JP4619641B2 - Ultrasonic measuring device - Google Patents

Ultrasonic measuring device Download PDF

Info

Publication number
JP4619641B2
JP4619641B2 JP2003357544A JP2003357544A JP4619641B2 JP 4619641 B2 JP4619641 B2 JP 4619641B2 JP 2003357544 A JP2003357544 A JP 2003357544A JP 2003357544 A JP2003357544 A JP 2003357544A JP 4619641 B2 JP4619641 B2 JP 4619641B2
Authority
JP
Japan
Prior art keywords
ultrasonic
wave
transmission
unit
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003357544A
Other languages
Japanese (ja)
Other versions
JP2005121509A (en
Inventor
義文 田岡
ラフィックル イスラム モハメッド
修之 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
U Tec Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
U Tec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd, U Tec Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2003357544A priority Critical patent/JP4619641B2/en
Publication of JP2005121509A publication Critical patent/JP2005121509A/en
Application granted granted Critical
Publication of JP4619641B2 publication Critical patent/JP4619641B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、種々の車両や自律・移動型ロボットのような移動体に搭載され、移動体と、その周囲の物体との距離(相対距離)、及び、その物体の移動体に対する速度(相対速度)を測定する超音波測定装置に関するものである。   The present invention is mounted on a moving body such as various vehicles and autonomous / mobile robots, and the distance (relative distance) between the moving body and surrounding objects, and the speed of the object relative to the moving body (relative speed). ).

従来、自動車に代表される車両や自律・移動型のロボット等の移動体の分野においては、衝突回避等を行うため、超音波センサを用いた超音波測定装置を移動体に搭載し、移動体と、その前方等の周囲の車両や人等の動体又は壁やガードレール、電柱等の静止体の障害物となる物体との相対距離や、前記物体の移動体に対する相対速度を測定することが種々行われている。   Conventionally, in the field of moving bodies such as vehicles represented by automobiles and autonomous / moving robots, in order to avoid collisions, an ultrasonic measuring device using an ultrasonic sensor is mounted on the moving body. Measuring the relative distance of a moving object such as a vehicle, a person, etc., or a stationary object such as a wall, guardrail, or power pole, and the relative speed of the object relative to the moving object Has been done.

そして、例えば車両の場合、自車に搭載した超音波測定装置により、つぎの(1)〜(3)のようにして、前記の相対距離や相対速度を測定することが提案されている。   For example, in the case of a vehicle, it has been proposed to measure the relative distance and relative speed as described in the following (1) to (3) using an ultrasonic measurement device mounted on the host vehicle.

(1)超音波のいわゆるドップラー効果を利用し、複数の圧電素子を配列した超音波送受波器の一部の素子から超音波を出力し、自車前方の対象物体での反射波を、前記超音波送受波器の全ての素子により複数回受信し、その時系列的な受信信号のフーリエ変換結果の時間変化から、自車前方の対象物体の相対速度(ベクトル的運動速度)を測定する(例えば、特許文献1参照。)。   (1) Utilizing the so-called Doppler effect of ultrasonic waves, ultrasonic waves are output from some elements of an ultrasonic transducer in which a plurality of piezoelectric elements are arranged, and reflected waves from a target object in front of the vehicle are Received multiple times by all the elements of the ultrasonic transducer, and measure the relative speed (vector motion speed) of the target object ahead of the vehicle from the time change of the Fourier transform result of the time-series received signal (for example, , See Patent Document 1).

(2)自車側後部のいわゆる死角にある物体を超音波センサの超音波の送受信で検知し、その送受信の時間差から自車と前記物体との距離を検出して測定し、送受信波の周波数分析に基づき、送信波の周波数と受信波の周波数との周波数差から、前記物体の相対速度を検出して測定する(例えば、特許文献2参照。)。   (2) An object in the so-called blind spot at the rear of the vehicle side is detected by transmission / reception of ultrasonic waves of an ultrasonic sensor, and the distance between the vehicle and the object is detected and measured from the transmission / reception time difference. Based on the analysis, the relative velocity of the object is detected and measured from the frequency difference between the frequency of the transmission wave and the frequency of the reception wave (see, for example, Patent Document 2).

(3)超音波測定装置により、いわゆるバックソナー、コーナーソナーを形成し、その送受波器(超音波振動子)から自車外方に超音波を出力し、自車の周囲の障害物等の反射波を前記送受波器により受信して高速フーリエ変換し、送信開始後、反射波の送信波周波数成分が閾値を越えるまでの時間から、自車と障害物の距離を算出して測定する(例えば、特許文献3参照。)。   (3) The so-called back sonar and corner sonar are formed by the ultrasonic measuring device, the ultrasonic wave is output from the transducer (ultrasonic transducer) to the outside of the vehicle, and the obstacles around the vehicle are reflected. The wave is received by the transducer and subjected to fast Fourier transform, and after starting transmission, the distance between the vehicle and the obstacle is calculated and measured from the time until the transmission wave frequency component of the reflected wave exceeds the threshold (for example, , See Patent Document 3).

また、車両の衝突回避の分野においては、GHz帯のミリ波が、電磁波であって、光速で遠くまで検知でき、天候等の外乱の影響を受けない特質を有すること等を考慮し、ミリ波センサを用いたプリクラッシュセンサにより、自車前方の物体の相対距離や相対速度を測定し、衝突回避の制御を行うことも行われている。
特開平8−292254号公報(段落番号[0017]−[0021]、図7) 特開平8−324366号公報(段落番号[0006]、[0014]、[0015]、図4) 特開2001−221848号公報(段落番号[0036]、[0057]、図1、図4)
Also, in the field of vehicle collision avoidance, the millimeter wave in the GHz band is an electromagnetic wave that can be detected far away at the speed of light and has characteristics that are not affected by disturbances such as weather. A collision avoidance control is also performed by measuring a relative distance and a relative speed of an object ahead of the host vehicle by a pre-crash sensor using a sensor.
JP-A-8-292254 (paragraph numbers [0017]-[0021], FIG. 7) JP-A-8-324366 (paragraph numbers [0006], [0014], [0015], FIG. 4) Japanese Patent Laid-Open No. 2001-221848 (paragraph numbers [0036] and [0057], FIGS. 1 and 4)

一般に、超音波センサは、ミリ波センサ等の電波に比して音波であることから、検知速度が遅く、測定可能な範囲(距離)が数メートル以下のいわゆる近距離範囲に限られ、しかも、いわゆる残響や環境の種々のノイズの影響を受け易いという特質がある。   In general, since an ultrasonic sensor is a sound wave compared to radio waves such as a millimeter wave sensor, the detection speed is slow, the measurable range (distance) is limited to a so-called short-range range of several meters or less, There is a characteristic that it is easily affected by so-called reverberation and various environmental noises.

そして、この超音波センサを用いた前記(1)の従来装置の場合、反射波を複数回受信しなければ相対速度の測定が行えないため、前記の特質を考慮すると、測定結果が得られるまでに時間を要し、しかも、反射波の複数回受信をくり返し、それによって得られた測定結果の変化傾向から衝突回避制御等を行う状態になったことを検出するため、信号処理が極めて複雑になる問題がある。   In the case of the conventional apparatus (1) using this ultrasonic sensor, since the relative velocity cannot be measured unless the reflected wave is received a plurality of times, the measurement result is obtained in consideration of the above characteristics. Signal processing is extremely complicated to detect the situation where collision avoidance control and the like are performed from the change tendency of the measurement result obtained by repeatedly receiving reflected waves multiple times. There is a problem.

そのため、極めて高速に処理を行わなければ、測定結果に基づいて衝突回避制御等を実行するための時間余裕が極めて短くなり、実用的でなく、さらに、距離(相対距離)については、別途測定する必要がある問題もある。   For this reason, if processing is not performed at a very high speed, the time margin for executing collision avoidance control or the like based on the measurement result becomes extremely short, which is not practical, and the distance (relative distance) is measured separately. There are also problems that need to be done.

また、前記(2)の従来装置の場合、相対距離及び相対速度の両方の測定は行えるが、相対距離については、超音波の送信からその反射波の受信までに要する時間を計時して測定しなければならず、送信波や受信した反射波の信号処理だけでなく計時処理も必要になり、回路部の処理負担が大きく、小規模で安価な構成により相対距離及び相対速度の両方を迅速に測定できない問題がある。   In the case of the conventional device (2), both the relative distance and the relative velocity can be measured. The relative distance is measured by measuring the time required from the transmission of the ultrasonic wave to the reception of the reflected wave. In addition to signal processing of transmitted waves and received reflected waves, timing processing is required, the processing load on the circuit section is large, and both the relative distance and relative speed can be quickly achieved with a small and inexpensive configuration. There is a problem that cannot be measured.

さらに、前記(3)の従来装置の場合、送信開始から反射波の送信波周波数成分が閾値を越えるまでに要する時間を計時して相対距離を測定しなければならず、送信波や受信した反射波の信号処理だけでなく計時処理も必要になり、前記(2)の装置と同様の問題があり、しかも、相対速度については、例えば前記(1)の装置によって別途測定する必要がある問題もある。   Further, in the case of the conventional device of (3), it is necessary to measure the relative distance by measuring the time required from the start of transmission until the transmission wave frequency component of the reflected wave exceeds the threshold. In addition to the wave signal processing, time measurement processing is required, and there is a problem similar to that of the device of (2), and the relative speed needs to be separately measured by the device of (1), for example. is there.

つぎに、前記従来のミリ波センサを用いて形成されるプリクラシュセンサは、ミリ波センサが、電磁波の特殊なセンサであり、極めて高価であり、しかも、ミリ波の人体や他の機器に与える影響が十分には解明されていないことから、価格及び安全性の双方が重視される車両のプリクラッシュセンサとしては、最適な構成とはいえない。   Next, the pre-crush sensor formed using the conventional millimeter-wave sensor is a special sensor for electromagnetic waves, which is very expensive, and is applied to the millimeter-wave human body and other devices. Since the influence has not been sufficiently elucidated, it cannot be said that the configuration is optimal as a vehicle pre-crash sensor in which both price and safety are important.

そして、超音波センサは前記のバックソナーやコーナーソナーにも用いられ、量産されている汎用のセンサであることから、安価であり、しかも、超音波が人体に全く影響しないことから、前記の価格及び安全性の双方が重視される車両のプリクラッシュセンサに用いることが考えられるが、この場合、相対距離及び相対速度の両方を、どのようにして、小規模で安価な構成により極力迅速に測定するかが、重要な課題となる。   The ultrasonic sensor is also used for the back sonar and corner sonar, and is a mass-produced general-purpose sensor, so it is inexpensive and the ultrasonic wave has no influence on the human body. In this case, it is possible to measure both the relative distance and the relative speed as quickly as possible with a small and inexpensive configuration. It will be an important issue.

本発明は、車両や自律・移動型のロボット等の移動体に搭載される超音波測定装置であって、移動体の周囲の障害物等の物体と移動体との距離(相対距離)及び前記物体の移動体に対する速度(相対速度)を、超音波の1回の送受信の信号処理で同時に測定し得るようにし、小規模で安価な構成により迅速に測定することを目的とする。   The present invention is an ultrasonic measurement device mounted on a moving body such as a vehicle or an autonomous / mobile robot, and includes a distance (relative distance) between an object such as an obstacle around the moving body and the moving body, An object of the present invention is to make it possible to simultaneously measure the velocity (relative velocity) of an object with respect to a moving body by signal processing for one transmission and reception of ultrasonic waves, and to quickly measure with a small and inexpensive configuration.

上記した目的を達成するために、本発明の超音波測定装置は、移動体に搭載された超音波測定装置であって、超音波の送信波を前記移動体の外方に出力する送信部と、前記移動体外の物体で反射した前記送信波の反射波を受信する受信部と、少なくとも前記受信部の受信信号をFFT処理するフーリエ変換部と、基本周波数波を第1高調波として、前記送信波の信号と前記受信信号との規格化された第p高調波(pは1を含む整数)の振幅比から前記移動体と前記物体との距離を算出し、前記送信波の信号と前記受信信号との規格化された第q高調波(qはpと異なる整数)の周波数差から前記物体の相対速度を算出する演算部とを備え、前記送信波が方形波のパルス波であって、前記第p高調波が奇数次(pが奇数)の高調波であり、前記第q高調波が偶数次(qが偶数)の高調波であることを特徴とする(請求項1)。 In order to achieve the above-described object, an ultrasonic measurement device of the present invention is an ultrasonic measurement device mounted on a moving body, and includes a transmission unit that outputs an ultrasonic transmission wave to the outside of the moving body; A reception unit that receives a reflected wave of the transmission wave reflected by an object outside the moving body, a Fourier transform unit that performs FFT processing on at least the reception signal of the reception unit, and the transmission using the fundamental frequency wave as a first harmonic wave A distance between the moving object and the object is calculated from a normalized amplitude ratio of the p-th harmonic (p is an integer including 1) between the wave signal and the reception signal, and the signal of the transmission wave and the reception the q harmonics normalized with the signal (q is different from p integer) e Bei a calculating unit for calculating the relative velocity of the object from the frequency difference, the transmission wave is a pulse wave of the square wave The p-th harmonic is an odd-order harmonic (p is an odd number), wherein the q harmonics are harmonics even-order (q is an even number) (claim 1).

つぎに、本発明の超音波測定装置は、さらに、受信部の受信信号の不要ノイズを除去するノイズフイルタを備えたこと、及び、演算部により算出された距離及び相対速度を表示する表示部を備えたことも特徴とする(請求項2、3)。 Next, the ultrasonic measurement apparatus of the present invention further includes a noise filter that removes unnecessary noise from the reception signal of the reception unit, and a display unit that displays the distance and relative velocity calculated by the calculation unit. It is also characterized by comprising (claims 2, 3 ).

また、本発明の超音波測定装置は、送信部の超音波出力び受信部の超音波受信を、送受信共用の1個の超音波送受信器により行うようにしてもよく(請求項)、別体の超音波送信器及び超音波受信器によりそれぞれ行うようにしてもよい(請求項)。 The ultrasonic measuring apparatus of the present invention, the ultrasonic wave reception of the ultrasonic output beauty receiver of the transmission unit may be performed by a single ultrasonic transducer for both transmission and reception (Claim 4), You may make it carry out with a separate ultrasonic transmitter and an ultrasonic receiver, respectively (Claim 5 ).

さらに、本発明の超音波測定装置は、移動体が車両であって、送信部が車両前方に送信波を出力し、プリクラッシュセンサを形成することを特徴とし(請求項)、移動体が自律・移動型のロボットであることも特徴とする(請求項)。 Furthermore , the ultrasonic measurement apparatus of the present invention is characterized in that the moving body is a vehicle, and the transmission unit outputs a transmission wave in front of the vehicle to form a pre-crash sensor (Claim 6 ). It is also characterized by being an autonomous and mobile robot (claim 7 ).

つぎに、本発明の超音波測定装置は、送信部及び受信部を、測定範囲を拡大するように、移動体に複数配設するとともに、フーリエ変換部、演算部を、前記送信部及び受信部の組毎に備え、各組の前記送信部の送信波が、それぞれの奇数次の第p高調波が異なる周波数になる超音波であることを特徴とする(請求項)。 Next, in the ultrasonic measurement apparatus of the present invention, a plurality of transmission units and reception units are arranged on the moving body so as to expand the measurement range, and a Fourier transform unit and a calculation unit are connected to the transmission unit and the reception unit. The transmission waves of the transmission units of each set are ultrasonic waves having different odd-order p-th harmonics at different frequencies (claim 8 ).

まず、請求項1の発明によれば、移動体の送信部部から移動体の前方等に出力された方形波のパルス波の送信波が、移動体外の障害物等の物体によって反射し、この反射によって波形歪等の非線形変化が生じた超音波が反射波として移動体の受信部に受信される。 First, according to the invention of claim 1, the transmission wave of the square wave output from the transmitting unit of the moving body to the front of the moving body is reflected by an object such as an obstacle outside the moving body, Ultrasonic waves in which nonlinear changes such as waveform distortion are caused by reflection are received as reflected waves by the receiving unit of the moving body.

そして、フーリエ変換部のFFT処理により少なくとも受信部の受信信号の高調波成分が検出される。このとき、既知の又はFFT処理で検出された元の送信波の信号とFFT処理で検出された受信信号との高調波の振幅比移動体と前記物体との距離(相対距離)に比例して変化し、送信波の信号と受信信号との高調波の周波数差前記物体の相対速度に比例して変化する。そこで、演算部により、送信波の信号と受信信号との奇数次(pが奇数)の第p高調波の振幅比から前記の相対距離を求め、同時に、送信波の信号と受信信号との偶数次(qが偶数)の第q高調波の周波数差から前記の相対速度を求めることができる。 Then, at least a harmonic component of the reception signal of the reception unit is detected by the FFT processing of the Fourier transform unit. At this time, the harmonic amplitude ratio of the known or received signal detected by the signal and FFT processing of the detected original transmission wave FFT processing is proportional to the distance between the object and the moving object (relative distance) changes Te, the frequency difference between the harmonics of the signal and the received signal of the transmitted wave varies in proportion to the relative speed of the object. Therefore, the calculating section, odd (p is an odd number) determined the relative distance from the amplitude ratio of the p harmonic of the signal and the received signal of the transmission wave, at the same time, even with the signal and the received signal of the transmitted wave next (q is an even number) may therefore be found the relative velocity of the the frequency difference between the q harmonics.

したがって、移動体の前方等の周囲の物体の相対距離、相対速度を、送受信をくり返すことなく、超音波の一回の送受信で、短時間に、同時に測定することができるThus, the relative distance of surrounding objects in front or the like of the moving body, a relative speed, without repeating the transmission and reception, in a single transmission and reception of ultrasonic waves, in a short time, as possible out to measure simultaneously.

そのため、安価で安全な超音波を送、受信し、信号処理のみを行う小規模な構成で、迅速に、移動体の周囲の障害物等の物体の相対距離、相対速度の両方を同時測定することができる。   Therefore, it is possible to quickly measure both the relative distance and relative speed of an object such as an obstacle around a moving body with a small-scale configuration that transmits and receives inexpensive and safe ultrasonic waves and performs only signal processing. be able to.

つぎに、請求項の発明によれば、ノイズフイルタにより、環境ノイズや装置内で発生したノイズ等を、受信部の受信信号から低減して除去することができ、ノイズに強い構成で前記物体の相対距離と相対速度を測定することができる利点がある。 Next , according to the invention of claim 2 , the noise filter can reduce and remove environmental noise, noise generated in the apparatus, and the like from the received signal of the receiving unit, and the object having a configuration resistant to noise. There is an advantage that the relative distance and the relative speed of can be measured.

さらに、請求項の発明によれば、表示部に測定結果の前記の相対距離と相対速度を表示して報知等することができ、実用的である。 Furthermore , according to the invention of claim 3 , the relative distance and the relative speed of the measurement result can be displayed on the display unit for notification and the like, which is practical.

つぎに、請求項の発明によれば、送信部の超音波出力び受信部の超音波受信に1個の超音波送受信器が共用され、部品点数が少なくなって装置の小型化等が図られる利点がある。 Then, according to the invention of claim 4, the one ultrasonic transceiver to the ultrasonic receiver of the ultrasonic output beauty receiver of the transmission unit is shared, miniaturization of a small number of parts becomes by device There are advantages to be envisioned.

また、請求項の発明によれば、送信部の超音波出力及び受信部の超音波受信が、別体の超音波送信器及び超音波受信器それぞれにより別個に行われるため、超音波の送、受方向の設定、調整等が、送、受信の別に自在に行える等の利点がある。 Further, according to the invention of claim 5, since the ultrasonic output of the transmission unit and the ultrasonic reception of the reception unit are separately performed by the separate ultrasonic transmitter and ultrasonic receiver, respectively. There is an advantage that the setting and adjustment of the receiving direction can be freely performed separately for transmission and reception.

また、請求項の発明によれば、移動体が車両の場合に、送信部が車両前方に送信波を出力してプリクラッシュセンサを形成することができ、請求項の発明によれば、移動体が自律・移動型のロボットである場合の前記の相対距離、相対速度の測定に適用することができる。 Further, according to the invention of claim 6, when the moving body is a vehicle, it is possible to form a pre-crash sensor transmission unit outputs a transmission wave to the forward vehicle, according to the invention of claim 7, The present invention can be applied to the measurement of the relative distance and the relative speed when the moving body is an autonomous / mobile robot.

さらに、請求項の発明によれば、移動体に複数組の送信部及び受信部を配設し、各組の送信部から異なる周波数の超音波を出力し、各組の受信部の受信信号を、それぞれの組のフーリエ変換部、演算部により処理し、各組毎に相対距離及び相対速度を測定することができ、移動体の周囲の一部又は全部の広い範囲について、迅速に、前記の相対距離及び相対速度の同時測定が行える。 Furthermore, according to the invention of claim 8, arranged a plurality of sets of transmitting unit and the receiving unit to the mobile, and outputs an ultrasonic wave of each set of the transmitter or we different frequencies, each set of receiver Received signals can be processed by each set of Fourier transform units and calculation units, and the relative distance and relative speed can be measured for each set. The relative distance and relative speed can be measured simultaneously.

つぎに、本発明をより詳細に説明するため、その実施形態について、図1〜図17にしたがって詳述する。   Next, in order to describe the present invention in more detail, the embodiment will be described in detail with reference to FIGS.

<<一実施形態>>
まず、移動体としての車両に送、受信部を一組設けてプリクラッシュセンサを形成する一実施形態について、図1〜図16にしたがって詳述する。
<< One Embodiment >>
First, an embodiment in which a pre-crash sensor is formed by providing a set of transmission and reception units to a vehicle as a moving body will be described in detail with reference to FIGS.

図1は移動体としての車両1の平面図、図2は車両1に搭載された超音波測定装置のブロック図、図3はその送信波の説明図、図4は送信波が方形波の周波数変調パルス波の場合に、その中に含まれる高調波例の説明図、図5は送信波が方形波の周波数変調パルス波の場合の信号のFFTスペクトラム例である。   1 is a plan view of a vehicle 1 as a moving body, FIG. 2 is a block diagram of an ultrasonic measurement device mounted on the vehicle 1, FIG. 3 is an explanatory diagram of the transmission wave, and FIG. 4 is a frequency of the transmission wave is a square wave. FIG. 5 is an example of an FFT spectrum of a signal when a transmission wave is a square-wave frequency modulation pulse wave in the case of a modulated pulse wave.

また、図6は図1の受信信号の波形図、図7、図8はそのフーリエ余弦係数項、フーリエ正弦係数項の波形図であり、図9、図10は受信信号の各高調波の振幅特性図、角速度特性図である。   6 is a waveform diagram of the received signal of FIG. 1, FIGS. 7 and 8 are waveform diagrams of the Fourier cosine coefficient term and the Fourier sine coefficient term, and FIGS. 9 and 10 are the amplitudes of the respective harmonics of the received signal. It is a characteristic figure and an angular velocity characteristic figure.

さらに、図11は送信波の信号及び受信信号のFFTスペクトラム、図12、図13、図14は、図11の相対距離24cm、50cm、100cmそれぞれでの奇数次受信高調波のスペクトラム、図15は、受信信号の第1、第3高調波の距離と振幅との関係図である。但し、当然これらは送信波が方形波の周波数変調パルス波の場合であり、奇数の高調波成分では振幅、偶数の高調波成分では周波数のみに着目して計算した例である。また、図16は図2の動作説明用のフローチャートである。   Further, FIG. 11 shows the FFT spectrum of the signal of the transmission wave and the reception signal, FIGS. 12, 13, and 14 show the spectra of the odd-order reception harmonics at the relative distances of 24 cm, 50 cm, and 100 cm in FIG. FIG. 6 is a relationship diagram between the distance and amplitude of first and third harmonics of a received signal. However, these are naturally cases in which the transmission wave is a square-wave frequency-modulated pulse wave, and is an example calculated by paying attention only to the amplitude for odd harmonic components and only the frequency for even harmonic components. FIG. 16 is a flowchart for explaining the operation of FIG.

そして、移動体としての図1の車両1は、フロントバンパー、ボンネット等の前部中央に、超音波の送受信ユニット2が、前方に超音波の送信波を出力してその反射波を受信するように設けられ、このユニット2は、例えばバックソナーやコーナーソナーにも用いられる汎用の超音波センサが形成する送受信共用の1個の超音波送受信器、又は、別体の超音波送信器及び超音波受信器により形成される。   In the vehicle 1 of FIG. 1 as a moving body, an ultrasonic transmission / reception unit 2 outputs an ultrasonic transmission wave forward and receives a reflected wave at the front center of a front bumper, a bonnet or the like. The unit 2 is provided, for example, with one ultrasonic transmitter / receiver shared by a general-purpose ultrasonic sensor also used for back sonar and corner sonar, or a separate ultrasonic transmitter and ultrasonic receiver. Formed by a vessel.

そして、送受信ユニット2が1個の超音波送受信器により形成される場合は、この送受信器が超音波出力と超音波受信とに共用されるため、部品点数が少なくなって装置が安価、小型になる利点がある。   When the transmission / reception unit 2 is formed by a single ultrasonic transmitter / receiver, the transmitter / receiver is shared by the ultrasonic output and the ultrasonic reception, so that the number of parts is reduced, and the apparatus is inexpensive and compact. There are advantages.

また、送受信ユニット2が別体の超音波送信器及び超音波受信器により形成される場合は、超音波送信器と超音波受信器の設置の位置や角度等を個別に設定、調整し、超音波の送、受方向の設定、調整等を、送、受信の別に自在に行うことができる等の利点がある。   When the transmission / reception unit 2 is formed by separate ultrasonic transmitters and ultrasonic receivers, the installation position and angle of the ultrasonic transmitter and ultrasonic receiver are individually set and adjusted, There is an advantage that sound wave transmission, reception direction setting, adjustment and the like can be freely performed separately for transmission and reception.

なお、送受信ユニット2の超音波送受信器や超音波送信器、超音波受信器は、周知の超音波センサと同様、超音波振動子及び共振用のホーン等を用いて形成される。   The ultrasonic transmitter / receiver, the ultrasonic transmitter, and the ultrasonic receiver of the transmission / reception unit 2 are formed using an ultrasonic transducer, a resonance horn, and the like in the same manner as a known ultrasonic sensor.

つぎに、送受信ユニット2を含む車両1の超音波測定装置は、図2に示すように構成され、その送信部3は、送受信ユニット3が形成する送波出力部30及び発振回路31からなる。   Next, the ultrasonic measurement device of the vehicle 1 including the transmission / reception unit 2 is configured as shown in FIG. 2, and the transmission unit 3 includes a transmission output unit 30 and an oscillation circuit 31 formed by the transmission / reception unit 3.

そして、発振回路31は、ハードウエア又はソフトウエアのデジタル発振回路であり、超音波の信号を発生する。   The oscillation circuit 31 is a hardware or software digital oscillation circuit, and generates an ultrasonic signal.

この超音波の信号は、後述のフーリエ解析処理の簡素化等を考慮して、奇数次の高調波のみを含む方形波の信号であり、さらに、この実施形態にあっては、環境ノイズ等の影響(外乱の影響)を極力受けないようにして受波感度を向上するため、方形波の周波数変調されたパルス波の信号、すなわち、周波数変調パルス波の信号であるThe ultrasonic signals, in consideration of the simplification of the Fourier analysis processing discussed later, Ri signal der square wave that includes only odd-order harmonics, further, in this embodiment, the environmental noise to improve the reception sensitivity effect equal to (effect of disturbance) so as not receiving as much as possible, the frequency modulated pulse wave signal of the square wave, i.e., a signal of the frequency modulated pulse wave.

そして、この方形波の周波数変調パルス波の信号を設定されたパルス区間毎に発生して測定をくり返すため、発振回路31は、例えば、パルス周波数変調方式(PFM方式)の周知のデジタル制御により、設定された波形データの読み出し、パルスコードの組み合わせ処理等に基づき、各パルス区間に、例えば、中心周波数が40KHzの方形波形の周波数変調パルス波の信号を発生する。 Then, in order to repeat the measurement by generating a square-wave frequency-modulated pulse wave signal for each set pulse interval, the oscillation circuit 31 is controlled by , for example, a well-known digital control of a pulse frequency modulation method (PFM method). , reading the set waveform data, based on a combination processing of pulse code, the each pulse interval, for example, the center frequency to generate the signal of the frequency modulated pulse wave form waveform towards 40 KHz.

また、送信出力部30は、前記の周波数変調パルス波の信号に基づく超音波振動子の振動により、その周波数変調パルス波の超音波の送信波を発生して前方に出射する。   The transmission output unit 30 generates an ultrasonic transmission wave of the frequency-modulated pulse wave by the vibration of the ultrasonic transducer based on the signal of the frequency-modulated pulse wave and emits it forward.

つぎに、図2の受信部4は、受信波入力部40、第1増幅回路41、ノイズフイルタ42及び第2増幅回路43からなる。   2 includes a received wave input unit 40, a first amplifier circuit 41, a noise filter 42, and a second amplifier circuit 43.

そして、受信波入力部40は、前記の送信波が車両1の前方の先行車等の物体で反射して生じた反射波を受信し、その電気信号の受信信号を第1増幅回路41に出力し、第1増幅回路41は、受信波入力部40の受信信号を前置増幅する。   The received wave input unit 40 receives a reflected wave generated by reflecting the transmitted wave by an object such as a preceding vehicle ahead of the vehicle 1, and outputs the received signal of the electric signal to the first amplifier circuit 41. The first amplifier circuit 41 preamplifies the reception signal of the reception wave input unit 40.

さらに、ノイズフイルタ42は、例えば、論理集積回路(ロジックIC)素子のシュミットトリガ回路、アンド(AND)回路、オア(OR)回路、ナンド(NAND)回路等によって形成されたデジタルフイルタであり、前記の残響や環境ノイズ等の外乱のノイズ、この測定装置内で発生する内部ノイズ等の受信信号に含まれた不要ノイズを除去する。   Further, the noise filter 42 is a digital filter formed by, for example, a Schmitt trigger circuit, an AND circuit, an OR circuit, a NAND circuit, or the like of a logic integrated circuit (logic IC) element. Noise such as reverberation and environmental noise, and internal noise generated in the measuring apparatus are removed.

具体的には、ノイズフイルタ42が、例えば送信波を参照する相関演算等により、この種の周波数変調パルス波の周知のノイズ低減処理と同様にして、受信信号から、反射波の高調波成分以外の不要周波数成分を低減し、前記の不要ノイズを除去する。   Specifically, the noise filter 42 uses a correlation operation that refers to the transmission wave, for example, in the same manner as the known noise reduction processing of this type of frequency-modulated pulse wave, except for the harmonic component of the reflected wave from the received signal. The unnecessary frequency component is reduced and the unnecessary noise is removed.

この場合、ロジックIC素子を用いたデジタルフイルタは、各ロジック回路のオン/オフのスイッチングにより、きめ細かなノイズ除去が行える利点がある。   In this case, the digital filter using the logic IC element has an advantage that fine noise removal can be performed by ON / OFF switching of each logic circuit.

なお、ノイズフイルタ42は、前記の不要ノイズを除去する種々のアナログフイルタ又はデジタルフイルタであってよいのは勿論である。   Needless to say, the noise filter 42 may be various analog filters or digital filters for removing the unnecessary noise.

そして、第2増幅回路43は、ノイズフイルタ42によって不要ノイズが除去された受信信号を出力増幅する。   Then, the second amplifier circuit 43 outputs and amplifies the reception signal from which unnecessary noise has been removed by the noise filter 42.

つぎに、図2のフーリエ変換部5、演算部6は、マイクロコンピュータのソフトウエア処理によって形成される。   Next, the Fourier transform unit 5 and the calculation unit 6 in FIG. 2 are formed by software processing of a microcomputer.

そして、超音波の非線形応答を検出するため、フーリエ変換部5は、受信部4の第2受信回路43から時々刻々の各パルス区間の受信信号が入力される毎に、例えば、送信部3の発振回路31から入力されたその区間の送信波の信号及び受信信号それぞれに高速フーリエ変換(FFT)の処理を施し、送信波の信号、その反射波の受信信号をフーリエ解析処理し、両信号それぞれにつき、基本周波数波を第1高調波として、各高調波を検出する。   Then, in order to detect the nonlinear response of the ultrasonic wave, the Fourier transform unit 5 receives, for example, the reception signal of each pulse interval from the second reception circuit 43 of the reception unit 4 every time, for example, the transmission unit 3 Fast Fourier transform (FFT) processing is performed on each of the transmission wave signal and reception signal in the section input from the oscillation circuit 31, and the transmission wave signal and the reflection wave reception signal are subjected to Fourier analysis processing. Therefore, each harmonic is detected with the fundamental frequency wave as the first harmonic.

なお、送信波の信号については、その高調波成分が既知であることから、前記のフーリエ解析処理を行わず、その既知の高調波成分を検出成分としてもよく、この場合は、フーリエ変換部5の処理が簡素化する。   Since the harmonic component of the transmitted wave signal is known, the known harmonic component may be used as the detection component without performing the Fourier analysis process. In this case, the Fourier transform unit 5 Simplifies the process.

ところで、時間tに関するフーリエ級数式h(t)は、一般に、つぎの数1の式<1>で示される。なお、式中のa、a、bは定数、ωはω=2π/T(Tは周期)の角速度である。 By the way, the Fourier series formula h (t) relating to the time t is generally represented by the following formula <1>. In the formula, a 0 , a n , and b n are constants, and ω is an angular velocity of ω = 2π / T (T is a period).

Figure 0004619641
Figure 0004619641

また、前記式<1>を、つぎの数2の式<2>でフーリエ変換すると、tが消去されて周波数の関数になる。   Further, when the above formula <1> is Fourier transformed by the following formula <2>, t is eliminated and becomes a function of frequency.

Figure 0004619641
Figure 0004619641

そして、フーリエ変換部5は、FFT処理により、時間領域の送信波及び反射波それぞれを周波数領域の波形に分解して解析し、各高調波を検出する。   Then, the Fourier transform unit 5 decomposes and analyzes each of the transmission wave and the reflected wave in the time domain into a waveform in the frequency domain by FFT processing, and detects each harmonic.

このとき、フーリエ変換部5に入力される送信波の信号は、例えば図3に示す波形歪のない方形波の信号であり、この信号のフーリエ級数式h(t)は、つぎの数3の式<3>で表される。   At this time, the transmission wave signal input to the Fourier transform unit 5 is, for example, a square wave signal having no waveform distortion shown in FIG. 3, and the Fourier series expression h (t) of this signal is given by It is represented by the formula <3>.

Figure 0004619641
Figure 0004619641

この式<3>は、方形波の送信波が、図4に示すように、1、3、5、…の奇数次の高調波の合成波形からなることを示す。   This expression <3> indicates that the square wave transmission wave is composed of a composite waveform of odd-order harmonics of 1, 3, 5,... As shown in FIG.

そして、40kHzの送信波の信号の規格化されたフーリエスペクトルは、例えば図5の実測例に示すようになり、奇数次の高調波のみになる。 The normalized Fourier spectrum of the 40 kHz transmission wave signal is, for example, as shown in the actual measurement example of FIG. 5 and includes only odd-order harmonics.

一方、フーリエ変換部5に入力される例えば図6の受信信号は、反射波が方形波から非線形に歪んだ波形になる。なお、図6の間欠的なK(t1)、K(t2)、…が各パルス区間であり、各パルス区間の間が演算期間である。   On the other hand, the received signal of FIG. 6, for example, input to the Fourier transform unit 5 has a waveform in which the reflected wave is distorted nonlinearly from the square wave. Note that intermittent K (t1), K (t2),... In FIG. 6 are each pulse interval, and an interval between each pulse interval is a calculation period.

そのため、各パルス区間の受信信号は、1、3、5、…の奇数次の高調波及び2、4、6、…の偶数次の高調波を含み、フーリエ展開すると、前記式<1>の三角級数のフーリエ余弦係数項、フーリエ正弦係数項が、例えば図7、図8のそれぞれの3次までの波形図に示すように、いずれも1、3次(奇数次)及び2次(偶数次)の成分を含み、各高調波の振幅Cn(=√(an+bn))、角速度(nω)は、例えば、図9、図10に示すようになる。 Therefore, the received signal of each pulse section includes odd-order harmonics of 1, 3, 5,... And even-order harmonics of 2, 4, 6,. As shown in the waveform diagrams up to the third order of FIGS. 7 and 8, for example, the Fourier cosine coefficient term and the Fourier sine coefficient term of the trigonometric series are all first, third order (odd order) and second order (even order). ), And the amplitude Cn (= √ (an 2 + bn 2 )) and angular velocity (nω) of each harmonic are as shown in FIGS. 9 and 10, for example.

そして、車両1と前方の物体との距離を24cm、50cm、100cm(1m)に変えて前記受信信号をフーリエ変換部5で高速フーリエ変換し、この変換で検出された各高調波を演算部6で規格化し、規格化したフーリエスペクトルを求めたところ、図11の実測結果を得た。   Then, the distance between the vehicle 1 and the object in front is changed to 24 cm, 50 cm, and 100 cm (1 m), and the received signal is fast Fourier transformed by the Fourier transform unit 5, and each harmonic detected by this transform is calculated by the computation unit 6. When the normalized Fourier spectrum was obtained, the actual measurement result of FIG. 11 was obtained.

なお、図11において、×印は相対距離24cm、●印は相対距離50cm、○印は相対距離100cmそれぞれの受信信号のスペクトル(受信スペクトル)であり、■印は送信波のスペクトルである。   In FIG. 11, a cross indicates a received signal spectrum (reception spectrum) at a relative distance of 24 cm, a closed circle indicates a relative distance of 50 cm, a open circle indicates a relative distance of 100 cm, and a closed circle indicates a spectrum of a transmission wave.

ところで、この実施形態においては、後述するように、送信波の信号と受信信号との奇数次の高調波の振幅比rVから前記の距離を求め、両信号の偶数次の高調波の周波数差δfから前記の相対速度を求めるため、フーリエ変換部5、演算部6の処理により、奇数次の高調波については距離による振幅変化(FFT結果の垂直変化)のみを観測し、偶数次の高調波については周波数変移(FFT結果の水平変化)のみを観測する。 Incidentally, in this embodiment, as described later, determined Me a distance from said amplitude ratio rV of odd-order harmonics of the signal and the received signal of the transmission wave, the frequency difference between the even-order harmonics of the two signals for Mel determined the relative velocity of the delta] f, the Fourier transform unit 5, the process of the arithmetic unit 6, and observes only the amplitude variation due to the distance for the odd-order harmonics (the vertical change of the FFT results), the even-order For harmonics, only frequency shift (horizontal change of FFT result) is observed.

そのため、図11において、奇数次の第1、第3、第5高調波には、偶数次の第2、第4高調波のような周波数のずれが現われておらず、偶数次の第2、第4高調波には、奇数次の第1、第3、第5高調波のような振幅の差が現われていないが、実際は、全ての次数の高調波に、振幅の差及び周波数のずれが出現し、その傾向は図11と同様である。   Therefore, in FIG. 11, the odd-order first, third, and fifth harmonics do not show a frequency shift like the even-order second and fourth harmonics, and the even-order second, The fourth harmonic does not show the difference in amplitude as in the first, third, and fifth harmonics of the odd order, but in reality, there is an amplitude difference and a frequency shift in all the harmonics. It appears and the tendency is the same as in FIG.

そして、図11の奇数次の高調波(第1、第3、第5高調波)の相対距離別の受信スペクトルは、図12、図13、図14に示すようになり、また、例えば、第1高調波と第3高調波との相対距離距離に対する振幅特性は、図15の実線a、bそれぞれに示すようになる。   And the reception spectrum according to the relative distance of the odd-order harmonics (first, third, and fifth harmonics) in FIG. 11 is as shown in FIGS. 12, 13, and 14, for example, The amplitude characteristics with respect to the relative distance between the first harmonic and the third harmonic are as shown by solid lines a and b in FIG.

これらの結果から、移動体である車両1と、その前方の先行車等の物体との距離(相対距離)が長くなる程、受信信号の各高調波の振幅が小さくなり、同様の傾向を示す送信波の信号と受信信号との同じ次数(周波数)の高調波の振幅比rVから、前記の相対距離Rを測定できることが判明した。 From these results, the longer the distance (relative distance R 1 ) between the vehicle 1 that is a moving body and an object such as a preceding vehicle ahead of it, the smaller the amplitude of each harmonic of the received signal, the same tendency It has been found that the relative distance R can be measured from the amplitude ratio rV of the harmonics of the same order (frequency) between the transmitted wave signal and the received signal.

また、車両1に対する前記物体の相対速度νに応じて、送信波の信号と受信信号との各高調波の周波数差が変化し、この周波数差から前記の相対速度νを測定できることも判明した。 Further, according to the relative velocity ν of said object relative to the car both 1, the frequency difference between the harmonics of the signal and the received signal of the transmission wave is turned into strange, it has also been found to be able to measure the relative velocity ν of said from the frequency difference .

さらに、音速をc、変調周波数の中心周波数をf0、前記周波数差をδfとすると、相対速度νは、つぎの式<4>から求まる。 Furthermore, the sound velocity c, and the center frequency of the number of modulation frequency f0, Then before Symbol a frequency difference [delta] f, the relative velocity [nu, obtained formula <4> or these following.

ν=(c/(2×f0))×δf 式<4>ν = (c / (2 × f0)) × δf formula <4>

そして、前記の振幅比rV、周波数差δfを異なる適当な高調波から求めることにより、コンピュータの処理負担を極力少なくして相対距離R、相対速度νの同時測定が行える。 Then, the amplitude ratio rV, by Rukoto calculated frequency difference δf from different appropriate harmonic, relative distance R to minimize the processing load of the computer, the simultaneous measurement of the relative velocity ν performed.

ところで、送信波が方形波の場合、送信波に奇数次の高調波のみが存在するため、振幅比rV奇数次の高調波から求め、周波数差δf偶数次の高調波から求める。その際、図11等からも明らかなように、次数の低い高調波程、振幅が大きく、振幅比rVが明確になることから、振幅比rVは第1高調波から求める。 Meanwhile, when the transmission wave is a square wave, only odd-order harmonics are present in the transmitted wave, amplitude ratio rV is calculated from the odd-order harmonics, the frequency difference δf is Ru determined from even-order harmonics. At this time, as is clear from FIG. 11 and the like, the lower the harmonic wave of order greater amplitude, since the amplitude ratio rV is clarified, the amplitude ratio rV is Ru determined from the first harmonic.

すなわち、振幅比rVを求める高調波を第p高調波(pは1を含む整数)、周波数差δfを求める高調波を第q高調波とすると、送信波が方形波の場合、第p高調波は奇数次の高調波(望ましくは第1高調波)に限られ、第q高調波は偶数次の高調波である。 That is, (integer including the p 1) p-th harmonic harmonics seeking amplitude ratio rV, when the high harmonics that seek frequency difference δf and the q harmonic, when the transmission wave is a square wave, The p-th harmonic is limited to odd-order harmonics (preferably the first harmonic), and the q-th harmonic is an even-order harmonic.

そして、送信波が方形波であるこの実施形態の場合、各パルス期間の反射波の受信信号がフーリエ変換部5に入力される毎に、そのFFTのフーリエ解析処理により、送信波の信号及び反射波の受信信号につき、N個の時間シフトデータ(時間とともに周波数が変化するデータ)y(1)、y(2)、…、y(N)をフーリエ変換して第1高調波から順のX個の高調波の周波数データf(1)、f(2)、…、f(X)を求めてフーリエスペクトルを得る。 In the case of this embodiment the transmitted wave is a square wave, every time the reception signal of the reflected wave of each pulse period is inputted to the Fourier transform unit 5, by a Fourier analysis of the FFT, the signal of the transmission wave and N times time-shifted data (data whose frequency changes with time) y (1), y (2),..., Y (N) are Fourier-transformed from the first harmonic to the received signal of the reflected wave. Frequency data f (1), f (2),..., F (X) of X harmonics are obtained to obtain a Fourier spectrum.

このとき、方形波である送信波の信号については、奇数次の高調波の周波数データf(1)、f(3)、…のみが得られ、非線形の歪み情報を含む反射波の受信信号については、奇数次及び偶数次の高調波の周波数データf(1)、f(2)、…、f(X)が得られる。   At this time, only the odd-order harmonic frequency data f (1), f (3),... Are obtained for the transmission wave signal which is a square wave, and the received signal of the reflected wave including nonlinear distortion information is obtained. , F (1), f (2),..., F (X) are obtained for odd-order and even-order harmonics.

つぎに、演算部6により、送信波の信号及び受信信号のフーリエスペクトルの各高調波を同じ基準で規格化し、両信号の規格化した奇数次の高調波の周波数データである、例えばデータf(1)の振幅比較により、第p高調波である第1高調波の振幅比rVを求めて対応する相対距離Rを測定し、同時に、両信号の規格化した偶数次の高調波の周波数データである、例えばデータf(2)の周波数差の算出により、第q高調波である第2高調波の周波数差δfを求め、前記式<4>の演算から相対速度νを求めて測定する。 Next, the harmonic wave of the Fourier spectrum of the transmission wave signal and the reception signal is normalized by the same reference by the calculation unit 6, and the frequency data of the odd harmonics normalized by both signals, for example, data f ( the amplitude comparison of 1), the p harmonics at which to obtain an amplitude ratio rV of the first harmonic to measure the corresponding relative distance R, at the same time, even-order harmonics of the frequency data normalized for both signals For example, the frequency difference δf of the second harmonic that is the q-th harmonic is obtained by calculating the frequency difference of the data f (2), and the relative speed ν is obtained from the calculation of the formula <4> and measured.

したがって、受信信号が得られる毎に、そのときの送信波の信号と、受信信号とに基づく一回の信号処理の演算により、相対距離Rと相対速度νが同時測定され、このとき、受信信号の周波数が左にシフトして周波数差δfが小さくなれば、自車1から遠ざかる前方の物体の相対距離R及び相対速度νが測定され、受信信号の周波数が右にシフトして周波数差δfが大きくなれば、自車1に接近する前方の物体の相対距離R及び相対速度νが測定される。 Therefore, every time the reception signal is obtained, a signal of the transmission wave at that time, by calculation of based rather a single signal processing and reception signal, the relative distance R and the relative velocity ν is simultaneously measured, this time, If the frequency of the received signal shifts to the left and the frequency difference δf decreases, the relative distance R and the relative speed ν of the object ahead of the vehicle 1 are measured, and the frequency of the received signal shifts to the right and the frequency difference If δf increases, the relative distance R and the relative speed ν of the object in front of the vehicle 1 are measured.

そして、測定された相対距離R及び相対速度νのデータが、プリクラッシュセンサの出力として、例えば、図外の衝突回避制御のECUに供給され、このECUによって衝突回避の必要な制御が行われる。   Then, the measured data of the relative distance R and the relative speed ν is supplied as an output of the pre-crash sensor, for example, to an ECU for collision avoidance control (not shown), and control necessary for collision avoidance is performed by this ECU.

また、測定された時々刻々の相対距離R、相対速度νは、車内の表示部7に数値の文字や図形等で警報表示等される。   Further, the measured relative distance R and relative speed ν are displayed on the display unit 7 in the vehicle as warnings with numerical characters and figures.

なお、上述の一連の処理は、例えば図16のステップS1〜S7のフローチャートの動作手順にしたがって行われ、送信波の出射(ステップS1)により、設定された微小な規定時間内に受信信号が得られると(ステップS2)、送信波の信号、受信信号のフーリエ解析処理を行って(ステップS3)、振幅比rV、周波数差δfを検出し(ステップS4)、その結果を表示する(ステップS5)、一方、前記の規定時間内に受信信号が得られないときは、前方に先行車等の物体がなく、反射波が得られない状態であるため、ステップS2からステップS6を介してステップS7に移行し、表示部7の表示を無測定を示す初期状態にリセットする。   Note that the above-described series of processing is performed, for example, according to the operation procedure of the flowchart of steps S1 to S7 in FIG. 16, and a received signal is obtained within a set minute specified time by emission of a transmission wave (step S1). If so (step S2), a Fourier analysis process is performed on the signal of the transmission wave and the reception signal (step S3), the amplitude ratio rV and the frequency difference δf are detected (step S4), and the result is displayed (step S5). On the other hand, when the received signal is not obtained within the specified time, there is no object such as a preceding vehicle in front and no reflected wave is obtained, so the process goes from step S2 to step S7 through step S6. The process proceeds to reset the display on the display unit 7 to the initial state indicating no measurement.

以上のように、この実施形態の場合、車両1の前方の先行車、壁等の物体の相対距離R、相対速度νを、送受信をくり返すことなく、超音波の一回の送受信で、短時間に、同時に測定することができ、その際、送信波及びその反射波の信号処理のみを行えばよく、送信波の出射から反射波を受信するまでの計時処理等を行う必要がなく、小規模で安価な構成により、各パルス区間の測定を迅速に終了することができ、この測定をくり返し、測定結果に基づいて衝突回避制御等が必要になったときには、十分な時間余裕を確保することができる。   As described above, in the case of this embodiment, the relative distance R and the relative velocity ν of an object such as a preceding vehicle in front of the vehicle 1 and a wall can be reduced by one transmission / reception of ultrasonic waves without repeating transmission / reception. It is possible to measure at the same time, and at that time, it is only necessary to perform signal processing of the transmitted wave and its reflected wave, and it is not necessary to perform time measurement processing from the transmission wave emission until reception of the reflected wave. Due to the scale and low cost configuration, the measurement of each pulse section can be completed quickly. When this measurement is repeated and collision avoidance control is required based on the measurement results, a sufficient time margin should be secured. Can do.

そして、ノイズフイルタ42を備えたため、一層ノイズに強く、測定精度及び測定の安定性が極めて向上する。 Since having a Bruno Izufuiruta 42, more resistant to noise, the stability of the measurement accuracy and measurement is extremely improved.

しかも、奇数次の高調波から振幅比rVを求め、偶数次の高調波から周波数差δfを求め、振幅比rVを求める高調波と、周波数差δfを求める高調波とを異ならせたため、処理負担を少なくして迅速に相対距離Rと相対速度νとを同時測定することができる。   In addition, the amplitude ratio rV is obtained from the odd-order harmonics, the frequency difference δf is obtained from the even-order harmonics, and the harmonic that obtains the amplitude ratio rV is different from the harmonic that obtains the frequency difference δf. And the relative distance R and the relative velocity ν can be measured simultaneously.

そのため、超音波を測定する安価で安全性の高い構成により、車両1のプリクラッシュセンサを実現することができる。   Therefore, the pre-crash sensor of the vehicle 1 can be realized with an inexpensive and highly safe configuration for measuring ultrasonic waves.

<<他の実施形態>>
つぎに他の実施形態について、図17の車両1の平面図を参照して説明する。
<< Other Embodiments >>
Next, another embodiment will be described with reference to a plan view of the vehicle 1 in FIG.

この実施形態の場合、図17に示すように、測定範囲を拡大するように、送、受信部3、4を形成する複数個の送受信ユニット2を、車両1の前端部の複数箇所に配設する。   In the case of this embodiment, as shown in FIG. 17, a plurality of transmission / reception units 2 forming transmission / reception units 3, 4 are arranged at a plurality of locations at the front end of the vehicle 1 so as to expand the measurement range. To do.

そのため、横から飛び出す物体等も測定対象の前方の物体としていずれかの送受信ユニット2によって捕捉することができる。   Therefore, an object or the like popping out from the side can be captured by any of the transmission / reception units 2 as an object ahead of the measurement target.

なお、この場合、少なくとも図2のフーリエ変換部5、演算部6を送、受信部3、4の組毎に設け、各組の振幅比rV、周波数差δfの演算、検出を同時に行うことが好ましい。   In this case, at least the Fourier transform unit 5 and the calculation unit 6 of FIG. 2 are sent and provided for each set of the reception units 3 and 4, and the calculation and detection of the amplitude ratio rV and the frequency difference δf of each set are performed simultaneously. preferable.

本発明は、上記した両実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。   The present invention is not limited to the above-described embodiments, and various modifications other than those described above can be made without departing from the spirit of the present invention.

例えば、送、受信部3、4は、別個の超音波送信器、超音波受信器により別々に形成してもよく、この場合は、送信部3と受信部4の設置位置、設置角度の調整を個別に行える等の利点がある。 For example , the transmission / reception units 3 and 4 may be formed separately by separate ultrasonic transmitters and ultrasonic receivers. In this case, the installation positions and the installation angles of the transmission unit 3 and the reception unit 4 are adjusted. There is an advantage that can be performed individually.

さらに、送、受信部3、4の個数や設ける位置はどのようであってもよく、測定結果の用途等に応じて適当に設定すればよく、例えば、送、受信部3,4の組を、移動体の周部全体(全周)、又は一部に適当な間隔で配設し、全方位の相対距離R、相対速度νの測定を行うようにしてもよい。   Further, the number of transmission / reception units 3 and 4 and the positions to be provided may be any, and may be set appropriately according to the use of the measurement results. For example, the transmission / reception units 3 and 4 are combined. Alternatively, the relative distance R and the relative speed ν in all directions may be measured by arranging the movable body around the entire circumference (entire circumference) or part of the movable body at appropriate intervals.

そして、移動体としての車両は、いわゆる自動車に限られるものでなく、例えばゴルフ場の無人搬送車等の種々の車両であってよく、さらに、移動体が車両以外の自律・移動型のロボット等の種々の産業用、民生用の機器であってもよいのは勿論である。   The vehicle as the moving body is not limited to a so-called automobile, and may be various vehicles such as an automatic guided vehicle at a golf course. Further, the moving body is an autonomous / moving robot other than the vehicle. Of course, various industrial and consumer devices may be used.

ところで、移動体の装備部品数を少なくするため、例えば図1の車両1において、送受信ユニット2を追従走行制御、ブレーキ制御等の他の制御のセンサ等に兼用する場合にも適用することができる。   By the way, in order to reduce the number of equipment parts of the moving body, for example, in the vehicle 1 of FIG. .

一実施形態の車両の平面図である。It is a top view of the vehicle of one embodiment. 図1の車両に搭載された超音波測定装置のブロック図である。It is a block diagram of the ultrasonic measuring device mounted in the vehicle of FIG. 図2の送信波の説明図である。It is explanatory drawing of the transmission wave of FIG. 図3の送信波に含まれる高調波の説明図である。It is explanatory drawing of the harmonic contained in the transmission wave of FIG. 図1の送信波の信号のFFTスペクトラム例である。It is an example of the FFT spectrum of the signal of the transmission wave of FIG. 図1の受信信号の波形図である。It is a wave form diagram of the received signal of FIG. 図6の受信信号のフーリエ余弦係数項の波形図である。It is a wave form diagram of the Fourier cosine coefficient term of the received signal of FIG. 図6の受信信号のフーリエ正弦係数項の波形図である。It is a wave form diagram of the Fourier sine coefficient term of the received signal of FIG. 図6の受信信号の各高調波の振幅特性図である。It is an amplitude characteristic view of each harmonic of the received signal of FIG. 図6の受信信号の各高調波の角速度特性図である。It is an angular velocity characteristic figure of each harmonic of the received signal of FIG. 図1の送信波の信号及び受信信号のFFTスペクトラムである。2 is an FFT spectrum of a transmission wave signal and a reception signal in FIG. 1. 図11の相対距離24cmでの奇数次受信高調波のスペクトラムである。12 is a spectrum of odd-order received harmonics at a relative distance of 24 cm in FIG. 図11の相対距離50cmでの奇数次受信高調波のスペクトラムである。12 is a spectrum of odd-order received harmonics at a relative distance of 50 cm in FIG. 図11の相対距離100cmでの奇数次受信高調波のスペクトラムである。12 is a spectrum of odd-order received harmonics at a relative distance of 100 cm in FIG. 図1の受信信号の第1、第3高調波の距離と振幅との関係図である。FIG. 3 is a relationship diagram between distances and amplitudes of first and third harmonics of the received signal in FIG. 1. 図2の動作説明用のフローチャートである。It is a flowchart for operation | movement description of FIG. 他の実施形態の車両の平面図である。It is a top view of the vehicle of other embodiments.

符号の説明Explanation of symbols

1 車両
3 送信部
4 受信部
5 フーリエ変換部
6 演算部
7 表示部
DESCRIPTION OF SYMBOLS 1 Vehicle 3 Transmitting part 4 Receiving part 5 Fourier transform part 6 Calculation part 7 Display part

Claims (8)

移動体に搭載された超音波測定装置であって、
超音波の送信波を前記移動体の外方に出力する送信部と、
前記移動体外の物体で反射した前記送信波の反射波を受信する受信部と、
少なくとも前記受信部の受信信号をFFT処理するフーリエ変換部と、
基本周波数波を第1高調波として、前記送信波の信号と前記受信信号との規格化された第p高調波(pは1を含む整数)の振幅比から前記移動体と前記物体との距離を算出し、前記送信波の信号と前記受信信号との規格化された第q高調波(qはpと異なる整数)の周波数差から前記物体の相対速度を算出する演算部とを備え、
前記送信波が方形波のパルス波であって、前記第p高調波が奇数次(pが奇数)の高調波であり、前記第q高調波が偶数次(qが偶数)の高調波であることを特徴とする超音波測定装置。
An ultrasonic measurement device mounted on a moving body,
A transmitter that outputs an ultrasonic transmission wave to the outside of the moving body;
A receiving unit that receives a reflected wave of the transmission wave reflected by an object outside the moving body;
A Fourier transform unit that performs at least FFT processing on the reception signal of the reception unit;
The distance between the moving body and the object is determined from the amplitude ratio of the normalized p-th harmonic (p is an integer including 1) of the signal of the transmission wave and the reception signal, where the fundamental frequency wave is the first harmonic. An arithmetic unit that calculates the relative velocity of the object from the frequency difference of the standardized qth harmonic (q is an integer different from p) between the signal of the transmission wave and the reception signal;
The transmission wave is a square pulse wave, the p-th harmonic is an odd-order harmonic (p is an odd number), and the q-th harmonic is an even-order harmonic (q is an even number). An ultrasonic measurement device characterized by that.
受信部の受信信号の不要ノイズを除去するノイズフイルタを備えたことを特徴とする請求項1に記載の超音波測定装置。   The ultrasonic measurement apparatus according to claim 1, further comprising a noise filter that removes unnecessary noise from the reception signal of the reception unit. 演算部により算出された距離及び相対速度を表示する表示部を備えたことを特徴とする請求項1または2に記載の超音波測定装置。   The ultrasonic measurement apparatus according to claim 1, further comprising a display unit that displays a distance and a relative speed calculated by the calculation unit. 送信部の超音波出力及び受信部の超音波受信を、送受信共用の1個の超音波送受信器により行うようにしたことを特徴とする請求項1〜3のいずれかに記載の超音波測定装置。   The ultrasonic measurement apparatus according to claim 1, wherein the ultrasonic output of the transmission unit and the ultrasonic reception of the reception unit are performed by a single ultrasonic transmitter / receiver. . 送信部の超音波出力及び受信部の超音波受信を、別体の超音波送信器及び超音波受信器によりそれぞれ行うようにしたことを特徴とする請求項1〜3のいずれかに記載の超音波測定装置。   The ultrasonic output according to any one of claims 1 to 3, wherein the ultrasonic output of the transmission unit and the ultrasonic reception of the reception unit are performed by separate ultrasonic transmitters and ultrasonic receivers, respectively. Sound wave measuring device. 移動体が車両であって、送信部が車両前方に送信波を出力し、プリクラッシュセンサを形成することを特徴とする請求項1〜5のいずれかに記載の超音波測定装置。   The ultrasonic measurement apparatus according to claim 1, wherein the moving body is a vehicle, and the transmission unit outputs a transmission wave in front of the vehicle to form a pre-crash sensor. 移動体が自律・移動型のロボットであることを特徴とする請求項1〜のいずれかに記載の超音波測定装置。 Ultrasonic measuring apparatus according to any one of claims 1 to 5, moving body is characterized in that it is a self-moving type robot. 請求項1〜7のいずれかに記載の超音波測定装置において、
送信部及び受信部を、測定範囲を拡大するように、移動体に複数組配設するとともに、フーリエ変換部、演算部を、前記送信部及び受信部の組毎に備え、
前記各組の前記送信部の送信波が、それぞれの奇数次の第p高調波が異なる周波数になる超音波であることを特徴とする超音波測定装置。
In the ultrasonic measuring device according to any one of claims 1 to 7,
A plurality of transmission units and reception units are arranged on the moving body so as to expand the measurement range, and a Fourier transform unit and a calculation unit are provided for each set of the transmission unit and the reception unit,
The ultrasonic wave measuring apparatus according to claim 1, wherein the transmission waves of the transmission units of the sets are ultrasonic waves having different frequencies of the odd-order p-th harmonics.
JP2003357544A 2003-10-17 2003-10-17 Ultrasonic measuring device Expired - Fee Related JP4619641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003357544A JP4619641B2 (en) 2003-10-17 2003-10-17 Ultrasonic measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003357544A JP4619641B2 (en) 2003-10-17 2003-10-17 Ultrasonic measuring device

Publications (2)

Publication Number Publication Date
JP2005121509A JP2005121509A (en) 2005-05-12
JP4619641B2 true JP4619641B2 (en) 2011-01-26

Family

ID=34614403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003357544A Expired - Fee Related JP4619641B2 (en) 2003-10-17 2003-10-17 Ultrasonic measuring device

Country Status (1)

Country Link
JP (1) JP4619641B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4731208B2 (en) * 2005-05-31 2011-07-20 株式会社ユーシン精機 Mold take-out machine
JP4809685B2 (en) * 2006-01-31 2011-11-09 株式会社ユーシン精機 Mold take-out machine
EP1936403B1 (en) 2006-12-20 2014-06-25 Pepperl + Fuchs GmbH Ultrasonic sensor and method for determining the distance of an object from an ultrasonic sensor
JP5370132B2 (en) 2009-12-22 2013-12-18 株式会社デンソー Obstacle detection device
JP5850145B2 (en) 2012-05-07 2016-02-03 株式会社村田製作所 Ultrasonic sensor drive circuit
JP6251951B2 (en) * 2012-11-27 2017-12-27 日産自動車株式会社 Obstacle detection device, acceleration suppression control device, obstacle detection method
JP5746299B2 (en) * 2013-10-11 2015-07-08 三菱電機株式会社 Relative velocity measuring device and relative velocity measuring method
JP6445419B2 (en) * 2015-11-24 2018-12-26 株式会社デンソー Object detection apparatus and object detection method
JPWO2021049285A1 (en) * 2019-09-13 2021-03-18

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001305109A (en) * 2000-04-21 2001-10-31 Japan Science & Technology Corp Internal microscopic cracking detection method and apparatus using non-linear ultrasonic wave
JP2005106636A (en) * 2003-09-30 2005-04-21 Nippon Steel Corp Ultrasonic flaw detection method and apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08101266A (en) * 1994-09-29 1996-04-16 Nec Corp Distance measuring instrument
JP3431733B2 (en) * 1995-03-30 2003-07-28 三菱自動車工業株式会社 Object detection device
JP3865800B2 (en) * 1995-05-15 2007-01-10 株式会社東芝 Ultrasonic diagnostic equipment
JPH09230027A (en) * 1996-02-27 1997-09-05 Nissan Motor Co Ltd Radar equipment
JP3726441B2 (en) * 1997-03-18 2005-12-14 株式会社デンソー Radar equipment
US6036643A (en) * 1998-05-14 2000-03-14 Advanced Technology Laboratories, Inc. Ultrasonic harmonic doppler imaging

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001305109A (en) * 2000-04-21 2001-10-31 Japan Science & Technology Corp Internal microscopic cracking detection method and apparatus using non-linear ultrasonic wave
JP2005106636A (en) * 2003-09-30 2005-04-21 Nippon Steel Corp Ultrasonic flaw detection method and apparatus

Also Published As

Publication number Publication date
JP2005121509A (en) 2005-05-12

Similar Documents

Publication Publication Date Title
US10564277B2 (en) Systems and methods for interpolated virtual aperature radar tracking
US10120073B2 (en) Method for operating a surroundings-detection system of a vehicle
US20190235068A1 (en) Systems and methods for virtual aperature radar tracking
KR101513878B1 (en) Radar apparatus, collision avoidance and accident recode method thereof
Agarwal et al. A cost-effective ultrasonic sensor-based driver-assistance system for congested traffic conditions
JP2007225597A (en) Vehicle radar system having a plurality of operating modes
KR20110139765A (en) Radar system having arrangements and method for decoupling transmission and reception signals and suppression of interference radiation
JPH03502363A (en) Vehicle collision prevention radar device for driving in fog
KR20000023167A (en) Method for determining the distance between an object and a movable device, in particular automobile
JP2011209016A (en) On-vehicle radar device
JP4619641B2 (en) Ultrasonic measuring device
KR20150051679A (en) Vechicle radar for discriminating false target using variable wave and method for discriminating false target using it
JP7067400B2 (en) Detection device, mobile system, and detection method
US11231496B2 (en) Radar device and method of detecting passenger on rear seat by using the same
JP2019168449A (en) Radar device
JP2009031078A (en) Device and method for detection
WO2020129484A1 (en) Sensing device, moving body system, and sensing method
CN115343713A (en) Vehicle-mounted millimeter wave radar obstacle detection method and system, radar and automobile
JP2000081480A (en) Fmcw radar, storage medium, and vehicle control device
JP7028139B2 (en) Notification device and notification method
JPH04278487A (en) Radar for vehicle
JP6494712B2 (en) Radar equipment
US11041952B2 (en) Phase-based ultrasonic ranging
WO2021024822A1 (en) Radar apparatus
JP2007064655A (en) Moving body measuring system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20031017

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081209

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20090303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101027

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees