、バンドパス光フィルタ13から出力される光パルスはトランスフォームリミットパルス(変換限界パルス:与えられたスペクトル幅から得られる最短のパルス幅をもつパルス)となり、ASE光成分のない元の光パルス波形を効果的に復元できる。
At this time, the transmission bandwidth δν of the bandpass optical filter 13 is δν = 0.44 / T 0 (when the waveform of the optical pulse is a Gaussian distribution).
δν = 0.31 / T 0 (when optical pulse waveform is set to sec 2 )
Is set to a value satisfying the above relationship, the optical pulse output from the bandpass optical filter 13 becomes a transform limit pulse (conversion limit pulse: a pulse having the shortest pulse width obtained from a given spectrum width), and the ASE light The original optical pulse waveform having no components can be effectively restored.

本発明の構成によれば、上述のようにして光増幅器11のASE光による雑音成分は除去され、バンドパス光フィルタ13を通過後の光パルス信号のS/Nは改善される。従って、非線形光学媒質14を通過する光パルス信号には光増幅器11に起因する雑音成分はなく、図1のスペクトル9に示すように、発生するスーパーコンティニウム光のS/Nは大幅に改善され、個々の縦モードも雑音を含まない光信号となる。   According to the configuration of the present invention, the noise component due to the ASE light of the optical amplifier 11 is removed as described above, and the S / N of the optical pulse signal after passing through the bandpass optical filter 13 is improved. Therefore, there is no noise component due to the optical amplifier 11 in the optical pulse signal passing through the nonlinear optical medium 14, and the S / N of the generated supercontinuum light is greatly improved as shown in the spectrum 9 of FIG. The individual longitudinal modes are also optical signals that do not contain noise.

このときに非線形光学媒質14に入力される光パルスのピークパワーは、非線形光学媒質14でスペクトル幅拡大に必要な入力光パルスのピークパワーよりも大きいことが必要である。よって、異常分散光導波路12から出力される光パルス信号のピークパワーは、非線形光学媒質14でスペクトル幅拡大に必要な入力光パルスのピークパワーよりも大きく、基本ソリトンパワーよりも大きく、かつ基本ソリトンパワーの2倍以下になるように光増幅器11の利得を設定する必要がある。   At this time, the peak power of the optical pulse input to the nonlinear optical medium 14 needs to be larger than the peak power of the input optical pulse necessary for the spectral width expansion in the nonlinear optical medium 14. Therefore, the peak power of the optical pulse signal output from the anomalous dispersion optical waveguide 12 is larger than the peak power of the input optical pulse necessary for expanding the spectrum width in the nonlinear optical medium 14, larger than the basic soliton power, and basic soliton. It is necessary to set the gain of the optical amplifier 11 so as to be less than twice the power.

さらに、非線形光学媒質14に入力される光パルスのピークパワーが大きすぎると、非線形光学効果が起こりすぎて、発生するスーパーコンティニウム光に非線形光学効果による雑音成分が重畳されることになる。よって、非線形光学媒質14に入力される光パルスのピークパワーを適切な値に設定する必要がある。このため、光強度制御手段15を追加して、非線形光学媒質14に入力される光パルスのピークパワーが、スペクトル幅拡大に必要な入力光パルスのピークパワーよりも大きく、かつ非線形光学効果が起こりすぎてスーパーコンティニウム光のS/Nが劣化するようになるピークパワー以下になるように光強度制御手段15により制御することが有効となる。   Furthermore, if the peak power of the optical pulse input to the nonlinear optical medium 14 is too large, the nonlinear optical effect occurs too much, and a noise component due to the nonlinear optical effect is superimposed on the generated supercontinuum light. Therefore, it is necessary to set the peak power of the optical pulse input to the nonlinear optical medium 14 to an appropriate value. For this reason, the light intensity control means 15 is added so that the peak power of the optical pulse input to the nonlinear optical medium 14 is larger than the peak power of the input optical pulse necessary for expanding the spectrum width, and the nonlinear optical effect occurs. It is effective to control the light intensity control means 15 so that the S / N of the supercontinuum light is less than or equal to the peak power at which it deteriorates.

なお、この異常分散光導波路12とバンドパス光フィルタ13による強度雑音の除去技術については特許文献3において発明されている。   Note that a technique for removing intensity noise by the anomalous dispersion optical waveguide 12 and the bandpass optical filter 13 is invented in Patent Document 3.

また、異常分散光導波路12に入射する光パルス信号の入射ピークパワー並びに出射ピークパワーを上述のような設定値に制御するため、光増幅器11の出力光パルス信号、または異常分散光導波路12の出力光パルス信号、またはバンドパス光フィルタの出力光パルス信号の光パワーをモニタし、光増幅器11の利得を調整する利得制御手段(図示しない)を光増幅器11に接続しても好ましい。   Further, in order to control the incident peak power and outgoing peak power of the optical pulse signal incident on the anomalous dispersion optical waveguide 12 to the set values as described above, the output optical pulse signal of the optical amplifier 11 or the output of the anomalous dispersion optical waveguide 12 A gain control means (not shown) for monitoring the optical power of the optical pulse signal or the output optical pulse signal of the bandpass optical filter and adjusting the gain of the optical amplifier 11 is preferably connected to the optical amplifier 11.

以上説明したように、本発明の多波長光源は、従来、光増幅器と非線形光媒質を用いて短パルス光源を多波長化する際に生じていたASEによる雑音成分を、光増幅器と非線形光媒質の間に介在させた異常分散光導波路の非線形光学効果を利用して低減するようにしているので、比較的簡単な構成で、増幅器で付加されるASEによる雑音成分を除去し、出力される多波長光のS/Nを向上させることができるという効果を奏する。   As described above, the multi-wavelength light source of the present invention is a conventional optical amplifier and a non-linear optical medium that eliminates noise components due to ASE that have occurred when a short pulse light source is multi-wavelength using an optical amplifier and a non-linear optical medium. Since the non-linear optical effect of the anomalous dispersion optical waveguide interposed between the two is reduced, the noise component due to ASE added by the amplifier is removed with a relatively simple configuration, and a large number of outputs are output. There is an effect that the S / N of the wavelength light can be improved.

以下、図面を参照して本発明の好ましい実施の形態を詳細に説明する。
(第1の実施形態)
図2は本発明の多波長光源の第1の実施形態を示す。この多波長光源は、繰り返し周波数に等しい周波数間隔の縦モードで構成された光パルス信号を発生する短パルス光源20と、希土類添加光ファイバ等を用いた光ファイバ増幅器21と、ファイバ長が光パルス信号に対するソリトン周期よりも長く、平均の波長分散が異常分散になる特性を有する異常分散光ファイバ22と、光パルス信号の中心波長を含む所定の透過帯域を有するバンドパス光フィルタ23と、光パルス信号のスペクトル幅を拡大する非線形光ファイバ24とをこの順序で縦続接続して構成される。ここで、異常分散光ファイバ22に入射する光パルス信号のピークパワーを基本ソリトンパワーよりも大きく基本ソリトンパワーの2倍以下で、かつ光パルス信号が後段の非線形光ファイバ24を伝搬中に非線形光学効果によりスペクトル幅が拡大するのに必要な光ピークパワー以上となるように、光ファイバ増幅器21の利得を設定する。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
(First embodiment)
FIG. 2 shows a first embodiment of the multi-wavelength light source of the present invention. The multi-wavelength light source includes a short pulse light source 20 that generates an optical pulse signal configured in a longitudinal mode with a frequency interval equal to a repetition frequency, an optical fiber amplifier 21 that uses a rare earth-doped optical fiber, and the like, and a fiber length that is an optical pulse. An anomalous dispersion optical fiber 22 having a characteristic that the average chromatic dispersion becomes anomalous dispersion longer than the soliton period for the signal, a bandpass optical filter 23 having a predetermined transmission band including the center wavelength of the optical pulse signal, and an optical pulse The nonlinear optical fiber 24 that expands the spectrum width of the signal is cascaded in this order. Here, the peak power of the optical pulse signal incident on the anomalous dispersion optical fiber 22 is larger than the basic soliton power and less than twice the basic soliton power, and the optical pulse signal is propagated through the non-linear optical fiber 24 at the subsequent stage. The gain of the optical fiber amplifier 21 is set so as to be equal to or higher than the optical peak power necessary for expanding the spectrum width due to the effect.

また、通常の単一モードファイバの分散値は波長1550nm付近で約16ps/nm/kmであるので、異常分散光ファイバ22として通常の単一モード光ファイバを使用することができる。   Further, since the dispersion value of a normal single mode fiber is about 16 ps / nm / km near a wavelength of 1550 nm, a normal single mode optical fiber can be used as the anomalous dispersion optical fiber 22.

バンドパス光フィルタ23としては、短パルス光源20からの光パルス信号のスペクトル帯域を透過し、強度雑音成分が変換されたスペクトル幅の揺らぎ成分(雑音)を切り取るような透過特性を持つ光フィルタであればよく、例えばファブリペローエタロンフィルタなどを用いることができる。このバンドパス光フィルタ23の透過帯域の中心が光パルス信号5の中心波長で、その透過帯域幅を0.44/T、または0.31/T(Tは光パルス信号1のパルス幅)に設定すると、バンドパス光フィルタ23の出力光はトランスフォームリミットパルスとなり、ASE光成分の影響のない元の光パルス波形を復元した増幅された光パルス信号4を得ることができる。 The band-pass optical filter 23 is an optical filter having a transmission characteristic that transmits the spectral band of the optical pulse signal from the short pulse light source 20 and cuts out the fluctuation component (noise) of the spectral width converted from the intensity noise component. For example, a Fabry-Perot etalon filter or the like can be used. The center of the transmission band of the band-pass optical filter 23 is the center wavelength of the optical pulse signal 5, and the transmission bandwidth is 0.44 / T 0 or 0.31 / T 0 (T 0 is the pulse of the optical pulse signal 1). Width), the output light of the bandpass optical filter 23 becomes a transform limit pulse, and an amplified optical pulse signal 4 in which the original optical pulse waveform without the influence of the ASE light component is restored can be obtained.

短パルス光源20としては、モード同期半導体レーザを用いたデバイスや、単一波長のCW光(同じレベルで連続して発生するレーザ光・搬送波)を位相変調したものに波長分散を付与してパルス化するデバイスなどが適用できる。   The short pulse light source 20 is a pulse using a device using a mode-locked semiconductor laser or a single-wavelength CW light (laser light / carrier wave generated continuously at the same level) with phase dispersion. Applicable devices can be applied.

非線形光ファイバ24としては、様々な光ファイバを使用でき、正常分散特性の光ファイバや異常分散特性の光ファイバ、分散平坦特性のある光ファイバなどが使用できるが、より効率的にスーパーコンティニウム光を発生するためには長手方向に波長分散が異常分散から正常分散に減少する光ファイバを用いるのが好ましい。   As the nonlinear optical fiber 24, various optical fibers can be used, and an optical fiber having normal dispersion characteristics, an optical fiber having anomalous dispersion characteristics, an optical fiber having a dispersion flatness characteristic, and the like can be used. In order to generate the optical fiber, it is preferable to use an optical fiber whose chromatic dispersion decreases from anomalous dispersion to normal dispersion in the longitudinal direction.

本実施形態の回路の動作原理については、[課題を解決するための手段]の欄で説明しているので省略する。   The operation principle of the circuit of the present embodiment has been described in the section [Means for Solving the Problems], and will not be repeated.

光パルス信号の中心波長を1567nm、パルス幅を5psecとし、異常分散光ファイバ22として単一モードファイバ(分散が16ps/nm/km)を使用した場合について、シミュレーションにより光パルス信号のS/N改善効果を調べたところ、単一モードファイバ22の直前に比べて、バンドパス光フィルタ23を通過後の光パルス信号のS/Nが改善されていることを確認できた。   S / N improvement of optical pulse signal by simulation when the center wavelength of optical pulse signal is 1567 nm, pulse width is 5 psec, and single mode fiber (dispersion is 16 ps / nm / km) is used as anomalous dispersion optical fiber 22 As a result of examining the effect, it was confirmed that the S / N of the optical pulse signal after passing through the band-pass optical filter 23 was improved as compared with that immediately before the single mode fiber 22.

(第2の実施形態)
図3は本発明の多波長光源の第2の実施形態を示す。第2の実施形態は上記の第1の実施形態の非線形光ファイバ24の前段に光強度制御手段としての可変光減衰器25を設置したものである。この可変光減衰器25により、光パルス信号が後段の非線形光ファイバ24を伝搬中に非線形光学効果によりスペクトル幅が拡大するのに必要な光ピークパワー以上で、かつ非線形光学効果が起こりすぎてスーパーコンティニウム光のS/Nが劣化するようになるピークパワー以下になるように、非線形光ファイバ24に入力する光パルス信号のピークパワーを制御することができる。
(Second Embodiment)
FIG. 3 shows a second embodiment of the multi-wavelength light source of the present invention. In the second embodiment, a variable optical attenuator 25 is installed as a light intensity control means in the preceding stage of the nonlinear optical fiber 24 of the first embodiment. With this variable optical attenuator 25, the optical pulse signal exceeds the optical peak power necessary for expanding the spectrum width due to the nonlinear optical effect while propagating through the subsequent nonlinear optical fiber 24, and the nonlinear optical effect is excessive and super The peak power of the optical pulse signal input to the nonlinear optical fiber 24 can be controlled so that the S / N of the continuum light is less than the peak power at which the S / N is degraded.

(他の実施形態)
上記では、本発明の好適な実施形態を例示して説明したが、本発明の実施形態は上記例示に限定されるものではなく、特許請求の範囲の記載内であれば、その構成部材等の均等物への置換、変更、追加、個数の増減、形状の設計変更等の各種変形は、全て本発明の実施形態に含まれる。
(Other embodiments)
In the above, the preferred embodiment of the present invention has been described by way of example. However, the embodiment of the present invention is not limited to the above-described example. Various modifications such as replacement with equivalents, change, addition, increase / decrease in number, and change in shape design are all included in the embodiments of the present invention.

本発明の多波長光源は、WDM(波長多重)通信用光源のほか、次世代光通信用光部品・光装置の評価・較正・監視・追跡用光源としての使用も可能であり、高速・大容量のWDM通信の発展に大いに寄与すると期待できる。   The multi-wavelength light source of the present invention can be used not only as a WDM (wavelength multiplexing) communication light source but also as a light source for evaluating, calibrating, monitoring and tracking optical components and optical devices for next-generation optical communication. It can be expected to greatly contribute to the development of capacity WDM communication.

本発明の多波長光源の構成と各区間の光スペクトルを示す図である。It is a figure which shows the structure of the multiwavelength light source of this invention, and the optical spectrum of each area. 本発明の多波長光源の第1の実施形態における構成と各区間の光スペクトルを示す図である。It is a figure which shows the structure in 1st Embodiment of the multiwavelength light source of this invention, and the optical spectrum of each area. 本発明の多波長光源の第2の実施形態における構成と各区間の光スペクトルを示す図である。It is a figure which shows the structure in 2nd Embodiment of the multiwavelength light source of this invention, and the optical spectrum of each area. 従来の第1の多波長光源の構成と各区間の光スペクトルを示す図である。It is a figure which shows the structure of the conventional 1st multiwavelength light source, and the optical spectrum of each area. 従来の第2の多波長光源の構成と各区間の光スペクトルを示す図である。It is a figure which shows the structure of the conventional 2nd multiple wavelength light source, and the optical spectrum of each area.

符号の説明Explanation of symbols

1〜4 光パルス信号の時間波形
6〜8 光パルス信号1〜4に対応するスペクトル波形(包絡線)
9 発生するスーパーコンティニウム光(多波長光)のスペクトル波形(包絡線)
10 短パルス光源
11 光増幅器
12 異常分散光導波路
13 バンドパス光フィルタ
14 非線形光学媒質
15 光強度制御手段
20 短パルス光源
21 光ファイバ増幅器
22 異常分散光ファイバ
23 バンドパス光フィルタ
24 非線形光ファイバ
25 可変光減衰器
30 短パルス光源
31 光増幅器
32 非線形光ファイバ
33 バンドパス光フィルタ
101〜102 理想のスペクトル波形(包絡線)
103 理想のスーパーコンティニウム光(多波長光)のスペクトル波形(包絡線)
104、106,107 実際のスペクトル波形(包絡線)
105、108 実際に発生するスーパーコンティニウム光(多波長光)のスペクトル波形(包絡線)
1-4 Time waveform of optical pulse signal 6-8 Spectral waveform (envelope) corresponding to optical pulse signal 1-4
9 Spectral waveform (envelope) of generated supercontinuum light (multi-wavelength light)
DESCRIPTION OF SYMBOLS 10 Short pulse light source 11 Optical amplifier 12 Anomalous dispersion optical waveguide 13 Bandpass optical filter 14 Nonlinear optical medium 15 Light intensity control means 20 Short pulse light source 21 Optical fiber amplifier 22 Anomalous dispersion optical fiber 23 Bandpass optical filter 24 Nonlinear optical fiber 25 Variable Optical attenuator 30 Short pulse light source 31 Optical amplifier 32 Non-linear optical fiber 33 Band pass optical filter 101 to 102 Ideal spectrum waveform (envelope)
103 Spectral waveform (envelope) of ideal supercontinuum light (multi-wavelength light)
104, 106, 107 Actual spectrum waveform (envelope)
105, 108 Spectral waveform (envelope) of supercontinuum light (multi-wavelength light) actually generated

Claims (5)

繰り返し光パルス信号を発生する光パルス信号発生手段と、前記光パルス信号発生手段から発生する光パルス信号の光パワーを増幅する光増幅器と、前記光増幅器により増幅された光パルス信号のスペクトル幅を拡大する非線形光学媒質とを含む多波長光源において、前記光増幅器と前記非線形光学媒体の間に、
導波路長が前記光パルス信号に対するソリトン周期よりも長く、平均の波長分散が異常分散になる特性を有する異常分散光導波路と、
前記異常分散光導波路を通過する光パルス信号の中心波長を含む所定の透過帯域を有し、該光パルス信号のスペクトル幅の揺らぎ成分(雑音成分)を切り落とすバンドパス光フィルタとを備え、
前記異常分散光導波路に入射する光パルス信号の入射ピークパワーが、前記異常分散光導波路における前記光パルス信号に対する基本ソリトンパワーよりも大きく、かつ基本ソリトンパワーの2倍以下で、かつ
前記異常分散光導波路から出力される光パルス信号のピークパワーが、前記非線形光学媒質でスペクトル幅拡大に必要な入力光パルスのピークパワーよりも大きくなるように、前記光増幅器の利得が設定されていることを特徴とする多波長光源。
An optical pulse signal generating means for repeatedly generating an optical pulse signal, an optical amplifier for amplifying the optical power of the optical pulse signal generated from the optical pulse signal generating means, and a spectral width of the optical pulse signal amplified by the optical amplifier. In a multi-wavelength light source including an expanding nonlinear optical medium, between the optical amplifier and the nonlinear optical medium,
An anomalous dispersion optical waveguide having a characteristic that the waveguide length is longer than the soliton period for the optical pulse signal and the average chromatic dispersion becomes anomalous dispersion;
A bandpass optical filter having a predetermined transmission band including the center wavelength of the optical pulse signal passing through the anomalous dispersion optical waveguide, and cutting off a fluctuation component (noise component) of the spectral width of the optical pulse signal;
The incident peak power of the optical pulse signal incident on the anomalous dispersion optical waveguide is larger than the basic soliton power for the optical pulse signal in the anomalous dispersion optical waveguide and less than or equal to twice the basic soliton power, and the anomalous dispersion light The gain of the optical amplifier is set so that the peak power of the optical pulse signal output from the waveguide is larger than the peak power of the input optical pulse necessary for the spectral width expansion in the nonlinear optical medium. Multi-wavelength light source.
前記非線形光学媒質の前段に、該非線形光学媒質に入力される光パルス信号のピークパワーが、スペクトル幅拡大に必要な入力光パルスのピークパワーよりも大きく、かつ過剰な非線形光学効果により発生する多波長光のS/Nが劣化しない範囲に制御する光強度制御手段
を備えたことを特徴とする請求項1に記載の多波長光源。
In front of the nonlinear optical medium, the peak power of the optical pulse signal input to the nonlinear optical medium is larger than the peak power of the input optical pulse necessary for expanding the spectral width and is generated due to excessive nonlinear optical effects. 2. The multi-wavelength light source according to claim 1, further comprising a light intensity control means for controlling the S / N of the wavelength light so as not to deteriorate.
前記バンドパス光フィルタの透過帯域δνが、δν=0.44/T(光パルス信号の波形がガウス分布の場合)、またはδν=0.31/T(光パルス信号の波形がsechの場合)の関係を満たす値(但し、Tは前記光パルス信号発生手段から発生する光パルス信号のパルス幅)に設定されていることを特徴とする請求項1または2に記載の多波長光源。 The transmission band δν of the bandpass optical filter is δν = 0.44 / T 0 (when the waveform of the optical pulse signal is Gaussian distribution), or δν = 0.31 / T 0 (the waveform of the optical pulse signal is sec 2 The multi-wavelength according to claim 1 or 2, characterized in that it is set to a value satisfying the relationship (where T 0 is the pulse width of the optical pulse signal generated from the optical pulse signal generating means). light source. 前記基本ソリトンパワーP(W)および前記基本ソリトン周期Z(m)は、前記異常分散光導波路の波長分散をD(s/m)、有効コア断面積をAeff(m)、非線形屈折率をn(m/W)、光パルス信号のパルス幅(1/e半値の時間幅)をT(sec)、波長をλ(m)、光速C(m/sec)としたときに、
=λeffD/(4πCn
=πCT /(λD)
で与えられることを特徴とする請求項1ないし3のいずれかに記載の多波長光源。
The basic soliton power P 0 (W) and the basic soliton period Z 0 (m) are the chromatic dispersion of the anomalous dispersion optical waveguide is D (s / m 2 ), the effective core area is A eff (m 2 ), The nonlinear refractive index is n 2 (m 2 / W), the pulse width of the optical pulse signal (1 / e half-value time width) is T 0 (sec), the wavelength is λ (m), and the light velocity C (m / sec). When
P 0 = λ 3 A eff D / (4π 2 Cn 2 T 0 2 )
Z 0 = π 2 CT 0 2 / (λ 2 D)
The multiwavelength light source according to claim 1, wherein the multiwavelength light source is given by:
前記光パルス信号発生手段が、繰り返し周波数に等しい周波数間隔の縦モードで構成された短光パルスを発生する短パルス光源であることを特徴とする請求項1ないし3のいずれかに記載の多波長光源。
4. The multi-wavelength according to claim 1, wherein the optical pulse signal generating means is a short pulse light source that generates a short optical pulse composed of a longitudinal mode having a frequency interval equal to a repetition frequency. light source.
JP2005376527A 2005-12-27 2005-12-27 Multi-wavelength light source Pending JP2007178681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005376527A JP2007178681A (en) 2005-12-27 2005-12-27 Multi-wavelength light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005376527A JP2007178681A (en) 2005-12-27 2005-12-27 Multi-wavelength light source

Publications (1)

Publication Number Publication Date
JP2007178681A true JP2007178681A (en) 2007-07-12

Family

ID=38303934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005376527A Pending JP2007178681A (en) 2005-12-27 2005-12-27 Multi-wavelength light source

Country Status (1)

Country Link
JP (1) JP2007178681A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009020346A (en) * 2007-07-12 2009-01-29 Sumitomo Electric Ind Ltd Sc (supercontinuum) light source device
JP2018535438A (en) * 2015-11-30 2018-11-29 ルミナー テクノロジーズ インコーポレイテッド Photodetection and ranging system with distributed laser and multiple sensor heads, and pulsed laser for optical detection and ranging system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009020346A (en) * 2007-07-12 2009-01-29 Sumitomo Electric Ind Ltd Sc (supercontinuum) light source device
JP2018535438A (en) * 2015-11-30 2018-11-29 ルミナー テクノロジーズ インコーポレイテッド Photodetection and ranging system with distributed laser and multiple sensor heads, and pulsed laser for optical detection and ranging system

Similar Documents

Publication Publication Date Title
JP4579829B2 (en) Light source, waveform shaper, optical pulse train generator, and optical regeneration system in optical transmission system
US20040042061A1 (en) Controlling ASE in optical amplification stages implementing time modulated pump signals
JP2009177641A (en) Optical signal processing apparatus, optical receiving apparatus, and optical relay apparatus
JP4057291B2 (en) Optical pulse generator
US6892015B2 (en) Optical pulse waveform conversion
US7239440B2 (en) Wavelength conversion apparatus
CN102023454B (en) Utilize the compression of the optics continuous spectrum of the generation of higher mode optical fiber
JP2005208515A (en) Wavelength conversion method and wavelength conversion device
JP4041079B2 (en) Sweeped broadband broadband Raman pump source
US6814376B2 (en) Method and system for generating short pulse signals
JP2004287074A (en) Wavelength variable optical pulse generating device
JP4558565B2 (en) Optical waveform shaper and optical signal generator using the optical waveform shaper
US7034988B2 (en) Wavelength conversion device
JP4865657B2 (en) Pulsed light generator
JPWO2009022396A1 (en) Optical waveform shaping method and apparatus
JP2007178681A (en) Multi-wavelength light source
JP2001264830A (en) Multi-wavelength light source
US8279516B2 (en) Wavelength conversion device and wavelength conversion method
JP4621083B2 (en) Multi-carrier light source
Pan et al. Dispersion-tuned multiwavelength actively mode-locked fiber laser using a hybrid gain medium
JP2008311629A (en) Ultrashort light pulse amplifying method, ultrashort light pulse amplifying device, and broadband comb generator
JP3464373B2 (en) Pulse light generator
JP2005241732A (en) Optical pulse amplification apparatus
Inoue et al. Generation of 80-nm wavelength-tunable 100-fs pulse based on comblike profiled fiber comprised of HNLF and zero dispersion-slope NZDSF
KR100326151B1 (en) Raman fiber amplifier with enhanced signal-to-noise ratio and method for the use thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090623