JP4615693B2 - Electric control valve - Google Patents

Electric control valve Download PDF

Info

Publication number
JP4615693B2
JP4615693B2 JP2000310359A JP2000310359A JP4615693B2 JP 4615693 B2 JP4615693 B2 JP 4615693B2 JP 2000310359 A JP2000310359 A JP 2000310359A JP 2000310359 A JP2000310359 A JP 2000310359A JP 4615693 B2 JP4615693 B2 JP 4615693B2
Authority
JP
Japan
Prior art keywords
valve
needle
screw member
female screw
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000310359A
Other languages
Japanese (ja)
Other versions
JP2002122258A (en
Inventor
正治 朝田
信雄 椿
英樹 関口
到 関谷
守男 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Saginomiya Seisakusho Inc
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Saginomiya Seisakusho Inc
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Saginomiya Seisakusho Inc, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000310359A priority Critical patent/JP4615693B2/en
Publication of JP2002122258A publication Critical patent/JP2002122258A/en
Application granted granted Critical
Publication of JP4615693B2 publication Critical patent/JP4615693B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Description

【0001】
【発明の属する技術分野】
本発明は、ヒートポンプ式エアコンや冷凍機などの冷凍、冷蔵、空調設備に組み込まれ、冷媒流量制御に使用される電動式コントロールバルブに関し、特に駆動源としてステッピングモータを備えるとともに流量制御弁としてニードル弁を備えた電動式コントロールバルブとその組み立て方法に関する。
【0002】
【従来の技術】
従来、前記のような電動式コントロールバルブとして、図5に示すようなものが提案されている。
図5において、符号14は電動式コントロールバルブの弁本体を示しており、この弁本体14には、その軸線方向直下に第1継手21aの流路に接続する第1開口22が設けられ、その近傍の側部に第2継手21bの流路に接続する第2開口23が設けられて、弁本体14の上方から第1開口22と第2開口23とを接続するように弁室15が形成されている。弁本体14の上部は蓋体9を下部に設けられたキャン1で被覆され、キャン1の内部には、ステッピングモータ20のロータ10が設けられている。ロータ10は合成樹脂製でその中心にピン24が設けられており、ピン24は下方に延びて弁室15に挿入されている。ピン24の下端にニードル弁13が設けられ、このニードル弁13は、弁座としての第1開口22と協働して制御弁を構成している。符号33は回り止め用段部を示している。
【0003】
ロータ10の下方に延びる突出部10sの外周に雄ねじ25が形成され、この雄ねじ25に螺合する雌ねじ26が弁本体14の内壁に形成されている。したがって、ロータ10が回転すると、雌ねじ26は固定されているので、ロータ10即ち、ニードル弁13が第1開口22内を上下動し、冷媒流量の制御を行うことができる。
【0004】
キャン1の上蓋部27の中心に支持凹部28が設けられ、この支持凹部28にガイド部材29の上部突起30が嵌合し、また、ガイド部材29の中心孔29aとピン24の上端部とは上下動且つ回転可能に嵌合されている。
【0005】
ガイド部材29の外周にスプリング受け31が形成され、このスプリング受け31とロータ10の凹嵌部の下面との間にスプリング32が縮設されている。更に、キャン1の円筒状外周に、ステッピングモータ20のステータコイル17が固定され、コネクタ34により外部と接続されている。ステータコイル17は上側コイル17aと下側コイル17bとにより形成されている。
【0006】
前記の構成のニードル弁タイプの電動膨張弁において、ステータコイル17への通電によリロータ10が回転する。ロータ10の突出部10sに形成された雄ねじ25と弁本体内壁に形成された雌ねじ26との螺合により、ロータ10と一体形成のピン24も共に回転しながら上下動する。それにより、ピン24に形成されたニードル弁13が上下動し、第1開口22内を上下動し、冷媒流量の制御を行う。
【0007】
【発明が解決しようとする課題】
前記の従来の電動式コントロールバルブでは、冷媒流量の制御に電動式のニードル弁を使用している。
【0008】
ところで、ニードル弁タイプの電動式コントロールバルブでは、全閉機能を有する場合は、ニードル弁のテーパ部を弁座に当接させる必要があり、ニードル弁が垂直方向の力によって弁座に食い込みを防ぐためには、そのテーパ部を例えば60度と充分大きくする必要がある。さらに、ニードル付け根径D1は弁孔の径D0よりも小さくしなければならない(D0>D1)。
【0009】
その結果、ニードル弁タイプのものでは、弁開き始めの弁特性は急激な立ち上がりとなってしまう。また、前記食い込みを防ぐために、ニードルと弁座との間に若干のクリアランスを設けると、そのクリアランスだけで、微小冷媒流量の制御範囲を越えてしまうおそれがある。このような理由から、ニードル弁タイプのものは、微小冷媒流量制御を必要とする冷凍サイクルには適用できないという問題点がある。
本発明は、従来例のこのような問題点の解決を図ろうとするものである。
【0010】
【課題を解決するための手段】
本発明は、前記課題を解決するために、ケースとしてのキャンと、該キャンの内部に配設される弁室及び弁座を備えた弁本体と、該弁本体に取り付けられたステッピングモータのロータと、該ステッピングモータのロータにより前記弁座に接離する方向に駆動されてニードル弁として機能するニードルを備えた電動式コントロールバルブであって、前記ステッピングモータのロータと一体に成形し、外周面に雄ねじを形成した雄ねじ部材を設け、該雄ねじに螺合する雌ねじを内周面に形成した円筒状の雌ねじ部材が前記弁室内に取付ばねと共に設けられ、前記雌ねじ部材の内部に、ニードル弁を設け、弁閉行程時に、前記雌ねじ部材の平坦状の下端面が弁座を形成する弁室底面に当接して前記ニードル弁を完全弁閉状態にする前に前記ニードル弁が前記弁座に当接して該ニードル弁を弁閉状態にするように構成され、且つ、前記ステッピングモータのロータと、前記キャンの上凸部とロータ軸の間に設けられた軸受けとの間に波形板ばねが介設され、前記ニードル弁の完全弁閉状態時に前記波形板ばねが弾性変形して前記ステッピングモータのロータ回転トルクを吸収するように構成されている。
【0012】
【発明の実施の形態】
以下、図1乃至図5により本発明の実施の形態について説明する。
図1は、本発明の実施形態にかかる電動式コントロールバルブの全体を示しており、この電動式コントロールバルブも、前記従来のものと同様に、キャン1、ステータコイル17、第1継手21a、第2継手21b、弁本体14、ニードル弁13、弁座19、雄ねじ12a、雌ねじ11a、コネクタ34などを備えて構成されている。
【0013】
この実施形態の電動式コントロールバルブは、次の構成で前記従来のものと相違する。雄ねじ12aはステッピングモータのロータ10にインサート成形して一体化されている軸状の雄ねじ部材12の外周に設けられている。雌ねじ11aはステッピングモータのロータ10の中心部に設けた円筒状の雌ねじ部材11の内面に形成されている。図2に示す雌ねじ部材11の雌ねじ11aの下端には前記雌ねじ11aより小径のニードル弁13、弁ばね7を収納する空間11bを設けている。
【0014】
この雌ねじ部材11をステッピングモータのロータ10と共に回転させずに、上下摺動可能にするガイド6が、雌ねじ部材11の頭部外面2個所に形成された凹部11cに摺動自在に設けられ、ガイド6の他端部6aは弁本体14に固定されている。雌ねじ部材11と弁本体14の間には、雌ねじ部材11をステッピングモータのロータ10方向に押し上げる取付ばね8が挿入されている。ニードル弁13は雌ねじ部材11の中心孔11dに挿通され、雄ねじの先端とニードル弁13の上部の間に弁ばね7を設け、この弁ばね7の力によリニードル弁13の上部に設けた段部13aと雌ねじ部材11の中心孔11dの段部にニードル弁13を押し付けるようにしている。雌ねじ部材11の弁本体14と当接する先端部11eには冷媒が通過しやすいように数箇所の溝11fが設けられている。
【0015】
図1において、雄ねじ部材12の雄ねじ部の反対側はロータ軸12bが設けられ、キャンの上凸部1aとロータ軸12bの間に軸受け2が設けられている。この軸受け2の中心孔にロータ軸12bが上下摺動可能に挿入されており、軸受け2とステッピングモータのロータ10の間には波形板ばね3が設けられている。
【0016】
雌ねじ部材11のニードル弁13側の溝11fは、ロータ10の回転力により雌ねじ部材11と弁本体14との間で摩擦力により雌ねじ部材11のストッパーとして作用する。
【0017】
ステッピングモータのステータ17は、上下1組のコイル17a,17bと、各コイルにより磁化される複数の磁極17c,17dを備えている。なおコイル17a,17b及び磁極17c,17dは、ステッピングモータの組み立て時、予め外函4と一体構造化されている。
【0018】
前記の構成において、ステッピングモータのロータ10が回転すると、ロータ10に一体成形した雄ねじ部材12が回転し、ガイド6により回転をしない雌ねじ部材11とのねじ作用により取付ばね8の力に抗して雌ねじ部材11、ニードル弁13が下に移動してニードル弁13と弁座19の間隔を制御し、弁開口面積が変化する。
【0019】
この状態からステッピングモータのロータ10を弁閉方向に回転させると、雌ねじ部材11とニードル弁13は下降し、弁座19に当接して「弁閉」状態となる。この時、弁ばね7の弱い荷重がニードル弁13の弁座19に作用することになるが、この実施形態のものでは、その荷重は、ニードルの角度が鋭角であっても弁座19に食い付き現象が生じないように設計されている。そして、この荷重は、ニードル弁13が弁座19に当接後、更に、ステッピングモータのロータ10の回転を停止させるまでの間、弁閉状態を保つように作用する。雌ねじ部材11のニードル弁13との当接部13hとニードル弁13の弁ばね受け段部13aとの間に若干の間隙Lcが形成されるようになっている。
【0020】
ニードル弁13が、「弁閉」状態となった後、更にステッピングモータのロータ10を弁閉方向に回転させると、雌ねじ部材11の下端面が弁座19を形成する弁室底面15eに当接して、「完全弁閉」の状態となる。ついで、波形板ばね3が変形してステッピングモータのロータ10と軸受け2に強い荷重を付与し、ロータ10の回転を停止する状態に至る。
【0021】
次に、電動式コントロールバルブの組立方法について説明する。弁本体14には流体の第1継手21a、第2継手21b、ニードル弁13と雌ねじ部材11とガイド6と取付ばね8、及び弁ばね7を収納する弁室15を弁座19の中心軸上に設けている。また、ステッピングモータのステータコイル17を定位置に固定する取付孔5を外周面に予め設けている。
【0022】
図2において、雌ねじ部材11の中心孔11bにニードル弁13を挿入し、次に弁ばね7を挿入する。次いで雌ねじ部材11の大径部11gの2個所の回転止め凹部11cにガイド6の回転止め部6bを挿入して雌ねじ部材11にガイド6を取り付ける。その後、取付ばね8を雌ねじ部材11の小径部11hに下部よりガイド6との間に挿入する。そしてガイド6のかしめ部6aと弁室15のかしめ部20aとをかしめる。雄ねじ部材12を弁室15にかぶせるように載置して手で雄ねじ部材12を回転し、雌ねじ部材11の中心孔11dに設けた雌ねじ11aと雄ねじ部材12の雄ねじ12aとを螺合させる。次いで、雄ねじ部材12の軸部12bに波形板ばね3、軸受2を挿入する。最後にキャン1をかぶせて下端部を弁本体14の蓋体9と密閉溶接する。
【0023】
ステッピングモータのロータ10には、雄ねじ部材12が一体にインサート成形されているが、この雄ねじ部材12のねじ部12aを前記ガイド6の中心より雌ねじ部材11のねじ部11aにステッピングモータのロータ10を手で回転しながら挿入する。次に雄ねじ部材12の軸部12bに波形板ばね3、軸受け2を挿入しキャン1を弁本体14に組合わせる。
【0024】
冶具によリステッピングモータのロータ10をキャン1の外部より回転し、電動式コントロールバルブの閉基点を設定し、本体14のガイド6とのカシメ部20aをカシメ固定する。その後、キャン1を弁本体14に取付けた蓋体9に気密に溶接する。
【0025】
このような組立て手段で電動式コントロールバルブを組立てることにより、弁閉基点の設定を、雌ねじ部材11を弁座19に当接させた状態で行うことができその結果、従来のガイドとのガタツキが大きいこと等の理由による誤差や、ねじ機構のガタに伴う基点誤差の発生をなくすことが可能となる。
【0026】
この実施形態の場合、ニードル弁の「完全弁閉」状態時、雌ねじ部材11の先端(下端)平坦面が弁本体14の弁座19を形成する弁室底面15eに当接する構成となっている。したがって、ニードル弁13の先端弁部13eの角度θs(図3参照)を小さく,例えば6度に設定して、微少流量制御が行えるようにしても、弁座への食い込みを防止することが可能となる。
【0027】
この実施形態では、ニードル弁13の「完全弁閉」状態時、雌ねじ部材11が弁本体14の弁座19を形成する弁室底面15eに当接してニードル弁13と弁座に作用する荷重を雌ねじ部材11が負担する構成であるため、ニードル弁13の「完全弁閉」状態時のニードル弁荷重を小さな荷重(「冷媒の導入圧」−「冷媒の吐出圧」十「弁ばね7のばね力」)に抑えることができ、その結果、ニードル弁13の弁座19への食い込みを防止することが可能となる。
【0028】
図4に示す曲線▲1▼は、θn=6°の場合のニードル弁の荷重特性を示しており線▲2▼は「ニードル弁当接荷重」Wi=「弁引抜き荷重」W0を示している。また線▲3▼はステッピングモータの発生推力を、線▲4▼はニードル弁への当接(負荷)荷重をそれぞれ示している。ここで、ニードル弁への当接(角荷)荷重は、「冷媒の導入圧」−「冷媒の吐出圧」+「弁ばねのばね力」である。点▲5▼は変曲点を示している。
【0029】
この実施形態では、前記のように、ニードル弁13の「完全弁閉」状態時、雌ねじ部材11が弁本体14の弁座19を形成する弁室底面15eに当接してニードル弁13に作用する荷重を雌ねじ部材11が負担する構成であるため、ニードル弁13の「完全弁閉」状態時のニードル弁13荷重を、符号Sで示す点に設定することが可能となる。その結果、「弁引抜き荷重」W0を小さな荷重(「冷媒の導入圧」−「冷媒の吐出圧」+「弁ばねのばね力」)に抑えることができ、ニードル弁13の先端弁部を鋭角に設定して、微少流量制御が行えるようにしてもニードル弁13の弁座19への食い込みを防止することができる。
【0030】
【発明の効果】
以上詳述したように、本発明によれば、次のような効果が得られる。
(1)ニードルの先端弁部を鋭角に設定して、微少流量制御が行えるようにしても、ニードルの弁座への食い込みを防止することが可能となる。
(2)回転停止機構における衝突音を低減でき、また波形板ばねにより電動式コントロールバルブの騒音を更に低減できる。
(3)ステッピングモータの基点の設定時、雌ねじ部材の平坦面が基準となるため、耐久性に富み、劣化が極めて少ない。
(4)回転停止機構の停止位置合わせも同時に行うことができるので、組み立て工程を省略することができる。
(5)完全弁閉状態時に、ニードル弁と弁座に発生する押圧力が微少であるため弁座の変形が少ない。
【図面の簡単な説明】
【図1】(a)は本発明の1実施の形態に係る電動式コントロールバルブの断面図、
(b)はニードル弁の一部拡大図である。
【図2】図1の雌ねじ部材の要部拡大断面図である。
【図3】図1のニードル弁と弁座の部分の拡大断面図である。
【図4】図1の電動式コントロールバルブのニードル弁の当接荷重(横軸)と弁引抜き荷重(縦軸)との関係を示すグラフである。
【図5】従来の電動式コントロールバルブの断面図である。
【符号の説明】
1 キャン
2 軸受け
3 波形板ばね
4 外函
5 ステータコイル取付孔
6 ガイド
7 弁ばね
8 取付ばね
9 蓋体
10 ステッピングモータのロータ
11 雌ねじ部材
11a 雌ねじ
12 雄ねじ部材
12a 雄ねじ
13 ニードル弁
14 弁本体
15 弁室
16a 下弁室
17 ステータコイル
17a 上側コイル
17b 下側コイル
17c 下向き磁極
17d 上向き磁極
19 弁座
20 筒部
21a 第1継手
21b 第2継手
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to an electric control valve that is incorporated in refrigeration, refrigeration, and air conditioning equipment such as a heat pump air conditioner and a refrigerator, and that is used for refrigerant flow rate control. The present invention relates to an electric control valve equipped with a motor and an assembling method thereof.
[0002]
[Prior art]
Conventionally, an electric control valve as shown in FIG. 5 has been proposed.
In FIG. 5, the code | symbol 14 has shown the valve main body of the electric control valve, The 1st opening 22 connected to the flow path of the 1st joint 21a is provided in this valve main body 14 directly in the axial direction, A second opening 23 connected to the flow path of the second joint 21b is provided on the side portion in the vicinity, and the valve chamber 15 is formed so as to connect the first opening 22 and the second opening 23 from above the valve body 14. Has been. The upper part of the valve body 14 is covered with a can 1 provided with a lid 9 at the lower part, and a rotor 10 of a stepping motor 20 is provided inside the can 1. The rotor 10 is made of synthetic resin, and a pin 24 is provided at the center thereof. The pin 24 extends downward and is inserted into the valve chamber 15. A needle valve 13 is provided at the lower end of the pin 24, and this needle valve 13 constitutes a control valve in cooperation with the first opening 22 as a valve seat. Reference numeral 33 denotes a rotation stopper step.
[0003]
A male screw 25 is formed on the outer periphery of the protruding portion 10 s extending downward from the rotor 10, and a female screw 26 that is screwed into the male screw 25 is formed on the inner wall of the valve body 14. Therefore, when the rotor 10 rotates, the female screw 26 is fixed, so that the rotor 10, that is, the needle valve 13 moves up and down in the first opening 22, and the refrigerant flow rate can be controlled.
[0004]
A support recess 28 is provided at the center of the upper lid portion 27 of the can 1, and the upper protrusion 30 of the guide member 29 is fitted into the support recess 28, and the center hole 29 a of the guide member 29 and the upper end portion of the pin 24 are It is fitted up and down and rotatable.
[0005]
A spring receiver 31 is formed on the outer periphery of the guide member 29, and a spring 32 is contracted between the spring receiver 31 and the lower surface of the recessed fitting portion of the rotor 10. Further, the stator coil 17 of the stepping motor 20 is fixed to the cylindrical outer periphery of the can 1 and is connected to the outside by a connector 34. The stator coil 17 is formed by an upper coil 17a and a lower coil 17b.
[0006]
In the needle valve type electric expansion valve configured as described above, the rerotor 10 is rotated by energization of the stator coil 17. The male screw 25 formed on the protruding portion 10s of the rotor 10 and the female screw 26 formed on the inner wall of the valve main body are screwed together so that the pin 24 integrally formed with the rotor 10 moves up and down together. Thereby, the needle valve 13 formed on the pin 24 moves up and down, moves up and down in the first opening 22, and controls the flow rate of the refrigerant.
[0007]
[Problems to be solved by the invention]
In the conventional electric control valve, an electric needle valve is used to control the refrigerant flow rate.
[0008]
By the way, if the needle valve type electric control valve has a fully closed function, it is necessary to bring the taper portion of the needle valve into contact with the valve seat, and the needle valve prevents biting into the valve seat by a vertical force. In order to prevent this, the tapered portion needs to be sufficiently large, for example, 60 degrees. Furthermore, the needle root diameter D1 must be smaller than the diameter D0 of the valve hole (D0> D1).
[0009]
As a result, in the needle valve type, the valve characteristics at the beginning of the valve opening suddenly rise. In addition, if a slight clearance is provided between the needle and the valve seat to prevent the bite, the clearance may exceed the control range of the minute refrigerant flow rate. For this reason, the needle valve type has a problem that it cannot be applied to a refrigeration cycle that requires fine refrigerant flow rate control.
The present invention is intended to solve such problems of the prior art.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a can as a case, a valve body provided with a valve chamber and a valve seat disposed inside the can, and a rotor of a stepping motor attached to the valve body. And an electric control valve having a needle that functions as a needle valve that is driven in the direction of contact with and away from the valve seat by the rotor of the stepping motor, and is formed integrally with the rotor of the stepping motor, A male screw member having a male screw formed therein is provided, and a cylindrical female screw member having a female screw threadedly engaged with the male screw formed on the inner peripheral surface is provided together with a mounting spring in the valve chamber, and a needle valve is provided inside the female screw member. provided, the valve閉行during extent, the needle prior to the full-closing state the needle valve flat lower end surface abuts the valve chamber bottom surface that forms a valve seat of the female screw member Valve is configured to contact with the needle valve in the valve seat so as to valve closing state, and a rotor of the stepping motor, the bearing provided between the upper convex portion and the rotor shaft of the can A corrugated leaf spring is interposed therebetween, and the corrugated leaf spring is elastically deformed to absorb the rotor rotational torque of the stepping motor when the needle valve is completely closed.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
FIG. 1 shows an entire electric control valve according to an embodiment of the present invention. This electric control valve also has a can 1, a stator coil 17, a first joint 21a, a first joint, 2 joint 21b, the valve main body 14, the needle valve 13, the valve seat 19, the external thread 12a, the internal thread 11a, the connector 34, etc. are comprised.
[0013]
The electric control valve of this embodiment is different from the conventional one in the following configuration. The male screw 12a is provided on the outer periphery of a shaft-like male screw member 12 that is insert-molded and integrated with the rotor 10 of the stepping motor. The female screw 11a is formed on the inner surface of a cylindrical female screw member 11 provided at the center of the rotor 10 of the stepping motor. A space 11b for accommodating a needle valve 13 and a valve spring 7 having a smaller diameter than the female screw 11a is provided at the lower end of the female screw 11a of the female screw member 11 shown in FIG.
[0014]
A guide 6 that can slide up and down without rotating the female screw member 11 together with the rotor 10 of the stepping motor is slidably provided in recesses 11c formed at two positions on the outer surface of the head of the female screw member 11, and the guide The other end 6 a of 6 is fixed to the valve body 14. A mounting spring 8 is inserted between the female screw member 11 and the valve body 14 to push up the female screw member 11 toward the rotor 10 of the stepping motor. The needle valve 13 is inserted into the center hole 11 d of the female screw member 11, a valve spring 7 is provided between the tip of the male screw and the upper part of the needle valve 13, and a step provided on the upper part of the needle valve 13 by the force of the valve spring 7. The needle valve 13 is pressed against the step portion of the center hole 11 d of the portion 13 a and the female screw member 11. Several grooves 11f are provided at the tip end portion 11e of the female screw member 11 that contacts the valve main body 14 so that the refrigerant can easily pass therethrough.
[0015]
In FIG. 1, a rotor shaft 12b is provided on the opposite side of the male screw portion of the male screw member 12, and a bearing 2 is provided between the upper convex portion 1a of the can and the rotor shaft 12b. A rotor shaft 12b is inserted into the center hole of the bearing 2 so as to be vertically slidable. A wave spring 3 is provided between the bearing 2 and the rotor 10 of the stepping motor.
[0016]
The groove 11 f on the needle valve 13 side of the female screw member 11 acts as a stopper of the female screw member 11 by a frictional force between the female screw member 11 and the valve body 14 by the rotational force of the rotor 10.
[0017]
The stator 17 of the stepping motor includes a pair of upper and lower coils 17a and 17b and a plurality of magnetic poles 17c and 17d magnetized by each coil. The coils 17a and 17b and the magnetic poles 17c and 17d are integrated with the outer box 4 in advance when the stepping motor is assembled.
[0018]
In the above configuration, when the rotor 10 of the stepping motor rotates, the male screw member 12 integrally formed with the rotor 10 rotates and resists the force of the mounting spring 8 by the screw action with the female screw member 11 not rotated by the guide 6. The female screw member 11 and the needle valve 13 are moved downward to control the distance between the needle valve 13 and the valve seat 19, and the valve opening area changes.
[0019]
When the rotor 10 of the stepping motor is rotated in the valve closing direction from this state, the female screw member 11 and the needle valve 13 are lowered and come into contact with the valve seat 19 to enter the “valve closed” state. At this time, a weak load of the valve spring 7 acts on the valve seat 19 of the needle valve 13, but in this embodiment, the load bites on the valve seat 19 even if the angle of the needle is an acute angle. Designed to prevent sticking. This load acts to keep the valve closed until the rotation of the rotor 10 of the stepping motor is stopped after the needle valve 13 contacts the valve seat 19. A slight gap Lc is formed between the contact portion 13 h of the female screw member 11 with the needle valve 13 and the valve spring receiving step portion 13 a of the needle valve 13.
[0020]
After the needle valve 13 is in the “valve closed” state, when the rotor 10 of the stepping motor is further rotated in the valve closing direction, the lower end surface of the female screw member 11 comes into contact with the valve chamber bottom surface 15 e forming the valve seat 19. Te, a state of "complete valve closed". Next, the corrugated leaf spring 3 is deformed to give a strong load to the rotor 10 and the bearing 2 of the stepping motor, and the rotation of the rotor 10 is stopped.
[0021]
Next, a method for assembling the electric control valve will be described. The valve body 14 includes a first joint 21a, a second joint 21b, a needle valve 13, a female screw member 11, a guide 6, a mounting spring 8, and a valve chamber 15 for housing the valve spring 7 on the central axis of the valve seat 19. Provided. Further, the mounting hole 5 for fixing the stator coil 17 of the stepping motor at a fixed position is provided in advance on the outer peripheral surface.
[0022]
In FIG. 2, the needle valve 13 is inserted into the center hole 11 b of the female screw member 11, and then the valve spring 7 is inserted. Next, the rotation stoppers 6 b of the guide 6 are inserted into the two rotation stopper recesses 11 c of the large diameter portion 11 g of the female screw member 11, and the guide 6 is attached to the female screw member 11. Thereafter, the mounting spring 8 is inserted into the small diameter portion 11 h of the female screw member 11 between the guide 6 and the lower portion. Then, the caulking portion 6a of the guide 6 and the caulking portion 20a of the valve chamber 15 are caulked. The male screw member 12 is placed so as to cover the valve chamber 15, and the male screw member 12 is rotated by hand, so that the female screw 11 a provided in the center hole 11 d of the female screw member 11 and the male screw 12 a of the male screw member 12 are screwed together. Next, the corrugated leaf spring 3 and the bearing 2 are inserted into the shaft portion 12 b of the male screw member 12. Finally, the can 1 is covered and the lower end portion is hermetically welded to the lid body 9 of the valve body 14.
[0023]
A male screw member 12 is integrally formed by insert molding on the rotor 10 of the stepping motor. The screw portion 12a of the male screw member 12 is inserted into the screw portion 11a of the female screw member 11 from the center of the guide 6. Insert while rotating by hand. Next, the corrugated leaf spring 3 and the bearing 2 are inserted into the shaft portion 12 b of the male screw member 12, and the can 1 is combined with the valve body 14.
[0024]
The jig 10 rotates the rotor 10 of the stepping motor from the outside of the can 1, sets the closing base point of the electric control valve, and caulks and fixes the caulking portion 20 a with the guide 6 of the main body 14. Thereafter, the can 1 is hermetically welded to the lid 9 attached to the valve body 14.
[0025]
By assembling the electric control valve with such an assembling means, the valve closing base point can be set in a state where the female screw member 11 is in contact with the valve seat 19, and as a result, there is no backlash with the conventional guide. It is possible to eliminate an error due to a large size or a base point error due to the backlash of the screw mechanism.
[0026]
In the case of this embodiment, when the needle valve is in the “complete valve closed” state, the tip (lower end) flat surface of the female screw member 11 is in contact with the valve chamber bottom surface 15 e forming the valve seat 19 of the valve body 14. . Accordingly, even when the angle θs (see FIG. 3) of the tip valve portion 13e of the needle valve 13 is set to a small value, for example, 6 degrees so that the minute flow rate control can be performed, the bite into the valve seat can be prevented. It becomes.
[0027]
In this embodiment, when the needle valve 13 is in the “complete valve closed” state, the female screw member 11 abuts against the valve chamber bottom surface 15 e forming the valve seat 19 of the valve body 14 and a load acting on the needle valve 13 and the valve seat is applied. Since the female screw member 11 bears the load, the needle valve load when the needle valve 13 is in the “complete valve closed” state is small (“refrigerant introduction pressure” − “refrigerant discharge pressure” + “spring of the valve spring 7”). As a result, it is possible to prevent the needle valve 13 from getting into the valve seat 19.
[0028]
A curve {circle around (1)} shown in FIG. 4 indicates the load characteristic of the needle valve when θn = 6 °, and a line {circle around (2)} indicates “needle valve contact load” Wi = “valve extraction load” W0. Line (3) indicates the thrust generated by the stepping motor, and line (4) indicates the contact (load) load on the needle valve. Here, the contact (square load) load on the needle valve is “refrigerant introduction pressure” − “refrigerant discharge pressure” + “valve spring force”. Point (5) indicates an inflection point.
[0029]
In this embodiment, as described above, when the needle valve 13 is in the “complete valve closed” state, the female screw member 11 contacts the valve chamber bottom surface 15 e forming the valve seat 19 of the valve body 14 and acts on the needle valve 13. Since the internal thread member 11 bears the load, the load of the needle valve 13 when the needle valve 13 is in the “complete valve closed” state can be set to a point indicated by reference numeral S. As a result, the “valve pull-out load” W0 can be suppressed to a small load (“refrigerant introduction pressure” − “refrigerant discharge pressure” + “valve spring force”), and the tip valve portion of the needle valve 13 has an acute angle. Even if the minute flow rate control can be performed, the bite of the needle valve 13 into the valve seat 19 can be prevented.
[0030]
【The invention's effect】
As described above in detail, according to the present invention, the following effects can be obtained.
(1) Even if the tip valve portion of the needle is set at an acute angle so that the minute flow rate can be controlled, it is possible to prevent the needle from biting into the valve seat.
(2) The collision noise in the rotation stop mechanism can be reduced, and the noise of the electric control valve can be further reduced by the corrugated leaf spring.
(3) When setting the base point of the stepping motor, the flat surface of the female screw member is used as a reference, so that the durability is high and the deterioration is extremely small.
(4) Since the stop position of the rotation stop mechanism can be adjusted at the same time, the assembly process can be omitted.
(5) Since the pressing force generated in the needle valve and the valve seat is very small when the valve is completely closed, the deformation of the valve seat is small.
[Brief description of the drawings]
1A is a cross-sectional view of an electric control valve according to an embodiment of the present invention;
(B) is a partially enlarged view of the needle valve.
FIG. 2 is an enlarged cross-sectional view of a main part of the female screw member of FIG.
FIG. 3 is an enlarged cross-sectional view of a needle valve and a valve seat portion of FIG. 1;
4 is a graph showing a relationship between a contact load (horizontal axis) of a needle valve and a valve pull-out load (vertical axis) of the electric control valve of FIG. 1;
FIG. 5 is a cross-sectional view of a conventional electric control valve.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Can 2 Bearing 3 Corrugated leaf spring 4 Outer box 5 Stator coil mounting hole 6 Guide 7 Valve spring 8 Mounting spring 9 Lid body 10 Stepping motor rotor 11 Female thread member 11a Female thread 12 Male thread member 12a Male thread 13 Needle valve 14 Valve body 15 Valve Chamber 16a Lower valve chamber 17 Stator coil 17a Upper coil 17b Lower coil 17c Downward magnetic pole 17d Upward magnetic pole 19 Valve seat 20 Tube part 21a First joint 21b Second joint

Claims (3)

ケースとしてのキャンと、該キャンの内部に配設される弁室及び弁座を備えた弁本体と、該弁本体に取り付けられたステッピングモータのロータと、該ステッピングモータのロータにより前記弁座に接離する方向に駆動されてニードル弁として機能するニードルを備えた電動式コントロールバルブであって、前記ステッピングモータのロータと一体に成形し、外周面に雄ねじを形成した雄ねじ部材を設け、該雄ねじに螺合する雌ねじを内周面に形成した円筒状の雌ねじ部材が前記弁室内に取付ばねと共に設けられ、前記雌ねじ部材の内部に、ニードル弁を設け、弁閉行程時に、前記雌ねじ部材の平坦状の下端面が弁座を形成する弁室底面に当接して前記ニードル弁を完全弁閉状態にする前に前記ニードル弁が前記弁座に当接して該ニードル弁を弁閉状態にするように構成され、且つ、前記ステッピングモータのロータと、前記キャンの上凸部とロータ軸の間に設けられた軸受けとの間に波形板ばねが介設され、前記ニードル弁の完全弁閉状態時に前記波形板ばねが弾性変形して前記ステッピングモータのロータ回転トルクを吸収するように構成されていることを特徴とする電動式コントロールバルブ。A can as a case, a valve main body provided with a valve chamber and a valve seat disposed inside the can, a rotor of a stepping motor attached to the valve main body, and the valve seat by the rotor of the stepping motor An electric control valve provided with a needle that is driven in a contacting / separating direction and functions as a needle valve , and is formed integrally with a rotor of the stepping motor and provided with a male screw member having a male screw formed on an outer peripheral surface thereof. A cylindrical female screw member formed on the inner peripheral surface of a female screw to be screwed into the valve chamber is provided together with a mounting spring in the valve chamber, a needle valve is provided inside the female screw member, and the female screw member is flat when the valve is closed. the needle valve abuts against the needle valve on the valve seat before Jo of the lower end surface is completely closed valve state the needle valve contacts the valve chamber bottom surface that forms a valve seat It is configured to valve closed state, and the a stepping motor rotor, corrugated plate spring between the bearing provided between the upper convex portion and the rotor shaft of the can is interposed, the needle valve An electric control valve configured to absorb the rotor rotational torque of the stepping motor by elastically deforming the corrugated leaf spring when the valve is completely closed . 前記弁室内に雌ねじ部材の回転を防止し、上下摺動可能にするガイドを弁本体に固定した請求項1に記載の電動式コントロールバルブ。 The electric control valve according to claim 1, wherein a guide that prevents the female screw member from rotating in the valve chamber and is slidable vertically is fixed to the valve body. 前記ニードル弁を前記弁座方向に付勢する弱いばね力の弁ばねが雌ねじ部材の内部に設けられている請求項1又は請求項2に記載の電動式コントロールバルブ。The electric control valve according to claim 1 or 2 , wherein a valve spring having a weak spring force for urging the needle valve in the valve seat direction is provided inside the female screw member.
JP2000310359A 2000-10-11 2000-10-11 Electric control valve Expired - Lifetime JP4615693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000310359A JP4615693B2 (en) 2000-10-11 2000-10-11 Electric control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000310359A JP4615693B2 (en) 2000-10-11 2000-10-11 Electric control valve

Publications (2)

Publication Number Publication Date
JP2002122258A JP2002122258A (en) 2002-04-26
JP4615693B2 true JP4615693B2 (en) 2011-01-19

Family

ID=18790335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000310359A Expired - Lifetime JP4615693B2 (en) 2000-10-11 2000-10-11 Electric control valve

Country Status (1)

Country Link
JP (1) JP4615693B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4855861B2 (en) * 2006-07-27 2012-01-18 株式会社鷺宮製作所 Electric control valve
JP4821590B2 (en) * 2006-12-04 2011-11-24 株式会社デンソー Ejector type cycle
JP2013108647A (en) * 2011-11-18 2013-06-06 Daikin Industries Ltd Electronic expansion valve and air conditioner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0678677U (en) * 1993-04-16 1994-11-04 株式会社豊田自動織機製作所 Stepping motor
JP2000213660A (en) * 1999-01-22 2000-08-02 Samsung Electronics Co Ltd Electronic expansion valve for refrigerating cycle
JP2000346225A (en) * 1999-03-26 2000-12-15 Saginomiya Seisakusho Inc Motor-operated valve
JP2001343083A (en) * 2000-05-31 2001-12-14 Saginomiya Seisakusho Inc Electric control valve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0678677U (en) * 1993-04-16 1994-11-04 株式会社豊田自動織機製作所 Stepping motor
JP2000213660A (en) * 1999-01-22 2000-08-02 Samsung Electronics Co Ltd Electronic expansion valve for refrigerating cycle
JP2000346225A (en) * 1999-03-26 2000-12-15 Saginomiya Seisakusho Inc Motor-operated valve
JP2001343083A (en) * 2000-05-31 2001-12-14 Saginomiya Seisakusho Inc Electric control valve

Also Published As

Publication number Publication date
JP2002122258A (en) 2002-04-26

Similar Documents

Publication Publication Date Title
JP3937029B2 (en) Motorized valve
KR101165317B1 (en) Electrically operated valve
JP6481155B2 (en) Motorized valve
JP5510686B2 (en) Electric valve and its stopper
JP4669051B2 (en) Motorized valve
JP4220178B2 (en) Motorized valve
CN106168292B (en) Electric valve and assembling method thereof
US7600920B2 (en) Bearing holding structure for motor
JP4786834B2 (en) Motorized valve
KR20060043692A (en) Electronically operated valve
CN208252794U (en) A kind of motor-driven valve
JP3328530B2 (en) Motorized valve stopper structure
JP2003329158A (en) Motor-driven valve
CN110345267A (en) A kind of motor-driven valve
JP4615693B2 (en) Electric control valve
JP2001304445A (en) Motor-driven control valve and its assembling method
US6254059B1 (en) Electrically operated flow control valve
JP2000220762A (en) Solenoid valve
JP2003329157A (en) Motor-driven valve
JP2003097755A (en) Motor-operated valve and assembling method of the same
JP4098397B2 (en) Electric flow control valve
CN217463241U (en) Electronic expansion valve
JP2004360762A (en) Motor operated valve
JP2002147900A (en) Motor control valve
JP4092720B2 (en) Electric control valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070910

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101021

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250