JP4611564B2 - Aluminum heat exchanger joint with high strength and excellent machinability and manufacturing method thereof - Google Patents

Aluminum heat exchanger joint with high strength and excellent machinability and manufacturing method thereof Download PDF

Info

Publication number
JP4611564B2
JP4611564B2 JP2001123257A JP2001123257A JP4611564B2 JP 4611564 B2 JP4611564 B2 JP 4611564B2 JP 2001123257 A JP2001123257 A JP 2001123257A JP 2001123257 A JP2001123257 A JP 2001123257A JP 4611564 B2 JP4611564 B2 JP 4611564B2
Authority
JP
Japan
Prior art keywords
heat exchanger
joint
aluminum alloy
temperature
high strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001123257A
Other languages
Japanese (ja)
Other versions
JP2002256369A (en
Inventor
達也 藤吉
正和 江戸
建 当摩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Aluminum Co Ltd
Calsonic Kansei Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd, Calsonic Kansei Corp filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2001123257A priority Critical patent/JP4611564B2/en
Publication of JP2002256369A publication Critical patent/JP2002256369A/en
Application granted granted Critical
Publication of JP4611564B2 publication Critical patent/JP4611564B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Extrusion Of Metal (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高強度を有し、薄肉化および小型化を可能とするアルミニウム熱交換器用の継手およびその製造方法に関するものである。
【0002】
【従来の技術】
一般に、アルミニウム製の熱交換器は、いずれもAlまたはAl合金で構成されたフィン材、ヘッダープレート材、管材、および管継手などの構造部材を所定形状に組み立て、ろう付けして一体化することにより製造されている。特にこれら構造部材のうちの管継手としては、構造的に高強度が要求されることから、例えば特開昭63−118046号公報に記載される通りの、重量%(以下特に記載が無い場合に%は重量%を示す。)で、
Zn:3〜4.5%、Mg:0.5〜1.5%、Zr:0.05〜0.2%、Mn:0.2〜0.7%、Si:0.2〜0.7%を含有し、さらに必要に応じて、
Cr:0.05〜0.3%、Ti:0.05〜0.2%、V:0.05〜0.2%、Cu:0.05〜0.3%のうちの1種または2種以上を含有し、残部がAlと不可避不純物からなる組成を有するAl合金などが用いられている。
【0003】
【発明が解決しようとする課題】
近年のアルミニウム熱交換器の小型化、高性能化、および汎用化に伴い、上記の構造部材にも、薄肉化、小型化が要求される傾向にあり、特にこれらの管継手に対する強度の要求は厳しく、上記従来のAl合金製管継手ではこれらの要求に十分には対応できないのが現状である。また、従来の合金組成では、強度不足が原因となり、今後の一層の薄肉化が困難となりつつある。
次に、これらの合金には、高強度と併せて優れた切削加工性や耐孔食性も要求されており、今後の薄肉化を考慮すると従来の合金材では特性が不十分であるために、全ての特性を従来材よりも優れたものとする必要がある。
【0004】
本発明は前記の背景に基づき、従来のこの種合金の材料特性を更に向上させるべくなされたもので、アルミニウム製の熱交換器の更なる小型化、薄肉化、高性能化に対応することができる高強度を有し、その上に優れた切削加工性と耐孔食性を兼ね備えたアルミニウム熱交換器用継手の提供、並びに、そのような優れた特長を有するアルミニウム熱交換器用継手の製造方法の提供を目的とする。
【0005】
【課題を解決するための手段】
そこで、本発明者らは、上述のような問題を解決するべく、従来材より高強度でより一層の薄肉化が可能なアルミニウム製熱交換器用管継手の研究を行った結果、前記継手材をZn:4.5〜5.0%(重量%、以下同じ)、Mg:0.25〜0.35%、Mn:0.9〜1.1%、Si:0.3〜0.4%、Cu:0.15〜0.25%、Fe:0.2〜0.4%、Ga:0.005〜0.03%、Cr:0.05%以下を含有し、残部がAlと不可避不純物からなる組成を有するアルミニウム合金で構成すると、このアルミニウム合金は使用する継手の強度低下を招く事なく薄肉化が可能となり、更に切削加工時の生産性が向上するとともに、実用に際しても深い孔食の発生を低減することができ、長期にわたって優れた性能を発揮するという結果を得た。
また、本発明者らは、この種のアルミニウム合金で管継手を製造する場合、押し出し直後の高温のアルミニウム合金を従来のこの種の合金を押し出す場合よりも急冷し、更にその後時効を行うことで、管継手の切削性および機械的性質を更に向上させることができることを知見して本発明に到達した。
【0006】
本発明は前記課題を解決するために、Zn:4.5〜5.0%(重量%、以下同じ)、Mg:0.25〜0.35%、Mn:0.9〜1.1%、Si:0.3〜0.4%、Cu:0.15〜0.25%、Fe:0.2〜0.4%、Ga:0.005〜0.03%、Cr:0.05%以下を含有し、残部がAlと不可避不純物からなる組成を有するアルミニウム合金からなることを特徴とする。
前述のアルミニウム合金の組成において、Gaの微量添加により切削加工性が著しく向上する。
【0007】
本発明は前記課題を解決するために、Zn:4.5〜5.0%、Mg:0.25〜0.35%、Mn:0.9〜1.1%、Si:0.3〜0.4%、Cu:0.15〜0.25%、Fe:0.2〜0.4%、Ga:0.005〜0.03%、Cr:0.05%以下を含有し、更に、Ti:0.01〜0.1%、Zr:0.01〜0.15%のうち、1種または2種以上を含有し、残部がAlと不可避不純物からなる組成を有するアルミニウム合金からなることを特徴とする。
【0008】
本発明において前記組成のアルミニウム合金として、更に、Ce、La、Ndの希土類金属のうち、1種または2種以上が含有され、それらの総量が0.005〜0.2%の範囲とされてなるアルミニウム合金を用いることもできる。
Ce、La、Ndなどの希土類金属を用いると、これらの希土類金属は、希土類金属をXとした場合にAlX系、AlFeX系の晶析出物を形成し、一層強度および切削加工性を向上させる。
【0009】
本発明の製造方法において前記いずれかの組成のアルミニウム合金を用い、400〜600℃の高温で押出した後、200℃の温度まで10〜500℃/秒の冷却速度で冷却した後、更に室温で48時間以上時効することを特徴とすることができる。
本発明の製造方法において前記いずれかの組成を有するアルミニウム合金を400〜600℃の高温で押出した後、200℃の温度まで10〜500℃/秒の冷却速度で冷却した後、更に80〜200℃の温度で3〜50時間時効することを特徴とすることができる。
本発明の製造方法において前記いずれかの組成を有するアルミニウム合金を400〜600℃の高温で押出した後、200℃の温度まで10〜500℃/秒の冷却速度で冷却した後、室温で48時間以上時効し、更に80〜200℃の温度で3〜50時間時効することを特徴とすることができる。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態について説明するが、本発明は以下の実施形態に限定されるものではない。
本発明に係る継手は、例えば、自動車のラジエーター、エアコン用のコンデンサー、インタークーラー等に代表される各種のアルミニウム製の熱交換器の配管用継手として用いられて、主に配管を接続するために使用されるものである。また、管継手を配管と接合した後、接合部分をろう付けして固着することがなされる。
【0011】
本実施形態の管継手は、Zn:4.5〜5.0%(重量%、以下同じ)、Mg:0.25〜0.35%、Mn:0.9〜1.1%、Si:0.3〜0.4%、Cu:0.15〜0.25%、Fe:0.2〜0.4%、Ga:0.005〜0.03%、Cr:0.05%以下を含有し、残部がAlと不可避不純物からなる組成を有するアルミニウム合金からなる。
【0012】
また、本発明の管継手において、Zn:4.5〜5.0%(重量%、以下同じ)、 Mg:0.25〜0.35%、Mn:0.9〜1.1%、Si:0.3〜0.4%、Cu:0.15〜0.25%、Fe:0.2〜0.4%、Ga:0.005〜0.03%、Cr:0.05%以下を含有し、更に、Ti:0.01〜0.1%、Zr:0.01〜0.15%のうち、1種または2種以上を含有し、残部がAlと不可避不純物からなる組成を有するアルミニウム合金からなるものでも良い。
【0013】
本発明において、前記アルミニウム合金に、更に、Ce、La、Ndの希土類金属のうち、1種または2種以上が含有され、それらの総量が0.005〜0.2%の範囲とされてなるアルミニウム合金からなるものでも良い。
【0014】
「成分限定理由」
[ZnおよびMg]
これらの成分は管継手のろう付け後に常温でMgZn2として時効析出し、管継手としての強度を向上させる作用がある。また、Mgについては、単独の添加でも強度を非常に向上させる効果がある。また、Znの添加は腐食形態を面状として耐孔食性を向上させる効果がある。
これらの観点から、ZnとMgにおいて、いずれかの含有量がZnにおいては4.5%未満、Mgにおいては0.25%未満となると、所望の強度向上効果が得られず、Znにおいては添加量が5%を超えると腐食速度が速くなり過ぎるために腐食量が大きくなり、Mgにあっては0.35%を超える量の添加でろう付け性を極端に低下させるという問題がある。以上のことからZn含有量については4.5〜5.0%の範囲、Mgの含有量については0.25〜0.35%の範囲が好ましいとした。なお、以下に示す各元素の含有量範囲において、〜を用いて範囲の下限値と上限値を規定する場合、特に説明が無い場合は下限値と上限値を含むものとする。よって、4.5〜5.0%の範囲と記載した場合に特に説明が無い限り4.5%以上、5.0%以下を示すものとする。
【0015】
[Mn及びSi]
これらの成分は単独の添加でも強度を向上させ得るが、両方を添加することでろう付け時にAl-Mn-Si系化合物としてアルミニウム素地中に微細均一に分散析出してさらに強度を向上させる効果がある。
MnおよびSiのいずれかの添加量がMnにおいて0.90%未満、Siにおいて0.3%未満では、所望の強度向上効果が得られない。Mn含有量において1.1%を超えると押出加工性が低下し、Si含有量において0.4%を超えるとろう付け時に局部溶解の発生を促進する。従って、その含有量をそれぞれMnにおいては0.9〜1.1%の範囲、Siにおいては0.3〜0.4%に定めた。
【0016】
[Cu]
Cuはアルミニウムの素地に均一に固溶し、強度を向上させる効果がある。Cuの含有量が0.15%未満では所望の強度向上が得られず、一方、0.25%を超えると腐食速度が速くなり、切削加工性も低下する。従って、Cuの含有量を0.15〜0.25%に定めた。
[Fe]
Feは、AlおよびMn、Siと結合し、素地に微細均一に分散析出するAl-Fe系やAl-Si-Fe系、あるいはAl-Mn-Si-Fe系化合物を形成して強度を一段と向上させる効果があるほか、MgZn2の析出を促進させる効果がある。Feの含有量が0.2%未満では所望の強度向上効果が得られず、0.4%を超えると押出加工性を低下させる。従って、その含有量を0.2〜0.4%に定めた。
【0017】
[Ga]
GaはAl合金中に微量添加することでAl合金の切削加工性を著しく向上させる。Gaの含有量が0.005%未満では所望の効果が得られず、0.03%を超えると低融点の化合物を生成し始め、ろう付け時に局部溶解が問題となり、さらに腐食速度が速くなるために、耐孔食性が低下する。従って、Gaの含有量を0.005〜0.03%と規定した。
[TiおよびZr]
これらの成分はいずれも鋳造組織を微細化し、押し出し時の熱間加工性を一段と向上させる効果があるため、薄肉の管継手材を歩留まり良く成形することが可能となる。また、これらの元素は、Al-Mn系化合物を微細化する作用があり、押出温度での変形抵抗を小さくし、押出性を向上させる。更に、ろう付け後に微細な金属間化合物として素地中に分散し、強度および切削加工性を向上させる。 その含有量が、それぞれ0.01%未満では前記作用の所望の効果が得られず、その含有量がそれぞれ、Tiにおいては0.1%を超えると、Zrにおいては0.15%を超えると熱間加工性が急激に低下することから、それらの含有量をそれぞれTiにおいては0.01〜0.1%の範囲、Zrにおいては0.01〜0.15%の範囲に定めた。
【0018】
[Cr]
Crにおいてはその含有量が0.05%を超えると押出加工性や切削加工性、耐孔食性を低下させるので、0.05%以下に制御することが好ましい。
[Ce、La及びNd]
これらの希土類元素は、Al-X系、Al-Fe-X系(XはCe、La、Ndのうちの1種又は2種以上)の晶析出物を微細均一に分布することで一層強度および切削加工性を向上させる。
これら希土類元素の総量(Ce+La+Nd)が0.005%未満では、所望の効果が望めず、総量が0.20%を超えると押出加工性と切削加工性が低下する。ところでこれらの希土類元素は、それぞれの純金属の形で添加して合金化しても良いが、これら希土類元素の混合物として一般的に得られているミッシュメタル(混合希土類金属)の形で添加しても良い。
【0019】
このミッシュメタルには、通常、Ce、La、Ndの外に、数%程度のPrや極微量のPbやP、Sなどが含まれることがあるが、それらが含まれていても本発明の効果に大きな影響は無い。従って実用的にはミッシュメタル添加量を制御することで簡単にその総量を調整することができる。通常一般のミッシュメタルでは、Ce:約50%、La:約25%、Nd:約10%の割合でこれらの元素が含有されている。しかしながらこれらに例示した希土類元素の他に、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luで示される他の希土類元素が若干含まれたものを用いても差し支えないので、これらの希土類元素が本願発明で用いるアルミニウム合金に微量含有されていても差し支えない。
【0020】
前述の組成のアルミニウム合金からなる熱交換器用継手を製造するには、一般的には、前記組成となるように調製したアルミニウム合金溶湯から鋳造法により適切な大きさのビレットを製造し、このビレットに均質化処理などを施した後、所定の温度範囲、例えば400〜600℃に加熱して熱間押出加工することにより円環状あるいは角型状などの環状の継手を得ることができる。ここで形成する継手の形状は目的に応じて種々の形状が考えられるので、特に規定するものではない。
この製造法において400〜600℃での熱間押出後、高温の状態、例えば、200℃の温度になるまで押出材料に水などの冷却媒体を噴霧する、あるいは、噴射することで通常の空冷よりも冷却速度を速くし(好ましくは、冷却速度100〜200℃/秒)、その後の室温時効、あるいは、80〜200℃の人口時効時にMgZn2の時効析出を促進し、MgZn2を材料中に微細均一に析出させることで、押出後に行う機械加工での切削加工性を向上させ、優れた寸法精度を得られるようにすることができる。
【0021】
この熱間押出後の冷却速度が10℃/秒より遅いようであると、前述の所望の効果が得られない。
そこで本発明に係る組成のアルミニウム合金から継手を製造する場合の押出後の好ましい冷却速度範囲は、実際の製造条件を考慮し、10〜200℃/秒の範囲に定めた。
【0022】
以上説明の如く得られたアルミニウム合金製の継手であるならば、抗折力が高く、機械的強度に優れるとともに、耐孔食性に優れ、更に押出後の切削加工性にも優れた継手を提供することができる。
【0023】
【実施例】
以下に本発明のアルミニウム合金製継手を実施例により具体的に説明するが、本発明が以下の実施例により限定されるものではない。
通常の溶解法によりそれぞれ後に記載する第1表に示される成分組成を有するアルミニウム合金溶湯を調製し、この溶湯から鋳造して直径200mmのビレットを複数作成した。これらのビレットに530℃で8時間保持する条件で均質化処理を施した後、表2に示す480〜530℃の温度で熱間押出加工を施し、表2に示す冷却速度(℃/秒)で冷却し、更に表2に示す条件で時効することにより、断面が1辺長さ15mmの六角筒形状を有する本発明に係るアルミニウム合金(合金番号A〜J)からなる管継手素材(本発明材種別1〜14)および比較材のアルミニウム合金(合金番号a〜m)からなる管継手比較材(比較材種別1〜12)をそれぞれ製造した。
なお、比較材の管継手素材1〜12のアルミニウム合金成分組成のうち、本発明範囲から外れた成分含有量については表1に*印で示し、製造方法において本発明範囲から外れた製造条件については表2に*印で示した。
【0024】
次いで、上記の各種管継手素材から、強度を評価する目的で断面5mm×5mm、長さ50mmの寸法の抗折力測定用試験片並びに耐孔食性を評価する目的で断面15mm×30mm、長さ50mmの腐食試験片を切り出し、これらの試験片にろう付けと同じ条件、即ち、N2ガス雰囲気で温度600℃に5分間保持の条件で熱処理を施し、以後室温に5日間保持する時効硬化処理を施した状態でそれぞれの試験に使用した。
なお、腐食試験として、自動車用熱交換器の冷却水を想定し、以下の(a)に記載の水道水浸漬試験と(b)に記載の腐食液浸漬試験の2種類を実施した。
(a)0.1ppmのCu2+イオンを添加した40℃の水道水浸漬試験。
(b)100ppmのCl-、100ppmのHCO3 -、及び、0.1ppmのCu2+の各イオンを添加した40℃の水溶液中に30日間浸漬する腐食液浸漬試験。
そして、これらの各試験の後に、最大孔食深さ(mm)を測定した結果を以下の表2に示す。
【0025】
次に切削加工性の評価として、同一の切削機械で連続して2000個切削加工を行った後の不良品発生個数を調査した。管継手の寸法、および、溝加工の精度が製品に要求された範囲以外のもの、あるいは、バリなどの発生により製品としての機能を満足しないものを不良品としてカウントした。また、切削加工性が悪い場合は不良品の発生や切削機械のバイト(刃)にアルミニウム合金が付着することで機械の切削速度が低下するため生産性が低下する。切削加工性の判定としては、不良率0〜0.05%の範囲のものを〇印で示し、不良率0.1%程度のものを△、不良率0.25%以上のものを×で示した。
【0026】
【表1】

Figure 0004611564
【0027】
【表2】
Figure 0004611564
【0028】
表2に示された試験結果から、本発明に係る組成のアルミニウム合金の熱交換器用管継手であるならば、比較材に比べて非常に高い抗折力を有していることが明らかである。また、切削加工性と耐孔食性についても本発明に係る組成のアルミニウム合金製の管継手であるならば、比較材よりも良好な特性を有することが明らかであり、従来材の管継手は、強度、耐孔食性、切削加工性のいずれかが本発明に係るアルミニウム合金製の管継手よりも劣ることが明らかである。
【0029】
表2において抗折力は26kg/mm2以上は必要であると考えられるが、比較材の多くのものは抗折力26kg/mm2を下回った。また、Ga添加量が少なく、希土類を含有していない試料で、かつ、製造方法において時効処理時間が室温で24時間の比較材試料No.1、2は抗折力が低く、不良率も高くなり、切削加工性が低下し、Ga含有量が多い比較材試料No.3は耐食性に劣り、Ga含有量と希土類含有量が多い比較材試料No.4は耐食性が劣る結果となった。希土類含有量が多い比較材試料No.5は切削加工性が低下した。比較材No.6は希土類含有量が0.25%の試料であるが不良率が0.25%と高くなり、切削加工性の判断が×となった。Zn含有量が少ない比較材試料No.7は抗折力が低下し、人工時効時間が短く、Zn含有量が多い比較材試料No.8は耐食性に劣る結果となった。次に、Mg含有量が少ない比較材試料No.9は著しい抗折力低下(強度低下)を引き起こし、Mnが少ない比較材試料No.10、Siが少ない比較材試料No.11、Cu含有量が少ない比較材試料No.12はいずれも強度低下を引き起こし、不良率も悪化した。
以上のことから、本発明に係るアルミニウム熱交換器用継手は、高強度で、優れた切削加工性と耐孔食性を有するので、従来材を用いるよりも更に薄肉化、小型化に対応することができる特徴を有する。
【0030】
【発明の効果】
以上説明したように本発明によれば、従来材で形成されたアルミニウム合金製継手に比べて強度が高く、耐孔食性に優れ、切削加工性にも優れているという3つの特性のバランスのとれた熱交換器用継手を提供することができる。
以上のことから、本発明に係るアルミニウム熱交換器用継手であるならば、従来材を用いたものよりも薄肉化、小型化に寄与する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a joint for an aluminum heat exchanger having high strength and capable of being thinned and miniaturized, and a method for manufacturing the joint.
[0002]
[Prior art]
In general, aluminum heat exchangers are made by assembling structural members such as fins, header plates, pipes, and pipe joints, all of which are made of Al or Al alloy, into a predetermined shape and brazing them together. It is manufactured by. Especially, pipe joints of these structural members are required to have high strength structurally. For example, as described in JP-A-63-118046, weight percent (hereinafter, unless otherwise specified). % Indicates weight%)
Zn: 3 to 4.5%, Mg: 0.5 to 1.5%, Zr: 0.05 to 0.2%, Mn: 0.2 to 0.7%, Si: 0.2 to 0.2. Containing 7%, and if necessary,
One or two of Cr: 0.05-0.3%, Ti: 0.05-0.2%, V: 0.05-0.2%, Cu: 0.05-0.3% An Al alloy having a composition containing at least seeds and the balance of Al and inevitable impurities is used.
[0003]
[Problems to be solved by the invention]
With the recent miniaturization, high performance, and general use of aluminum heat exchangers, the above structural members tend to be required to be thinner and smaller. Strictly speaking, the above-described conventional Al alloy pipe joints cannot sufficiently meet these requirements. Further, in the conventional alloy composition, due to insufficient strength, it is becoming difficult to further reduce the thickness in the future.
Next, these alloys are also required to have excellent cutting workability and pitting corrosion resistance together with high strength, and considering the future thinning, the characteristics of conventional alloy materials are insufficient, All properties must be superior to conventional materials.
[0004]
Based on the above background, the present invention has been made to further improve the material properties of this type of conventional alloy, and can cope with further downsizing, thinning, and high performance of an aluminum heat exchanger. Providing a joint for an aluminum heat exchanger that has high strength that can be produced, and has both excellent machinability and pitting corrosion resistance, and a method for producing a joint for an aluminum heat exchanger having such excellent features With the goal.
[0005]
[Means for Solving the Problems]
Therefore, the present inventors conducted research on aluminum heat exchanger pipe joints that can be made thinner and thinner than conventional materials in order to solve the above-mentioned problems. Zn: 4.5-5.0% (% by weight, hereinafter the same), Mg: 0.25-0.35%, Mn: 0.9-1.1%, Si: 0.3-0.4% Cu: 0.15 to 0.25%, Fe: 0.2 to 0.4%, Ga: 0.005 to 0.03%, Cr: 0.05% or less, with the balance being inevitable with Al When composed of an aluminum alloy having a composition comprising impurities, this aluminum alloy can be thinned without causing a reduction in the strength of the joint used, further improving productivity during cutting and deep pitting corrosion in practical use. As a result, it was possible to reduce the occurrence of odor and to exhibit excellent performance over a long period of time.
In addition, when manufacturing pipe joints with this type of aluminum alloy, the inventors have cooled the aluminum alloy at a high temperature immediately after extrusion more rapidly than in the case of extruding this type of conventional alloy, and then aging is performed. The present inventors have found that the machinability and mechanical properties of the pipe joint can be further improved and have reached the present invention.
[0006]
In order to solve the above problems, the present invention provides Zn: 4.5 to 5.0% (% by weight, hereinafter the same), Mg: 0.25 to 0.35%, Mn: 0.9 to 1.1% , Si: 0.3 to 0.4%, Cu: 0.15 to 0.25%, Fe: 0.2 to 0.4%, Ga: 0.005 to 0.03%, Cr: 0.05 % Or less, and the balance is made of an aluminum alloy having a composition composed of Al and inevitable impurities.
In the composition of the aluminum alloy described above, cutting workability is remarkably improved by adding a small amount of Ga.
[0007]
In order to solve the above problems, the present invention provides Zn: 4.5 to 5.0%, Mg: 0.25 to 0.35%, Mn: 0.9 to 1.1%, Si: 0.3 to 0.4%, Cu: 0.15 to 0.25%, Fe: 0.2 to 0.4%, Ga: 0.005 to 0.03%, Cr: 0.05% or less, Ti: 0.01 to 0.1%, Zr: 0.01 to 0.15%, or one or more of them, and the balance is made of an aluminum alloy having a composition composed of Al and inevitable impurities. It is characterized by that.
[0008]
In the present invention, the aluminum alloy having the above composition further contains one or more of rare earth metals such as Ce, La, and Nd, and the total amount thereof is in the range of 0.005 to 0.2%. An aluminum alloy can also be used.
When rare earth metals such as Ce, La, and Nd are used, these rare earth metals form AlX-based and AlFeX-based crystal precipitates when the rare earth metal is X, thereby further improving strength and machinability.
[0009]
In the production method of the present invention, an aluminum alloy having any one of the above compositions is used, extruded at a high temperature of 400 to 600 ° C., cooled to a temperature of 200 ° C. at a cooling rate of 10 to 500 ° C./second, and further at room temperature. It can be characterized by aging for 48 hours or more.
In the production method of the present invention, the aluminum alloy having any one of the above compositions is extruded at a high temperature of 400 to 600 ° C., then cooled to a temperature of 200 ° C. at a cooling rate of 10 to 500 ° C./second, and further 80 to 200 ° C. It can be characterized by aging for 3 to 50 hours at a temperature of ° C.
In the production method of the present invention, an aluminum alloy having any one of the above compositions is extruded at a high temperature of 400 to 600 ° C., then cooled to a temperature of 200 ° C. at a cooling rate of 10 to 500 ° C./second, and then at room temperature for 48 hours. It can be characterized by aging as described above and further aging at a temperature of 80 to 200 ° C. for 3 to 50 hours.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, although embodiment of this invention is described, this invention is not limited to the following embodiment.
The joint according to the present invention is used, for example, as a joint for pipes of various aluminum heat exchangers typified by, for example, an automobile radiator, a condenser for an air conditioner, an intercooler, and the like, and is mainly used for connecting pipes. It is what is done. Moreover, after joining a pipe joint with piping, a joining part is brazed and fixed.
[0011]
The pipe joint of this embodiment has Zn: 4.5 to 5.0% (% by weight, the same applies hereinafter), Mg: 0.25 to 0.35%, Mn: 0.9 to 1.1%, Si: 0.3 to 0.4%, Cu: 0.15 to 0.25%, Fe: 0.2 to 0.4%, Ga: 0.005 to 0.03%, Cr: 0.05% or less It is made of an aluminum alloy having a composition containing Al and inevitable impurities.
[0012]
In the pipe joint of the present invention, Zn: 4.5 to 5.0% (% by weight, hereinafter the same), Mg: 0.25 to 0.35%, Mn: 0.9 to 1.1%, Si : 0.3 to 0.4%, Cu: 0.15 to 0.25%, Fe: 0.2 to 0.4%, Ga: 0.005 to 0.03%, Cr: 0.05% or less In addition, Ti: 0.01% to 0.1%, Zr: 0.01% to 0.15%, or one or more types, and the balance is composed of Al and inevitable impurities. It may be made of an aluminum alloy.
[0013]
In the present invention, the aluminum alloy further contains one or more of rare earth metals such as Ce, La, and Nd, and the total amount thereof is in the range of 0.005 to 0.2%. It may be made of an aluminum alloy.
[0014]
"Reason for ingredient limitation"
[Zn and Mg]
These components age-precipitate as MgZn 2 at room temperature after brazing the pipe joint, and have the effect of improving the strength of the pipe joint. Moreover, about Mg, there exists an effect which improves an intensity | strength very much even if individual addition. In addition, the addition of Zn has an effect of improving the pitting corrosion resistance by making the corrosion form planar.
From these viewpoints, when any content of Zn and Mg is less than 4.5% in Zn and less than 0.25% in Mg, the desired effect of improving the strength cannot be obtained. If the amount exceeds 5%, the corrosion rate becomes too fast, so that the amount of corrosion increases, and in the case of Mg, there is a problem that brazing properties are extremely lowered by addition of an amount exceeding 0.35%. From the above, the Zn content is preferably in the range of 4.5 to 5.0%, and the Mg content is preferably in the range of 0.25 to 0.35%. In addition, in the content range of each element shown below, when a lower limit value and an upper limit value of a range are defined using-, unless otherwise specified, a lower limit value and an upper limit value are included. Therefore, when it is described as a range of 4.5 to 5.0%, it indicates 4.5% or more and 5.0% or less unless otherwise specified.
[0015]
[Mn and Si]
These components can improve the strength even if they are added alone, but the addition of both has the effect of finely and uniformly dispersing and precipitating in the aluminum substrate as an Al-Mn-Si compound during brazing. is there.
If the added amount of either Mn or Si is less than 0.90% in Mn and less than 0.3% in Si, a desired strength improvement effect cannot be obtained. If the Mn content exceeds 1.1%, the extrudability decreases, and if the Si content exceeds 0.4%, the local dissolution is promoted during brazing. Therefore, the contents are set in the range of 0.9 to 1.1% for Mn and 0.3 to 0.4% for Si, respectively.
[0016]
[Cu]
Cu has the effect of solid-dissolving uniformly in the aluminum substrate and improving the strength. If the Cu content is less than 0.15%, the desired strength improvement cannot be obtained. On the other hand, if it exceeds 0.25%, the corrosion rate increases and the machinability also decreases. Therefore, the Cu content is determined to be 0.15 to 0.25%.
[Fe]
Fe combines with Al, Mn, and Si to form Al-Fe, Al-Si-Fe, or Al-Mn-Si-Fe compounds that disperse and deposit finely and uniformly on the substrate to further improve strength. In addition, there is an effect of promoting the precipitation of MgZn 2 . If the Fe content is less than 0.2%, the desired strength improvement effect cannot be obtained, and if it exceeds 0.4%, the extrusion processability is lowered. Therefore, the content is determined to be 0.2 to 0.4%.
[0017]
[Ga]
Ga is remarkably improved in the workability of the Al alloy by adding a small amount of Ga to the Al alloy. If the Ga content is less than 0.005%, the desired effect cannot be obtained. If the Ga content exceeds 0.03%, a low melting point compound starts to be produced, local dissolution becomes a problem during brazing, and the corrosion rate increases. Therefore, pitting corrosion resistance falls. Therefore, the Ga content is defined as 0.005 to 0.03%.
[Ti and Zr]
All of these components have the effect of refining the cast structure and further improving the hot workability during extrusion, so that it is possible to form a thin-walled pipe joint material with a high yield. Moreover, these elements have the effect | action which refines | miniaturizes an Al-Mn type compound, makes the deformation resistance in extrusion temperature small, and improves extrudability. Furthermore, after brazing, it is dispersed in the substrate as a fine intermetallic compound to improve strength and machinability. If the content is less than 0.01%, the desired effect of the above action cannot be obtained. If the content exceeds 0.1% in Ti and 0.15% in Zr, respectively. Since the hot workability is abruptly lowered, their contents are determined in the range of 0.01 to 0.1% for Ti and in the range of 0.01 to 0.15% for Zr, respectively.
[0018]
[Cr]
If the Cr content exceeds 0.05%, the extrudability, cutting workability, and pitting corrosion resistance are lowered. Therefore, the Cr content is preferably controlled to 0.05% or less.
[Ce, La and Nd]
These rare earth elements are further improved in strength and strength by finely distributing crystal precipitates of Al-X series, Al-Fe-X series (X is one or more of Ce, La, and Nd). Improves machinability.
If the total amount of these rare earth elements (Ce + La + Nd) is less than 0.005%, the desired effect cannot be expected, and if the total amount exceeds 0.20%, the extrudability and the machinability deteriorate. By the way, these rare earth elements may be added and alloyed in the form of pure metals, but they are added in the form of misch metal (mixed rare earth metals) generally obtained as a mixture of these rare earth elements. Also good.
[0019]
This misch metal usually contains about several percent Pr or trace amounts of Pb, P, S, etc. in addition to Ce, La, Nd. There is no big influence on the effect. Therefore, practically, the total amount can be easily adjusted by controlling the amount of misch metal added. Ordinary misch metal usually contains these elements at a ratio of Ce: about 50%, La: about 25%, and Nd: about 10%. However, in addition to the rare earth elements exemplified above, those containing some other rare earth elements represented by Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu are used. Therefore, these rare earth elements may be contained in a trace amount in the aluminum alloy used in the present invention.
[0020]
In order to manufacture a joint for a heat exchanger made of an aluminum alloy having the above-described composition, generally, a billet of an appropriate size is manufactured by a casting method from a molten aluminum alloy prepared to have the above-described composition. After subjecting to a homogenization treatment or the like, an annular joint such as an annular shape or a square shape can be obtained by heating to a predetermined temperature range, for example, 400 to 600 ° C. and performing hot extrusion. The shape of the joint formed here is not particularly specified because various shapes can be considered according to the purpose.
In this manufacturing method, after hot extrusion at 400 to 600 ° C., a cooling medium such as water is sprayed on the extruded material until it reaches a high temperature state, for example, 200 ° C. (preferably, the cooling rate 100 to 200 ° C. / sec) is also the cooling rate, followed by room temperature aging, or to promote the aging precipitation of MgZn 2 when population aging 80 to 200 ° C., the material in MgZn 2 By precipitating finely and uniformly, it is possible to improve the machinability in machining performed after extrusion and to obtain excellent dimensional accuracy.
[0021]
If the cooling rate after this hot extrusion seems to be slower than 10 ° C./second, the above-mentioned desired effect cannot be obtained.
Therefore, a preferable cooling rate range after extrusion when a joint is manufactured from the aluminum alloy having the composition according to the present invention is set to a range of 10 to 200 ° C./second in consideration of actual manufacturing conditions.
[0022]
The aluminum alloy joint obtained as described above provides a joint with high bending strength, excellent mechanical strength, pitting corrosion resistance, and excellent machinability after extrusion. can do.
[0023]
【Example】
EXAMPLES The aluminum alloy joint of the present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples.
A molten aluminum alloy having the component composition shown in Table 1 described later was prepared by an ordinary melting method, and a plurality of billets having a diameter of 200 mm were prepared by casting from the molten metal. These billets were homogenized under the condition of holding at 530 ° C. for 8 hours, then subjected to hot extrusion at a temperature of 480 to 530 ° C. shown in Table 2, and the cooling rate (° C./second) shown in Table 2 The pipe joint material (invention number A to J) made of an aluminum alloy (alloy numbers A to J) according to the present invention having a hexagonal cylindrical shape with a cross-section of 15 mm on one side is obtained by cooling with the conditions shown in Table 2 and aging. The pipe joint comparison materials (comparative material types 1 to 12) made of the material types 1 to 14) and the comparative aluminum alloys (alloy numbers a to m) were produced, respectively.
In addition, about the aluminum alloy component composition of the pipe joint raw materials 1-12 of a comparative material, about the component content which remove | deviated from the range of this invention, it shows in Table 1 by * mark, About manufacturing conditions outside the range of this invention in the manufacturing method Is indicated by * in Table 2.
[0024]
Next, from the above-mentioned various pipe joint materials, a cross section of 5 mm × 5 mm for the purpose of evaluating the strength, a test piece for measuring the bending strength of a dimension of 50 mm in length, and a cross section of 15 mm × 30 mm, for the purpose of evaluating the pitting corrosion resistance. A 50 mm corrosion test piece is cut out, and subjected to heat treatment under the same conditions as brazing, that is, holding at a temperature of 600 ° C. for 5 minutes in an N 2 gas atmosphere, and then age hardening treatment for holding at room temperature for 5 days. It used for each test in the state which gave.
In addition, as a corrosion test, the cooling water of the heat exchanger for motor vehicles was assumed and two types, the tap water immersion test as described in the following (a), and the corrosive liquid immersion test as described in (b) were implemented.
(A) Tap water immersion test at 40 ° C. with addition of 0.1 ppm of Cu 2+ ions.
(B) Corrosion solution immersion test immersed in an aqueous solution at 40 ° C. to which 100 ppm of Cl , 100 ppm of HCO 3 , and 0.1 ppm of Cu 2+ are added for 30 days.
The results of measuring the maximum pitting depth (mm) after each of these tests are shown in Table 2 below.
[0025]
Next, as an evaluation of cutting workability, the number of defective products after 2000 pieces were continuously cut with the same cutting machine was investigated. Pipe fitting dimensions and grooving accuracy outside the range required for the product, or those that do not satisfy the product function due to the occurrence of burrs, etc., were counted as defective products. In addition, when the machinability is poor, the productivity is lowered because the cutting speed of the machine is reduced due to the occurrence of defective products and the aluminum alloy adhering to the cutting machine's cutting tool (blade). As for the determination of the machinability, those with a defect rate in the range of 0 to 0.05% are indicated by ◯, those with a defect rate of about 0.1% are indicated by △, and those with a defect rate of 0.25% or more are indicated with ×. Indicated.
[0026]
[Table 1]
Figure 0004611564
[0027]
[Table 2]
Figure 0004611564
[0028]
From the test results shown in Table 2, it is apparent that the aluminum alloy heat exchanger pipe joint having the composition according to the present invention has a very high bending strength compared to the comparative material. . In addition, it is clear that cutting performance and pitting corrosion resistance are better than the comparative material if it is a pipe joint made of an aluminum alloy having a composition according to the present invention. It is clear that any of the strength, pitting corrosion resistance and cutting workability is inferior to the aluminum alloy pipe joint according to the present invention.
[0029]
In Table 2, it is considered that a bending strength of 26 kg / mm 2 or more is necessary, but many of the comparative materials were below the bending strength of 26 kg / mm 2 . Further, the comparative material samples No. 1 and 2 having a low Ga addition amount and containing no rare earth and having an aging treatment time of 24 hours at room temperature in the production method have low bending strength and a high defect rate. As a result, the machinability deteriorated, the comparative material sample No. 3 having a high Ga content was inferior in corrosion resistance, and the comparative material sample No. 4 having a high Ga content and a rare earth content was inferior in corrosion resistance. The comparative material sample No. 5 having a high rare earth content was degraded in cutting workability. Comparative material No. 6 was a sample with a rare earth content of 0.25%, but the defect rate was as high as 0.25%, and the machinability was judged as x. Comparative material sample No. 7 with a low Zn content had a reduced bending strength, a short artificial aging time, and comparative material sample No. 8 with a high Zn content resulted in poor corrosion resistance. Next, comparative material sample No. 9 with low Mg content causes a significant decrease in bending strength (strength reduction), comparative material sample No. 10 with low Mn, comparative material sample No. 11 with low Si, and Cu content. Comparative material sample No. 12 with a small amount caused a decrease in strength and the defect rate also deteriorated.
From the above, the aluminum heat exchanger joint according to the present invention has high strength and excellent cutting workability and pitting corrosion resistance. Therefore, the aluminum heat exchanger joint can cope with further thinning and downsizing rather than using conventional materials. It has the characteristics that can.
[0030]
【The invention's effect】
As described above, according to the present invention, the balance of the three characteristics of strength, pitting corrosion resistance, and cutting workability is higher than that of an aluminum alloy joint formed of a conventional material. A heat exchanger joint can be provided.
From the above, the aluminum heat exchanger joint according to the present invention contributes to a thinner wall and smaller size than those using the conventional material.

Claims (6)

Zn:4.5〜5.0%(重量%、以下同じ)、 Mg:0.25〜0.35%、
Mn:0.9〜1.1%、 Si:0.3〜0.4%、
Cu:0.15〜0.25%、 Fe:0.2〜0.4%、
Ga:0.005〜0.03%、 Cr:0.05%以下
を含有し、残部がAlと不可避不純物からなる組成を有するアルミニウム合金からなることを特徴とする高強度かつ切削加工性に優れたアルミニウム熱交換器用継手。
Zn: 4.5 to 5.0% (% by weight, the same applies hereinafter), Mg: 0.25 to 0.35%,
Mn: 0.9 to 1.1%, Si: 0.3 to 0.4%,
Cu: 0.15-0.25%, Fe: 0.2-0.4%,
Ga: 0.005 to 0.03%, Cr: 0.05% or less, the balance being made of an aluminum alloy having a composition composed of Al and inevitable impurities, and high strength and excellent machinability Aluminum heat exchanger fittings.
Zn:4.5〜5.0%(重量%、以下同じ)、 Mg:0.25〜0.35%、
Mn:0.9〜1.1%、 Si:0.3〜0.4%、
Cu:0.15〜0.25%、 Fe:0.2〜0.4%、
Ga:0.005〜0.03%、 Cr:0.05%以下
を含有し、更に、
Ti:0.01〜0.1%、 Zr:0.01〜0.15%
のうち、1種または2種以上を含有し、残部がAlと不可避不純物からなる組成を有するアルミニウム合金からなることを特徴とする高強度かつ切削加工性に優れたアルミニウム熱交換器用継手。
Zn: 4.5 to 5.0% (% by weight, the same applies hereinafter), Mg: 0.25 to 0.35%,
Mn: 0.9 to 1.1%, Si: 0.3 to 0.4%,
Cu: 0.15-0.25%, Fe: 0.2-0.4%,
Ga: 0.005 to 0.03%, Cr: 0.05% or less,
Ti: 0.01-0.1%, Zr: 0.01-0.15%
Among them, a joint for an aluminum heat exchanger having high strength and excellent machinability, comprising one or more of them, and the balance being made of an aluminum alloy having a composition composed of Al and inevitable impurities.
前記アルミニウム合金に、更に、Ce、La、Ndの希土類金属の内、1種または2種以上が含有され、それらの総量が0.005〜0.2%の範囲となる組成を有するアルミニウム合金からなることを特徴とする請求項1または2に記載の高強度かつ切削加工性に優れたアルミニウム熱交換器用継手。The aluminum alloy further includes one or more of Ce, La, and Nd rare earth metals, and the total amount thereof is 0.005 to 0.2%. The joint for aluminum heat exchanger according to claim 1 or 2, wherein the joint for aluminum heat exchanger has high strength and excellent machinability. 請求項1、2または3に記載の組成を有するアルミニウム合金を400〜600℃の高温で押出した後、200℃の温度まで10〜500℃/秒の冷却速度で冷却した後、更に室温で48時間以上時効することを特徴とする高強度かつ切削加工性に優れたアルミニウム熱交換器用継手の製造方法。The aluminum alloy having the composition according to claim 1, 2 or 3 is extruded at a high temperature of 400 to 600 ° C, cooled to a temperature of 200 ° C at a cooling rate of 10 to 500 ° C / second, and further at room temperature. A method for producing a joint for an aluminum heat exchanger having high strength and excellent machinability, characterized by being aged for more than an hour. 請求項1、2または3に記載の組成を有するアルミニウム合金を400〜600℃の高温で押出した後、200℃の温度まで10〜500℃/秒の冷却速度で冷却した後、更に80〜200℃の温度で3〜50時間時効することを特徴とする高強度かつ切削加工性に優れたアルミニウム熱交換器用継手の製造方法。The aluminum alloy having the composition according to claim 1, 2 or 3 is extruded at a high temperature of 400 to 600 ° C, cooled to a temperature of 200 ° C at a cooling rate of 10 to 500 ° C / second, and further 80 to 200 A method for producing a joint for an aluminum heat exchanger having high strength and excellent machinability, characterized by aging at a temperature of 3 ° C for 3 to 50 hours. 請求項1、2または3に記載の組成を有するアルミニウム合金を400〜600℃の高温で押出した後、200℃の温度まで10〜500℃/秒の冷却速度で冷却した後、室温で48時間以上時効し、更に80〜200℃の温度で3〜50時間時効することを特徴とする高強度かつ切削加工性に優れたアルミニウム熱交換器用継手の製造方法。The aluminum alloy having the composition according to claim 1, 2 or 3 is extruded at a high temperature of 400 to 600 ° C, cooled to a temperature of 200 ° C at a cooling rate of 10 to 500 ° C / second, and then at room temperature for 48 hours. A method for producing a joint for an aluminum heat exchanger having high strength and excellent machinability, characterized by aging as described above and further aging at a temperature of 80 to 200 ° C. for 3 to 50 hours.
JP2001123257A 2000-12-28 2001-04-20 Aluminum heat exchanger joint with high strength and excellent machinability and manufacturing method thereof Expired - Fee Related JP4611564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001123257A JP4611564B2 (en) 2000-12-28 2001-04-20 Aluminum heat exchanger joint with high strength and excellent machinability and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-401146 2000-12-28
JP2000401146 2000-12-28
JP2001123257A JP4611564B2 (en) 2000-12-28 2001-04-20 Aluminum heat exchanger joint with high strength and excellent machinability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002256369A JP2002256369A (en) 2002-09-11
JP4611564B2 true JP4611564B2 (en) 2011-01-12

Family

ID=26607086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001123257A Expired - Fee Related JP4611564B2 (en) 2000-12-28 2001-04-20 Aluminum heat exchanger joint with high strength and excellent machinability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4611564B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6066299B2 (en) * 2013-02-14 2017-01-25 日本軽金属株式会社 Aluminum heat exchanger
JP6470062B2 (en) * 2015-02-09 2019-02-13 三菱アルミニウム株式会社 High strength processed aluminum alloy material for brazing and connector material with excellent screw strength
CN105220037B (en) * 2015-09-24 2017-05-24 上海华峰新材料研发科技有限公司 Super-strength anti-corrosion easy-to-cut aluminum alloy radiating material, preparation method and applications
JP6813363B2 (en) * 2017-01-06 2021-01-13 株式会社Uacj Aluminum alloy fin material for heat exchanger and its manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06271965A (en) * 1993-03-19 1994-09-27 Mitsubishi Alum Co Ltd Tube joint material made of high strength al alloy for aluminum heat exchanger
JP2001049374A (en) * 1999-08-03 2001-02-20 Sumitomo Light Metal Ind Ltd High strength aluminum alloy excellent in brazability and corrosion resistance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06271965A (en) * 1993-03-19 1994-09-27 Mitsubishi Alum Co Ltd Tube joint material made of high strength al alloy for aluminum heat exchanger
JP2001049374A (en) * 1999-08-03 2001-02-20 Sumitomo Light Metal Ind Ltd High strength aluminum alloy excellent in brazability and corrosion resistance

Also Published As

Publication number Publication date
JP2002256369A (en) 2002-09-11

Similar Documents

Publication Publication Date Title
JP4166613B2 (en) Aluminum alloy fin material for heat exchanger and heat exchanger formed by assembling the fin material
CN103290279A (en) Aluminium alloy fin material for brazing and manufacturing method of same
US9631879B2 (en) Aluminum alloy for extrusion and drawing processes
KR920006554B1 (en) Composite aluminum thin plates for brazing and method for preparing same
CA2638403C (en) Aluminum alloy for extrusion and drawing processes
JP3756439B2 (en) High strength and high corrosion resistance aluminum alloy extruded material for heat exchanger, method for producing the same, and heat exchanger
JP4611564B2 (en) Aluminum heat exchanger joint with high strength and excellent machinability and manufacturing method thereof
JP3333600B2 (en) High strength Al alloy fin material and method of manufacturing the same
JP2002348624A (en) Aluminum alloy pipe material for piping of automobile with excellent corrosion resistance and workability
JP4574036B2 (en) Aluminum alloy for fin material of heat exchanger and manufacturing method of fin material of heat exchanger
JP2002256402A (en) Method of producing fin material for use in heat exchanger
JP2002066786A (en) Manufacturing method of high corrosion resistant aluminum alloy matching material
JP3170202B2 (en) Aluminum alloy clad fin material and method of manufacturing the same
JP2000212668A (en) Aluminum alloy extruded tube for heat exchanger excellent in corrosion resistance
JPH11241136A (en) High corrosion resistant aluminum alloy, clad material thereof, and its production
JP5843462B2 (en) Aluminum alloy fin material for heat exchanger for drawless press
DE60206099T2 (en) High strength aluminum alloy suitable for a pipe
JP2004176091A (en) High strength aluminum alloy fin material for automotive heat exchanger having excellent rollability, and its manufacturing method
JP3735700B2 (en) Aluminum alloy fin material for heat exchanger and method for producing the same
JP3759441B2 (en) High strength and high corrosion resistance aluminum alloy extruded tube for heat exchanger, method for producing the same, and heat exchanger
JP2009046702A (en) Extruded flat perforated pipe for heat exchanger having excellent corrosion resistance
JP2000212667A (en) Aluminum alloy extruded tube for heat exchanger excellent in corrosion resistance
JP3977978B2 (en) Aluminum alloy for heat exchangers with excellent corrosion resistance
JPH11241133A (en) High corrosion resistant aluminum alloy clad material and its production
JP3253823B2 (en) Method for producing high strength and high heat resistant fin material made of aluminum alloy for heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101014

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4611564

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees