JP4620295B2 - Optical transmission device for mobile communication - Google Patents

Optical transmission device for mobile communication Download PDF

Info

Publication number
JP4620295B2
JP4620295B2 JP2001205801A JP2001205801A JP4620295B2 JP 4620295 B2 JP4620295 B2 JP 4620295B2 JP 2001205801 A JP2001205801 A JP 2001205801A JP 2001205801 A JP2001205801 A JP 2001205801A JP 4620295 B2 JP4620295 B2 JP 4620295B2
Authority
JP
Japan
Prior art keywords
transmission
optical transmission
optical
reception
slave station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001205801A
Other languages
Japanese (ja)
Other versions
JP2003023396A (en
Inventor
義弘 今荘
諭一 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2001205801A priority Critical patent/JP4620295B2/en
Publication of JP2003023396A publication Critical patent/JP2003023396A/en
Application granted granted Critical
Publication of JP4620295B2 publication Critical patent/JP4620295B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Monitoring And Testing Of Exchanges (AREA)
  • Optical Communication System (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、無線高周波信号を光ファイバを用いて電波の不感区域に伝送する移動体通信用光伝送装置に関するものである。
【0002】
【従来の技術】
自動車・携帯電話システム、無線呼出システムなどでは、移動体通信基地局と移動局との間を電波により無線接続し、移動体通信基地局が交換機などを介して上位の回線網に接続されている。自動車・携帯電話を例にすれば、この移動体通信基地局は、周波数利用効率向上の観点などから、カバーエリアが数百mから十数km程度のエリアを1単位として、細胞のように隣接したエリアを多数配置したセルラー方式が用いられている。このようなシステムでは、屋外の地上等では良好な無線通信が行えるが、移動体通信基地局のカバーエリア内にあっても、トンネル・地下街・ビル地下階等では電波が到達しないため、無線通信が行えない不感区域が生じる。また、高層ビルの上層階においては、基地局アンテナの指向性の問題や、見通し距離が広がることなどにより、ビル内に存在する移動局が本来無線通信を行うべき移動体通信基地局よりも遠方の基地局の電波を捕捉してしまうという現象が発生することがある。又、携帯電話の加入者数の増大に伴い、特定の時間、場所での通信トラヒックが局所的に増大し、呼損率が増大する現象なども発生し問題とされている。さらに、屋外開空間においても地形要因によるカバーエリアの途切れなどを補完する必要が生じたり、低トラフィツクのルーラルエリアにおけるエリア拡張を如何に経済的に行うか、などが問題となっている。
【0003】
これらの問題を解決する手段として、移動体通信用光伝送装置が用いられている。図2は、トンネル内、地下街等の不感対策用の携帯電話用光伝送装置のブロック図の1例である。システムは、上位回線網11と接続された無線基地局の無線変復調装置13、この無線変復調装置13と有線接続された光伝送親局装置10、光伝送親局装置10と光ファイバで接続された少なくとも1つの光伝送子局装置からなる。図2では二つの光伝送子局装置12a、12bが接続されている場合を示しているが、さらに多数の光伝送子局装置の接続も可能である。光伝送子局装置12a、12bは同じ機器で構成されるので、内部の詳細は光伝送子局装置12aについてのみ記載している。光伝送子局装置12aは光伝送親局装置10と下り回線の光ファイバ121a、上り回線の光ファイバ122aで接続され、光伝送子局装置12bは光伝送親局装置10と光ファイバ121b、122bで接続されている。また、光伝送子局装置12a、12bはそれぞれ、対移動局アンテナ130a、130bをもっている。光伝送親局装置10、光伝送子局装置12a、12bおよび光ファイバを併せて移動体通信用光伝送装置を構成している。
【0004】
無線基地局の無線変復調装置13の無線送信部135においては、携帯電話に割り当てられた800MHz帯や1.5GHz帯などの無線高周波信号を発生する。この無線高周波信号は、例えば日本のデジタルPDC方式ではπ/4シフトQPSK変調波となっている。移動体通信用光伝送装置を使用しない場合は、この高周波信号はアンテナに接続され、移動局との通信を行っているものである。移動体通信用光伝送装置を使用する場合は、この無線高周波信号は、光伝送親局装置10へ送られ、増幅器103により適切な電力レベルまで増幅もしくは減衰され、電気一光変換部104において光信号に変換される。この光信号は光分配器105を介し光ファイバ121aにより、各光伝送子局装置へ伝送される。光伝送子局装置12aにおいては、光一電気変換部123により、光信号から元の無線高周波信号を復元した上で、増幅器124により所要の電力レベルまで増幅し、アンテナ共用器125を介して対移動局アンテナ130aから電波として放射される。光伝送子局装置12aを不感区域に設置することにより、無線変復調装置13から不感区域の移動局133a等への無線通信(下り回線)が行えるようになる。
【0005】
一方、不感区域の移動局133aから無線変復調装置13への無線通信(上り回線)、すなわち移動局133aの発射した電波は、不感区域に設置された光伝送子局装置12aの対移動局アンテナ130aで捕捉される。これを送受信共用器125を介して増幅器126により適切な電力レベルに増幅した後、電気一光変換部127によって光信号に変換する。この光信号は光ファイバ122aにより光伝送親局装置10へ伝送され、光一電気変換部106により無線高周波信号に再変換される。これは高周波合成器137で他の光−電気変換部からの出力と合成し、増幅器108により適切な電力レベルまで増幅し、無線変復調装置13の受信部136に入力され、上り回線の無線通信が行えるようになる。光ファイバの低損失性により、光伝送親局装置10と光伝送子局装置12aを結ぶ光ファイバの伝送距離は数kmから十数kmという長距離伝送が可能である。
【0006】
移動体通信用光伝送装置では、光伝送親局装置10と光伝送子局装置12aの間に光信号を周波数多重して制御回線を構成し、光伝送子局装置12aの各内部機器の状態を光伝送親局装置10で監視、制御できるようにしている。すなわち、光伝送子局装置12a内部にCPU129を設け、光伝送子局装置12a内の各機器の状態監視、リセットなどの制御を自律的に行うとともに、各機器の状態監視の情報を、音声帯域モデム128で音声帯域モデム信号にし、これを電気−光変換部127で光信号に変換し、無線高周波信号と周波数多重して光伝送親局装置10に送出している。この状態情報は、光伝送親局装置10内の音声帯域モデム120を介しCPU109で受信される。光伝送親局装置10のCPU109は、音声帯域モデム120、電気−光変換部104、光分配器105、光ファイバ121a、光−電気変換部123、音声帯域モデム128のルートで制御信号を光伝送子局装置12aのCPU129に送る。この制御信号で、光伝送子局装置12aの送信電力レベルの制御、システムリセットなどを行い、保守・点検の利便性を高めている。さらに、光伝送親局装置10のCPU109は、音声帯域モデム139、専用線若しくは一般公衆回線140、音声帯域モデム141を介して事業者の監視制御局16と結び、監視制御局16からの光伝送親局、子局などの制御も行われている。
【0007】
また、光伝送親局装置10では、1:N(Nは2以上の整数)に光信号を分配する光分配器105を設けることにより、光信号を複数の光伝送子局装置に分配することができる。また複数の電気−光変換器と、高周波合成器137を備えることにより、複数の光伝送子局装置からの光信号を受信することができる。これにより、多数の光伝送子局装置が光伝送親局装置10に設置でき、例えば1つの光伝送子局装置ではカバーできない広い範囲をサービスエリア化したり、複数の光伝送子局装置を物理的に隔離された不感区域に設置し、論理的には1つのセルとみなす仮想無線空間とすることが可能になる。
【0008】
図3は、ビル内への応用例を示した構成図である。光伝送親局装置10と光ファイバで接続された光伝送子局装置12a、12b、12c、12d、12eは、それぞれビルの各階の天井裏に設置され、建物内部をサービスエリアとしている。各光伝送子局装置の内部詳細は、図2と同じであるため記載を省略している。光伝送子局装置12a〜12eは、対移動局アンテナ130a〜130eにより、ビル内の移動局133a〜133eとの電波の送受信を行う。光伝送親局装置10は無線変復調装置13と有線接続され、無線変復調装置13は上位交換回線網11に接続されている。このように地上の電波の届かない建物内や地下にあっても、上位交換回線網11に接続されている一般電話等とビル内の移動局との通信が可能となる。またビルの上層階などでは他基地局からの電波の干渉があり通信に問題があるが、本例では建物内に光伝送子局装置があるので他局の電波の干渉を排除して通信を行うことが可能である。また、ビル内の携帯電話ユーザは1つのセルから長時間移動しないことが多いため、セルのトラフィック密度が上昇し呼損率等が計画値よりも上昇することがある。そのような場合には、トラヒック密度が高い場所に光伝送子局装置を設置することで問題を回避できる。図3では、無線変復調装置13および光伝送親局装置10は、対象ビルの外部に配置したが、同じビル内に設置しても良い。
【0009】
図4は、屋外開空間での移動体通信用光伝送装置によるエリア拡張の例である。上位交換回線網11と接続された無線変復調装置13は、送受信増幅装置20のアンテナ130から電波を送出することで、主エリア30をサービスエリアとし、移動局133と通信を行う。また、光伝送親局装置10は、方向性結合器302を経由して無線変復調装置13と接続している。光伝送親局装置10からは光ファイバ121a、122aを経由して光伝送子局装置12aに接続され、光伝送子局装置12aの対移動局アンテナ130aからの電波で補助エリア31aを構成し、移動局134と通信をする。同様に、光伝送親局装置10から光ファイバ121b、122bを経由して光伝送子局装置12bに接続し、光伝送子局装置12bの対移動局アンテナ130bからの電波で補助エリア31bをサービスエリアとしている。補助エリア31c、補助エリア31dも同様である。補助エリアの構成は、光伝送子局装置12dに示すように、主エリア30に隣接して設けたり、光伝送子局装置12aに示すように光伝送親局装置10より物理的に離れた場所に設置したりする。このような応用は、無線変復調装置13のトラヒック処理能力に十分余裕のある、低トラヒツクの山間部や郊外などに適している。光伝送親局装置と光伝送子局装置で構成される移動体通信用光伝送装置を用いないで、捕助エリア31a〜31dに示したエリアでサービスを行うには、上位回線交換網11と直接接続された高価な無線変復調装置13が個別に必要になるのに対して、移動体通信用光伝送装置を使用すれば、経済的なエリア拡張が可能になる。この移動体通信用光伝送装置を用いて拡張した補助エリア31a〜31dは、論理的には主エリア30と同じセルとして考え、運用することができる。
【0010】
このような移動体通信用光伝送装置によるエリア拡張においては、補助エリア31a〜31dのエリア面積をできるだけ広く取れるようにすることが、経済性においてさらに有利である。このため、光伝送子局装置の出力をさらに送受信増幅装置で増幅し、エリア面積を拡大する方策が取られることがある。図5に光伝送子局装置12aに送受信増幅装置20を組み合わせた構成のブロック図を示す。光伝送子局装置12aの各内部機器は、図2で説明したものと同じであるが、電源部401は光伝送子局装置12aの各部へ電源を供給しているもので、図2においては記載を省略していたものである。送受信増幅装置20は、図4で説明した無線変復調装置13と接続されている送受信増幅装置20と同じものである。図5で、光伝送子局装置12aの送信出力は送受信共用器205に入り、送受信増幅装置20の送信電力増幅部203において所要の電力まで増幅され、送受信共用器206を介して対移動局アンテナ130から下り無線信号電波として放射され、移動局133で受信される。送信電力増幅部203を設けることにより受信サービスエリアが拡大する。また、対応して移動局133の送信サービスエリアを広げるために低雑音受信電力増幅部204が用いられている。移動局133の電波は、対移動局アンテナ130、送受信共用器206を経由し低雑音受信増幅部204で増幅され送受信共用器205を介して光伝送子局装置12aに送られる。
【0011】
電源部402は送受信増幅装置20の各部に電力を供給している。送信電力増幅部203は、通常、多数の無線高周波変調波(例えば1波2Wで8波、総合電力16W)を1台の増幅器で増幅する共通増幅器が用いられることが多い。これには、発生する3次歪等のスプリアス成分を法令規定値以下に保つため、フィード・フォワード方式など、CPU207を用いた精密な増幅器制御が行われる。また、送受信増幅装置20のCPU207は同時に、各部の状態監視等を行い、例えば送信電力増幅部の出力異常などの場合には出力を停止するなどの機能を併せ持っている。また、外部スイッチの開または閉、若しくは外部信号入力によりCPUリセット、電源リセット等の機能が行えるものもある。無停電電源装置40は、停電時に、光伝送子局装置12aや送受信増幅装置20の電源のバックアップを行うものである。
【0012】
【発明が解決しようとする課題】
図5に示したような構成では、光伝送親局装置10と光伝送子局装置12aによる移動体通信用光伝送装置に送受信増幅装置20が接続されている。移動体通信用光伝送装置は、図2に示すように無線変復調装置13との組合せのみで使用されるように構成され、送受信増幅装置20の接続が想定された設計はなされていない。また送受信増幅装置20も、図4に略記したように無線変復調装置13と直結して使用することを前提として設計されている。この場合送受信増幅装置20と無線変復調装置13の間には、送受信高周波信号の回線の他に、リレー接点入出力やオープンコレクタ信号入出力回路による機器の情報伝送手段をもっている場合が多い。しかし、光伝送子局装置12aには、送受信増幅装置20のリレー接点入出力やオープンコレクタ信号入出力による情報受信・制御手段が設けられていない。
【0013】
このように設計されている光伝送子局装置12aと送受信増幅装置20を図5に示すように接続して使用すると、図2に示したCPU129で各部の状態を監視し、音声帯域モデム128を用いて光伝送親局装置10のCPU109へ状態報告したり、さらには音声帯域モデム139、専用線または一般公衆回線15、音声帯域モデム141を経由して監視制御局16に機器の状態情報を集中し、遠隔保守、監視を行う移動体通信用光伝送装置の多彩な監視・制御機能が、送受信増幅装置20に対しては動作しないという問題が発生する。光伝送子局装置12aのシステムリセットが必要な場合、その制御は光伝送親局装置10、もしくは監視制御局16からの制御信号による命令伝送で実行できるが、送受信増幅装置20のシステムリセットは、送受信増幅装置20が設置されている現地に行ってローカルに実行しなければならない。同様に、光伝送子局装置12aの各機器のアラーム監視は光伝送親局装置10や監視制御局16で遠隔監視できるが、光伝送子局装置12aに接続された無停電電源装置40や、送受信増幅装置20の各機器の遠隔アラーム監視は出来ず、これらは現地でしかわからないという問題が発生する。
【0014】
本発明の目的は、上記に述べたように移動体通信用光伝送装置と送受信増幅装置を組み合わせた場合に、遠隔監視情報伝送機能が、光伝送子局装置までで途切れてしまうという問題を解決し、送受信増幅装置の遠隔監視・制御も行えるようにした移動体通信用光伝送装置を提供することにある。
【0015】
【課題を解決するための手段】
上記の目的を達成するために、本発明は、
移動体通信用無線変復調装置と接続された光伝送親局装置と、この光伝送親局装置と光ファイバ伝送路を介して接続された一つまたは複数の光伝送子局装置とから構成され、光伝送親局装置と光伝送子局装置は移動体送受信用信号を授受する信号用回線と、監視制御信号を授受する制御回線とを前記光ファイバ伝送路上に形成してなる移動体通信用光伝送装置であって、
光伝送子局装置は、少なくとも一つの外部制御入力端子および少なくとも一つの外部制御出力端子と、前記外部制御入力端子へ入力された監視制御信号を光伝送親局装置に前記制御回線を介して送信する手段と、前記制御回線を介し光伝送親局装置から送られてきた監視制御信号もしくは自装置内で生成した監視制御信号を前記外部制御出力端子に出力する手段とを有したことを特徴とする移動体通信用光伝送装置を提供する。
【0016】
【発明の実施の形態】
図1は、本発明の移動体通信用光伝送装置の構成例を示すブロック図である。この移動体通信用光伝送装置の上位には、図2に示す構成と同様に、無線変復調装置、上位交換回線網、専用線または一般公衆回線、監視制御局などが接続されているものとする。
【0017】
光伝送親局装置10からの下り回線である光ファイバ121は、光−電気変換部123に接続され、その出力は増幅器124、送受信共用器125に接続されている。送受信共用器125の他方は増幅器126に接続され、電気−光変換部127を経由して光伝送親局装置の上り回線である光ファイバ122に接続されている。光ファイバ121に周波数多重されている制御信号は、光−電気変換部123から音声帯域モデム128を経てCPU129で受信される。同様にCPU129からの状態監視情報は音声帯域モデム128、電気−光変換部127を経由し、増幅器126からの無線高周波信号と周波数多重されて光ファイバ122で光伝送親局装置10に送られる。CPU129は、光伝送子局装置12の各部の機器の状態監視、機器の制御を行っている。電源部401は光伝送子局装置12に電力を供給すると共に、CPU129との間の制御回線をもつ。
【0018】
本発明の構成要素として光伝送子局装置12に設置したのが、外部制御出力端子501、外部制御入力端子502、503である。それぞれCPU129のI/Oポートで構成するものとしている。外部制御入出力端子の入出力信号としては、無電圧リレー接点信号、オープンコレクタ信号、RS232Cロジックレベルなど多彩な形式が考えられるが、周辺機器との整合性を考慮して選択する。
【0019】
光伝送子局装置12の送受信共用器125の出力は、送受信共用器205を経由し、送受信増幅装置20に接続される。送受信共用器205の出力は送信電力増幅部203、送受信共用器206を経由して対移動局アンテナ130に接続され、電波として移動局133で受信される。また、移動局133からの電波は、対移動局アンテナ130を経て送受信共用器206、低雑音受信増幅部204を経由し送受信共用器205に出力される。CPU207は、フィード・フォワード方式などで送信電力増幅部203を制御すると共に、送受信増幅装置20の各機器の状態情報の監視・制御を行っている。CPU207の監視した情報は、外部制御出力端子505から出力される。またCPU207は、外部制御入力端子504からの制御信号を受信する。外部制御入力端子504は光伝送子局装置12の外部制御出力端子501と接続され、外部制御出力端子505は外部制御入力端子502と接続されている。これらの端子504、505もCPU207のI/Oポートで構成されている。電源部402は、送受信増幅装置20の各機器に電力を送出すると共に、CPU207との間に制御回線をもつ。また図1では無停電電源装置40が設置されていて、停電時には電源部401、402に電力を供給する。この無停電電源装置40には外部制御出力端子506が設けられ、外部制御入力端子503と接続されている。なお、図1では、光伝送子局装置12と送受信増幅装置20との間の監視制御信号は、端子501〜505を介してCPUポート間で直接やりとりしているものとしたが、必要な場合には信号形式やレベル変換などのためのインタフェースを設けるものとする。
【0020】
以下、図1の装置の動作を説明する。光ファイバ121を経由して受信された光伝送親局装置からの信号は、光−電気変換部123で電気信号に変換され、増幅器124、送受信共用器125、送受信共用器205を経由し、送信電力増幅部203で電力増幅され、送受信共用器206、対移動局アンテナ130を経由して移動局133に送出される。一方、移動局133からの送信信号は、対移動局アンテナ130、送受信共用器206を経て、低雑音受信増幅部204で増幅され、送受信共用器205、送受信共用器125、増幅器126を経由し、電気−光変換部127で光信号に変換され、光ファイバ122から送出される。
【0021】
送受信増幅装置20のCPU207は、送受信増幅装置20内の各機器を監視制御し、警報発生時に外部制御出力端子505へ状態監視情報、例えば機器の異常の場合には警報信号を出力する。この警報信号は、光伝送子局装置12の外部制御入力端子502からCPU129へ入力される。CPU129は、音声帯域モデム128を介し、この警報信号を電気−光変換部127、光ファイバ122を経由し上位系である光伝送親局装置10、また図示されていないが監視制御局へ伝送する。警報信号を受信した上位系は、制御信号を光伝送子局装置12に送出する。この制御信号は光ファイバ121、光−電気変換部123、音声帯域モデム128を経由しCPU129で受信される。CPU129は外部制御出力端子501からこの制御信号を送出する。CPU207は、外部制御出力端子501と接続されている外部制御入力端子504から制御信号を受信し、必要な制御を行う。例えば制御信号が、送受信増幅装置20をシステムスタンバイにする信号なら、CPU207のプログラムにより、送受信増幅装置20をスタンバイ状態にする。
【0022】
また、停電が発生すると、無停電電源装置40が動作し、電源401、402をバックアップするが、この時には、無停電電源装置40の外部制御出力端子506から光伝送子局装置12の外部制御入力端子503を介し、CPU129へ電源の警報情報を送出する。CPU129は、この警報情報を受け取ると、上記と同じように音声帯域モデム128、電気−光変換部127、光ファイバ122を介して上位系へ無停電電源装置40による電源バックアップ状態であることを通知する。上位系は、この警報情報を受信すると、必要により光ファイバ121、光−電気変換部123、音声帯域モデム128を介して送受信増幅装置20をシステムスタンバイとする制御信号を送出する。この制御信号を受信したCPU129は、外部制御出力端子501に送受信増幅装置20のシステムスタンバイの制御信号を送出し、送受信増幅装置20をスタンバイ状態にする。
【0023】
CPU129の外部制御入力端子で受信した各警報状態は、光伝送子局装置12の他の機器の状態監視情報とともに、音声帯域モデム128を介して上位系へ送出される。上位系としては、光伝送親局装置10と監視制御局がある。最終的には監視制御局へ監視情報は集中されるが、警報状態に対する制御信号をどこから送出するかは、各種の方法がある。例えば、送受信増幅装置20をスタンバイさせる制御信号は、監視制御局から送出してもよいし、光伝送親局装置10から送出することも出来る。光伝送親局装置10から制御信号を送出するには、光伝送親局装置10のCPUの処理プログラムが、警報情報の内容を判断し、監視制御局へその警報情報を転送すると同時に、光伝送子局装置12のCPU129に対して必要な制御信号を送出する処理を行う。
【0024】
また、光伝送子局装置12のCPU129の独自の判断で、送受信増幅装置20の制御を行うことも可能である。この場合には、外部制御入力端子503や502から警報状態を受信すると、CPU129は上位系へ警報情報を送出すると同時に、外部制御出力端子501から制御信号を外部制御入力端子504を経由し送受信増幅装置20のCPU207に送出し、送受信増幅装置20に対する制御を行う。この場合には、CPU129の処理プログラムに外部制御入力端子502、503で受信した機器の状態を判断し、必要により独自に制御信号、例えば送受信増幅装置20をシステムスタンバイとする制御信号を外部制御出力端子501から送出する機能をもたす必要がある。
【0025】
なお、図1では、光伝送子局装置12のCPU129には一つの外部制御出力端子と二つの外部制御入力端子を備える例を示したが、これらの数は光伝送子局装置12と組み合わされる送受信増幅装置20などの外部装置が持っている外部制御入力端子、外部制御出力端子の数や機能、またどのような制御を行うかなどシステム全体の要求に応じて決められるべきものである。
【0026】
また以上の説明では、1台の光伝送親局装置に対して、光分配器と高周波合成器を用いて、複数の光伝送子局装置をスター状に接続するスター配線方式について説明したが、特開2000−324044号公報(移動体通信用光伝送システム)に示されるような光変換中継伝送方式の移動体通信用光伝送装置についても適用ができるものである。また本発明では、光伝送親局装置10と無線変復調装置13が高周波同軸ケーブル等で有線接続された例をもとに説明をおこなったが、光伝送親局装置10に、対基地局アンテナが接続され、無線変復調装置13と電波による無線接続が行われる、いわゆる光伝送リピータの光伝送子局装置、光伝送親局装置にも適用可能である。また図1の光伝送親局装置10や光伝送子局装置12には、本発明に関連する必要最小限の内部要素のみを示しており、他の部分は図示を省略している。実際の装置には帯域制限フィルタや高周波減衰器等が挿入される。
【0027】
【発明の効果】
本発明により、既存の送受信増幅装置を光伝送親局装置に接続する場合にも、移動体通信用光伝送装置が本来もつ監視制御信号伝送機能を活用して、送受信増幅装置の警報伝送、制御等が可能となり、移動体通信用光伝送装置と一体化した遠隔制御か可能となる。また光伝送子局装置に付加した外部制御入力端子、外部制御出力端子は送受信増幅装置のみならず他の周辺機器の警報伝送、制御等にも使用可能で、利便性が増すと共にシステムの信頼性が向上する。
【図面の簡単な説明】
【図1】本発明の移動体通信用光伝送装置に送受信増幅装置を接続した場合のブロック図である。
【図2】従来の移動体通信用光伝送装置のブロック図である。
【図3】移動体通信用光伝送装置をビルに適用した場合の構成図である。
【図4】移動体通信用光伝送装置を屋外でエリア拡張に適用した場合の構成図である。
【図5】従来の移動体通信用光伝送装置に送受信増幅装置を接続した場合のブロック図である。
【符号の説明】
10 光伝送親局装置
11 上位交換回線網
12、12a、12b、12c、12d 光伝送子局装置
13 無線変復調装置
15 専用線または一般公衆回線
16 監視制御局
20 送受信増幅装置
40 無停電電源装置
123 光−電気変換部
120、128、139、141 音声帯域モデム
109、129、207 CPU
203 送信電力増幅部
204 低雑音受信増幅部
401、402 電源部
501、505、506 外部信号出力端子
502、503、504 外部信号入力端子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical transmission apparatus for mobile communication that transmits a radio high-frequency signal to a radio wave insensitive area using an optical fiber.
[0002]
[Prior art]
In automobile / cell phone systems, wireless calling systems, etc., mobile communication base stations and mobile stations are connected wirelessly by radio waves, and the mobile communication base stations are connected to a higher-level network via an exchange or the like. . Taking automobiles and mobile phones as an example, this mobile communication base station is adjacent as a cell, with a cover area of several hundreds to several tens of kilometers as one unit from the viewpoint of improving frequency utilization efficiency. A cellular system in which a large number of areas are arranged is used. In such a system, good radio communication can be performed outdoors on the ground, but radio waves do not reach tunnels, underground malls, basement floors, etc. even within the coverage area of mobile communication base stations. A dead zone that cannot be performed occurs. In addition, on the upper floors of high-rise buildings, the mobile station existing in the building is far away from the mobile communication base station that should originally perform wireless communication due to problems such as the directivity of the base station antenna and the increase in the line-of-sight distance. The phenomenon that the radio wave of the base station is captured may occur. Further, as the number of mobile phone subscribers increases, communication traffic at a specific time and place locally increases, causing a phenomenon such as an increase in the call loss rate. Furthermore, it is necessary to compensate for the discontinuity of the cover area due to topographical factors even in outdoor open spaces, and how to economically expand the area in a low-traffic rural area.
[0003]
As means for solving these problems, an optical transmission device for mobile communication is used. FIG. 2 is an example of a block diagram of an optical transmission device for a cellular phone for countermeasures against insensitivity in tunnels, underground malls and the like. The system is connected to a radio base station radio modulation / demodulation device 13 connected to the higher-level network 11, an optical transmission master station device 10 wired to the radio modulation / demodulation device 13, and an optical transmission master station device 10 connected by an optical fiber. It consists of at least one optical transmission slave station device. Although FIG. 2 shows a case where two optical transmission slave station devices 12a and 12b are connected, a larger number of optical transmission slave station devices can be connected. Since the optical transmission slave station devices 12a and 12b are composed of the same device, the internal details are described only for the optical transmission slave station device 12a. The optical transmission slave station device 12a is connected to the optical transmission master station device 10 through a downlink optical fiber 121a and an uplink optical fiber 122a, and the optical transmission slave station device 12b is connected to the optical transmission master station device 10 and optical fibers 121b and 122b. Connected with. The optical transmission slave station devices 12a and 12b have mobile station antennas 130a and 130b, respectively. The optical transmission master station device 10, the optical transmission slave station devices 12a and 12b, and the optical fiber together constitute an optical transmission device for mobile communication.
[0004]
The wireless transmitter 135 of the wireless modem 13 of the wireless base station generates a wireless high frequency signal such as an 800 MHz band and a 1.5 GHz band assigned to the mobile phone. This radio high frequency signal is, for example, a π / 4 shift QPSK modulated wave in the Japanese digital PDC system. When the mobile communication optical transmission device is not used, the high-frequency signal is connected to the antenna and communicates with the mobile station. When the mobile communication optical transmission device is used, the radio high-frequency signal is sent to the optical transmission master station device 10 and amplified or attenuated to an appropriate power level by the amplifier 103. Converted to a signal. This optical signal is transmitted to each optical transmission slave station apparatus via the optical distributor 105 through the optical fiber 121a. In the optical transmission slave station device 12 a, the original radio high-frequency signal is restored from the optical signal by the optical-electrical conversion unit 123, amplified to a required power level by the amplifier 124, and transferred to and from the antenna duplexer 125. Radiated as radio waves from the local antenna 130a. By installing the optical transmission slave station device 12a in the dead zone, wireless communication (downlink) from the wireless modem 13 to the mobile station 133a or the like in the dead zone can be performed.
[0005]
On the other hand, radio communication (uplink) from the mobile station 133a in the dead zone to the radio modem 13, that is, the radio wave emitted by the mobile station 133a is transmitted to the mobile station antenna 130a of the optical transmission slave station device 12a installed in the dead zone. Captured. This is amplified to an appropriate power level by the amplifier 126 through the duplexer 125 and then converted into an optical signal by the electrical / optical converter 127. This optical signal is transmitted to the optical transmission master station device 10 through the optical fiber 122a, and reconverted into a radio high-frequency signal by the optical-electrical converter 106. This is combined with the output from another opto-electric conversion unit by the high frequency synthesizer 137, amplified to an appropriate power level by the amplifier 108, and input to the receiving unit 136 of the radio modem 13 for uplink radio communication. You can do it. Due to the low loss of the optical fiber, the transmission distance of the optical fiber connecting the optical transmission master station device 10 and the optical transmission slave station device 12a can be a long distance transmission of several kilometers to several tens of kilometers.
[0006]
In the optical transmission apparatus for mobile communication, a control line is configured by frequency multiplexing optical signals between the optical transmission master station apparatus 10 and the optical transmission slave station apparatus 12a, and the state of each internal device of the optical transmission slave station apparatus 12a Can be monitored and controlled by the optical transmission master station device 10. In other words, the CPU 129 is provided inside the optical transmission slave station device 12a, and the state monitoring and resetting of the devices in the optical transmission slave station device 12a are autonomously performed. An audio band modem signal is converted by the modem 128, converted into an optical signal by the electro-optical converter 127, frequency-multiplexed with the radio high-frequency signal, and transmitted to the optical transmission master station device 10. This state information is received by the CPU 109 via the voice band modem 120 in the optical transmission master station apparatus 10. The CPU 109 of the optical transmission master station device 10 optically transmits a control signal through the route of the voice band modem 120, the electric-optical converter 104, the optical distributor 105, the optical fiber 121 a, the optical-electric converter 123, and the voice band modem 128. The data is sent to the CPU 129 of the slave station device 12a. With this control signal, control of the transmission power level of the optical transmission slave station device 12a, system reset, and the like are performed, thereby enhancing the convenience of maintenance and inspection. Further, the CPU 109 of the optical transmission master station device 10 is connected to the supervisory control station 16 of the operator via the voice band modem 139, the dedicated line or the general public line 140, and the voice band modem 141, and performs optical transmission from the supervisory control station 16. Control of the master station and slave stations is also performed.
[0007]
Further, the optical transmission master station device 10 distributes the optical signal to a plurality of optical transmission slave station devices by providing an optical distributor 105 that distributes the optical signal to 1: N (N is an integer of 2 or more). Can do. Further, by providing a plurality of electro-optical converters and a high frequency synthesizer 137, it is possible to receive optical signals from a plurality of optical transmission slave station devices. As a result, a large number of optical transmission slave station devices can be installed in the optical transmission master station device 10. For example, a wide range that cannot be covered by one optical transmission slave station device can be made a service area, or a plurality of optical transmission slave station devices can be physically It is possible to provide a virtual radio space that is installed in a dead zone isolated from the outside and logically regarded as one cell.
[0008]
FIG. 3 is a configuration diagram showing an application example in a building. The optical transmission slave station apparatuses 12a, 12b, 12c, 12d, and 12e connected to the optical transmission master station apparatus 10 by optical fibers are respectively installed on the back of the ceiling of each floor of the building, and the inside of the building is used as a service area. Since the internal details of each optical transmission slave station device are the same as those in FIG. 2, description thereof is omitted. The optical transmission slave station apparatuses 12a to 12e transmit and receive radio waves to and from the mobile stations 133a to 133e in the building by using the mobile station antennas 130a to 130e. The optical transmission master station device 10 is connected to the wireless modem device 13 by wire, and the wireless modem device 13 is connected to the upper switching network 11. In this way, even in a building or underground where radio waves on the ground do not reach, communication between a general telephone connected to the higher-order switched network 11 and a mobile station in the building becomes possible. Also, on the upper floors of the building, there is a problem in communication due to radio wave interference from other base stations, but in this example there is an optical transmission slave station device in the building, so communication by eliminating the radio wave interference of other stations Is possible. In addition, since mobile phone users in a building often do not move from one cell for a long time, the traffic density of the cell increases and the call loss rate or the like may increase from the planned value. In such a case, the problem can be avoided by installing the optical transmission slave station device in a place where the traffic density is high. In FIG. 3, the radio modulation / demodulation device 13 and the optical transmission master station device 10 are arranged outside the target building, but may be installed in the same building.
[0009]
FIG. 4 is an example of area expansion by an optical transmission device for mobile communication in an open outdoor space. The wireless modulation / demodulation device 13 connected to the higher-order switched line network 11 transmits radio waves from the antenna 130 of the transmission / reception amplification device 20, thereby communicating with the mobile station 133 using the main area 30 as a service area. The optical transmission master station device 10 is connected to the wireless modem device 13 via the directional coupler 302. The optical transmission master station apparatus 10 is connected to the optical transmission slave station apparatus 12a via the optical fibers 121a and 122a, and the auxiliary area 31a is constituted by radio waves from the mobile station antenna 130a of the optical transmission slave station apparatus 12a. Communicate with the mobile station 134. Similarly, the optical transmission master station apparatus 10 is connected to the optical transmission slave station apparatus 12b via the optical fibers 121b and 122b, and the auxiliary area 31b is serviced by radio waves from the mobile station antenna 130b of the optical transmission slave station apparatus 12b. It is an area. The same applies to the auxiliary area 31c and the auxiliary area 31d. The auxiliary area is configured adjacent to the main area 30 as shown in the optical transmission slave station device 12d, or physically separated from the optical transmission master station device 10 as shown in the optical transmission slave station device 12a. Or to install. Such an application is suitable for a low-traffic mountainous area or a suburb where the wireless modem 13 has sufficient traffic processing capability. In order to provide services in the areas indicated by the catchment areas 31a to 31d without using an optical transmission apparatus for mobile communication composed of an optical transmission master station apparatus and an optical transmission slave station apparatus, While the expensive wireless modem 13 directly connected is individually required, the use of an optical transmission device for mobile communication enables economical area expansion. The auxiliary areas 31a to 31d expanded using this mobile communication optical transmission apparatus can be logically considered and operated as the same cell as the main area 30.
[0010]
In such area expansion by the mobile communication optical transmission device, it is further advantageous in terms of economy to make the auxiliary areas 31a to 31d as large as possible. For this reason, measures may be taken to further amplify the output of the optical transmission slave station device with a transmission / reception amplification device to expand the area area. FIG. 5 shows a block diagram of a configuration in which the transmission / reception amplifier device 20 is combined with the optical transmission slave station device 12a. The internal devices of the optical transmission slave station apparatus 12a are the same as those described with reference to FIG. 2, but the power supply unit 401 supplies power to each part of the optical transmission slave station apparatus 12a. The description is omitted. The transmission / reception amplification device 20 is the same as the transmission / reception amplification device 20 connected to the wireless modulation / demodulation device 13 described in FIG. In FIG. 5, the transmission output of the optical transmission slave station device 12 a enters the transmission / reception duplexer 205, is amplified to a required power in the transmission power amplification unit 203 of the transmission / reception amplification device 20, and is connected to the mobile station antenna via the transmission / reception duplexer 206. 130 is radiated as a downlink radio signal radio wave and is received by the mobile station 133. By providing the transmission power amplifying unit 203, the reception service area is expanded. Correspondingly, a low noise received power amplifier 204 is used to expand the transmission service area of the mobile station 133. The radio wave of the mobile station 133 is amplified by the low noise reception amplification unit 204 via the mobile station antenna 130 and the transmission / reception duplexer 206, and sent to the optical transmission slave station apparatus 12 a via the transmission / reception duplexer 205.
[0011]
The power supply unit 402 supplies power to each unit of the transmission / reception amplification device 20. As the transmission power amplifying unit 203, a common amplifier that amplifies a large number of radio high-frequency modulated waves (for example, 8 waves per wave 2W, total power 16W) is often used by one amplifier in many cases. For this purpose, precise amplifier control using the CPU 207, such as a feed-forward method, is performed in order to keep spurious components such as third-order distortion generated below the legal regulation value. In addition, the CPU 207 of the transmission / reception amplification device 20 simultaneously has a function of monitoring the state of each unit and stopping the output in the case of an abnormal output of the transmission power amplification unit, for example. Some devices can perform functions such as CPU reset and power reset by opening or closing an external switch or by inputting an external signal. The uninterruptible power supply 40 backs up the power of the optical transmission slave station 12a and the transmission / reception amplifier 20 at the time of a power failure.
[0012]
[Problems to be solved by the invention]
In the configuration as shown in FIG. 5, a transmission / reception amplification device 20 is connected to an optical transmission device for mobile communication comprising an optical transmission master station device 10 and an optical transmission slave station device 12a. As shown in FIG. 2, the mobile communication optical transmission device is configured to be used only in combination with the wireless modulation / demodulation device 13, and is not designed to be connected to the transmission / reception amplification device 20. The transmission / reception amplification device 20 is also designed on the assumption that it is directly connected to the wireless modulation / demodulation device 13 as schematically shown in FIG. In this case, in addition to the transmission / reception high-frequency signal line, the transmission / reception amplification device 20 and the wireless modulation / demodulation device 13 often have device information transmission means using relay contact input / output and open collector signal input / output circuits. However, the optical transmission slave station device 12a is not provided with information reception / control means by the relay contact input / output and the open collector signal input / output of the transmission / reception amplification device 20.
[0013]
When the optical transmission slave station device 12a and the transmission / reception amplification device 20 designed as described above are connected and used as shown in FIG. 5, the CPU 129 shown in FIG. To report the status to the CPU 109 of the optical transmission master station apparatus 10, and to concentrate the status information of the equipment on the monitoring control station 16 via the voice band modem 139, the dedicated line or general public line 15, and the voice band modem 141. However, there arises a problem that various monitoring and control functions of the mobile communication optical transmission device that performs remote maintenance and monitoring do not operate for the transmission / reception amplifier device 20. When the system reset of the optical transmission slave station device 12a is necessary, the control can be executed by command transmission by a control signal from the optical transmission master station device 10 or the supervisory control station 16, but the system reset of the transmission / reception amplifier device 20 is It must be performed locally by going to the site where the transmission / reception amplification device 20 is installed. Similarly, alarm monitoring of each device of the optical transmission slave station device 12a can be remotely monitored by the optical transmission master station device 10 or the supervisory control station 16, but the uninterruptible power supply device 40 connected to the optical transmission slave station device 12a, Remote alarm monitoring of each device of the transmission / reception amplifier 20 cannot be performed, and there arises a problem that these are only known locally.
[0014]
The object of the present invention is to solve the problem that the remote monitoring information transmission function is interrupted up to the optical transmission slave station device when the optical transmission device for mobile communication and the transmission / reception amplification device are combined as described above. It is another object of the present invention to provide an optical transmission apparatus for mobile communication that can perform remote monitoring and control of a transmission / reception amplifier.
[0015]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides:
It is composed of an optical transmission master station device connected to a mobile communication radio modulation / demodulation device, and one or a plurality of optical transmission slave station devices connected to the optical transmission master station device via an optical fiber transmission line, The optical transmission master station device and the optical transmission slave station device are mobile communication optical devices in which a signal line for transmitting / receiving a mobile transmission / reception signal and a control line for transmitting / receiving a monitoring control signal are formed on the optical fiber transmission line. A transmission device,
The optical transmission slave station device transmits at least one external control input terminal, at least one external control output terminal, and a supervisory control signal input to the external control input terminal to the optical transmission master station device via the control line. And a means for outputting a supervisory control signal sent from the optical transmission master station apparatus via the control line or a supervisory control signal generated in the own apparatus to the external control output terminal. An optical transmission device for mobile communication is provided.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a block diagram showing a configuration example of an optical transmission apparatus for mobile communication according to the present invention. As in the configuration shown in FIG. 2, a wireless modulation / demodulation device, a high-order switched line network, a dedicated line or a general public line, a supervisory control station, etc. are connected to the upper level of this mobile communication optical transmission device. .
[0017]
An optical fiber 121 that is a downlink from the optical transmission master station device 10 is connected to an optical-electrical converter 123, and its output is connected to an amplifier 124 and a duplexer 125. The other of the transmission / reception duplexer 125 is connected to an amplifier 126 and is connected to an optical fiber 122 that is an uplink of the optical transmission master station device via an electric-optical conversion unit 127. The control signal frequency-multiplexed on the optical fiber 121 is received by the CPU 129 from the opto-electric conversion unit 123 via the voice band modem 128. Similarly, the state monitoring information from the CPU 129 is frequency-multiplexed with the radio high-frequency signal from the amplifier 126 via the voice band modem 128 and the electro-optical converter 127 and sent to the optical transmission master station device 10 through the optical fiber 122. The CPU 129 performs device status monitoring and device control of each unit of the optical transmission slave station device 12. The power supply unit 401 supplies power to the optical transmission slave station device 12 and has a control line with the CPU 129.
[0018]
External control output terminals 501 and external control input terminals 502 and 503 are installed in the optical transmission slave station apparatus 12 as components of the present invention. Each of them is constituted by an I / O port of the CPU 129. As the input / output signals of the external control input / output terminals, various formats such as a no-voltage relay contact signal, an open collector signal, and an RS232C logic level are conceivable, but are selected in consideration of consistency with peripheral devices.
[0019]
The output of the transmission / reception duplexer 125 of the optical transmission slave station device 12 is connected to the transmission / reception amplification device 20 via the transmission / reception duplexer 205. The output of the transmission / reception duplexer 205 is connected to the mobile station antenna 130 via the transmission power amplifier 203 and the transmission / reception duplexer 206, and is received by the mobile station 133 as a radio wave. Radio waves from the mobile station 133 are output to the transmission / reception duplexer 205 via the mobile station antenna 130, the transmission / reception duplexer 206, and the low noise reception amplification unit 204. The CPU 207 controls the transmission power amplifying unit 203 by a feed-forward method or the like, and monitors and controls the status information of each device of the transmission / reception amplification device 20. Information monitored by the CPU 207 is output from the external control output terminal 505. The CPU 207 receives a control signal from the external control input terminal 504. The external control input terminal 504 is connected to the external control output terminal 501 of the optical transmission slave station apparatus 12, and the external control output terminal 505 is connected to the external control input terminal 502. These terminals 504 and 505 are also constituted by I / O ports of the CPU 207. The power supply unit 402 sends power to each device of the transmission / reception amplifier 20 and has a control line with the CPU 207. In FIG. 1, an uninterruptible power supply 40 is installed, and power is supplied to the power supply units 401 and 402 at the time of a power failure. The uninterruptible power supply 40 is provided with an external control output terminal 506 and is connected to the external control input terminal 503. In FIG. 1, the supervisory control signal between the optical transmission slave station device 12 and the transmission / reception amplifier device 20 is directly exchanged between the CPU ports via the terminals 501 to 505. Shall be provided with an interface for signal format and level conversion.
[0020]
The operation of the apparatus shown in FIG. 1 will be described below. A signal from the optical transmission master station apparatus received via the optical fiber 121 is converted into an electric signal by the optical-electric conversion unit 123 and transmitted via the amplifier 124, the transmission / reception duplexer 125, and the transmission / reception duplexer 205. The power is amplified by the power amplifier 203 and transmitted to the mobile station 133 via the duplexer 206 and the mobile station antenna 130. On the other hand, the transmission signal from the mobile station 133 is amplified by the low noise reception amplification unit 204 via the mobile station antenna 130 and the transmission / reception duplexer 206, and then passes through the transmission / reception duplexer 205, the transmission / reception duplexer 125, and the amplifier 126. It is converted into an optical signal by the electro-optical converter 127 and sent out from the optical fiber 122.
[0021]
The CPU 207 of the transmission / reception amplification device 20 monitors and controls each device in the transmission / reception amplification device 20 and outputs state monitoring information to the external control output terminal 505 when an alarm is generated, for example, an alarm signal in the case of device abnormality. This alarm signal is input to the CPU 129 from the external control input terminal 502 of the optical transmission slave station device 12. The CPU 129 transmits the alarm signal via the voice band modem 128 to the optical transmission master station apparatus 10 which is a host system via the electrical-optical converter 127 and the optical fiber 122, and to a supervisory control station (not shown). . The host system that has received the alarm signal sends a control signal to the optical transmission slave station apparatus 12. This control signal is received by the CPU 129 via the optical fiber 121, the optical-electrical converter 123, and the voice band modem 128. The CPU 129 sends out this control signal from the external control output terminal 501. The CPU 207 receives a control signal from the external control input terminal 504 connected to the external control output terminal 501 and performs necessary control. For example, if the control signal is a signal for setting the transmission / reception amplification device 20 to system standby, the transmission / reception amplification device 20 is set to the standby state by the program of the CPU 207.
[0022]
In addition, when a power failure occurs, the uninterruptible power supply 40 operates to back up the power supplies 401 and 402. At this time, the external control input of the optical transmission slave station apparatus 12 from the external control output terminal 506 of the uninterruptible power supply 40 Power supply alarm information is sent to the CPU 129 via the terminal 503. Upon receiving this alarm information, the CPU 129 notifies the host system that the power is backed up by the uninterruptible power supply 40 via the voice band modem 128, the electrical-optical converter 127, and the optical fiber 122 in the same manner as described above. To do. Upon receiving this alarm information, the host system sends a control signal for setting the transmission / reception amplifier 20 as a system standby via the optical fiber 121, the optical-electrical converter 123, and the voice band modem 128 as necessary. Upon receiving this control signal, the CPU 129 sends a system standby control signal for the transmission / reception amplifier 20 to the external control output terminal 501 to place the transmission / reception amplifier 20 in a standby state.
[0023]
Each alarm state received at the external control input terminal of the CPU 129 is sent to the upper system via the voice band modem 128 together with the state monitoring information of other devices of the optical transmission slave station device 12. The host system includes an optical transmission master station device 10 and a supervisory control station. Eventually, the monitoring information is concentrated on the monitoring control station, but there are various ways to send the control signal for the alarm state from. For example, a control signal for making the transmission / reception amplifier 20 stand by may be sent from the supervisory control station or sent from the optical transmission master station 10. In order to send a control signal from the optical transmission master station device 10, the processing program of the CPU of the optical transmission master station device 10 judges the contents of the alarm information and transfers the alarm information to the supervisory control station at the same time as the optical transmission. Processing for sending necessary control signals to the CPU 129 of the slave station device 12 is performed.
[0024]
It is also possible to control the transmission / reception amplifying device 20 based on the unique judgment of the CPU 129 of the optical transmission slave station device 12. In this case, when an alarm state is received from the external control input terminal 503 or 502, the CPU 129 sends alarm information to the host system, and at the same time, transmits and receives a control signal from the external control output terminal 501 via the external control input terminal 504. The data is sent to the CPU 207 of the device 20 to control the transmission / reception amplification device 20. In this case, the state of the device received at the external control input terminals 502 and 503 is determined in the processing program of the CPU 129, and if necessary, a control signal, for example, a control signal for setting the transmission / reception amplifier 20 as a system standby is output to the external control. It is necessary to provide a function of sending from the terminal 501.
[0025]
1 shows an example in which the CPU 129 of the optical transmission slave station device 12 includes one external control output terminal and two external control input terminals, these numbers are combined with the optical transmission slave station device 12. The number and function of the external control input terminals and external control output terminals possessed by the external device such as the transmission / reception amplifier device 20 and what kind of control should be performed should be determined according to the requirements of the entire system.
[0026]
In the above description, the star wiring system in which a plurality of optical transmission slave station devices are connected in a star shape by using an optical distributor and a high frequency synthesizer for one optical transmission master station device has been described. The present invention can also be applied to an optical transmission device for mobile communication using an optical conversion repeater transmission system as disclosed in JP 2000-324044 A (optical transmission system for mobile communication). The present invention has been described based on an example in which the optical transmission master station device 10 and the wireless modulation / demodulation device 13 are wired by a high-frequency coaxial cable or the like, but the optical transmission master station device 10 has a base station antenna. The present invention can also be applied to an optical transmission slave station device or an optical transmission master station device of a so-called optical transmission repeater that is connected and wirelessly connected to the wireless modem device 13 by radio waves. Further, the optical transmission master station apparatus 10 and the optical transmission slave station apparatus 12 of FIG. 1 show only the minimum necessary internal elements related to the present invention, and the other parts are not shown. A band limiting filter, a high frequency attenuator, or the like is inserted into the actual device.
[0027]
【The invention's effect】
According to the present invention, even when an existing transmission / reception amplification device is connected to an optical transmission master station device, an alarm transmission / control of the transmission / reception amplification device is utilized by utilizing the supervisory control signal transmission function inherent in the optical transmission device for mobile communication. Remote control integrated with the optical communication device for mobile communication becomes possible. In addition, the external control input terminal and external control output terminal added to the optical transmission slave unit can be used not only for transmission / reception amplifiers but also for alarm transmission and control of other peripheral devices, increasing convenience and system reliability. Will improve.
[Brief description of the drawings]
FIG. 1 is a block diagram when a transmission / reception amplification device is connected to an optical transmission device for mobile communication according to the present invention.
FIG. 2 is a block diagram of a conventional mobile communication optical transmission apparatus.
FIG. 3 is a configuration diagram when an optical transmission apparatus for mobile communication is applied to a building.
FIG. 4 is a configuration diagram when an optical transmission apparatus for mobile communication is applied to area expansion outdoors.
FIG. 5 is a block diagram when a transmission / reception amplification device is connected to a conventional mobile communication optical transmission device.
[Explanation of symbols]
10 Optical transmission master station device
11 Host switching network
12, 12a, 12b, 12c, 12d Optical transmission slave station apparatus
13 Wireless modem
15 Private line or general public line
16 Monitoring and control station
20 Transmitting and receiving amplifier
40 Uninterruptible power supply
123 Opto-electric converter
120, 128, 139, 141 Voice band modem
109, 129, 207 CPU
203 Transmission power amplifier
204 Low noise reception amplifier
401, 402 Power supply unit
501, 505, 506 External signal output terminal
502, 503, 504 External signal input terminal

Claims (1)

移動体通信用無線変復調装置に接続された光伝送親局装置と、
送受信電力増幅機能を持つ、1つまたは複数の光伝送子局装置と、
上記光伝送親局装置と上記光伝送子局装置とを結ぶ移動体送受信信号用光ファイバと、 対応する上記光伝送子局装置に接続され、送受信電力増幅機能を持ち、子局エリア内の移動体との間で無線による送受信を行う送受信増幅装置と、
を備えると共に、
上記光伝送子局装置に該子局監視・制御手段を設け、上記送受信増幅装置に該送受信増幅装置監視・制御手段を設け、
上記光ファイバは、各光伝送子局装置及び送受信増幅装置の送受信電力増幅機能を通じて光伝送親局装置と移動体との間での送受信を行い、
更にこの光ファイバは、上記送受信の信号に周波数多重化された、上記子局監視・制御手段の監視情報及び上記送受信増幅装置監視・制御手段の監視情報を、上記光伝送親局装置へ送り、光伝送親局装置からの、上記監視情報を受けての子局及び送受信増幅装置への制御信号を、光伝送子局装置及び送受信増幅装置へ送り制御を行わせしめるものとした、移動体通信用光伝送装置。
An optical transmission master station device connected to a wireless modem for mobile communication;
One or more optical transmission slave station devices having a transmission and reception power amplification function;
A mobile transmission / reception signal optical fiber connecting the optical transmission master station device and the optical transmission slave station device, and connected to the corresponding optical transmission slave station device, has a transmission / reception power amplification function, and moves within the slave station area. A transmission / reception amplifying device that performs wireless transmission / reception with the body;
With
The optical transmission slave station apparatus is provided with the slave station monitoring / control means, and the transmission / reception amplifier apparatus is provided with the transmission / reception amplifier monitoring / control means,
The optical fiber performs transmission / reception between the optical transmission master station apparatus and the mobile body through the transmission / reception power amplification function of each optical transmission slave station apparatus and transmission / reception amplification apparatus,
Furthermore, this optical fiber sends the monitoring information of the slave station monitoring / control means and the monitoring information of the transmission / reception amplifier monitoring / control means, frequency-multiplexed to the transmission / reception signal, to the optical transmission master station apparatus, For mobile communication , the control signal from the optical transmission master station device to the slave station and the transmission / reception amplification device receiving the monitoring information is sent to the optical transmission slave station device and the transmission / reception amplification device. Optical transmission device.
JP2001205801A 2001-07-06 2001-07-06 Optical transmission device for mobile communication Expired - Fee Related JP4620295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001205801A JP4620295B2 (en) 2001-07-06 2001-07-06 Optical transmission device for mobile communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001205801A JP4620295B2 (en) 2001-07-06 2001-07-06 Optical transmission device for mobile communication

Publications (2)

Publication Number Publication Date
JP2003023396A JP2003023396A (en) 2003-01-24
JP4620295B2 true JP4620295B2 (en) 2011-01-26

Family

ID=19042041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001205801A Expired - Fee Related JP4620295B2 (en) 2001-07-06 2001-07-06 Optical transmission device for mobile communication

Country Status (1)

Country Link
JP (1) JP4620295B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128981A (en) * 2004-10-28 2006-05-18 Hitachi Kokusai Electric Inc Communication system
US20070008939A1 (en) * 2005-06-10 2007-01-11 Adc Telecommunications, Inc. Providing wireless coverage into substantially closed environments
JP2008022144A (en) * 2006-07-11 2008-01-31 Toshiba Corp Optical transmission system and its delay-time measuring method
JP2009296213A (en) * 2008-06-04 2009-12-17 Sumitomo Electric Ind Ltd Optical data link
US8472579B2 (en) 2010-07-28 2013-06-25 Adc Telecommunications, Inc. Distributed digital reference clock
US8532242B2 (en) 2010-10-27 2013-09-10 Adc Telecommunications, Inc. Distributed antenna system with combination of both all digital transport and hybrid digital/analog transport
US8462683B2 (en) 2011-01-12 2013-06-11 Adc Telecommunications, Inc. Distinct transport path for MIMO transmissions in distributed antenna systems
CA2914104C (en) 2013-02-22 2022-12-13 Adc Telecommunications, Inc. Master reference for base station network interface sourced from distributed antenna system
CN105191241B (en) 2013-02-22 2018-08-10 Adc电信股份有限公司 Universal Remote is wireless dateline
US9787457B2 (en) 2013-10-07 2017-10-10 Commscope Technologies Llc Systems and methods for integrating asynchronous signals in distributed antenna system with direct digital interface to base station
US9596322B2 (en) 2014-06-11 2017-03-14 Commscope Technologies Llc Bitrate efficient transport through distributed antenna systems
US10499269B2 (en) 2015-11-12 2019-12-03 Commscope Technologies Llc Systems and methods for assigning controlled nodes to channel interfaces of a controller

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07231469A (en) * 1994-02-17 1995-08-29 N T T Idou Tsuushinmou Kk Method for configuring radio base station equipment
JPH08107382A (en) * 1994-10-05 1996-04-23 Tec Corp Radio communication system
JPH08149552A (en) * 1994-11-25 1996-06-07 Nec Corp Optical micro cell transmission system
JPH10271059A (en) * 1997-03-21 1998-10-09 Kokusai Electric Co Ltd Cdma method cellular radio system
JPH1124730A (en) * 1997-06-30 1999-01-29 Toshiba Corp Monitoring system by separate access system
JPH11225113A (en) * 1997-11-20 1999-08-17 Kokusai Electric Co Ltd Optical conversion relay amplifier system
JP2000115828A (en) * 1998-10-08 2000-04-21 Matsushita Electric Ind Co Ltd Radio base station device, and control channel assigning method therefor
JP2000151559A (en) * 1998-11-05 2000-05-30 Kokusai Electric Co Ltd Optical communication system
JP2000278219A (en) * 1999-03-29 2000-10-06 Kokusai Electric Co Ltd Optical relay amplifier
JP2002094449A (en) * 2000-09-19 2002-03-29 Hitachi Kokusai Electric Inc Radio access system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07231469A (en) * 1994-02-17 1995-08-29 N T T Idou Tsuushinmou Kk Method for configuring radio base station equipment
JPH08107382A (en) * 1994-10-05 1996-04-23 Tec Corp Radio communication system
JPH08149552A (en) * 1994-11-25 1996-06-07 Nec Corp Optical micro cell transmission system
JPH10271059A (en) * 1997-03-21 1998-10-09 Kokusai Electric Co Ltd Cdma method cellular radio system
JPH1124730A (en) * 1997-06-30 1999-01-29 Toshiba Corp Monitoring system by separate access system
JPH11225113A (en) * 1997-11-20 1999-08-17 Kokusai Electric Co Ltd Optical conversion relay amplifier system
JP2000115828A (en) * 1998-10-08 2000-04-21 Matsushita Electric Ind Co Ltd Radio base station device, and control channel assigning method therefor
JP2000151559A (en) * 1998-11-05 2000-05-30 Kokusai Electric Co Ltd Optical communication system
JP2000278219A (en) * 1999-03-29 2000-10-06 Kokusai Electric Co Ltd Optical relay amplifier
JP2002094449A (en) * 2000-09-19 2002-03-29 Hitachi Kokusai Electric Inc Radio access system

Also Published As

Publication number Publication date
JP2003023396A (en) 2003-01-24

Similar Documents

Publication Publication Date Title
JP3812787B2 (en) Optical conversion repeater amplification system
CA2003929C (en) Radiotelephone system in the form of a private branch exchange
US6937878B2 (en) Mobile communication network system using digital optical link
JP3737896B2 (en) Relay system
JP4620295B2 (en) Optical transmission device for mobile communication
US6310705B1 (en) Duplex outdoor base station transceiver subsystem utilizing a hybrid system of a high power amplifier and an optic antenna
EP0468688B1 (en) Method and apparatus for providing wireless communications between remote locations
WO1999067901A1 (en) Repeating installation using telephone line
US7221906B2 (en) Distributed multi-drop base station/repeating unit using extension of analog optical transmission in mobile communication system
JP3359261B2 (en) Public service digital mobile communication system
CN111935730A (en) Method and device for realizing signal coverage of distributed base station and base station network
JP3300552B2 (en) Repeater using optical cable
CA2128842A1 (en) Wireless telephone systememploying switchboard-controlled lines
KR101117793B1 (en) Mobile communication relay using multi media in closed space and relay method thereof
JPH0388435A (en) Relay station for wireless telecommunication system
JPH0570335B2 (en)
JP3007494B2 (en) Mobile communication base station equipment
KR100338625B1 (en) Base station transceiver system using wavelength division multiplexing
JP3407967B2 (en) Wireless relay amplifier and monitoring method using the same
KR100333141B1 (en) Transmitting and receiving interface device of CDMA base station by using optic line
KR100484071B1 (en) Control Unit of Optical Repeater in Base Station Transceiver Subsystem
JP4550550B2 (en) Integrated relay system
KR19990081469A (en) Wireless network system of macro cell configuration using optical system
JP3078980B2 (en) Signal relay method
KR100673164B1 (en) System for microwave repeater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100506

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101028

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4620295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees