JP4613099B2 - Electrochemical detector - Google Patents

Electrochemical detector Download PDF

Info

Publication number
JP4613099B2
JP4613099B2 JP2005163461A JP2005163461A JP4613099B2 JP 4613099 B2 JP4613099 B2 JP 4613099B2 JP 2005163461 A JP2005163461 A JP 2005163461A JP 2005163461 A JP2005163461 A JP 2005163461A JP 4613099 B2 JP4613099 B2 JP 4613099B2
Authority
JP
Japan
Prior art keywords
electrode
detection unit
detection
reaction
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005163461A
Other languages
Japanese (ja)
Other versions
JP2006337221A (en
Inventor
和夫 伴
和夫 橋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2005163461A priority Critical patent/JP4613099B2/en
Publication of JP2006337221A publication Critical patent/JP2006337221A/en
Application granted granted Critical
Publication of JP4613099B2 publication Critical patent/JP4613099B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

本発明は、一般に微量の液体に含まれる物質の量の電気化学的測定または分析を行う電気化学検出装置に関し、より特定的には、高感度化が実現できるように改良された電気化学検出装置に関する。   The present invention generally relates to an electrochemical detection apparatus that performs electrochemical measurement or analysis of the amount of a substance contained in a small amount of liquid, and more specifically, an electrochemical detection apparatus improved to achieve high sensitivity. About.

近年、大気中の花粉、ダニ、カビ、揮発性有機化合物などの浮遊微小物質や化学物質によるアレルギー症状に多くの人が悩まされている。そこで、アレルギーの原因となるアレルゲン等のタンパク質の量を測定するためのマイクロ流路デバイスの開発が盛んである。このようなデバイスとして、図25に示すようなマイクロ流路デバイスが提案されている(例えば特許文献1参照)。   In recent years, many people have been suffering from allergic symptoms caused by airborne pollutants, mites, fungi, volatile organic compounds, and other airborne microscopic substances and chemical substances. Therefore, development of microchannel devices for measuring the amount of proteins such as allergens that cause allergies is extensive. As such a device, a microchannel device as shown in FIG. 25 has been proposed (see, for example, Patent Document 1).

図25に示すように、ガラス、シリコン等の基板151の上に、反応固相としての直径1mm以下の固体微粒子152とともに、この固体微粒子152の径よりも大きい縦断面積を有するマイクロチャンネル反応槽部153と、固体微粒子152の径よりも小さい縦断面積を有するマイクロチャンネル分離部154と、抗原および標識抗体を別々に反応槽部153へと導く導入部もしくはマイクロチャンネル流入部155、156と、第一抗体の導入のためのマイクロチャンネル流入部157と、バッファー液や洗浄液の導入のためのマイクロチャンネル流入部158が設けられている。各々のマイクロチャンネル流入部155、156、157、158の端部には、抗原、標識抗体(第二抗体)、第一抗体、そして洗浄液の注入穴部155A、156A、157A、158Aが設けられ、マイクロチャンネル分離部154の端部には、廃液部154Aが設けられている。固体微粒子152は、免疫抗原−抗体反応のための反応固相としての役割を果たす。反応固相としての固体微粒子152は、マイクロチャンネル分離部154に流入することはなく、せき止められるように構成され、未反応物だけが、マイクロチャンネル分離部154に流入して分離される。   As shown in FIG. 25, on a substrate 151 such as glass or silicon, a microchannel reaction vessel having a solid fine particle 152 having a diameter of 1 mm or less as a reaction solid phase and a longitudinal sectional area larger than the diameter of the solid fine particle 152. 153, a microchannel separation unit 154 having a vertical cross-sectional area smaller than the diameter of the solid microparticles 152, an introduction unit or a microchannel inflow unit 155, 156 for introducing the antigen and the labeled antibody separately to the reaction tank unit 153, the first A microchannel inflow portion 157 for introducing an antibody and a microchannel inflow portion 158 for introducing a buffer solution or a washing solution are provided. At the end of each microchannel inflow portion 155, 156, 157, 158, there are provided an injection hole portion 155A, 156A, 157A, 158A for the antigen, labeled antibody (second antibody), first antibody, and washing solution, A waste liquid section 154A is provided at the end of the microchannel separation section 154. The solid microparticles 152 serve as a reaction solid phase for immune antigen-antibody reaction. The solid microparticles 152 as the reaction solid phase do not flow into the microchannel separation unit 154 but are blocked so that only unreacted materials flow into the microchannel separation unit 154 and are separated.

この従来例によれば、微量の試料等の使用によって、簡便に短い反応時間で免疫分析が可能となる。免疫分析の方法としては、反応固相としての固体微粒子152をマイクロチャンネル反応槽部153に導入し、導入部もしくはマイクロチャンネル流入部155、156より導入した抗原および標識抗体を、この固体微粒子152上で反応させる。次に未反応物をマイクロチャンネル分離部154で分離し、光熱変換分析により分析する。光熱変換分析については、熱レンズ顕微鏡によっている。   According to this conventional example, immunoanalysis can be easily performed with a short reaction time by using a small amount of sample. As an immunoassay method, solid microparticles 152 as a reaction solid phase are introduced into a microchannel reaction tank unit 153, and antigens and labeled antibodies introduced from the introduction units or microchannel inflow units 155 and 156 are transferred onto the solid microparticles 152. React with. Next, unreacted substances are separated by the microchannel separation unit 154 and analyzed by photothermal conversion analysis. Photothermal conversion analysis is performed by a thermal lens microscope.

しかし、提案されているデバイスは、上述のように、検出方法として熱レンズ方式を用いており、装置小型化の観点からは問題となる。   However, as described above, the proposed device uses the thermal lens method as a detection method, which is problematic from the viewpoint of downsizing the apparatus.

一方、電気化学的な検出方法と組み合わせたデバイスの研究がなされており(例えば、特許文献2参照)、これを特許文献1のマイクロ流路デバイスと組み合わせることで、アレルゲン等のタンパク質を電気的に検出できる電気化学検出型マイクロ流路デバイスが実現できる。   On the other hand, a device combined with an electrochemical detection method has been studied (for example, see Patent Document 2). By combining this with the microchannel device of Patent Document 1, proteins such as allergens are electrically isolated. An electrochemical detection type microchannel device capable of detection can be realized.

図26(a)は、このような電気化学検出型マイクロ流路デバイスの上面図であり、図26(b)は、図26(a)におけるB−B線に沿う断面図である。これらの図を参照して、基板501の表面にマイクロチャネル注入穴504A,排出孔505A、マイクロ反応槽部503、マイクロ流路504、505が形成されており、それらの深さは100μmであり、流路の幅は200μmである。マイクロ反応槽部503と流路505の間には、微粒子の径よりも小さい幅の流路をもつ堰き止め部508を形成しており、抗体を固定化した微粒子502を堰き止めるようにしている。また、マイクロ流路505の上であって、蓋510の表面に電極506、接続パッド507及びそれらを電気的に接続する配線509が所望のパターンに形成されている。   FIG. 26A is a top view of such an electrochemical detection type microchannel device, and FIG. 26B is a cross-sectional view taken along the line BB in FIG. Referring to these drawings, a microchannel injection hole 504A, a discharge hole 505A, a microreaction vessel 503, and microchannels 504 and 505 are formed on the surface of the substrate 501, and their depth is 100 μm, The width of the flow path is 200 μm. A damming portion 508 having a flow channel having a width smaller than the diameter of the fine particles is formed between the microreaction vessel 503 and the flow channel 505 so as to dam the fine particles 502 on which the antibody is immobilized. . In addition, on the surface of the lid 510, the electrodes 506, the connection pads 507, and the wirings 509 that electrically connect them are formed in a desired pattern on the microchannel 505.

例えば、アレルゲンを含む被検液を注入穴504Aから外部ポンプなどを用いて注入し、アレルゲンと特異的に反応する抗体を固定化した微粒子502と反応させて、微粒子502の表面にアレルゲンを捕獲させる。緩衝液で洗浄後、酵素を標識として付けた抗体を含む液を注入穴部504Aから注入し、微粒子502の表面に固定化抗体−アレルゲン−酵素付抗体からなる複合体を形成する。緩衝液で洗浄後、酵素により電極活性物質に変化する基質材料を流して、複合体の酵素により電極活性物質に変える。電極506が形成された領域での電極活性物質を電流あるいは電位の変化として接続パッド507から検出することで、微量な試料液体中の検出対象物質の濃度を知ることができる。   For example, a test solution containing allergen is injected from the injection hole 504A using an external pump or the like, and reacted with the immobilized microparticle 502 with an antibody that specifically reacts with the allergen to capture the allergen on the surface of the microparticle 502. . After washing with a buffer solution, a solution containing an antibody labeled with an enzyme is injected from the injection hole 504A to form a complex composed of an immobilized antibody-allergen-enzyme-attached antibody on the surface of the microparticles 502. After washing with a buffer solution, a substrate material that is converted into an electrode active substance by an enzyme is flowed and converted into an electrode active substance by an enzyme of the complex. By detecting the electrode active substance in the region where the electrode 506 is formed from the connection pad 507 as a change in current or potential, the concentration of the detection target substance in a very small amount of sample liquid can be known.

図26と図27を参照して、電極506は、特許文献3に提案されるような櫛型形状の作用電極520、参照電極521、対向電極522から構成される電極部が、蓋510の表面上に平面状に形成された構成であり、電極506の厚さは、1μm以下である。また、電極506が形成された領域の流路505の深さ(空間の厚み)は、約15μmから1000μmに設定される。   Referring to FIGS. 26 and 27, the electrode 506 includes a comb-shaped working electrode 520, a reference electrode 521, and a counter electrode 522 as proposed in Patent Document 3, the surface of the lid 510. The electrode 506 has a thickness of 1 μm or less. The depth (space thickness) of the flow path 505 in the region where the electrode 506 is formed is set to about 15 μm to 1000 μm.

このようなデバイス構造では、作用電極520での酸化還元反応は、作用電極520付近の電極活性物質しか起こらず、作用電極520から離れたところにある電極活性物質は反応に寄与せずに流れていってしまう。その結果、得られる電流値または電圧値は小さなものであり、デバイスの検出感度が低いという問題があった。これを解決するため、液の流れを止めて、酸化還元反応を行うことも考えられるが、作用電極520には電極活性物質を引き寄せる作用はないので、作用電極520から離れた場所にいる電極活性物質が作用電極520付近に来るには拡散作用に頼るしかなく、大きな電流値または電圧値を得るには測定時間が非常に長くなるという問題があった。   In such a device structure, the redox reaction at the working electrode 520 occurs only in the electrode active material near the working electrode 520, and the electrode active material located away from the working electrode 520 flows without contributing to the reaction. End up. As a result, the obtained current value or voltage value is small, and there is a problem that the detection sensitivity of the device is low. In order to solve this, it is conceivable to stop the flow of the liquid and carry out the oxidation-reduction reaction. However, since the working electrode 520 has no action of attracting the electrode active substance, the electrode activity at a location away from the working electrode 520 In order for a substance to come to the vicinity of the working electrode 520, there is no choice but to rely on the diffusion action, and there is a problem that the measurement time becomes very long in order to obtain a large current value or voltage value.

特許文献4では、作用電極を3次元的に形成する電極構造が提案されている。電流値を大きくするには櫛型作用電極の本数を多くすることが必要であるが、本文献に開示されている電極構造では、所定の領域に多くの電極の壁を形成することになり、1枚の壁の高さと幅の比が大きくなり、微細加工プロセスでの歩留まりが著しく悪くなる懸念があること、形成した壁の強度が低下し、使用している間に欠陥が生じる懸念があるなどの問題があった。   Patent Document 4 proposes an electrode structure in which the working electrode is three-dimensionally formed. In order to increase the current value, it is necessary to increase the number of comb-type working electrodes, but in the electrode structure disclosed in this document, many electrode walls are formed in a predetermined region. There is a concern that the ratio of the height and width of a single wall becomes large, and the yield in the microfabrication process is remarkably deteriorated, the strength of the formed wall is reduced, and defects are generated during use. There were problems such as.

特開2001−4628号公報JP 2001-4628 A

特開2003−285298号公報JP 2003-285298 A

特開平1−272958号公報JP-A-1-272958

特開2004−93406号公報JP 2004-93406 A

この発明は上記のような問題点を解決するためになされたもので、デバイスの検出感度を高めることができるように改良された電気化学検出装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to provide an electrochemical detection apparatus improved so as to increase the detection sensitivity of the device.

この発明の他の目的は、測定時間が短くなるように改良された電気化学検出装置を提供することにある。   Another object of the present invention is to provide an electrochemical detection apparatus improved so as to shorten the measurement time.

この発明の他の目的は、量産性に優れた電気化学検出装置を提供することにある。   Another object of the present invention is to provide an electrochemical detection device excellent in mass productivity.

この発明に係る電気化学検出装置は、その空間内で反応を起こさせる反応部と、その空間内に電気化学的な検出を行うための電極を有する検出部と、前記反応部と前記検出部とを繋ぐ流路とを備え、前記検出部の空間の深さは、前記流路の深さよりも浅くされている。前記検出部において、その上面または下面の一方には、他の面に向けて盛り上がる凸部が設けられている。前記検出部の、前記他の面には、前記凸部に対向するように凹状の窪みが形成されている。前記凹状の窪みに電気化学的な検出を行うための前記電極が形成されている。 The electrochemical detection apparatus according to the present invention includes a reaction unit that causes a reaction in the space, a detection unit having an electrode for performing electrochemical detection in the space, the reaction unit, and the detection unit. And the depth of the space of the detection unit is shallower than the depth of the flow path. In the detection unit, a convex portion that protrudes toward the other surface is provided on one of the upper surface and the lower surface. A concave depression is formed on the other surface of the detection unit so as to face the projection. The electrode for performing electrochemical detection is formed in the concave depression.

この発明のさらに好ましい実施態様によれば、上記凸部の側面がテーパー状になっている。   According to a further preferred embodiment of the present invention, the side surface of the convex portion is tapered.

この発明のさらに好ましい実施態様によれば、上記凹状の窪みの側面がテーパー状になっている。   According to a further preferred embodiment of the present invention, the side surface of the concave recess is tapered.

この発明のさらに好ましい実施態様によれば、上記凸部の上面と、上記凹状の窪みが形成されている面とは同一平面上にある。   According to a further preferred embodiment of the present invention, the upper surface of the convex portion and the surface on which the concave depression is formed are on the same plane.

上記検出部において、その上面または下面の他方に、前記凹状の窪みが形成されるように、開口部を有するフィルムまたは樹脂層が設けられている。 In the detection unit, a film or a resin layer having an opening is provided on the other of the upper surface or the lower surface so that the concave depression is formed .

この発明の他の局面に係る電気化学検出装置は、その空間内で反応を起こさせる反応部と、その空間内に電気化学的な検出を行うための電極を有する検出部と、上記反応部と上記検出部とを繋ぐ流路とを備え、上記検出部の空間の深さは、上記流路の深さよりも浅くされており、上記検出部において、その上面または下面の一方には、空間に向けて盛り上る凸部が設けられている電気化学検出装置において、上記検出部において、その上面または下面の一方には、接続パッドに電気的につながった接続パッド用接続部が設けられており、上記凸部は厚みを有する基材片で構成され、上記基材片の表面に上記電極が設けられており、上記基材片の裏面に上記接続パッド用接続部に接続される第1の接続部が設けられており、上記基材片の厚み部分を貫通するように貫通孔が形成されており、上記貫通孔を通して上記第1の接続部と接続パッド用接続部とが電気的接続されており、上記基材片は、該基材片の裏面に設けられた上記第1の接続部が、上記接続パッド用接続部に接触するように、上記検出部の上記上面または下面の一方に接着剤で貼り付けられて、上記凸部を形成している。An electrochemical detection apparatus according to another aspect of the present invention includes a reaction unit that causes a reaction in the space, a detection unit that includes an electrode for performing electrochemical detection in the space, and the reaction unit. A flow path connecting the detection unit, and the depth of the detection unit space is shallower than the depth of the flow channel, and in the detection unit, one of the upper surface or the lower surface is provided in the space. In the electrochemical detection device provided with a convex part that rises toward the surface, in the detection part, one of the upper surface or the lower surface is provided with a connection pad connection part electrically connected to the connection pad, The said convex part is comprised with the base material piece which has thickness, the said electrode is provided in the surface of the said base material piece, and the 1st connection connected to the said connection pad connection part on the back surface of the said base material piece A thickness portion of the base material piece A through hole is formed so as to penetrate through the first through hole, and the first connection portion and the connection pad connection portion are electrically connected through the through hole. The first connecting portion provided on the connecting pad is attached to one of the upper surface or the lower surface of the detecting portion with an adhesive so as to contact the connecting pad connecting portion, thereby forming the convex portion. Yes.

本発明では、少なくとも免疫反応、酵素反応などを生じさせる反応部、電気化学的な検出を行うための電極が形成された検出部及びそれらを繋ぐ流路を含む検出装置であって、検出部の空間の深さが上記流路の深さよりも浅くされているので、検出部付近での体積が小さくなり、拡散による濃度低下は従来に比べ小さくでき、結果として大きな電流量を得ることができる。
In the present invention, there is provided a detection device including at least a reaction part that causes an immune reaction, an enzyme reaction, etc., a detection part on which an electrode for performing electrochemical detection is formed, and a flow path connecting them. since the depth of the space is shallower than the depth of the upper Kiryuro, the smaller the volume of the near detector, the density reduction due to diffusion can be reduced compared to the conventional, it is possible to obtain a large amount of current as a result .

また、本構成では、従来の構成に比べ、液が検出部を流れる間に拡散力及び壁による衝突やそれによる液内の衝突拡散により電極表面にまで達する量が大きくなり、従来の検出装置に比べ大きな電流量を得ることができるという利点が生じる。また、上記のように大きな電流量が得られるため装置として高感度検出が実現できるという効果が生じる。   Also, in this configuration, compared to the conventional configuration, while the liquid flows through the detection unit, the amount reaching the electrode surface due to the diffusion force and the collision by the wall and the collision diffusion in the liquid due to it increases. The advantage that a larger amount of current can be obtained is obtained. Further, since a large amount of current can be obtained as described above, there is an effect that high sensitivity detection can be realized as an apparatus.

また、本構成では、流路の深さは、電極表面とそれと対向する基板表面の距離と関係なく設定できるので、当該距離よりも大きい径の抗体付ビーズを用いることが併用でき、高効率の免疫反応及び酵素反応が同時に実現できるという効果も生じる。また、その効果により、酵素反応効率が向上するので、電極活性物質の量も多くなり、結果として従来の検出装置に比べ大きな電流量を得ることができ、高感度化が実現できるという相乗効果が生じる。   In addition, in this configuration, the depth of the flow path can be set regardless of the distance between the electrode surface and the substrate surface opposite to the electrode surface. There is also an effect that an immune reaction and an enzyme reaction can be realized simultaneously. In addition, since the enzyme reaction efficiency is improved by the effect, the amount of the electrode active substance is increased, and as a result, a large current amount can be obtained as compared with the conventional detection device, and a synergistic effect that high sensitivity can be realized is achieved. Arise.

本発明では、上記検出部において、その上面または下面の一方には、接続パッドに電気的につながった第1接続部が設けられており、上記凸部は、その裏面に設けられ、上記第1接続部に接続される第2接続部と、該凸部を厚み方向に貫通する貫通孔と、その表面に設けられ、電気化学的な検出を行うための上記電極とを有し、上記貫通孔を通して、上記電極と上記第2接続部が電気的に接続されているという構成なので、従来のように、検出部に設けられた電極と接続パッドとをつなぐ配線が段差により切断されるという問題がなくなるという効果が生じる。また、本構成では、上記凸部をフィルムなどで作製する場合、大きなフィルムに複数の電極、第2の接続部を設けた構造体を作製した後、1つ1つの構造体を切り出して貼り付けるということが可能となり、従来のバッチごとに電極を作製するという方法に対し、量産性の観点で利点が生じるという効果が生じる。   In the present invention, in the detection unit, the first connection part electrically connected to the connection pad is provided on one of the upper surface or the lower surface, and the convex part is provided on the back surface of the detection unit. A second connecting portion connected to the connecting portion; a through hole penetrating the convex portion in the thickness direction; and the electrode provided on the surface for performing electrochemical detection, the through hole Since the electrode and the second connection portion are electrically connected to each other, there is a problem that the wiring connecting the electrode and the connection pad provided in the detection portion is cut by a step as in the prior art. The effect of disappearing occurs. Moreover, in this structure, when producing the said convex part with a film etc., after producing the structure which provided the several electrode and the 2nd connection part in the big film, cut and paste each structure one by one This makes it possible to produce an advantage in terms of mass productivity with respect to the conventional method of producing electrodes for each batch.

また、本発明では、検出部において、予め電極部、配線、接続パッドなどが形成された面に、少なくとも電極の一部が露出するような開口部を設けた、フィルムまたは樹脂層からなる層を形成したことを特徴とする構成なので、従来のように、検出部に設けられた電極と接続パッドとをつなぐ配線が段差により切断されるという問題がなくなるという効果が生じる。   Further, in the present invention, in the detection unit, a layer made of a film or a resin layer, in which an opening that exposes at least a part of the electrode is provided on a surface on which the electrode unit, the wiring, the connection pad, and the like are formed in advance. Since the structure is characterized in that it is formed, there is an effect that the problem that the wiring connecting the electrode and the connection pad provided in the detection portion and the connection pad is cut by a step is eliminated as in the prior art.

以下本発明の実施の形態を図面を用いて説明する。
[実施の形態1]
Embodiments of the present invention will be described below with reference to the drawings.
[Embodiment 1]

図1は実施の形態1にかかる電気化学検出型マイクロ流路デバイスの上面図であり、図2は、図1におけるII−II線に沿う断面図である。   FIG. 1 is a top view of the electrochemical detection type microchannel device according to the first exemplary embodiment, and FIG. 2 is a cross-sectional view taken along line II-II in FIG.

図1に示すように、本発明にかかる電気化学検出型マイクロ流路デバイスでは、基板1の表面と蓋20の表面とが対向するように、基板1の上に蓋20が設けられ、基板1の表面に、少なくとも、測定対象である検出対象物質を含む被検液、緩衝液を導入する導入孔2、免疫反応や酵素反応を生じさせる反応部3、検出部4、被検液、緩衝液を流出する排出孔5及びそれらを繋ぐ被検液、緩衝液が流れる流路6,流路7,流路8が形成されている。   As shown in FIG. 1, in the electrochemical detection type microchannel device according to the present invention, a lid 20 is provided on the substrate 1 so that the surface of the substrate 1 and the surface of the lid 20 face each other. A test solution containing at least a detection target substance to be measured, an introduction hole 2 for introducing a buffer solution, a reaction unit 3 for causing an immune reaction or an enzyme reaction, a detection unit 4, a test solution, a buffer solution A flow path 6, a flow path 7 and a flow path 8 are formed through which the discharge holes 5 flowing out of the flow path, the test solution connecting them, and the buffer solution flow.

検出部4において、基板1の表面には、段である凸部22が設けられている。流路6,7,8を形成した基板1の構成は、従来のように流路パターンを形成した型に光または熱硬化性樹脂を流し込んで固めて一体構造のものとして作製してもよく、また、ポリメタクリル酸樹脂、ポリカーボネイト樹脂からなる基板に流路パターンを形成した型を用いてホットエンボス法により形成した一体構造のものでも良い。   In the detection unit 4, a convex portion 22 that is a step is provided on the surface of the substrate 1. The structure of the substrate 1 in which the flow paths 6, 7, and 8 are formed may be manufactured as an integral structure by pouring light or a thermosetting resin into a mold in which a flow path pattern is formed as in the past, and solidifying it. Moreover, the thing of the integral structure formed by the hot embossing method using the type | mold which formed the flow-path pattern in the board | substrate which consists of a polymethacrylic acid resin and a polycarbonate resin may be used.

また例えば、図3に示すような、支持基体10に流路に対応したパターンの孔を空けたフィルム11を貼り合わせたものでも良い。この場合、大面積のフィルムに所定の流路パターンの孔を複数個一度に形成して、その後所定の大きさに切って支持基体と貼り合わせればよいので、従来のようにバッチ毎に作製する方法に比べ、量産性の観点から利点が生じる。   Further, for example, as shown in FIG. 3, a support substrate 10 may be bonded with a film 11 having a pattern of holes corresponding to the flow path. In this case, a plurality of holes having a predetermined flow path pattern may be formed at a time on a large-area film, and then cut into a predetermined size and bonded to the support base. Compared with the method, there is an advantage from the viewpoint of mass productivity.

図1を再び参照して、基板1の厚みは0.1mm〜5mm程度である。導入部2、流出部5は、直径が10μm以上、深さが0.1μmから1mmの穴で良く、特に形状は問わない。反応部3には、アレルゲンと特異的に反応する抗体が設けられている。抗体はビーズ12などの不溶性担体に固定化されていても良く、基板上に設けられていても良い。反応部3の形状は、円柱形状の穴、半球状の形状、直方体形状の穴または流路の一部を用いても良く、大きさは10μm以上であれば良く、深さは0.1μmから1mmであれば良い。また、抗体をビーズ12などの不溶性担体に固定化して、担体を基板に固定化しない場合は、流路7への接続口の断面積を不溶性担体の大きさよりも小さくした堰き止め部13を設けた構成にすればよい。   Referring to FIG. 1 again, the thickness of the substrate 1 is about 0.1 mm to 5 mm. The introduction part 2 and the outflow part 5 may be holes having a diameter of 10 μm or more and a depth of 0.1 μm to 1 mm, and the shape is not particularly limited. The reaction part 3 is provided with an antibody that reacts specifically with the allergen. The antibody may be immobilized on an insoluble carrier such as a bead 12, or may be provided on a substrate. The reaction section 3 may have a cylindrical hole, a hemispherical shape, a rectangular parallelepiped hole, or a part of a flow path, and may have a size of 10 μm or more and a depth of 0.1 μm or more. It may be 1 mm. Further, when the antibody is immobilized on an insoluble carrier such as a bead 12 and the carrier is not immobilized on a substrate, a damming portion 13 is provided in which the cross-sectional area of the connection port to the channel 7 is smaller than the size of the insoluble carrier. What is necessary is just to make it the structure.

この構成を用いれば、被検液や緩衝液が流路6を通って反応部3に流れ込んで流路7に流れ出す場合でも、担体が液といっしょに反応部3から流れ出してしまうことを防ぐことができる。また、別の方法としては、不溶性担体として磁性粒子を用いて、基板1または蓋20の外に別途設けた磁石(図示せず)により反応部3に固定しても良い。本説明では、簡単のために抗体材料と記しているが、用いる材料としては、検出対象物質と特異的に反応して、これを捕獲するものであれば良く、例えば、モノクロール抗体、ポリクロール抗体など抗体材料やインプリンティングポリマー、アプタマー材料など人工抗体材料と呼ばれているものでも良い。   By using this configuration, even when the test solution or the buffer solution flows into the reaction unit 3 through the flow channel 6 and flows out to the flow channel 7, the carrier is prevented from flowing out of the reaction unit 3 together with the liquid. Can do. As another method, magnetic particles may be used as the insoluble carrier and fixed to the reaction unit 3 by a magnet (not shown) separately provided outside the substrate 1 or the lid 20. In this description, although it is described as an antibody material for simplicity, the material to be used may be any material that specifically reacts with and captures the detection target substance, such as a monoclonal antibody, polychlore, and the like. An antibody material such as an antibody, an imprinting polymer, or an artificial antibody material such as an aptamer material may be used.

流路6、7、8は、幅0.1μmから1mmであり、深さは0.1μmから1mmに、好ましくは1μmから500μmに形成される。その断面の形は、矩形、台形形状でも良く、流路の底は円の一部のように丸くなっていても良い。蓋20は、光硬化性樹脂、ガラス、プラスチック材料、シリコン基板、金属基板、フィルムまたはそれらを組み合わせたものなどを用いることができる。蓋20の表面には、凸部22に対応した位置に検出用電極14が形成されている。   The flow paths 6, 7, and 8 have a width of 0.1 μm to 1 mm, and a depth of 0.1 μm to 1 mm, preferably 1 μm to 500 μm. The cross-sectional shape may be rectangular or trapezoidal, and the bottom of the flow path may be round like a part of a circle. The lid 20 can be made of a photocurable resin, glass, plastic material, silicon substrate, metal substrate, film, or a combination thereof. On the surface of the lid 20, the detection electrode 14 is formed at a position corresponding to the convex portion 22.

本発明の特徴である検出部を、図4を用いて詳細に説明する。本発明では、電極14は、蓋20の表面に、凸部22に対向するように形成されている。液と接する電極14の表面と、凸部22の表面21との距離(検出部の空間の深さ)が、少なくとも反応部3の深さ(空間の厚み)または検出部4に接続する流路7または8の深さ(空間の深さ)のなかの最小のものよりも小さいことを特徴としている。   The detection unit, which is a feature of the present invention, will be described in detail with reference to FIG. In the present invention, the electrode 14 is formed on the surface of the lid 20 so as to face the convex portion 22. The distance between the surface of the electrode 14 in contact with the liquid and the surface 21 of the convex portion 22 (the depth of the space of the detection unit) is at least the depth of the reaction unit 3 (the thickness of the space) or the flow path connected to the detection unit 4 It is characterized by being smaller than the smallest of 7 or 8 depth (space depth).

基板1に形成される凸部22の平面部の幅は、作用電極の液と接する領域の大きさ以上であれば良く、その流路に沿った方向の長さは特に限定されない。凸部22が流路7と流路8の間に設けられる場合、凸部22の形状は、図4のように液の流れる方向に対して垂直な壁面を有してもよい。また、図5のように、液がスムーズに流れるように凸部22にテーパーを設けていても良い。テーパーを設けることで、凸部22の側面付近で流れが止まったり、流速の分布が生じるという問題がなくなると共に、泡が発生した場合、凸部22の側面付近で泡が止まって、液が流れなくなったり、送液時の圧力が高くなり装置を破損するという問題も生じなくなるという効果が生じる。凸部22の幅及び長さは、電極活性物質の流路内での希釈の度合いを最小にし、電極での酸化還元反応による信号量を最大にするという観点や装置全体の強度、電極サイズから要請される検出部の大きさなどから最適に設計されるべきものである。また、電極14の表面と、対向する基板表面21との距離も同様に最適化されるべきものであるが、実際上は、加工精度の観点から0.05μm以上になるよう設計される。   The width of the flat portion of the convex portion 22 formed on the substrate 1 may be equal to or larger than the size of the region in contact with the liquid of the working electrode, and the length in the direction along the flow path is not particularly limited. When the convex part 22 is provided between the flow path 7 and the flow path 8, the shape of the convex part 22 may have a wall surface perpendicular | vertical with respect to the direction through which a liquid flows like FIG. Further, as shown in FIG. 5, the convex portion 22 may be tapered so that the liquid flows smoothly. By providing the taper, there is no problem that the flow stops near the side surface of the convex portion 22 or the flow velocity distribution occurs, and when bubbles are generated, the bubbles stop near the side surface of the convex portion 22 and the liquid flows. There is an effect that the problem that the device is lost or the pressure at the time of liquid feeding becomes high and the device is damaged does not occur. The width and length of the convex portion 22 are determined from the viewpoint of minimizing the degree of dilution of the electrode active substance in the flow path and maximizing the signal amount due to the oxidation-reduction reaction at the electrode, the strength of the entire apparatus, and the electrode size. It should be optimally designed based on the required size of the detector. Further, the distance between the surface of the electrode 14 and the opposing substrate surface 21 should be optimized as well, but in practice, it is designed to be 0.05 μm or more from the viewpoint of processing accuracy.

本発明の検出装置を用いて、例えば、アレルゲンなどの抗原を検出する方法を簡単に説明する。図1と図2を参照して、予め、検出装置の流路6、7、8、反応部3、検出部4を緩衝液で満たしておく。次に、導入孔2から緩衝液を注入して装置内を緩衝液で洗浄する。次に予め抗体材料を固定化した複数個のビーズ12を緩衝液と共に導入孔2から注入し、その後に流路6、7、8、反応部3、検出部4の表面へのタンパク質の非特異的吸着を防ぐために、アルブミン水溶液を流して、表面にアルブミン膜を形成した。   For example, a method of detecting an antigen such as an allergen using the detection apparatus of the present invention will be briefly described. With reference to FIG. 1 and FIG. 2, the flow path 6, 7, 8, the reaction part 3, and the detection part 4 of a detection apparatus are previously filled with buffer solution. Next, a buffer solution is injected from the introduction hole 2 and the inside of the apparatus is washed with the buffer solution. Next, a plurality of beads 12 on which an antibody material has been immobilized in advance are injected from the introduction hole 2 together with a buffer solution, and then protein non-specificity on the surfaces of the flow paths 6, 7, 8, the reaction part 3, and the detection part 4 In order to prevent mechanical adsorption, an albumin aqueous solution was flowed to form an albumin film on the surface.

次に、抗原を含む被検液を導入孔2から入れて反応部3に移動させ、被検液中の抗原を反応部3に設けられた抗体材料により捕獲させた後、被検液に代えて緩衝液を導入孔2より入れて流路6、7、8、反応部3、検出部4を洗浄する。   Next, a test solution containing an antigen is introduced from the introduction hole 2 and moved to the reaction unit 3, and the antigen in the test solution is captured by the antibody material provided in the reaction unit 3 and then replaced with the test solution. Then, a buffer solution is introduced from the introduction hole 2 to wash the flow paths 6, 7, 8, the reaction unit 3, and the detection unit 4.

次に、酵素を標識として付けた抗体材料を含む緩衝液を導入孔2から注入し、反応部3に固定化された抗体に捕獲されている抗原と反応させることで、ビーズ12の表面に固定化抗体―抗原−酵素付抗体材料からなる複合体を形成させる。酵素付抗体材料は捕獲されている抗原の量に比べ過剰の量を流すので、未反応の酵素付抗体材料を除去するために緩衝液を導入孔2より入れて流路6、7、8、反応部3、検出部4を洗浄する。   Next, a buffer solution containing an antibody material labeled with an enzyme is injected from the introduction hole 2 and reacted with the antigen captured by the antibody immobilized on the reaction part 3 to be immobilized on the surface of the beads 12. A complex composed of an antibody-antigen-antibody-attached antibody material is formed. Since the antibody-attached antibody material flows in an excessive amount compared to the amount of antigen captured, in order to remove the unreacted antibody-attached antibody material, a buffer solution is introduced through the introduction hole 2 and the flow paths 6, 7, 8, The reaction unit 3 and the detection unit 4 are washed.

次に、標識として用いた酵素により電極活性物質に変化する基質材料を含む緩衝液を導入孔2から注入し、反応部に形成された固定化抗体―抗原−酵素付抗体材料からなる複合体と反応させることで、複合体の量に対応した電極活性物質を生じさせる。電極活性物質は反応部3から流路7を介して検出部4に入り、検出部4にて作用電極、対向電極に所定の電圧を印加することで酸化還元反応が起こり、電流が生じる。この電流を測定することで、アレルゲンの量が測定できる。標識として用いる酵素材料及び基質材料は、公知のもの(例えば特許文献3または特許文献5(特開平9−243590公報)に開示されるもの)が使用できる。   Next, a buffer solution containing a substrate material that is converted into an electrode active substance by an enzyme used as a label is injected from the introduction hole 2, and a complex composed of an immobilized antibody-antigen-enzyme-attached antibody material formed in the reaction part and By making it react, the electrode active substance corresponding to the quantity of a composite_body | complex is produced. The electrode active substance enters the detection unit 4 from the reaction unit 3 through the flow path 7, and when a predetermined voltage is applied to the working electrode and the counter electrode in the detection unit 4, an oxidation-reduction reaction occurs and a current is generated. By measuring this current, the amount of allergen can be measured. As the enzyme material and the substrate material used as the label, known materials (for example, those disclosed in Patent Document 3 or Patent Document 5 (Japanese Patent Laid-Open No. 9-243590)) can be used.

検出部4では、電極活性物質が作用電極において酸化還元反応を起こすことで電流が生じる。即ち、電流の大きさは電極14付近での電極活性物質の濃度に依存する。通常、反応部3にて生じた電極活性物質は検出部4に至るまでに希釈される。従来の構成では、流路の深さと検出部の深さは同一であったので、例えば、反応部において免疫反応や酵素反応の効率をあげようとして、ビーズの表面に抗体材料などを固定化した系を応用した場合、検出部4の深さは少なくとも反応部のビーズの径以上になっていた。そのため、電極活性物質は、検出部においてその体積に比例して希釈されてしまい、電極付近の濃度は低くなり電流量も小さくなっていた。本発明では、電極表面とそれと対向する基板表面の距離は、流路の深さと関係なく、小さく設定した構成なので、検出部4付近での体積が小さくなり、拡散による濃度低下は従来に比べ小さくでき、結果として大きな電流量を得ることができる。   In the detection unit 4, an electric current is generated when the electrode active substance causes a redox reaction at the working electrode. That is, the magnitude of the current depends on the concentration of the electrode active material in the vicinity of the electrode 14. Usually, the electrode active substance generated in the reaction unit 3 is diluted before reaching the detection unit 4. In the conventional configuration, the depth of the flow path and the depth of the detection part are the same. For example, in order to increase the efficiency of the immune reaction or enzyme reaction in the reaction part, an antibody material or the like is immobilized on the surface of the beads. When the system was applied, the depth of the detection unit 4 was at least greater than the diameter of the beads in the reaction unit. For this reason, the electrode active substance is diluted in proportion to its volume in the detection unit, the concentration in the vicinity of the electrode is lowered, and the amount of current is also reduced. In the present invention, since the distance between the electrode surface and the substrate surface opposite to the electrode surface is set to be small regardless of the depth of the flow path, the volume in the vicinity of the detection unit 4 is small, and the concentration reduction due to diffusion is small compared to the conventional case. As a result, a large amount of current can be obtained.

また、電極活性物質は、液が検出部4を流れる間に拡散力及び壁による衝突やそれによる液内の衝突拡散により電極14表面にまで達する量が決定され、電極14に達する確率は、電極とそれと対向する面との距離が小さいほど大きくなる。本発明では、従来の構成に比べ、当該距離を小さくした構成なので、電極14に達して反応する電極活性物質の量は従来と比べ大きくなり、従来の検出装置に比べ大きな電流量を得ることができるという利点が生じる。また、上記のように大きな電流量が得られるため、装置として高感度検出が実現できるという効果が生じる。   Further, the amount of the electrode active substance reaching the surface of the electrode 14 is determined by the diffusion force and the collision by the wall and the collision diffusion in the liquid by the collision while the liquid flows through the detection unit 4. And the distance between the opposite surface and the surface becomes smaller. In the present invention, since the distance is reduced compared to the conventional configuration, the amount of the electrode active substance that reaches and reacts with the electrode 14 is larger than the conventional configuration, and a large amount of current can be obtained compared to the conventional detection device. The advantage that you can do it. Further, since a large amount of current can be obtained as described above, there is an effect that high sensitivity detection can be realized as an apparatus.

また、本発明では、流路3,7,8の深さは、電極表面とそれと対向する基板表面の距離(検出部の空間の深さ)と関係なく設定できるので、当該距離よりも大きい径の抗体付ビーズを用いることが併用でき、高効率の免疫反応及び酵素反応が同時に実現できるという効果も生じる。また、その効果により、酵素反応効率が向上するので、電極活性物質の量も多くなり、結果として従来の検出装置に比べ大きな電流量を得ることができ、高感度化が実現できるという相乗効果が生じる。   In the present invention, the depth of the flow paths 3, 7, 8 can be set regardless of the distance between the electrode surface and the substrate surface opposite to the electrode surface (depth of the detection unit space). These beads with antibodies can be used in combination, and there is an effect that a highly efficient immune reaction and enzyme reaction can be realized simultaneously. In addition, since the enzyme reaction efficiency is improved by the effect, the amount of the electrode active substance is increased, and as a result, a large current amount can be obtained as compared with the conventional detection device, and a synergistic effect that high sensitivity can be realized is achieved. Arise.

本発明の検出部は、図6に示すように、その幅が検出部4に接続する両方の流路7,8の幅よりも大きくても良い。検出部の幅が流路の幅と同じ場合は、流速が同じとき注入孔にかかる圧力は、検出部の入り口の断面積に反比例する。即ち、本発明の構成を用いて、電極表面とそれと対向する基板表面との距離(検出部の空間の深さ)を小さくすれば、検出される信号量は大きくなるが、流路内にかかる圧力は大きくなり、チップの破壊を生じるという懸念がある。本発明の構成は、検出部4の幅を大きくすることを特徴とし、そのことにより、電極表面とそれと対向する基板表面との距離を小さくするという本発明の特徴を活かしながら、流路内にかかる圧力の増加も防ぐことができるという利点が生じる。実際に設定する検出部4の幅は、装置全体の流路の形状、装置の耐圧性から設計されるものであるが、例えば流路の断面積が一定であれば、それとほぼ同一の断面積になるように、検出部4の幅と、電極表面とそれと対向する基板表面との距離を決定すればよい。この値は、検出部4の電極14での反応性を最大にするように決定されることは言うまでもない。また、本構成では、形成する電極14の幅も大きくでき、検出電流も大きくできるという効果も生じる。   As shown in FIG. 6, the detection unit of the present invention may have a width larger than the widths of both flow paths 7 and 8 connected to the detection unit 4. When the width of the detection part is the same as the width of the flow path, the pressure applied to the injection hole when the flow velocity is the same is inversely proportional to the cross-sectional area of the inlet of the detection part. That is, if the distance between the electrode surface and the substrate surface facing the electrode surface (depth of the detection unit space) is reduced by using the configuration of the present invention, the amount of signal to be detected increases, but it is applied to the flow path. There is concern that the pressure will increase and cause chip destruction. The configuration of the present invention is characterized in that the width of the detection unit 4 is increased, thereby making it possible to reduce the distance between the electrode surface and the substrate surface facing the electrode, while taking advantage of the feature of the present invention. There is an advantage that such an increase in pressure can be prevented. The width of the detection unit 4 to be actually set is designed based on the shape of the flow path of the entire apparatus and the pressure resistance of the apparatus. For example, if the cross-sectional area of the flow path is constant, the same cross-sectional area is used. Thus, the width of the detection unit 4 and the distance between the electrode surface and the substrate surface facing the electrode surface may be determined. It goes without saying that this value is determined so as to maximize the reactivity at the electrode 14 of the detection unit 4. In addition, in this configuration, the width of the electrode 14 to be formed can be increased and the detection current can be increased.

このような検出部をもつ電気化学検出型マイクロ流路デバイスは、従来のフォトリソグラフィー法による型の作製と、その型に熱または光硬化性樹脂を組み合わせた方法またはホットエンボス法などによって作製できる。以下に従来のフォトリソグラフィー法による型の作製と、その型を用いて、熱または光硬化性樹脂を組み合わせて検出部を形成する工程の一例を図7から図9を参照して簡単に説明する。   An electrochemical detection type micro-channel device having such a detection part can be manufactured by a conventional photolithography method for forming a mold, a method in which the mold is combined with heat or a photocurable resin, a hot embossing method, or the like. Hereinafter, an example of a process of forming a detection part by combining a heat or a photocurable resin with a mold by a conventional photolithography method and using the mold will be briefly described with reference to FIGS. .

図7(a)(b)に示すように、第1ステップとして、ガラス基板601にネガ型の厚膜レジスト602aを塗布する。次に、図7(c)に示すように、所望の領域603を遮光したマスク604を介して、レジスト602aを紫外線で露光する。図7(d)に示すように、レジスト602aを現像、ベークすることで検出部に対応した(電極表面と基板表面との距離に対応した)厚みをもつ凸部602を形成する。   As shown in FIGS. 7A and 7B, as a first step, a negative thick resist 602a is applied to the glass substrate 601. Next, as shown in FIG. 7C, the resist 602a is exposed to ultraviolet rays through a mask 604 that shields the desired region 603 from light. As shown in FIG. 7D, a resist 602a is developed and baked to form a convex portion 602 having a thickness corresponding to the detection portion (corresponding to the distance between the electrode surface and the substrate surface).

図8(a)に示すように、第2ステップとして、凸部602を覆うようにガラス基板601の上に厚膜レジスト605を塗布する。次に、図8(b)に示すように、流路パターン以外と検出部に対応した所定の領域606を遮光したマスク609を介してレジスト605を紫外線で露光する。図8(c)に示すように、レジスト605を現像、ベークすることで、ガラス601の表面に、電極表面と基板表面との距離に対応した厚みを持つ凸部605と、流路の深さに対応した厚さを持つ凸部602とを形成した型607を得ることができる。   As shown in FIG. 8A, as a second step, a thick film resist 605 is applied on the glass substrate 601 so as to cover the convex portion 602. Next, as shown in FIG. 8B, the resist 605 is exposed to ultraviolet rays through a mask 609 that shields a predetermined area 606 corresponding to the detection portion other than the flow path pattern. As shown in FIG. 8C, the resist 605 is developed and baked, whereby a convex portion 605 having a thickness corresponding to the distance between the electrode surface and the substrate surface on the surface of the glass 601 and the depth of the flow path. Thus, a mold 607 in which a convex portion 602 having a thickness corresponding to is formed can be obtained.

ステップ3として、図9(a)に示すように、型607の中にポリジメチルシロキサン(PDMS)を含む粘性材料603aを型に流し込み、次に図9(b)に示すように、熱硬化させて型607から剥離して、注入孔、排出孔を空けることで基板608を得ることができる。次に、検出部領域に対応した位置に、図27に示すような所定のパターンの櫛型作用電極520、参照電極521、対向電極522からなる電極14及び配線16、接続パッド15を形成した蓋20を、基板608に貼り付けることで、図1、図2に示すような検出装置が作製できる。
[実施の形態2]
As Step 3, as shown in FIG. 9 (a), a viscous material 603a containing polydimethylsiloxane (PDMS) is poured into a mold 607, and then thermally cured as shown in FIG. 9 (b). The substrate 608 can be obtained by peeling the mold 607 and opening the injection hole and the discharge hole. Next, a lid in which a comb-shaped working electrode 520, a reference electrode 521, an electrode 14 including a counter electrode 522, a wiring 16, and a connection pad 15 having a predetermined pattern as shown in FIG. By attaching 20 to the substrate 608, a detection device as shown in FIGS. 1 and 2 can be manufactured.
[Embodiment 2]

本実施の形態は、以下に説明する検出部以外は、実施の形態1と同様の構成である。   The present embodiment has the same configuration as that of the first embodiment except for the detection unit described below.

本実施の形態の特徴である検出部を、図10から図13を用いて詳細に説明する。これらの図に示すように、本実施の形態の第1の特徴は、検出部において、基板101の表面に、空間に向けて盛り上る段である凸部122が設けられており、蓋120の表面には、凸部122に対向するように、所定の深さをもつ凹状の窪み123が形成されている。電極114は、蓋120の表面に形成された凹部領域123に、凸部122に対向するように形成されており、液と接する電極114表面と、この電極表面と対向する凸部122との距離(検出部の空間の厚み)が少なくとも反応部3の深さまたは検出部104に接続する流路107または108の深さの最小のものよりも小さいことを特徴としている。   The detection unit, which is a feature of the present embodiment, will be described in detail with reference to FIGS. As shown in these drawings, the first feature of the present embodiment is that the detection unit is provided with a convex part 122 that is a step raised toward the space on the surface of the substrate 101, and A concave depression 123 having a predetermined depth is formed on the surface so as to face the convex portion 122. The electrode 114 is formed in a concave region 123 formed on the surface of the lid 120 so as to face the convex portion 122, and the distance between the surface of the electrode 114 in contact with the liquid and the convex portion 122 facing the electrode surface. It is characterized in that (the thickness of the space of the detection unit) is smaller than at least the depth of the reaction unit 3 or the minimum depth of the flow path 107 or 108 connected to the detection unit 104.

また、第2の特徴は基板101に形成される凸部122の上面121が、蓋120の表面であって窪み123が形成されていない部分120aと同一平面であることである。凸部122の平面部の幅は、作用電極の液と接する領域の大きさ以上であれば良く、その流路に沿った方向の長さは特に限定されない。凸部122の側壁の形状は、図10、図13のように液の流れる方向に対して垂直でもよく、図11、12のように液がスムーズに流れるようにテーパーを設けていても良い。また、蓋120の凹部領域の側壁の形状は、図10、図11のように液の流れる方向に対して垂直でもよく、図12、図13のように液がスムーズに流れるようにテーパーを設けていても良い。   The second feature is that the upper surface 121 of the convex portion 122 formed on the substrate 101 is flush with the portion 120a which is the surface of the lid 120 and where the recess 123 is not formed. The width of the flat part of the convex part 122 should just be more than the magnitude | size of the area | region which contacts the liquid of a working electrode, and the length of the direction along the flow path is not specifically limited. The shape of the side wall of the convex portion 122 may be perpendicular to the direction of liquid flow as shown in FIGS. 10 and 13, or may be tapered so that the liquid flows smoothly as shown in FIGS. Further, the shape of the side wall of the recessed area of the lid 120 may be perpendicular to the liquid flow direction as shown in FIGS. 10 and 11, and a taper is provided so that the liquid flows smoothly as shown in FIGS. May be.

凸部122の幅及び長さは、電極活性物質の流路内での希釈の度合いを最小にし、電極での酸化還元反応による信号量を最大にするという観点や装置全体の強度、電極サイズから要請される検出部の大きさなどから最適に設計されるべきものである。また、電極114表面と、これに対向する凸部122の表面との距離も同様に最適化されるべきものであるが、実際上は、加工精度の観点から0.05μm以上になるよう設計される。   The width and length of the convex portion 122 are determined from the viewpoint of minimizing the degree of dilution of the electrode active substance in the flow path and maximizing the signal amount due to the oxidation-reduction reaction at the electrode, the strength of the entire apparatus, and the electrode size. It should be optimally designed based on the required size of the detector. In addition, the distance between the surface of the electrode 114 and the surface of the convex portion 122 facing the electrode 114 should be optimized as well, but in practice, it is designed to be 0.05 μm or more from the viewpoint of processing accuracy. The

本発明の実施形態の構成の検出装置を用いた、例えば、抗原の検出方法は、実施形態1に述べた方法と同様である。また、その効果も実施形態1と同様であり、電極表面とそれと対向する基板表面の距離が、流路の深さと関係なく、小さく設定できる構成なので、従来の構成に比べ、検出部での電極活性物質の濃度低下を抑えることができ、また検出部を流れる間に拡散力、衝突確率の増大により電極表面にまで達する確率が増え、電極で反応する電極活性物質の量が大きくなるので、従来の検出装置に比べ大きな電流量を得ることができるという利点が生じて、結果として高感度検出が実現できるという効果が生じるというものである。   For example, an antigen detection method using the detection apparatus having the configuration of the embodiment of the present invention is the same as the method described in the first embodiment. The effect is the same as that of the first embodiment, and the distance between the electrode surface and the substrate surface facing the electrode surface can be set small regardless of the depth of the flow path. Since the active substance concentration can be suppressed and the probability of reaching the electrode surface increases due to increased diffusion force and collision probability while flowing through the detector, the amount of electrode active substance that reacts with the electrode increases. The advantage that a large amount of current can be obtained as compared with this detection device is produced, and as a result, an effect that high-sensitivity detection can be realized occurs.

また、本実施形態の構成でも、流路の深さは、電極表面とそれと対向する基板表面の距離と関係なく設定できるので、当該距離よりも大きい径の抗体付ビーズを用いることが併用でき、高効率の免疫反応及び酵素反応が同時に実現できるという効果も生じ、その効果により酵素反応効率が向上するので、電極活性物質の量も多くなり、結果として従来の検出装置に比べ大きな電流量を得ることができ、ひいては高感度化が実現できるという相乗効果が生じるという、実施形態1と同様のものである。   Further, even in the configuration of the present embodiment, since the depth of the flow path can be set regardless of the distance between the electrode surface and the substrate surface facing the electrode surface, it can be used in combination with a bead with an antibody having a diameter larger than the distance, There is also an effect that a highly efficient immune reaction and enzyme reaction can be realized at the same time, and this effect improves the enzyme reaction efficiency, resulting in an increase in the amount of electrode active substance, resulting in a larger amount of current compared to conventional detection devices. This is the same as that of the first embodiment, in which a synergistic effect that high sensitivity can be realized can be realized.

また、検出部104の幅が検出部104に接続する両方の流路の幅よりも大きくても良いことも実施の形態1と同様である。検出部104の幅を広くすることで、実施形態1に述べた効果と同様に、電極表面とそれと対向する基板表面との距離を小さくするという本発明の特徴を活かしながら、流路内にかかる圧力の増加も防ぐことができるという利点が生じる。   Further, the width of the detection unit 104 may be larger than the widths of both flow paths connected to the detection unit 104 as in the first embodiment. By increasing the width of the detection unit 104, as in the effect described in the first embodiment, while taking advantage of the feature of the present invention that the distance between the electrode surface and the substrate surface facing the electrode surface is reduced, it is applied to the flow path. The advantage is that an increase in pressure can also be prevented.

本実施形態の構造の他の利点は、作製方法の簡便化にある。例えば、基板側の検出部の加工は、実施形態1と同様に、従来のフォトリソグラフィー法による型の作製と、その型に熱または光硬化性樹脂を充填する方法により行うことができるが、図14に示す方法によっても行うことができる。すなわち、図14(a)(b)に示すように、第1ステップとして、ガラス基板601に厚膜レジスト605を塗布する。次に、図14(c)に示すように、所望の領域606を遮光したマスク609を介して、レジスト605を紫外線で露光する。図14(d)に示すように、レジスト605を現像、ベークすることで型を形成する。後は熱または光硬化性樹脂を用いた実施形態1の図9(a)(b)と同様のステップのみで基板101を作製することができる。それゆえ、実施形態1の図8に相当する工程が必要ないため、2枚目のフォトマスクの位置合わせ(図8(b)の工程)による位置ずれの懸念もなくなるので、歩留まりの点から利点が生じる。   Another advantage of the structure of this embodiment is the simplification of the manufacturing method. For example, the processing of the detection unit on the substrate side can be performed by a conventional photolithography method for producing a mold and a method for filling the mold with heat or a photocurable resin, as in the first embodiment. The method shown in FIG. That is, as shown in FIGS. 14A and 14B, a thick film resist 605 is applied to the glass substrate 601 as the first step. Next, as shown in FIG. 14C, the resist 605 is exposed to ultraviolet rays through a mask 609 that shields the desired region 606 from light. As shown in FIG. 14D, the resist 605 is developed and baked to form a mold. After that, the substrate 101 can be manufactured only by the same steps as in FIGS. 9A and 9B of Embodiment 1 using heat or a photocurable resin. Therefore, since the process corresponding to FIG. 8 of Embodiment 1 is not necessary, there is no fear of misalignment due to the alignment of the second photomask (the process of FIG. 8B), which is advantageous from the viewpoint of yield. Occurs.

蓋側の加工は従来のフォトリソグラフィー法にエッチング法を組み合わせて、図10を参照して、蓋120の所定の領域に凹部123を形成し、その後形成した蓋120の凹部123に図27に示すような所定のパターンの櫛型作用電極520、参照電極521、対向電極522からなる電極114を形成すれば良い。同時に、配線、接続パッドを形成しても良い。その後、液と接する領域以外を絶縁膜で覆い、基板と貼り合わせることで完成する。しかしながら、この方法では、凹部123に形成した電極114と接続パッドを繋ぐ配線が凹部123の段差により切断されるという懸念が生じる。   For processing on the lid side, a conventional photolithographic method is combined with an etching method, and a recess 123 is formed in a predetermined region of the lid 120 with reference to FIG. The electrode 114 including the comb-type working electrode 520, the reference electrode 521, and the counter electrode 522 may be formed in such a predetermined pattern. At the same time, wiring and connection pads may be formed. Thereafter, the region other than the region in contact with the liquid is covered with an insulating film, and the substrate is attached to complete. However, in this method, there is a concern that the wiring connecting the electrode 114 formed in the recess 123 and the connection pad is cut by the step of the recess 123.

このような懸念をなくす方法として、図15に示すように、蓋120として使用するシリコンウエハ、ガラス基板、プラスチック基板などの表面であって、基板101の凸部122に対応した位置に、従来のフォトリソグラフィー法にエッチング法を組み合わせた工程により、図27に示すような所定のパターンの櫛型作用電極520、参照電極521、対向電極522からなる電極部114、配線(図示せず)、接続パッド(図示せず)を形成し、検出部104を構成する。この場合、平面上に形成されるので、配線が切断される懸念はなくなる。次に、電極部を含む所定の大きさの穴を開けた、所定の厚さのフィルム125を貼り付けて、さらに凸部122、流路106、107、108、注入孔102、排出孔105を設けた基板101と貼り合わす事で、本発明の構成の検出装置を作製できる。   As a method for eliminating such a concern, as shown in FIG. 15, the surface of a silicon wafer, a glass substrate, a plastic substrate, or the like used as a lid 120 is disposed at a position corresponding to the convex portion 122 of the substrate 101. Through a process in which an etching method is combined with a photolithography method, an electrode portion 114 including a comb-type working electrode 520, a reference electrode 521, and a counter electrode 522 having a predetermined pattern as shown in FIG. 27, wiring (not shown), and connection pads (Not shown) is formed, and the detection unit 104 is configured. In this case, since it is formed on a plane, there is no concern that the wiring is cut. Next, a film 125 having a predetermined thickness with a hole having a predetermined size including an electrode portion is attached, and the convex portion 122, the flow paths 106, 107, 108, the injection hole 102, and the discharge hole 105 are further formed. A detection device having the structure of the present invention can be manufactured by bonding to the provided substrate 101.

また、図16から図19に示すように、フィルムを貼り合わせる代わりに、従来のフォトリソグラフィー工程により、電極部、配線、接続パッドを形成した蓋120に例えば光硬化性の樹脂を所定の厚さだけ塗布し、電極部の一部を少なくとも含む領域を遮光したマスクを介して紫外線で露光して、現像、ベークして光硬化性樹脂膜125を形成することで図10から図13に対応するものが得られ、凸部、流路、注入、排出孔を設けた基板101と貼り合わす事で、図15に示すものと同様の構成の検出装置を作製できる。図16は図10に対応し、図17は図11に対応し、図18は図12に対応し、図19は図13に対応する。
[実施の形態3]
Further, as shown in FIGS. 16 to 19, instead of pasting the film, for example, a photo-curing resin is applied to the lid 120 on which the electrode portion, the wiring, and the connection pad are formed by a conventional photolithography process to a predetermined thickness. 10 to FIG. 13 by coating only, exposing the region including at least a part of the electrode portion with ultraviolet light through a light-shielded mask, developing and baking to form a photocurable resin film 125. A detection device having the same configuration as that shown in FIG. 15 can be manufactured by bonding the substrate 101 provided with the projections, flow paths, injection, and discharge holes. 16 corresponds to FIG. 10, FIG. 17 corresponds to FIG. 11, FIG. 18 corresponds to FIG. 12, and FIG. 19 corresponds to FIG.
[Embodiment 3]

本実施の形態は、検出部以外は、実施形態1と同様の構成である。   This embodiment has the same configuration as that of the first embodiment except for the detection unit.

次に本実施の形態の特徴である検出部を、図20、図21を用いて詳細に説明する。本実施の形態の第1の特徴は、電極214が、蓋220の表面に設けられた所定の高さを持つ凸部領域222に、基板201に対向するように形成されており、液と接する電極表面221と、電極表面221と対向する基板表面201aとの距離(検出部の空間の厚み)が少なくとも反応部の深さまたは検出部に接続する流路またはの深さの最小のものよりも小さいことを特徴としている。   Next, the detection unit, which is a feature of the present embodiment, will be described in detail with reference to FIGS. The first feature of the present embodiment is that the electrode 214 is formed on a convex region 222 having a predetermined height provided on the surface of the lid 220 so as to face the substrate 201 and is in contact with the liquid. The distance between the electrode surface 221 and the substrate surface 201a facing the electrode surface 221 (the thickness of the space of the detection unit) is at least the depth of the reaction unit or the flow path connected to the detection unit or the minimum depth of the channel It is small.

凸部領域222の側壁の形状は、図20のように液の流れる方向に対して垂直でもよく、また図21に示すように、液がスムーズに流れるようにテーパーを設けていても良い。また、凸部領域222に対向する面に、実施形態2に記載したような凹部の窪みを形成してもよく、窪みの側面にテーパーを形成しても良い。   The shape of the side wall of the convex region 222 may be perpendicular to the liquid flow direction as shown in FIG. 20, or may be tapered so that the liquid flows smoothly as shown in FIG. In addition, a recess in the recess as described in the second embodiment may be formed on the surface facing the protrusion region 222, or a taper may be formed on the side surface of the recess.

凸部領域222の幅及び長さは、電極活性物質の流路内での希釈の度合いを最小にし、電極での酸化還元反応による信号量を最大にするという観点や装置全体の強度、電極サイズから要請される検出部の大きさなどから最適に設計されるべきものである。また、電極表面221と、電極表面221と対向する基板表面201aとの距離も同様に最適化されるべきものであるが、実際上は、加工精度の観点から0.05μm以上になるよう設計される。   The width and length of the convex region 222 are designed to minimize the degree of dilution of the electrode active substance in the flow path, maximize the signal amount due to the oxidation-reduction reaction at the electrode, the strength of the entire apparatus, and the electrode size. Should be optimally designed based on the size of the detection unit required by the manufacturer. Further, the distance between the electrode surface 221 and the substrate surface 201a facing the electrode surface 221 should be optimized as well, but in practice, it is designed to be 0.05 μm or more from the viewpoint of processing accuracy. The

本実施形態の構成の検出装置を用いた、例えば、抗原の検出方法は、実施形態1に述べた方法と同様である。また、その効果も実施形態1と同様であり、電極表面とそれと対向する基板表面の距離が、流路の深さと関係なく、小さく設定できる構成なので、従来の構成に比べ、検出部での電極活性物質の濃度低下を抑えることができ、また検出部を流れる間に拡散力、衝突確率の増大により電極表面にまで達する確率が増え、電極で反応する電極活性物質の量が大きくなるので、従来の検出装置に比べ大きな電流量を得ることができるという利点が生じて、結果として高感度検出が実現できるという効果が生じるというものである。   For example, an antigen detection method using the detection apparatus having the configuration of the present embodiment is the same as the method described in the first embodiment. The effect is the same as that of the first embodiment, and the distance between the electrode surface and the substrate surface facing the electrode surface can be set small regardless of the depth of the flow path. Since the active substance concentration can be suppressed and the probability of reaching the electrode surface increases due to increased diffusion force and collision probability while flowing through the detector, the amount of electrode active substance that reacts with the electrode increases. The advantage that a large amount of current can be obtained as compared with this detection device is produced, and as a result, an effect that high-sensitivity detection can be realized occurs.

また、本実施形態の構成でも、流路の深さは、電極表面とそれと対向する基板表面の距離と関係なく設定できるので、当該距離よりも大きい径の抗体付ビーズを用いることが併用でき、高効率の免疫反応及び酵素反応が同時に実現できるという効果も生じ、その効果により酵素反応効率が向上するので、電極活性物質の量も多くなり、結果として従来の検出装置に比べ大きな電流量を得ることができ、高感度化が実現できるという相乗効果が生じるという、実施形態1と同様のものである。   Further, even in the configuration of the present embodiment, since the depth of the flow path can be set regardless of the distance between the electrode surface and the substrate surface facing the electrode surface, it can be used in combination with a bead with an antibody having a diameter larger than the distance, There is also an effect that a highly efficient immune reaction and enzyme reaction can be realized at the same time, and this effect improves the enzyme reaction efficiency, resulting in an increase in the amount of electrode active substance, resulting in a larger amount of current compared to conventional detection devices. This is the same as in the first embodiment, in which a synergistic effect that high sensitivity can be realized is produced.

また、検出部の幅が検出部に接続する両方の流路の幅よりも大きくても良いことも実施の形態1と同様である。検出部の幅を広くすることで、実施形態1に述べた効果と同様に、電極表面とそれと対向する基板表面との距離を小さくするという本発明の特徴を活かしながら、流路内にかかる圧力の増加も防ぐことができるという利点が生じる。   Further, as in the first embodiment, the width of the detection unit may be larger than the widths of both flow paths connected to the detection unit. By increasing the width of the detection unit, the pressure applied to the flow path while taking advantage of the feature of the present invention that the distance between the electrode surface and the substrate surface facing the electrode surface is reduced, similar to the effect described in the first embodiment. The advantage that the increase of can also be prevented arises.

本実施形態の構造は、蓋220を従来のフォトリソグラフィー法にエッチング法を組み合わせた方法で凸部領域222を形成し、その後所定のパターンの櫛型作用電極、参照電極、対向電極からなる電極214、配線、接続パッド(図示せず)を形成して流路、反応部、検出部(図示せず)を形成した基板201と貼り合わせれば得ることができる。しかしながら、この方法では、凸部領域に形成した電極214と接続パッド(図示せず)を繋ぐ配線(図示せず)が凸部領域222の段差により切断されるという懸念が生じる。   In the structure of this embodiment, the convex region 222 is formed on the lid 220 by combining the conventional photolithography method with the etching method, and then the electrode 214 composed of a comb-type working electrode, a reference electrode, and a counter electrode in a predetermined pattern. It can be obtained by forming a wiring, a connection pad (not shown), and a substrate 201 on which a flow path, a reaction part, and a detection part (not shown) are formed. However, with this method, there is a concern that the wiring (not shown) connecting the electrode 214 formed in the convex region and the connection pad (not shown) is cut by the step of the convex region 222.

このような懸念をなくす方法として、例えば、図22に示すように、その表面に櫛型作用電極、参照電極、対向電極からなる所定のパターンの電極部214と複数の貫通孔251を形成した基材片250を蓋220に接着剤252で貼り合わせた構成がある。電極部214の各電極は貫通孔251を介して基材片250の裏面に形成した第1接続部253と電気的に繋がっており、第1接続部253は蓋220の表面に形成された第2接続部254、配線(図示せず)を通して接続パッド(図示せず)と電気的につながっている。この方法の利点は、一度に多くの電極形成フィルム片250が作製できるので、それを切り出して蓋と貼り合わせれば良いので、量産性の観点から効果がある。
(実施例)
As a method for eliminating such a concern, for example, as shown in FIG. 22, a base having a predetermined pattern of electrode portions 214 and a plurality of through holes 251 formed of a comb-type working electrode, a reference electrode, and a counter electrode is formed on the surface. There is a configuration in which the material piece 250 is bonded to the lid 220 with an adhesive 252. Each electrode of the electrode part 214 is electrically connected to the first connection part 253 formed on the back surface of the base piece 250 through the through hole 251, and the first connection part 253 is formed on the surface of the lid 220. 2 It is electrically connected to a connection pad (not shown) through a connection part 254 and wiring (not shown). The advantage of this method is that many electrode-forming film pieces 250 can be produced at one time, and therefore, it is only necessary to cut it out and attach it to the lid, which is effective from the viewpoint of mass productivity.
(Example)

図23を参照して、本発明の実施例にかかる装置の製造方法について具体的に説明する。図7、図8に示す工程と同様にして、ガラス基板上に、厚膜レジストSU-8を用いて型を形成し、その型を用いて、図9と同様の方法で熱硬化性樹脂PDMSで流路、液の注入、排出孔を形成した凸部422を有する基板401を作製した。基板401の大きさは25mm×50mmで、流路406、407,408の幅は0.2mm、深さは0.05mmに設定した。検出部404に形成した凸部422の高さは0.04mm、即ち、PDMS基板表面から0.01mmの深さ、幅、長さとも3mmに設定した。蓋420の表面の検出部に対応する位置には、図27に示すような櫛型作用電極520、対向電極521、参照電極522からなる電極414と、液に接触する部分だけ残して絶縁膜423を形成した。PDMS基板401と蓋420を貼り合わせて検討装置とした。電極形成及び材料については、公知の技術(特許文献4)を用いた。各電極は、蓋表面に形成した取出し端子417と配線418で電気的に接続される。流路407と検出部404との間には、図24に示すような拡散部409を設けて、電極414全体に液が接触するようにしている。   With reference to FIG. 23, the manufacturing method of the apparatus concerning the Example of this invention is demonstrated concretely. 7 and 8, a mold is formed on the glass substrate using the thick film resist SU-8, and the thermosetting resin PDMS is formed in the same manner as in FIG. 9 using the mold. Thus, a substrate 401 having a convex portion 422 in which a flow path, liquid injection, and discharge holes were formed was manufactured. The size of the substrate 401 was 25 mm × 50 mm, the widths of the flow paths 406, 407, and 408 were set to 0.2 mm, and the depth was set to 0.05 mm. The height of the convex portion 422 formed on the detection unit 404 was set to 0.04 mm, that is, the depth, width, and length of 0.01 mm from the surface of the PDMS substrate. In the position corresponding to the detection portion on the surface of the lid 420, the electrode 414 including the comb-type working electrode 520, the counter electrode 521, and the reference electrode 522 as shown in FIG. Formed. The PDMS substrate 401 and the lid 420 were bonded together to obtain a study apparatus. A known technique (Patent Document 4) was used for electrode formation and materials. Each electrode is electrically connected to an extraction terminal 417 formed on the lid surface and a wiring 418. A diffusion unit 409 as shown in FIG. 24 is provided between the flow path 407 and the detection unit 404 so that the liquid contacts the entire electrode 414.

次に、本発明の効果について説明する。pH7.4に調整したリン酸緩衝液に電極活性物質であるパラアミノフェノールを0.1μM濃度入れたものをポンプ460を用いて注入孔402から入れて、流路406、407、408および検出部404を満たした後、3分後に電極414からの電流値を測定した。尚、作用電極の櫛型電極の一方で、パラアミノフェノールは電子を櫛型電極の一方に渡してパラキノンイミンに変化する。また、パラキノンイミンは他方の櫛型電極から電子を受け取ってパラアミノフェノールに戻り、この反応が繰り返されて、大きな電流値が検出される。   Next, the effect of the present invention will be described. A phosphate buffer adjusted to pH 7.4 with 0.1 μM concentration of paraaminophenol as an electrode active substance is introduced from the injection hole 402 using the pump 460, and the flow paths 406, 407, 408 and the detection unit 404. After 3 minutes, the current value from the electrode 414 was measured 3 minutes later. Meanwhile, on one side of the comb electrode of the working electrode, paraaminophenol passes electrons to one side of the comb electrode and changes to paraquinoneimine. Paraquinoneimine receives electrons from the other comb electrode and returns to paraaminophenol, and this reaction is repeated to detect a large current value.

比較として、検出部404に段422を設けず、深さを流路と同じ0.05mmにした以外は、上記と同じ構成の従来型の検出装置で上記と同様の実験を行ったところ、得られた電流値は、本発明の構成の100分の1以下になった。   As a comparison, an experiment similar to the above was performed with a conventional detection device having the same configuration as described above, except that the detection unit 404 was not provided with the step 422 and the depth was set to 0.05 mm, which was the same as that of the flow path. The obtained current value became 1/100 or less of the configuration of the present invention.

このことから、本発明の構成が大きな検出電流を得るために非常に有効であることが分かった。   From this, it was found that the configuration of the present invention is very effective for obtaining a large detection current.

今回開示された実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

上述したように、本発明によると、大きな検出信号を得ることができ、高感度の電気化学検出型のマイクロ流路検出装置を提供でき、また、本発明はタンパク質の検出だけでなく、電気化学的に検出できるものすべてに応用ができることから、その産業上の意義は大きい。   As described above, according to the present invention, a large detection signal can be obtained, and a high-sensitivity electrochemical detection type micro-channel detection device can be provided. Because it can be applied to anything that can be detected automatically, its industrial significance is great.

実施の形態1にかかる電気化学検出型マイクロ流路デバイスの上面図である。1 is a top view of an electrochemical detection type microchannel device according to a first exemplary embodiment; 図1におけるII−II線に沿う断面図である。It is sectional drawing which follows the II-II line in FIG. 実施の形態1の変形例にかかる電気化学検出型マイクロ流路デバイスの断面図である。6 is a cross-sectional view of an electrochemical detection type microchannel device according to a modification of the first embodiment. FIG. 実施の形態1にかかる電気化学検出型マイクロ流路デバイスの検出部の拡大断面図である。FIG. 3 is an enlarged cross-sectional view of a detection unit of the electrochemical detection type microchannel device according to the first exemplary embodiment. 実施の形態1にかかる電気化学検出型マイクロ流路デバイスの変形例にかかる検出部の拡大断面図である。FIG. 6 is an enlarged cross-sectional view of a detection unit according to a modification of the electrochemical detection type microchannel device according to the first exemplary embodiment. 実施の形態1にかかる電気化学検出型マイクロ流路デバイスのさらなる変形例にかかる検出部の上面図である。FIG. 10 is a top view of a detection unit according to a further modification of the electrochemical detection type microchannel device according to the first exemplary embodiment. 実施の形態1にかかる電気化学検出型マイクロ流路デバイスの検出部の製造方法の第1ステップを示す断面図である。FIG. 3 is a cross-sectional view showing a first step of a method for manufacturing a detection unit of the electrochemical detection type microchannel device according to the first exemplary embodiment; 実施の形態1にかかる電気化学検出型マイクロ流路デバイスの検出部の製造方法の第2ステップを示す断面図である。FIG. 6 is a cross-sectional view showing a second step of the method of manufacturing the detection unit of the electrochemical detection type microchannel device according to the first embodiment. 実施の形態1にかかる電気化学検出型マイクロ流路デバイスの検出部の製造方法の第3ステップを示す断面図である。FIG. 6 is a cross-sectional view showing a third step of the method of manufacturing the detection unit of the electrochemical detection type microchannel device according to the first embodiment. 実施の形態2にかかる電気化学検出型マイクロ流路デバイスの検出部の拡大断面図である。FIG. 6 is an enlarged cross-sectional view of a detection unit of the electrochemical detection type microchannel device according to the second exemplary embodiment. 実施の形態2にかかる電気化学検出型マイクロ流路デバイスの変形例にかかる検出部の拡大断面図である。FIG. 10 is an enlarged cross-sectional view of a detection unit according to a modification of the electrochemical detection type microchannel device according to the second exemplary embodiment. 実施の形態2にかかる電気化学検出型マイクロ流路デバイスのさらなる変形例にかかる検出部の拡大断面図である。It is an expanded sectional view of the detection part concerning the further modification of the electrochemical detection type microchannel device concerning Embodiment 2. FIG. 実施の形態2にかかる電気化学検出型マイクロ流路デバイスのさらなる変形例にかかる検出部の拡大断面図である。It is an expanded sectional view of the detection part concerning the further modification of the electrochemical detection type microchannel device concerning Embodiment 2. FIG. 実施の形態2にかかる電気化学検出型マイクロ流路デバイスの検出部の製造方法を示す断面図である。FIG. 10 is a cross-sectional view illustrating a method for manufacturing the detection unit of the electrochemical detection type microchannel device according to the second exemplary embodiment. 実施の形態2にかかる電気化学検出型マイクロ流路デバイスの変形例にかかる断面図である。FIG. 6 is a cross-sectional view according to a modification of the electrochemical detection type microchannel device according to the second exemplary embodiment. 実施の形態2にかかる電気化学検出型マイクロ流路デバイスの他の検出部の拡大断面図である。FIG. 6 is an enlarged cross-sectional view of another detection unit of the electrochemical detection type microchannel device according to the second exemplary embodiment. 実施の形態2にかかる電気化学検出型マイクロ流路デバイスのさらに他の変形例にかかる検出部の拡大断面図である。It is an expanded sectional view of the detection part concerning the further another modification of the electrochemical detection type microchannel device concerning Embodiment 2. FIG. 実施の形態2にかかる電気化学検出型マイクロ流路デバイスのさらに他の変形例にかかる検出部の拡大断面図である。It is an expanded sectional view of the detection part concerning the further another modification of the electrochemical detection type microchannel device concerning Embodiment 2. FIG. 実施の形態2にかかる電気化学検出型マイクロ流路デバイスのさらに他の変形例にかかる検出部の拡大断面図である。It is an expanded sectional view of the detection part concerning the further another modification of the electrochemical detection type microchannel device concerning Embodiment 2. FIG. 実施の形態3にかかる電気化学検出型マイクロ流路デバイスの検出部の拡大断面図である。FIG. 5 is an enlarged cross-sectional view of a detection unit of an electrochemical detection type microchannel device according to a third exemplary embodiment. 実施の形態3にかかる電気化学検出型マイクロ流路デバイスの他の検出部の拡大断面図である。FIG. 10 is an enlarged cross-sectional view of another detection unit of the electrochemical detection type micro-channel device according to the third exemplary embodiment. 実施の形態3にかかる電気化学検出型マイクロ流路デバイスのさらに他の検出部の拡大断面図である。FIG. 10 is an enlarged cross-sectional view of still another detection unit of the electrochemical detection type microchannel device according to the third exemplary embodiment. (a) 実施例にかかる電気化学検出型マイクロ流路デバイスの上面図である。 (b) 図23(a)におけるB−B線に沿う断面図である。(A) It is a top view of the electrochemical detection type | mold microchannel device concerning an Example. (B) It is sectional drawing which follows the BB line in Fig.23 (a). 実施例に用いる拡散部の上面図である。It is a top view of the diffusion part used for an example. 従来の電気化学検出装置の斜視図である。It is a perspective view of the conventional electrochemical detection apparatus. (a) 他の従来の電気化学検出装置の上面概略図である。 (b) 図26(a)におけるB−B線に沿う断面図である。(A) It is the upper surface schematic of another conventional electrochemical detection apparatus. (B) It is sectional drawing which follows the BB line in Fig.26 (a). 従来の電気化学検出用の電極の構成を示す概略図である。It is the schematic which shows the structure of the electrode for the conventional electrochemical detection.

符号の説明Explanation of symbols

1、101、201、401、501、608 基板
2、102、402、504A 導入孔
3、503 反応部
4、104、404 検出部
5、105、405、505A 排出孔
6、7、8、106、107、108、406、407、408、504、505 流路
12、112、502 ビーズ
13,508 堰き止め部
14、114、214、414、506 電極
15、417、507 接続パッド
16、418、509 配線
20、120、220,420、510 蓋
22、122、222 凸部
251 貫通孔
252 接着層
253 第1接続部
254 第2接続部
409 拡散部
520 作用電極
521 参照電極
522 対向電極
601 ガラス基板
602、605 レジスト
603、606 遮光領域
604、609 マスク
607 型

1, 101, 201, 401, 501, 608 Substrate 2, 102, 402, 504A Inlet hole 3, 503 Reactor 4, 104, 404 Detector 5, 105, 405, 505A Discharge hole 6, 7, 8, 106, 107, 108, 406, 407, 408, 504, 505 Flow path 12, 112, 502 Bead 13, 508 Damping part 14, 114, 214, 414, 506 Electrode 15, 417, 507 Connection pad 16, 418, 509 Wiring 20, 120, 220, 420, 510 Lid 22, 122, 222 Protruding part 251 Through hole 252 Adhesive layer 253 First connecting part 254 Second connecting part 409 Diffusion part 520 Working electrode 521 Reference electrode 522 Counter electrode 601 Glass substrate 602, 605 Resist 603, 606 Shading area 604, 609 Mask 607

Claims (6)

その空間内で反応を起こさせる反応部と、
その空間内に電気化学的な検出を行うための電極を有する検出部と、
前記反応部と前記検出部とを繋ぐ流路とを備え、
前記検出部の空間の深さは、前記流路の深さよりも浅くされており、
前記検出部において、その上面または下面の一方には、他の面に向けて盛り上がる凸部が設けられており、
前記検出部の、前記他の面には、前記凸部に対向するように凹状の窪みが形成されており、
前記凹状の窪みに電気化学的な検出を行うための前記電極が形成されていることを特徴とする電気化学検出装置。
A reaction part for causing a reaction in the space;
A detector having an electrode for electrochemical detection in the space;
A flow path connecting the reaction unit and the detection unit,
The depth of the detection unit space is shallower than the depth of the flow path,
In the detection unit, one of the upper surface or the lower surface is provided with a convex portion that rises toward the other surface ,
A concave recess is formed on the other surface of the detection unit so as to face the convex portion,
The electrochemical detection apparatus , wherein the electrode for performing electrochemical detection is formed in the concave depression .
前記凸部の側面がテーパー状になっていることを特徴とする請求項に記載の電気化学検出装置。 The electrochemical detection device according to claim 1 , wherein a side surface of the convex portion is tapered. 前記凹状の窪みの側面がテーパー状になっていることを特徴とする請求項に記載の電気化学検出装置。 The electrochemical detection device according to claim 2 , wherein a side surface of the concave depression is tapered. 前記凸部の上面と、前記凹状の窪みが形成されている面とは同一平面上にあることを特徴とする請求項1から3のいずれかに記載の電気化学検出装置。 And the upper surface of the convex portion, the electrochemical detection apparatus according to any of claims 1 to 3, characterized in that on the same plane and the concave depression is formed faces. 前記検出部において、その上面または下面の他方に、前記凹状の窪みが形成されるように、開口部を有するフィルムまたは樹脂層が設けられていることを特徴とする請求項1から4のいずれか1項に記載の電気化学検出装置。 In the detecting unit, the other of the upper or lower surface, wherein as concave depression is formed, claim 1, characterized in that the film or resin layer having an opening is provided 4 2. The electrochemical detection device according to item 1 . その空間内で反応を起こさせる反応部と、
その空間内に電気化学的な検出を行うための電極を有する検出部と、
前記反応部と前記検出部とを繋ぐ流路とを備え、
前記検出部の空間の深さは、前記流路の深さよりも浅くされており、
前記検出部において、その上面または下面の一方には、空間に向けて盛り上る凸部が設けられている電気化学検出装置において、
前記検出部において、その上面または下面の一方には、接続パッドに電気的につながった接続パッド用接続部が設けられており、
前記凸部は厚みを有する基材片で構成され、
前記基材片の表面に前記電極が設けられており、
前記基材片の裏面に前記接続パッド用接続部に接続される第1の接続部が設けられており、
前記基材片の厚み部分を貫通するように貫通孔が形成されており、
前記貫通孔を通して前記第1の接続部と接続パッド用接続部とが電気的接続されており、
前記基材片は、該基材片の裏面に設けられた前記第1の接続部が、前記接続パッド用接続部に接触するように、前記検出部の前記上面または下面の一方に接着剤で貼り付けられて、前記凸部を形成していることを特徴とする電気化学検出装置。
A reaction part for causing a reaction in the space;
A detector having an electrode for electrochemical detection in the space;
A flow path connecting the reaction unit and the detection unit,
The depth of the detection unit space is shallower than the depth of the flow path,
In the detection unit, in one of the upper surface or the lower surface, an electrochemical detection device provided with a convex portion that rises toward the space,
In the detection unit, a connection pad connection part electrically connected to the connection pad is provided on one of the upper surface or the lower surface,
The convex portion is composed of a base material piece having a thickness,
The electrode is provided on the surface of the base piece,
A first connection portion connected to the connection pad connection portion is provided on the back surface of the base piece;
A through hole is formed so as to penetrate the thickness portion of the base piece,
The first connection portion and the connection pad connection portion are electrically connected through the through hole,
The base material piece is bonded to one of the upper surface and the lower surface of the detection unit so that the first connection portion provided on the back surface of the base material piece is in contact with the connection pad connection portion. An electrochemical detection device , wherein the convex portion is formed by being attached .
JP2005163461A 2005-06-03 2005-06-03 Electrochemical detector Expired - Fee Related JP4613099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005163461A JP4613099B2 (en) 2005-06-03 2005-06-03 Electrochemical detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005163461A JP4613099B2 (en) 2005-06-03 2005-06-03 Electrochemical detector

Publications (2)

Publication Number Publication Date
JP2006337221A JP2006337221A (en) 2006-12-14
JP4613099B2 true JP4613099B2 (en) 2011-01-12

Family

ID=37557906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005163461A Expired - Fee Related JP4613099B2 (en) 2005-06-03 2005-06-03 Electrochemical detector

Country Status (1)

Country Link
JP (1) JP4613099B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096235A (en) * 2006-10-11 2008-04-24 Sharp Corp Electrochemical measuring microchip
JP4869982B2 (en) * 2007-03-01 2012-02-08 株式会社生体分子計測研究所 Inspection kit
JP2009058334A (en) * 2007-08-31 2009-03-19 Kanagawa Prefecture Reactor for electrochemical measurement, and electrochemical measuring system
JP2009175108A (en) * 2008-01-28 2009-08-06 Sharp Corp Assay-use micro-channel device
US8663560B2 (en) 2008-05-29 2014-03-04 Nippon Telegraph And Telephone Corporation Flow cell and liquid delivery method
JP5155800B2 (en) 2008-09-29 2013-03-06 富士フイルム株式会社 Reaction method and reaction apparatus
JP5433453B2 (en) * 2010-02-08 2014-03-05 株式会社堀場製作所 Liquid sample analyzer
JP5250574B2 (en) * 2010-02-10 2013-07-31 富士フイルム株式会社 Microchannel device
GB201102037D0 (en) * 2011-02-07 2011-03-23 Multi Sense Technologies Ltd Microfluidics based assay device
JP5278510B2 (en) * 2011-07-29 2013-09-04 ブラザー工業株式会社 Inspection system and inspection method
JP5882092B2 (en) * 2012-03-15 2016-03-09 東洋鋼鈑株式会社 Biochip cover, chip device including the biochip cover, and liquid holding method using the biochip cover
US9863916B2 (en) * 2013-01-30 2018-01-09 Kyocera Corporation Sensor apparatus
WO2016035197A1 (en) * 2014-09-05 2016-03-10 株式会社日立製作所 Cartridge for electrochemical immunity sensor and measurement device using same
EA033761B1 (en) * 2014-09-30 2019-11-22 Sicpa Holding Sa Method for liquid authentication by detection of flavonoid derivatives
EP4170295A4 (en) * 2020-07-10 2024-06-26 Caremedi Co., Ltd. Electrochemical apparatus for monitoring flow rate
CN117751286A (en) * 2021-04-29 2024-03-22 普罗格诺姆斯有限公司 Biosensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002174610A (en) * 2000-12-08 2002-06-21 Nec Corp Biosensor and liquid sample measurement method using biosensor
JP2002218998A (en) * 2001-01-25 2002-08-06 Eiichi Tamiya Method for detecting gene and chip for detecting gene
JP2004130219A (en) * 2002-10-10 2004-04-30 Kawamura Inst Of Chem Res Microfluid element, fluid treatment device, and fluid treatment method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2934691C2 (en) * 1979-08-28 1988-06-16 Fresenius AG, 6380 Bad Homburg Method for carrying out analyzes using the flow method and measuring device therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002174610A (en) * 2000-12-08 2002-06-21 Nec Corp Biosensor and liquid sample measurement method using biosensor
JP2002218998A (en) * 2001-01-25 2002-08-06 Eiichi Tamiya Method for detecting gene and chip for detecting gene
JP2004130219A (en) * 2002-10-10 2004-04-30 Kawamura Inst Of Chem Res Microfluid element, fluid treatment device, and fluid treatment method

Also Published As

Publication number Publication date
JP2006337221A (en) 2006-12-14

Similar Documents

Publication Publication Date Title
JP4613099B2 (en) Electrochemical detector
US11768170B2 (en) Biochip having a channel
US7790468B2 (en) Test object receptacle, test apparatus, and test method
Rossier et al. Polymer microfluidic chips for electrochemical and biochemical analyses
US7419639B2 (en) Multilayer microfluidic device
JP4597664B2 (en) Microfluidic structure
JP4927197B2 (en) Micro-analysis chip, analyzer using the micro-analysis chip, and liquid feeding method
US20140256030A1 (en) Scalable Biochip and Method for Making
JP2008051803A (en) Microchannel device for analysis
US10724981B2 (en) Microfluidic chip and manufacturing method thereof and integrated microfluidic chip system
US20200319135A1 (en) Microfluidic chip and manufacturing method thereof and integrated microfluidic chip system
KR100563834B1 (en) Micor/nano fluidic 3 dimensional electrode system
CN109937092B (en) Microfluidic chip with microbead integration system and method for integrating receptors in chip
KR100930859B1 (en) Micro biochip and its manufacturing method for the simultaneous multi-immune response measurement and a method for detecting the immune response using the same
KR100811532B1 (en) Micro bio chip for immunoreaction and manufacture method thereof and immunoreaction detecting method using micro bio chip
WO2018010753A1 (en) Electrochemical sensor with thin film guard electrode
JP2009175108A (en) Assay-use micro-channel device
KR100727533B1 (en) Plate-shaped covering structure for field effect transistor type sensor system and field effect transistor sensor system formed of the same
KR100563840B1 (en) 3-dimensional electrode device with micro/nano fluid channel, and method for fabricating the same
KR102682799B1 (en) Microfluidic detection device based 3D electrodes and fabrication method thereof
KR102136321B1 (en) Electrochemical immunoassay cartridge and manufactruring method thereof
JP2012194015A (en) Electrophoretic chip and analysis method
CN118786342A (en) Sensor assembly and method of manufacture
JP2022104432A (en) Microchip, microchip measuring device, and method for measuring test article
TW202024635A (en) Quasi-volumetric sensing system and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees